Detailed Design

Detailed Design

- Battery Charger

- Design of an Isolated Power Supply (Option-1):
 - 120V/60Hz ac input, 15V dc output, 30W, regulated power supply
 - Electrically isolated between input and output
 Safe to use
 - Efficient
 - Reliable
 - Economical.....
- Design of a PV-Based Battery Charger (Option-2):
- Charger for a 12V lead-acid battery (max. 2A charging current) from a widelyvariable csuch as a solar panel
- Non-isolated
- Safe to use
- Efficient
- Reliable
- Economical......

ECE3031

1. Design Requirements

- 12V lead-acid battery
- Maximum charging current 2A
- Optimum charging scheme (fast charging, maximizing battery capacity, maximizing battery life)
- Input 10V-28V DC
- Isolation not required
- Operating temperature

ECE3031

Detailed Design

2. Charging Scheme

Constant voltage charging

2.45V/cell for cycle use; 2.275V/cell for stand-by use

Constant current charging

0.1C-0.3C (10%-30% of rated capacity)

overcharge may occur

 2-stage constant voltage charging (recommended)

---- Charge Time

https://media.digikey.com/pdf/Data%20Sheets/B%20B%20Battery%20PDFs/VRLA_Man.pdf

ECE3031

Detailed Design

2. Charging Scheme

2-stage constant voltage charging with limited current

- 1. Voltage 2.45V/cell
 - A. Limited current, e.g. around 0.3C (2.1A for 7Ah battery)
 - B. Constant 2.45V/cell until current decreases to the switching point
- 2. Voltage 2.275V/cell (float/stand-by charging)

ECE3031

Detailed Design

Detailed Design

3. Charger IC Selection

Considerations:

- Battery type (lead-acid)
- Voltage level (12V, 6 cell)
- Charging control (multi-stage charging)
- Availability on the market (digikey.ca)
- IC packaging/footprint (easy for soldering/connecting)

Selections:

- BQ24450 (SOIC packaging)
- UC2906/UC3906 (has DIP package UC2906N)

ECE3031

Detailed Design

4. Charger IC UC2906

http://www.ti.com/lit/ds/symlink/uc2906.pdf

Detailed Design

4. Charger IC UC2906

4. Charger IC UC2906

ECE3031

Detailed Design

4. Charger IC UC2906	Design Procedure 1) Pick divider current, I _D . Recommended value is 50μA to 100μA.	5. External Pass Transistor Selection
VF 2.275V/cell VOC 2.45V/cell VT 1.75V/cell IMAX 0.3C IT <25mA	2) $R_{C} = 2.3V/I_{D}$ 3) $R_{A} + R_{B} = R_{SUM} = (V_{F} - 2.3V)/I_{D}$ 4) $R_{D} = 2.3V \cdot R_{SUM} / (V_{OC} - V_{F})$ 5) $R_{A} = (R_{SUM} + R_{X})(1 - 2.3V/V_{T})$ $WHERE: R_{X} = R_{C} \cdot R_{D} / (R_{C} + R_{D})$ 6) $R_{B} = R_{SUM} - R_{A}$ 7) $R_{S} = 0.25V/I_{MAX}$ 8) $R_{T} = (V_{IN} - V_{T} - 2.5V)/I_{T}$ 9) $I_{OCT} = \frac{I_{MAX}}{10}$ Note: $V_{I2} = 0.95V_{OC}$, $V_{31} = 0.90V_{F}$, ECE3031	 Considerations: Common-Emitter PNP or Darlington Voltage rating Current rating Minimum delta voltage Maximum power dissipation Thermal design

Detailed Design

ECE3031