6. Circuit Analysis

MTVW 25-Feb-13

Objectives

1. To compare the analysis of series-parallel circuits with experimental measurements.
2. To investigate the effect of "open" and "short" circuits
3. To use Superposition and Mesh Current Analysis to aid in determining circuit values.

Equipment

1. 5 V and -5 VDC power supplies (these are in the same case),
2. One SPST switch,
3. $402 \Omega, 90 \Omega$ and 150Ω carbon resistors,

Preparation

1. Analyze the series-parallel circuit in Figure 1with the switch open and compute the currents, $I_{0}, \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$, and I_{5} and the voltages, $V_{A C}, V_{B A}, V_{C B}$, and $V_{D C}$. Enter the computed values into Table 4 a). Using the computed values in Table 4 a) complete Table 4 c).
2. Analyze the series-parallel circuit in Figure 1with the switch closed and compute the currents, $I_{0}, \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$, and I_{5} and the voltages, $V_{A C}, V_{B A}, V_{C B}$, and $V_{D C}$. Enter the computed values into Table 5 a). Using the computed values in Table 5 a) complete Table 5 c).
3. Analyze the circuit of Figure 2 using superposition to determine the voltage across R_{3}. Space has been provided for your analysis.
4. Analyze the circuit of Figure 2 using Mesh Current Analysis to determine the voltage across R_{3}. Space has been provided for your analysis.

Experiment

1. Analysis of a Resistive Circuit using Ohms Law, KVL, and KCL

Consider the series-parallel circuit in Figure 1. Table 4 a), Table 4 c), Table 5 a) and Table 5 c), will have been completed as preparation before attending the lab.

Figure 1: Series-parallel circuit to be analyzed and constructed.
Before wiring up the circuit use the multimeter to measure the resistances of R_{1}, R_{2} and R_{3} and enter the measured values into Table 4 b) and Table 5 b). Wire up the circuit and record the measured currents and voltages in Table 4 b) when the switch is open; and into Table 5 b) when the switch is closed.
Verify Ohm's Law for each of the resistors, KCL at nodes A \& B, and KVL (around one of the loops) by completing Table 4 c) and Table 5 c) using measured voltages and currents.
2. Analysis of a Resistive Circuit using Superposition and Mesh Current Analysis.
Wire up the circuit of Figure 2 and measure $V_{\text {R3 }}$. Compare with your calculated value from your Superposition and Mesh Current Analysis.

Figure 2: Mesh Loop and Superposition Analysis Circuit.
6. WORKSHEET Name:

Section: \qquad ID\#: \qquad
Table 4 a). Analysis Results (completed as lab preparation)

S-Open	I_{0}	I_{1}	I_{2}	I_{3}		I_{5}	$V_{A C}$	$V_{B A}$	$V_{C B}$	$V_{D C}$
S-Open										

Table 4 b). Measured Values

S-Open	I_{0}	I_{1}	I_{2}	I_{3}		I_{5}	$V_{A C}$	$V_{B A}$	$V_{C B}$	$V_{D C}$
S-Open										
Resistances	R_{1}	R_{2}	R_{3}							
Resistances										

Table 4 c). Computed from Analysis Results (as lab preparation) in Table 4 a)

S-Open	$V_{A C} / I_{1}$	$V_{A B} / I_{\mathbf{2}}$	$V_{B C} / I_{3}$	$V_{A C}+V_{D A}+V_{B D}+V_{C B}$	
S-Open					
s-Open	$I_{\mathbf{2}}-I_{\mathbf{3}}+I_{5}$	$I_{\boldsymbol{O}}-\boldsymbol{I}_{\mathbf{1}}-I_{\mathbf{2}}$			
S-Open					

Table 4 d). Computed from Measured Results in Table 5 b)

S-Open	$V_{A C} / I_{1}$	$V_{A B} / I_{2}$	$V_{B C} / I_{3}$	$V_{A C}+V_{D A}+V_{B D}+V_{C B}$	
S-Open					
S-Open	$I_{2}-I_{3}+I_{5}$	$I_{0}-I_{\mathbf{1}}-I_{2}$			
S-Open					

Electric Circuits

Table 5 a). Analysis Results (completed as lab preparation)										
S-Closed	I_{0}	I_{1}	I_{2}	I_{3}		I_{5}	$V_{A C}$	$V_{B A}$	$V_{C B}$	$V_{D C}$
S-Closed										

Table 5 b). Measured Values

S-Closed	I_{0}	I_{1}	I_{2}	I_{3}		I_{5}	$V_{A C}$	$V_{B A}$	$V_{C B}$	$V_{D C}$
S-Closed										
Resistances	\boldsymbol{R}_{1}	\boldsymbol{R}_{2}		\boldsymbol{R}_{3}						
Resistances										

Table 5 c). Computed from Analysis Results (as lab preparation) in Table 5 a)

S-Closed	$V_{A C} / I_{1}$	$V_{A B} / I_{2}$	$V_{B C} / I_{3}$	$V_{A C}+V_{D A}+V_{B D}+V_{C B}$	
S-Closed					
S-Closed	$I_{2}-I_{\mathbf{3}}+I_{5}$	$I_{0}-I_{\mathbf{1}}-I_{\mathbf{2}}$			
S-Closed					

Table 5 d). Computed from Measured Results in Table 5 b)

S-Closed	$V_{A C} / I_{1}$	$V_{A B} / I_{2}$	$V_{B C} / I_{3}$	$V_{A C}+V_{D A}+V_{B D}+V_{C B}$	
S-Closed					
S-Closed	$I_{\mathbf{2}}-I_{3}+I_{5}$	$I_{0}-I_{\mathbf{1}}-I_{2}$			
S-Closed					

*Indicate all assumed voltage polarities and current directions
Superposition Analysis of the circuit of Figure 2:

Electric Circuits
*Indicate all assumed voltage polarities and current directions
Mesh Current Analysis of the circuit of Figure 2:

