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ABSTRACT

The classic way to control a process, in a model based
framework, is to obtain a model of the system and then
use it for the design of a controller. A time-varying
process can require use of a real-time indirect adap-
tive controller, and a process with variable time delay
may also call for a delay-time predictor. This paper
describes a particular structure for such a controller
and demonstrates its application to a pulp bleaching
process. The variable delay time predictor constitutes
the novel contribution of theis work.

We discuss aspects of controlling the pulp bleach-
ing process at Irving Paper Ltd., which is an extension
on the work done in Sayda and Taylor [1]. The bleach-
ing process was thoroughly studied, and single-input
single-output process models identified on-line. This
investigation showed that the process was accurately
modeled as a first-order system plus a variable delay
time. This is a difficult process to control, since the
delay time varies substantially with pulp flow into and
out of the bleaching vessel. The efficacy and robust-
ness of our new technique is demonstrated by control-
ling the pulp bleaching process using an indirect adap-
tive model predictive control algorithm with a recur-
sive least squares identifier and a variable delay time
predictor embedded in that controller.
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1 Introduction

Process industries need a predictive controller that is
low cost, easy to setup and maintains an adaptive be-
havior which accounts for time-varying dynamics as
well as potential plant mismodeling. To answer this
need for the mechanical pulp bleaching process, we
present the architecture of an indirect adaptive MPC
scheme and study it as a single-input single-output
(s1S0) control system.

The classic way to control a system, in a model
based framework, is to obtain a model of the system
and then to use it for the design of a controller. Such a
model can be obtained once off-line if the dynamics are
not time-varying, or identified on-line if there is a need
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to adapt to time-varying dynamics. The latter choice
was made for the architecture of our controller which,
as result, is indirect and adaptive. For the identifi-
cation part of the procedure a recursive least squares
(RLS) on-line identification algorithm was applied.

The description of the plant to be controlled is in-
troduced in Section 2, to serve as the basis for choice
of a model structure for identification. Section 3 de-
scribes the identification algorithm employed to model
the system. A brief introduction to adaptive control is
given in Section 4, then an adaptive predictive con-
troller is designed for the identified process model.
Sections 5 and 6 present simulation results and con-
clusions, respectively.

2 Dynamics of Pulp Bleaching

Pulp is the primary raw material for making paper.
Paper is made from fibers [2]. Bleaching is a chemi-
cal process applied to cellulosic materials to increase
their brightness. Brightness is the reflectance of visi-
ble light from cellulose cloth or pulp fibers formed into
sheets. Absorbance of visible light by wood pulp fibers
is caused mainly by the presence of lignin, one of the
principal constituents of wood. Lignin in active wood
is slightly colored, whereas residual lignin remaining
after an alkaline pulping process is highly colored. In
addition, lignin darkens with age.

Bleaching processes increase brightness by lignin
removal or lignin decolorization. In the manufacture
of mechanical pulp, wood is broken down into fibers
with little or no lignin removal. The bleaching of
pulp takes place by decolorization; bleaching to re-
move lignin not only increases the brightness but im-
proves the brightness stability of the product as well.
The pulp is first cooked in a digester, then the brown
stock is washed to remove the black liquor. This stock
is screened to remove unwanted particles, including
bark and shive, which are fragments of fibrous materi-
als present in pulp or paper resulting from incomplete
resolution during pulping. Finally the stock is cleaned
to remove additional unwanted material.

Chemicals commonly used for pulp bleaching in-
clude oxidants (chlorine, chlorine dioxide, oxygen,
ozone and hydrogen peroxide) and alkali (NaOH), and,
for mechanical pulp only, a reducing agent, sodium
hydrosulfite. Bleach plant technology is currently in



a state of flux as a result of concern for the envi-
ronmental impact of chemicals, such as chlorine. As
a result, the industry is moving towards new chemi-
cals, chiefly hydrogen peroxide, mainly called “perox-
ide” [3]. These chemicals are mixed with pulp suspen-
sions and the mixture is retained at a prescribed pH,
temperature and concentration for a specific period of
time.

