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Abstract—In our earlier paper [9] we took the histories of
wind speed forecasts and actual wind speed data available from
Environment Canada and presented that the hourly wind speed
forecast error distributions are nearly Gaussian in nature.

In this paper we used the hourly error distribution to model a
representative wind-speed realization as the sum of a determin-
istic term and a stochastic term. The deterministic term was the
forecast provided by Environment Canada, while the stochastic
component, the error in the forecast, was modeled as a first-order
gaussian markov process.

Wind-speed realizations were then input (IS) a wind generator
model developed in MATLABY/Simulink> to get wind power
realizations. The uncertainties in the wind speed-realizations were
transferred to the wind power realizations as well. Monte Carlo
Simulations were performed to assess likely range of wind power
production.

It is shown that how the statistics of wind power prediction
obtained by performing Monte Carlo Simulation gave an idea of
the risk involved in wind power production.

I. INTRODUCTION

The inherent uncertainty in wind makes it hard for a Wind
Energy (WE) utility to predict their generation within a range
of +1.5% limits set by the North American Electric Reliability
Council (NAERC) [4]. The WE utilities face a challenge to
operate in day-ahead electricity markets and are subject to high
financial risk in trading. Therefore, rather than participating in
day-ahead markets most WE utilities enter into contracts with
local conventional suppliers. However, these contracts offer a
low price compared to the electricity markets [10], [2].
Some Independent System Operators (ISOs) have introduced
new electricity market rules to improve participation of the
wind power utilities; these rules allow wind generation to be
sold in hour-ahead markets and receive the hour-ahead market
prices without any penalty [8]. But ISOs do not consider
wind production as a capacity resource, because they have
to provide a backup generation source to compensate for the
possibility of unanticipated low- or no-wind conditions causing
unexpected shortfalls at wind generation facilities [1], [5]. This
issue does not arise with a conventional generator because their
production can be known in advance with almost certainty.
In most North American Markets, since installed wind capacity
is low, their production can essentially be absorbed into the
market without any degrading of the system. But as installed
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capacity increases, there is a common agreement among
researchers [1] that wind capacity should be acknowledged by
encouraging wind energy participation in day-ahead markets.
The ISO of NordPool, a prominent Nordic electricity market,
has successfully implemented this, and the results shown by
Morthorst [7] show that approximately 20% of total power
consumption in Denmark is supplied by wind power and
electricity market prices fell approximately between 7 to 13%
in the year 2005; since wind energy has low cost of production
its participation in the electricity market decreases over all
electricity market prices.

The participation of wind energy in a day-ahead market is
currently discouraged due to its high uncertainty. If WE
utilities can adequately address the issue of uncertainty and
variability in wind power generation then they will be allowed
to participate in the market for fair pricing, and that will
motivate them to invest in better forecasting methods for
maximum profit, and the cost associated with running a backup
generation. (If the dispatch of a backup generator is linked to
wind power production, it may not be possible to run that unit
at optimal cost).

The participation in the day-ahead market requires a day
ahead-commitment. Any deviation from the committed power
will lead to a regulation-up price or regulation-down price
which decreases profits. Since a WE utility’s production is
intermittent, their profits can suffer due to regulation prices.
Therefore, a WE utility needs accurate power forecasts and
strategies for bidding. In this paper we are addressing statistics
of the wind power forecasts to give an idea of the risk involved
in estimating the wind power production.

II. FORECASTING WIND POWER PRODUCTION
A. Markov Processes

Since we already established in [10] that hourly wind-speed
forecast error distributions can be assumed to be approxi-
mately normal, then the random process can be generated as
a Gauss-Markov Process (GMP). A continuous process is a
Markov Process (MP) if the probability distribution for the
current state (range of values) depends only the most recent
past state, and if the restriction is added that distribution of
the current state is normal then it is called GMP [3]. For



example, a continuous process e(t) is a First Order Markov
(FOM) process if for every k and

T <tg <...<ty (D)

it is true that,

Fle(ty)le(tk-1),....e(t1))] = Fle(tx)le(te-1)]  (2)
where in this study, e denotes wind-speed forecast error.

