
Possible Functional Blocks of Power Supply & Battery Charger (2018)

Design Process

5 Major Design Stages

- Idea Generation
- Conceptual Design
- Detailed Design (Design Embodiment)
- Prototype/Verifications
- Refinement/Final Design/Documentation

ECE3031

Detailed Design - Outcomes

Detailed design should yield the following outcomes (i.e. the design team should deliver the following results):

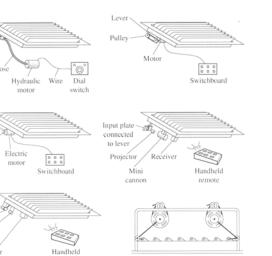
- Details of the products
 - Materials, components (BOM), dimensions, values
- Detailed drawings and specifications
 - Drawings/diagrams, specifications of materials and components, manuals, production procedures/plans etc.
- Costs and environmental impact
 - Component costs, production costs, marketing/distribution costs
 - Life cycle assessment, effects to environment and sustainability

Detailed Design - Process

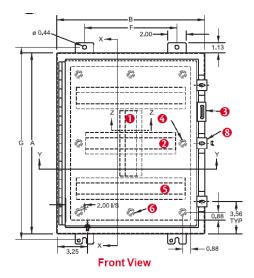
- Function and subsystem structure based on the results of Idea Generation
 - The entire product is decomposed of functional blocks
- Technical intensive solutions by the design team
 - Detailed calculations, simulations, solutions
- Design for 'X' (different purposes)
 - Design for manufacturing
 - Design for assembly
 - Design for environment, Design for safety etc.
- Integration of functions/subsystems
 - Complete product (initial)
- Verification and Modification
 - Design iterations: prototypes and simulations

ECE3031

Drawings of a Product - tech. communications in engineering

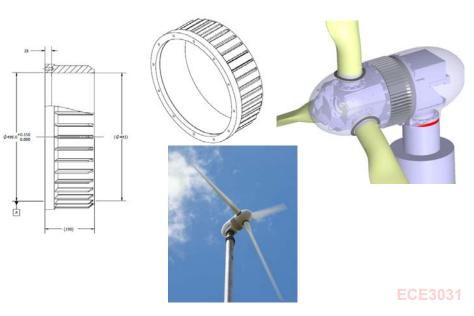

There are different types of drawings

- Sketches (layout drawings)
- Detail drawings
 - Complete and exact description of the part including shapes, dimensions, tolerances, surface finish and heat treatment (Mech); or complete circuit diagram including connection, type, value, label etc.(Elec).
- Assembly drawings
 - All the components drawn to scale
 - All the components drawn in the correct position
 - Minimum dimensioning
 - The component codes and descriptors are shown.


Sketches

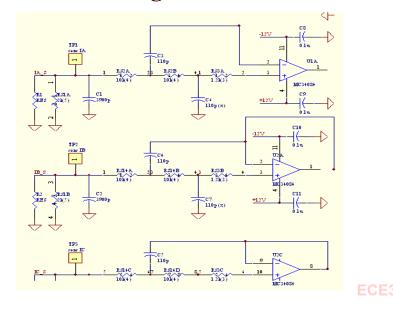
Generated in the conceptual design stage, and refined

- Conceptual
- All functions
- To scale
- No tolerances
- No details

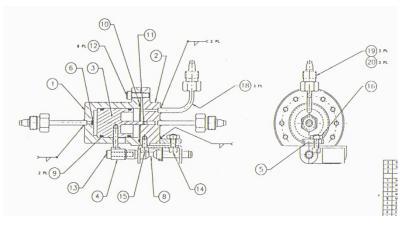

Detail Drawings - an enclosure

A PM Generator for Wind Turbines

Rf receive



Detail Drawings - an electrical product


ECE3031

Detail Drawings - electric schematics

Assembly Drawings

Show how components fit together

Bill of Material - index of parts

Include all components of an assembly

- Item number
- Part number (your company's designation)
- Quantity needed in the assembly
- Name and description of the component
- Model/material/package of the component
- Source and manufacturer of the component
- Cost of the component etc.

ECE3031

Samples of BOM

Item	Part	Quantity	Name	Material	Source	Cost
1	G-9042-1	1	Governer body	Cast aluminum	Lowe's	\$56.04
2	G-9138-3	1	Governer flange	Cast aluminum	Lowe's	\$8.60
9	X-1784	4	Governer bolt	Plated steel	Apex Ind.	\$0.99

(Electrical)

ltem 1	Part Quantity L-1001-1 1	Name/Description SMPS IC (40V/2.5A)	Model/Type LT1171CT	Producer Linear Tech.	Source MunroElec.	Cost \$7.85
2	L-1001-2 1	Ele. Cap. (220u/16V)	ECE-A16Z220	Panasonic	Digikey	\$0.54
 25	L-1001-2 1	Film resistor(2.0k/0.25)	CR-2K	Philip	FAI	\$0.02

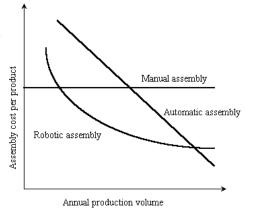
Note: BOM should also include package information, eg. 16-pin DIP package for ICs etc.