The industry standard when the brightness tar-
get does not exceeds 75% is the medium consistency
single-stage peroxide bleach plant depicted in figure
1. Pulp is treated as follows: The bleaching of me-
chanical pulp with hydrogen peroxide is usually carried
out by treating the pulp using DTPA or pentasodium
diethylenetriaminepentaacetic, which is added to re-
move transitional metal ions in the pulp; conditions in-
clude agitation and at least 15 minutes retention time
at temperature, ranging from at least 105 — 130°F
(40 — 54°C). Bleach liquor is generally made up in a
cascade mixing system and applied to the pulp. The
objective of the caustic extraction stage (NaOH) is to
remove the alkalisoluble portion of the lignin from the
woodpulp. Finally, a small amount binds to cellulose.
Pulp is held in a tower for at least two hours, though
retention in excess of this time is also common. In
general, a peroxide residual of 5 to 10% of the amount
applied is desirable. Most systems inject sulfur diox-
ide SO at the outlet of the retention tank to prevent
reversion and for pH adjustment. After this process-
ing, three steps are generally required: (a) washing of
the bleached pulp, (b) heating to the desired tempera-
ture, and (c) retention to complete the reaction. This
modification in the refiner mechanical pulp process is
called thermo-mechanical pulping.
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Figure 1. Single-stage peroxide bleaching flowsheet [2]

3 On-line Model Identification

In order to model the dynamics of a bleaching tower, it
is necessary to know the flow pattern of the pulp stock
inside the tower. The retention tower can be treated as

a continuous stirred tank reactor (CSTR) followed by a
plug flow reactor (PFR). The part of the process where
the material is mixed can be modeled as a first-order
lag, K / (1 + s7). One may model plug flow, in which
the process material is assumed to flow without any
mix:ipng occurring, as a pure time delay or transport,
e %td,

Fluid-dynamic systems are inherently nonlinear
and are subject to a combination of coherent and ran-
dom unsteady disturbances. As a result, accurate low-
order analytic models are difficult to obtain for real-
time control of such systems. Therefore, controllers
implementing adaptive on-line system identification
are ideally suited to flow control problems [4]. Since
the system is time-varying, we use the recursive least
squares (RLS) algorithm with exponential forgetting to
track the variation in the model. A modified RLS pro-
cedure is used at each time step to obtain the param-
eter vector together with the covariance matrix P(k).
To correctly estimate the varying model parameters
the assumption must be made that their rate of change
is substantially slower than the sampling time. The
exponential forgetting factor A (i.e., a decay weight
0 < A < 1) is applied to the measured data sets (e.g.,
heavy weighting is assigned to the most recent data
due to its importance, versus a small weight in the
case of older data). The core of the RLS algorithm is
thus the update of the covariance matrix:

P(k) = (1 — L(k)¢" (k))P(k — 1) (1)

> =

L(k) = P(k = 1)o(k)(A + ¢" (k) P(k = 1)o(k)) ™" (2)

is the Kalman gain used to update the previous es-
timate based on new measurement data. Finally the
model parameter vector estimate (k) is obtained by
adding a correction to the previous estimate. The cor-
rection is proportional to the difference between the
real output of the plant or disturbance and its predic-
tion based on the previous parameter estimate:

O(k) = 0k — 1) + L(k)(y(k) — ¢ (k)A(k — 1)) (3)

where y(k) and ¢(k) are the actual data vector and the
regression vector respectively. Typical values for these
parameters used inside the controller are P(0) = 10°1
and A = 0.999.

4 Controller Design
4.1 Indirect Adaptive Predictive Control

In every language, to adapt means to change a behav-
ior to conform to new circumstances. Intuitively, an
adaptive controller is thus a controller that can mod-
ify its behavior in response to changes in the dynamics
of the process and the character of the disturbances.
As a special case, an adaptive controller is a controller
with adjustable parameters and a mechanism to adjust



the parameters; it is a nonlinear controller, due to the
parameter adjustment mechanism. Such an adaptive
controller tunes its own parameters or otherwise modi-
fies its control laws so as to accommodate fundamental
changes in the behavior of the process [5].

Hundreds of techniques for adaptive control have
been developed for a wide variety of academic, mil-
itary, and industrial applications. Arguably, the
first rudimentary adaptive control scheme was imple-
mented by Kalman in the late 1950s using a custom-
built analog computer [6]. The term self-tuning regu-
lator was coined by Astrém who gave the first analysis
of the steady-state properties of self-tuning regulators
based on minimum variance control [7]. The stability
of the closed-loop system and the convergence proper-
ties were analyzed in [8]. More details of the properties
of self-tuning regulators and adaptive controllers can
be found in [9, 10].

An adaptive control system can be thought as
having two loops as exhibited in figure 2. The inner
loop consists of the process and an ordinary feedback
controller. The parameters of the controller are ad-
justed by the outer loop, which is composed of a re-
cursive parameter estimator and a design calculation,
where the controller design represents an on-line solu-
tion to a design problem for a system with known pa-
rameters; the controller parameters are obtained from
the control design problem solution.