B. Autocorrelation Function
Given a string of wind-speed forecast error data, e;, i =

1, 2, ...,N, taken at a constant time intervals. The lag 7
Autocorrelation Function (ACF) is defined as,
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where p is the true mean of the data; if /i or the sample mean is
used then this estimate is biased. In this study the MATLAB
function ‘autocorr’ was used which has a small bias for large
N. Typically, a one dimensional ACF for a random variable
exhibits exponential behavior [3].
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C. Order of a Markov Process

A random process e(t) with an empirical lag 7 ACF calcu-
lated using equation 3 may be reasonably well approximated
by the following equation [3]:

Tee(T) = exp (—B|7]) (@))

where [ is the correlation time constant of the data. This ACF
can be associated with a first-order differential equation [3],

de
pr + Be = u(t) (5

Alternatively, a random process e(t) with an empirical lag 7
ACF calculated using equation 3 may be fit by the following
equation [3]:
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This ACF can be associated with second-order differential
equation [3],
2
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Equation 5 is termed as a First-Order Markov (FOM) process,
while equation 7 is called a Second-Order Markov (SOM)
process; (31 and (35 are the correlation time constants for the
SOM. For a GMP the input u(t) is sum of a gaussian white
noise process and possibly a deterministic term. The ACF
calculated according to the equation 3 for the wind-speed
forecast error data is shown in the figure 1. The formula is
evaluated only up to 20 lags (7) or 20 hours; beyond that
it is almost zero. From figure 1, wind-speed forecast error
autocorrelation value are seen to fall off exponentially. The

calculated ACF was then fitted with the theoretical autocorre-
lation functions, equation 4 for a FOM model, and equation 6
for a SOM model using a nonlinear least-square fit technique
(MATLAB® function ‘fit’) as shown in figure 1. From that
figure it is clear that the FOM model is almost identical to the
SOM model fit. The correlation time constant found for the
FOM was (=0.2982 hour (95% confidence bounds [0.2645,
0.3313]), and the correlation time constants found for the
SOM were 31=30.96 hour (95% confidence bounds [-459.7,
521.6]) and B2=0.2933 hour (95% confidence bounds [0.2389,
0.3477]) respectively. The confidence bounds of 3; of the
SOM are very high, i.e., the value is essentially meaningless
as demonstrated in figure 1, and thus it can be ignored.
Therefore the FOM fit was selected over the SOM fit. Once
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Fig. 1. Fitting an ACF for FOM and SOM processses

the correlation time constant was found the spectral density ¢
of the white noise that produces o.was calculated [3] as:

Q = 280> (8)

After that, solving the differential equation 5 will give wind-
speed forecast error dynamics. It should be noted that the
statistical properties (mean, variance) of the error data changes
on an hourly basis, and therefore this characteristic was incor-
porated in solving the prediction error dynamics by changing
the statistics of the random input w(¢) on an hourly basis.

D. Solving a First Order Markov Process

The FOM process was solved using the Euler technique.
The FOM model equation 5 can be rewritten as:

d

= = u(t) - fe )
The first-order approximation of the Taylor series solution
given as,

de
e(to+h) ~e(to) +h ah:to (10)

implies that starting at point ¢ = ¢y, the value after small time
step h, e(tp+ h) can then be approximated by the value e(t¢)
plus the time step multiplied by the slope of the function, i.e.,



the derivative of function e(t) at t = to. With this background
the Euler technique method for solving an FOM is as follows:

1) Choose an initial condition e(tg), a time step h, and a
terminal time ¢; set ¢ = £o.
2) Select a random value of input u(t), add this to the
deterministic component of w(t).
3) Substitute e(t) into equation 9 to determine de/dt.
4) Substitute that value into equation 10 for an approximate
value of e(t + h).
5) Lett =t +h, e(t) =e(t+ h).
6) Repeat steps 2 to 5 until ¢ equals the termination time
ty.
The FOM process describes the dynamics of the prediction
error over time (24 hour); solving the FOM using Euler’s
technique for random initial conditions and random inputs,
chosen according to the statistics of the prediction error data,
produced realizations of prediction error, and adding those
to the forecasted wind speeds gave wind-speed realizations
The wind-speed realizations were then passed through a wind
power generator model to assess the power production. A rated
9 MW fixed-speed, grid-connected wind farm consisting of
three units located in one area was used in this work, it is
a customized form of the wind farm model ‘power_wind_ig’
given in the MATLAB®/Simulink® [6].