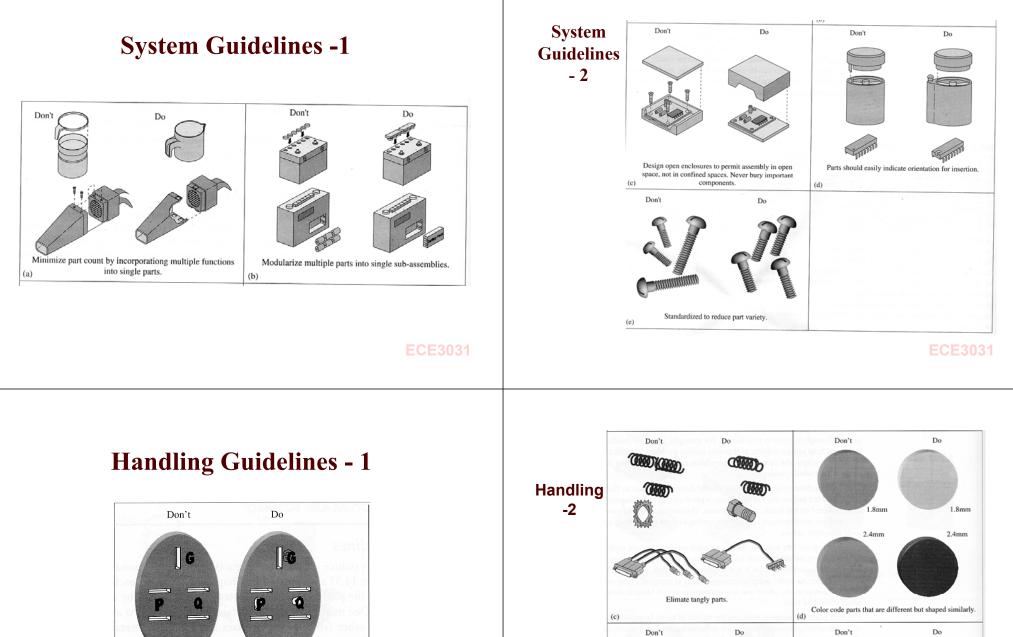
ECE3031

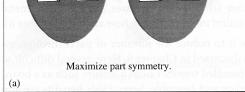
Process of Detailed Design -Start from Function Blocks

- Detailed process (giving in class using our power supply design as an example)
- Break the product into function blocks (done in Idea Generation)
- Determine the inputs and outputs of each block
- Determine the design specifications of each block
- Design the blocks or groups of blocks by subteams (embodiment)

ECE3031


Design for 'X' (purposes)


- Design for assembly
 - Making assembly of products easier
- Design for manufacture
 - Minimizing part count
- Design for safety
- Design for environment
- Design for(X)


Design for Assembly

Focus on 'making assembly of products easier'

- Manual assembly
- Automatic assembly
- System guidelines
- Handling guidelines
- Insertion guidelines

ECE3

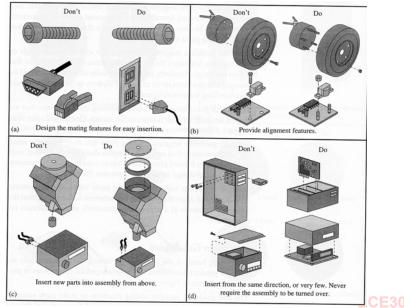
0

• ()

ifficult to orien

o (())

(f)


Prevent nesting of parts.

(e)

0

Provide orienting features on non-symmetries.

Insertion Guidelines

Summary of Guidelines for Design for Assembly

- Minimise part count by incorporating multiple functions into single parts
- Modularise multiple parts into single subassemblies
- Assemble in open space, not in confined spaces; never bury important components
- Make parts such that it is easy to identify how they should be oriented for insertion
- Prefer self-locating parts
- Standardise to reduce part variety
- Maximise part symmetry
- Design in geometric or weight polar properties if nonsymmetric
- Eliminate tangly parts
- Color code parts that are different but shaped similarly
- Prevent nesting of parts; prefer stacked assemblies
- Provide orienting features on nonsymmetries
- Design the mating features for easy insertion
- Provide alignment features
- Insert new parts into an assembly from above
- Eliminate re-orientation of both parts and assemblies
- Eliminate fasteners
- Place fasteners away from obstructions; design in fastener access
- Deep channels should be sufficiently wide to provide access to fastening tools; eliminate channels if possible
- Provide flats for uniform fastening and fastening ease
- Ensure sufficient space between fasteners and other features for a fastening tool
- Prefer easily handled parts

ECE3031

Design for Manufacturing

- A designer's primary objective is to design a functioning product within the given economic and schedule restraints.
- Decisions made during the design period determine 70% of the products cost while decisions made during production only account for 20% of the products cost.
- The success of product design requires early and active participation from Manufacturing, Marketing, Finance, Design Engineers, Quality, Service, Purchasing, Vendors, Regulatory, Compliance, and Technicians.

Design for Manufacturing -Principles

- Simplify and reduce the number of parts.
- Standardize and use common parts and materials.
- Design for ease of fabrication.
- Mistake-proof product design and assembly.
- Minimize flexible parts and interconnections.
- Design for efficient joining and fastening.
- Design for ease of service.
- Include 'robustness' into products.
- Avoid tight tolerances.