The model predictive control (MPC) scheme, dis-
cussed below, is very flexible with respect to the choice
of the underlying design and estimation methods. For
time-invariant systems the updating loop for the con-
troller parameters can be switched off as soon as the
estimated parameters have converged to their final val-
ues, i.e., when the controller has tuned or adjusted it-
self to the specifications of the process; the result is a
self-tuning regulator. However, if the process is chang-
ing over time it is necessary to continuously update
the process parameters and the controller parameters.
We then have an adaptive controller. This implies
that a self-tuning regulator is an adaptive controller if
the parameter updating is not switched off. The self-
tuning regulators are thus a special class of adaptive
controllers.

4.2 Model Predictive Control

Model predictive control (MPC) refers to a class of algo-
rithms that compute a sequence of manipulated vari-
able (process input) adjustments in order to optimize
the future behavior of a plant. Originally developed in
the process industries in the 1960s and 70s, based pri-
marily on heuristic ideas and input-output step and
impulse response models proposed by Richalet et al
in 1976 and then summarized in a 1978 Automat-
ica paper [11], MPC technology can now be found in
a wide variety of application areas including chemi-
cals, food processing, automotive, aerospace, metal-
lurgy and pulp and paper [12].

The basic principle of MPC is to solve an open-
loop optimal control problem at each time step. The
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Figure 2. Indirect self-tuning regulator [9].

decision variables are a set of future manipulated vari-
able moves, and the optimization objective is to mini-
mize deviations from a desired trajectory; constraints
on manipulated, state and output variables can be
handled naturally in this formulation. Feedback and
adaptation are achieved by providing a model update
at each time step, and performing the optimization
again. A major reason for the success of MPC is the
relative ease with which it may be used to control non-
linear multivariable processes with dead time [13].

The concept of predictive control involves the re-
peated optimization of a performance criterion, eqn.
(4), over a finite horizon extending from the next fu-
ture time step up to a prediction horizon N, steps
ahead. Two terms are traded off, the sum of the
squared error or difference between the predicted pro-
cess output ¢ and a reference signal w, and the sum of
the squares of the control moves:

Ny N,
J=, [z?(t+j|t)—w(t+j)]2+zM[AU(HJ—U]Q (4)

where 1 is a positive constant that can be used to
tune the MPC controller to achieve the required per-
formance. The minimization is performed subject to
constraints on the input level, of the form

Ummin i U < Umin.
u=sat(i) =< U if Uppin < U < Umaz- (5)
Umax if 4 > Umaz-

For prediction it is assumed that Au(t + j) = 0 for
j > N,. Manipulating the control u(t + j) over the
control horizon N,,, the algorithm drives the predicted
output §(t + j), over the prediction horizon, towards
the reference w(t + j), which is the desired setpoint
or a close approximation to it. In our study, a smooth
reference signal w(t+7) is produced by filtering: Given
a desired setpoint s(t +j), 7 =1...Np,

w(t]) = aw(thj—1)+(1-a)s(t+j), j=1...Np (6)



where « is a parameter between 0 and 1 (the closer to
1, the smoother the approximation) that constitutes
an adjustable value that will influence the dynamic re-
sponse of the system, and s(t+7) is the constant future
reference or setpoint. In our application, constraints
are not managed through optimization but by using an
anti-windup scheme, since it has been shown to have
performance quite similar to that of constrained MPC.

4.3 Delay-time Predictive Control

We use an indirect adaptive dynamic matrix con-
trol (DMC) scheme. This approach to MPC uses
step response data generated from the internal model
Ke=5T4 /(14 s7). In essence, when a set-point change
AS is given the DMC controller “expects” a response

Ty sec. later, of the form AS(1 — e~ (t=7a)/7) 1If the
actual response occurs later than expected, then the
DMC algorithm will produce an additional Au and the
process will experience a positive transient Ty sec. af-
ter that (a positive “blip”), or if the actual response
occurs earlier than expected it is treated as a distur-
bance to be rejected by the DMC controller; a negative
Au is produced and thus a negative blip occurs.

This problem was solved by a novel strategy pre-
sented in [14]. The basic idea is that by continually
monitoring the flow out of the bleach tower from the
instant the set-point change occurs one can continu-
ally estimate (predict) when the process response will
happen, and that prediction will be exact at the mo-
ment the response does occur. If the DMC controller
uses this estimate, then blips will not exist, as demon-
strated in [14].