III. UNCERTAINTY ESTIMATION IN POWER FORECASTS

The power predictions were obtained by passing wind speed
realizations to the wind power generator. Since there are
uncertainties in the realized wind speeds, the uncertainties get
transferred to the power predications as well. Therefore, Monte
Carlo Simulations (MCS) were performed to quantify the risk
in the power predictions. The quantification of uncertainty will
permit assessing the risk of relying on the power prediction
forecasts.

A. Monte Carlo Simulations

MCS converts uncertainty in the input variables of a system
into an approximate probability distribution of the outputs. It
provides an approach to the statistical analysis of the perfor-
mance of a system with random inputs by direct simulation.
It entails determining system response to a finite number of
initial conditions and random input functions generated ac-
cording to their specified statistics. Thus information required
for MCS are the system model, initial condition statistics and
random input statistics [11]. Generally, the initial conditions
are specified by the mean and the variance of the response.
The statistical properties of the random input determines the
response after the initial condition. The state space formulation
of the FOM model is given as,

é=u(t) — Be (11)

where e is the wind prediction error and u(t) is the sum if a
white noise process and a deterministic term. The input w(t)
is determined by requiring that the statistics (the mean and the
standard deviation ) of e match empirical values of the hourly

forecast-error data. This process is simplified by separating e

into its random component and deterministic part:
e=er+ fi(t) (12)

where, for (r —1) <t <7, r =1,2,...,24, the deterministic
component /i is given by equation 13:
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where, v (i, j) represent the value of the wind speed in Fore-
cast 7 at the j** hour while v, (4, j) represent the corresponding
actual wind speed. Also fi(,.) represent the sample mean wind-
speed forecast error of the " distribution.
The random component of e then satisfies,

é’r = wn(t) - Ber

where w,, is a gaussian white noise process. The initial
condition statistics are given as,

Eler(0)] =0
E[(e(0))e; (0)] = So

r

(14)

(15)
(16)

where Sy is the variance of the prediction error distribution at
time t=00:00. The random component of e, often character-
ized by its standard deviation:

00 = /5o

As mentioned earlier, the statistics of the random input change
on an hourly basis; therefore the statistics of the w,,(t) are
given as,

a7)

Elwn ()] =0
Elwn (t)wy, (1)] = Q(8)3(t — 7)

where, for (r —1) <t <r,r=1,2,...,24, the spectral den-
sity of the white noise Q,.(¢) is given by the equation 20 [11],
[3].

(18)
19)

Q. (t) = 285(r) (20)

Equation 19 indicates that the input random component has
zero autocorrelation for ¢ # 7, i.e., the quantity w, () is white
noise as mentioned above [11]. The sample variance S'(,,.) of
the wind-speed forecast error of the ‘" distribution is give by
equation 21,

N 1 40 N o o
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B. Prediction Error Realizations

Given the system model, initial condition statistics and ran-
dom input statistic, the MCS technique generates an ensemble
or large number n of the system responses to wind speed
realizations. The ensemble of system responses is generated
by performing the following procedure n times: choose a
random initial condition, i.e., a value e,(0), according to the
statistics provided by equations 15 and 16. Then select a
random input vector w,, (mh); the value of white noise with



spectral density @Q,.(t) was simulated by using the MATLAB®
random number generator ‘randn’ to obtain a sequence of
random values wy,(mh),m = 1,2, ....ty/h satisfying [11]

Elw,(mh)] =0 (22)

and
Q(mh)
h

where h is the simulation time-step, then the random input
wp,(t) is defined as,

E[(wy(mh))w,, (mh)] = (23)

wp(t) = wp(mh), mh <t < (m+1)h (24)

where h is small time increment [11]. The input vector is
then passed to the Euler integration technique, as mentioned
in section 2.4, to propagate the solution from t =0 to ¢t = h,
and so on until the final time ¢y = 23 : 59 : 59 hours is
reached [11] (only the deterministic term in step 2 is zero).
Performing n independent trials yields an ensemble of n
prediction trajectories or realizations of e, each denoted
el (t;27(0), w'(t)) to show the dependence of trajectory on
the random initial condition and random input value [11]:

et (t; 21 (0), w' (1))
et (t; 22 (0)w? (1))

et (t; 27(0), w"(£))

Adding the above realizations of e, to the deterministic com-
ponents of the prediction error (equation 12) gives n realiza-
tions of the prediction error, each denoted eV (t; € (t), fi(t)) to
show the dependence of trajectory on e, and the deterministic
component fi.

