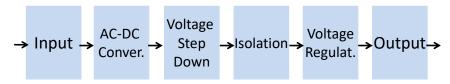
What is a Power Supply?

- Power converters change electrical quantity from one form to another:
 - AC-DC (rectifier)
 - DC-DC (chopper)
 - DC-AC (inverter)
 - AC-AC (ac voltage controller, cyclo-converter)
- A power supply may consist of a combination of power converters to provide a power source for a load. Almost all electronic equipment need a power supply
- In addition to the need for a certain power rating of a voltage level, there could be other requirements, such as regulated output, and isolation
- Attributes (features) of the power supply you are to design: safe (to use); efficient; reliable; and economical. And other attributes if you would like to add

ECE3031


Various Power Supplies

- Isolated (electrical separation between input and output) v.s. non-isolated
- Open frame v.s. closed frame (closed box)

Functional Structure of a Power Supply

- Input: 120V, ac (60Hz)
- Output: 15V, 30W, dc, regulated (constant volt), isolated
- Functions: ac-dc conversion; isolation; voltage step down; voltage regulation; input; output.

The structure of the design may be different

Power Supply Specifications

- Input voltage range (the maximum voltage and minimum voltage limits that the power supply can accept while still has rated output)
- Output voltage nominal voltage (fixed, or variable in a range, or multiple values)
- Efficiency: $\eta = P_{out}/P_{in} \times 100\%$; $P_{out} = P_{in}-P_{loss}$
- Line regulation: $VR_{Line} = (V_{out@Vinmax} V_{out@Vinmin})/V_{out@rated} X 100\%$
- Load regulation: VR_{Load}=(V_{out@maxLoad}-V_{out@minLoad})/V_{out@rated} X 100%
- Other features: remote sensing (voltage regulate at the load site instead of the output terminals)
- Cooling and thermal management: natural, force air (fan), conduction
- Protection functions: over-current, over-temperature, auto-restart
- Standards and certification

FCF3031

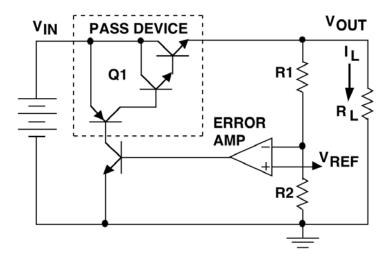
FCF3031

Types of Power Supply

- Unregulated transformer + rectifier + filter
- Linear regulated
 Zener diode
 Linear regulator ICs
- Switching regulated
 Switched-mode power supply
- Others

Unregulated Power Supply

- Unregulated AC-DC transformer + rectifier + filter
 - Simple
 - Flexible
 - Isolated
- Unregulated DC-DC think of a voltage divider


ECE3031

ECE3031

Linear Regulated

- Zener diode (shunt regulator)
- Zener diode + Emitter follower (series regulator)
- Linear regulator ICs
 - Fixed voltage
 - Variable voltage

Linear Regulator

3031 ECE3031

Switching Regulated (Switched-mode power supply)

- Non-isolated:
 - Buck converter
 - Boost converter
 - Buck-boost converter
 - **—** ...
- Isolated:
 - Flyback converter
 - Forward converter
 - **–** ..

FCF3031

Switched-mode power supply

- PWM Pulse Width Modulation
- Switching Frequency
- Duty Cycle Ratio
- CCM Continuous Conduction Mode
- DCM Discontinuous Conduction Mode
- Freewheeling Diode
- MOSFET
 - metal-oxide-semiconductor field-effect transistor

ECE3031

Switched-mode power supply

Principles of steady-state analysis:

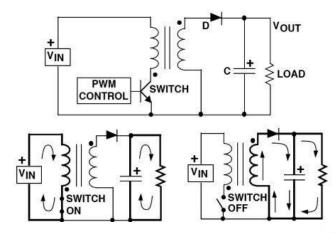
- ✓ Inductor volt-second balance integral/average voltage = 0
- √ Capacitor charge (amp-second) balance integral/average current = 0

Buck converter: $V_o = V_s D$

Boost converter: $V_o = \frac{V_s}{1 - D}$

CCM Mode

Buck-boost and Ćuk converters: $V_o = -V_s \left(\frac{D}{1-D}\right)$


SEPIC:
$$V_o = V_s \left(\frac{D}{1 - D} \right)$$

Flyback converter: $V_o = V_s \left(\frac{D}{1-D}\right) \left(\frac{N_2}{N_1}\right)$

Forward converter: $V_o = V_s D\left(\frac{N_2}{N_1}\right)$

Switched-mode power supply

Example: Single-output Flyback Circuit Diagram



ECE3031

Switched-mode power supply

A Typical Application from Datasheet:

https://ac-dc.power.com/sites/default/files/product-docs/topswitch-jx family datasheet.pdf?download=1

ECE3031