5 Simulation Results

Figure 3 illustrates the Simulink model that was used
to simulate the closed loop system with indirect adap-
tive predictive control. The plant for the purpose of
simulation was chosen as a first-order discrete transfer
function, as previously mentioned in Section 2. In this
case, the bleaching process is handled as a SISO pro-
cess. The controller parameters include the prediction
horizon, Ny(k) = 47 + Tq(k) where 7 is the bleaching
process time constant and Ty(k) is the variable time
delay associated with plug flow, and the control hori-
zon, N,, = 1. The MPC control law presented in Sec-
tion 4 is simulated using an S-function in Simulink. We
implemented this S-function in an M-file to estimate
the unknown process parameters, to calculate the con-
troller parameters and to implement the control law.
Notice that due to the time offset of 200 samples be-
fore the first set-point change at the beginning of the
simulation plus the rise time of the RLS model param-
eter estimates before reaching steady state (another
100 samples), we have to ensure that in the first 300
samples the real process parameters are set in the con-
troller (using a clock as shown in the simulink model),
then we switch the model parameters to those pro-
vided by the RLS estimator. Otherwise, the controller

will not be able to detect the model parameters be-
cause their initial values are set to zero when we start
applying the RLS algorithm, yielding to an error in the

controller S-function.
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Figure 3. Simulink model of the indirect adaptive pre-
dictive control

5.1 Nominal Behavior

A typical simulation result is portrayed in figures 4
and 5, where an indirect adaptive DMC scheme with
a delay-time predictor is applied to control the pulp
brightness. First, we focus on the RLS estimator be-
havior: The results without RLS gain filtering, as de-
picted in the dashed line in figure 4, show a small
downward “blip” at each set-point change (every 500
samples), due to the transient response of the RLs algo-
rithm. To solve this problem, we included a discrete fil-
ter block, as shown in the simulink model, that imple-
ments a finite impulse response (FIR) filter. We spec-
ify the coefficients of the numerator and denomina-
tor polynomials in ascending powers of 2~ ! as vectors;
here we assume a filter of numerator equal to 0.00995
and a denominator of 0.99, both in the z-domain. The
results are significant: There are no blips either in the
peroxide dosage or in the final pulp brightness for the
case of gain filtering, as shown in the solid line plots
in figure 5.

Turning to the process behavior, figure 5, the con-
trol action (top plot, peroxide input), due to the appli-
cation of a square wave set-point input (dashed curve,
middle plot), is likewise periodic. However, the bright-
ness response (solid curve, middle plot) is not periodic;
rather, one can clearly see that the variable time delay
(bottom plot) changes the initiation of the brightness
changes and the duration of each change. The fact
that there are no blips in brightness are due to the use
of our delay-time predictor.
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5.2 Robustness Behavior

Robust control involves, firstly, quantifying the uncer-
tainties or errors in a “nominal” process model, due to
nonlinear or time-varying process behavior, for exam-
ple. If this can be accomplished, we essentially have
a description of the process under all possible oper-
ating conditions. The next stage involves the design
of a controller that will maintain stability as well as
achieve specified performance over this range of op-
erating conditions. A controller with this property is
said to be “robust” [15].

In the previous section, we used S-functions to

implement the indirect adaptive predictive algorithm,
and we showed that it is effective and can give good
closed-loop performance. This is attributed to the
adaptive behavior of the controller due to the use of
RLS gain estimation and the time-delay predictor to
change its parameters to accommodate the changing
dynamics of the system.

The following simulations illustrate the system
behavior in the presence of parameter uncertainties in
the pulp bleaching process. Instead of using as a con-
trol model the linear model that best fits the nonlin-
ear process, a model with estimation errors is used. In
one study we considered the effect of using an internal
model with an error of £25% in the RLS gain estimator,
to calculate the control action; the response of shown
in figure 6. The final pulp brightness responses (+ 25%
as the dotted line and — 25% as the dash-dotted line in
the bottom trace) differ from the nominal case by not
tracking the setpoint for a quite a long time; after an
interval equal to the delay time the controller can ad-
just to a perceived disturbance and corrects itself after
that. That shows that our MPC controller is robust in
the sense of stability, despite the poor initial perfor-
mance due to the large percentage gain uncertainty.
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Figure 6. Robustness behavior for +25% gain uncer-
tainty

A second robustness test is presented in figure 7
where the model is subjected to a +25% time constant
uncertainty. The simulation depicts small transients in
the manipulated input and the controller output after
an additional process delay time. That shows that a
perturbation in the bleaching process time constant
has only a minor effect on the input and output re-
sponses.

6 Conclusion

A time-varying process has been successfully con-
trolled by an indirect adaptive predictive controller
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based on model predictive control augmented by an
on-line RLS identification algorithm and a delay-time
predictor. This novel control system was described and
applied for a single-input single-output process where
hydrogen peroxide and final pulp brightness are the
process input and output respectively. The stability
and robustness of the closed loop system was shown
to be a direct consequence of the design method. The
controller exhibited an acceptable response to changes
in both gain and time constant model parameters.
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