C. Power Predictions

Adding the above error realizations to the forecasted wind
speeds vy, gave the wind speed realizations v, (t), and power
predictions were then obtained by passing wind speed realiza-
tions to the wind power generator. The block diagram shown in
figure 2, shows the process of getting wind power predictions.
The limiter was placed after the addition of prediction error
realization and forecasted wind speed to avoid negative values
of the wind speed realization v,.(t), i.e., for each trial vZ(t) is
given as,

vl (t) = max [(vs + €'(t)), 0] (25)

Each realized power prediction is determined by inputting each
realized wind speed v’ (t) to the wind power generation model.
Generating n realizations of forecast error gives n statistically
meaningful realizations of wind speed, which yields an en-
semble of n realized power predictions:

Vi (t)

v Ut) | Wind power

generator

e (i)(t) + I/

i=1,2,...,n truncation

Fig. 2. Wind power realization generation
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The sample mean 7, (t) and variance S,(t) of the power
predictions was calculated by the following equations [11],

ip(t) = 3 (Pi(0) 26)
i=1
8y(0) = — SR — i (O) B0 — (1)) 2D

D. Confidence Intervals

It was desirable to determine the confidence intervals to
ensure that true mean is guaranteed to lie within these intervals
with a specified probability or confidence. If n is sufficiently
large then the confidence interval [m, 7] in which the true
mean 4 (t) will lie is centered on the sample mean 7 (t) and
the range is governed by the sample variance S (t) (or standard
deviation &) and the level of confidence (3, is given as,

I (O 10
vn vn
The true value of the mean u(t) lies between the values of
lower and the upper bound of the inequality, as indicated
in equation 28. The lower bound (m) and upper bound (M)
quantities are referred to as the lower and upper confidence
band limits. The values of 1) for various values of confidence
[ are given in table I, with whatever level of confidence is
chosen, e.g., § = 0.90 or 90% confidence, for ¢)=1.645.

+m=m

(28)

¥ B

1 0.6827

1.645 | 0.90

1.960 | 0.95

2.576 | 0.99
TABLE I

VALUES OF % FOR VARIOUS VALUES OF 8

The lower and upper confidence limits [o, o] of a sample &
is expressed as [11]:
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where p and p are determined by the level of confidence, [3,
the kurtosis of the random variable A\ and the number of trails
performed n, given as [11],

p= (30)

1 1
3 3
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The values of 1 for various values of confidence /3 are given
in the table I. The reasonable choice of A must be determined

before the confidence intervals are calculated. One option is
to determine it by the following relation [11]:

-
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where (i4 is the sample fourth central moment and S is the
sample variance.
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E. Selection of Time Step (h)

The selection of the time step h is challenging and it is
done heuristically. Since the Euler technique (section II), relies
on the derivative of the error function to approximate its
trajectories, the smaller the step size, the smaller the error.
A small time step of h=.01 hour was chosen which is very
small compared to the time constant of the FOM (3=0.2982
hour; for h << B, w,(mh) is a good approximation to a
white noise process.

IV. TEST RESULTS

MCS were performed to get a large ensemble (n) of power

predictions for the given forecasted wind speeds: a wind speed
error realization was generated and then the realization was
added to the forecasted wind speeds. The addition of error
realization with the wind speed forecast gave the wind speed
realization. The realized wind speed was then passed into the
wind power generator model to get a wind power prediction.
Doing it in the same way for n times gave an ensemble of n
power forecasts. The equation 26 and 27 were then used to
calculate the statistics of wind power production.
75 MCS were performed, which ensures that the difference
between true mean p and the estimated mean 7 (t) will be
less than roughly 11% with 90% certainty [11]. It was not
possible to perform more trials since MATLABY ran out of
memory due to large amount of data being stored for post
processing. Figure 3 shows the mean and standard deviation
of the wind power forecasts, obtained by performing 75 MCS
trials.

A. Effects of n on the confidence limits

As mentioned above, confidence limits ensures that true
mean lies between the lower confidence limit

o (t
= - 200 (32)
vn
and the upper confidence limit
Yo (t)
vn

m =

+ 1 (33)
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Fig. 3. Wind power statistics, 75 MCS trials

with a specified level of confidence (; The values of n
corresponding to the different values of v are given in [11].
It must be carefully distinguished between uncertainty due
to the number of trials and uncertainty due to wind-speed
forecast error. We do not have any control on the uncertainty
of wind-speed forecast error, but equation 32 and equation 33
demonstrates the effect of n to achieve a desired degree of
a confidence limits, i.e., we can make uncertainty due to the
number of trials arbitrarily small by increasing the number of
MCS trials performed.

Deciding how many trials to perform requires comparing the
wind power production forecast using the EC forecast, Py,
versus that produced with the wind speed forecast error model
and MCS, P,; it is desirable to obtain a clear separation
between these two results, i.e., Py should lie outside the MCS
confidence bands of P, for it to be helpful. The mean of P,
may help a WE utility operator to decide how much power to
bid in an electricity market:

1) If E[P,] = my, lies above P, then the WE utility
operator can be more aggressive in terms of how much
power to bid.

2) If m,, lies below Py then the operator should be careful.

3) If 7, is approximately equal to Py then the operator
should be neutral.

To illustrate these concepts, the statistics as shown in figure 3
were then substituted into equation 28 to provide the 7,
confidence intervals, with level of confidence 90% as shown
in figure 4 along with the Py plot.

From figure 4, the 1, confidence band lies well above Py for
02 : 00 <t <08 :00, so bidding could be aggressive over
that interval. Clearly, 75 trials of MCS was sufficient for this
assessment.

The above strategies will be more effective if 5, the sample
standard deviation of P,, is also taken into account. For
example, if i, lies above Py but &, is large, then it may
not be wise to be aggressive in bidding.

To use data 6, with assurance we should also check its
confidence limits. First we must use equation 31 to calculate
estimates for the values of kurtosis A each one-hourly wind
power forecast distribution obtained by performing 75 MCS
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Fig. 4. Wind power sample mean with 90% confidence bands

trials; the results are shown in figure 5.
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Fig. 5. Estimated kurtosis

The values of kurtosis were then substituted into equation 30
to provide the power prediction confidence intervals with level
of confidence 90%, as shown in figure 6.

Power prediction sample standard deviation with 90% confidence Bands
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Fig. 6. Wind power sample standard deviation with 90% confidence bands

From figures 4 and 6, the WE utility operator might moderate
the three strategies (aggressive, careful and neutral) as 7, lies
above, below and approximately equal to Py depending upon

the time of the day, noting that the standard deviation &, and
its confidence band are quite high (between about 2.4 to 5
MW most of the day) compared to 7i,,.

V. CONCLUSION

The intermittent nature of wind poses operarional and plan-
ning chalanges to the electricity market. These challeneges can
be adressed with accurate wind power forecasting methods.
This paper presents a wind power forecast Using monte carlo-
markov Process. It was shown through statistical analysis
that the hourly wind-speed prediction error distributions were
quite nearly gaussian in nature. After that, the autocorrelation
function of the prediction error distribution was fitted with
autocorrelation functions, for first- and second-order markov
processes. It was shown that a FOM is a more appropriate fit
compared to a SOM.

It was shown that solving a FOM using euler’s technique
for independent initial conditions gave the realizations of the
prediction error, and adding those to the forecasted wind speed
provided by EC gave the wind speed realizations. The wind
speed realizations were then input to an off-the-shelf wind
farm model developed in Simulink®. The variability present
in the wind speed realizations gets transferred to the wind
power realizations by Monte Carlo Simulation. Therefore, it
was important to assess the uncertainty in the power produc-
tion; it was done through MCS.

The MCS essentially gave the variability in the wind power
production in terms of statistics and histograms which can used
for assessing the risk invloved in power production forecast.
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