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FOREWORD

To write a highly interesting book in a field in which there exists a rich

literature is certainly a difficult task. The present book fully realizes this

performance. Its success is due mainly to the great care with which the authors

selected the material included in the book, with the obvious aim of giving

the reader a deep and broad understanding of the subject.

While the main theorems are recent ones, the authors show very clearly

the strong connections of the theory with the classical results of Hurwitz,

Lyapunov, Nyquist, etc. Their reappraisal of the traditional engineering

methods of control theory—including the daring but often successful

technique of “describing functions”—provides an opportunity to point out

another important source of the ideas that generated the contemporary

view of the problem. While developing the theory with care for rigor and

generality, the authors also show much concern for concrete examples and

often illustrate the general theory by significant and illuminative applications,

treated in detail.

These qualities make the book very useful even for persons who have

little or no previous knowledge of the subject. These people will find this

book an excellent introduction to the field. On the other hand, those already

familiar with the subject will find a detailed exposition of some of the most

advanced results which are harder to find elsewhere and which are due mainly

to the outstanding research done in the field by the authors themselves.

Books which successfully cover such a broad range of interests are rare.

They are also very much needed, because they are bound to produce a

favorable influence upon research.

V. M. Popov





PREFACE

This book presents some recent generalizations of the well-known Popov

solution to the absolute stability problem proposed by Lur’e and Postnikov

in 1944. The Popov frequency domain stability criterion and the results of

several earlier approaches to the Lur’e-Postnikov problem are presented in

detail in the excellent books of Lefschetz and of Aizerman and Gantmacher;

the work that led to the formulation of the absolute stability problem and

the first solutions to it are not considered here.

The success of Popov’s elegant criterion inspired many extensions of the

basic Lur’e-Postnikov problem. Studies of these related questions gave rise

to a great number of stability criteria, derived using both the direct method

of Lyapunov and the positive operator concept of functional analysis. The

great interest in this area has resulted in a continuing state of rapid develop-

ment. The generation of this type of frequency domain stability criteria has

now reached a relative state of completeness. It is also notable that the two

seemingly disparate analytic approaches have led to stability criteria that are

equivalent in most respects, and thus it is possible to present a unified picture

of the recent research in this area using only Lyapunov’s direct method. In

each of the two fundamental approaches there are several points of view

which have been used to good effect by various groups of researchers. It

should thus be noted that this book is founded on a single set of techniques

based on the direct method of Lyapunov and developed first at Harvard

University and then at Yale University and the Indian Institute of Science

(Bangalore, India). This makes the book rather specialized in its overall

scope, but the techniques are found to be applicable to a wide range of

important questions regarding the stability of nonlinear systems.
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In view of the approach taken, several important results derived using a
functional analysis viewpoint have either been omitted entirely or only
mentioned in passing. Since the emphasis is on the application of Lyapunov’s
direct method to generate frequency domain criteria for stability, many fine

results related to other aspects of the stability problem are omitted. The
bibliography is by no means complete for this reason and contains only
works directly related to the problems discussed.

Continuous-time systems are considered here, although many similar

results already exist for discrete systems. In the first eight chapters, systems
with a single nonlinear function or time-varying parameter are treated.

Systems with multiple nonlinearities or time-varying gains are considered in

Chapter IX; some criteria are derived in detail while others are presented in

outline form as an indication of the state of current research.

This book can serve very well as a reference for research courses concern-
ing stability problems related to the absolute stability problem of Lur’e and
Postnikov. Engineers and applied mathematicians should also find the

results contained herein, particularly the geometric stability criteria, of use
in practical applications. Because of the diversity of the audience being
addressed, rigorous theory is developed with what we hope can be considered

a minimum of mathematical formalism. Certain sections contain some quite

condensed technical material required as a foundation for the derivations;

these may be omitted by those whose interest is limited to applications.

It is assumed that the reader is familiar with matrix operations that are

utilized in dealing with the state vector representation of dynamic systems.

All definitions and theorems are developed as needed so that the derivations

are independent of other works
; some acquaintance with the basic concepts

of stability and Lyapunov’s direct method would be helpful. The historical

development of the work associated with the Lur’e-Postnikov problem has
been strongly linked to the theory of automatic control, so control systems
terminology is used sparingly wherever it is reasonable to expect that the

meaning is clear to all readers.
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SPECIAL NOTATION

Throughout this book the following symbol conventions are generally

adhered to

:

(i) Scalars are denoted by lower case Greek characters (p, r, a0 =
hTx + px etc.). The principal exception is the independent variable

t (time).

(ii) Column vectors and explicit functions are denoted by lower case

Latin characters (x, h; /(<r 0),
etc.). The notation x = 0 signifies

that all elements x
t
of the vector are zero.

(iii) Matrices, transfer functions, function classes, function bounds, and

^-dimensional Euclidean spaces are denoted by capital Latin char-

acters (A = [a
tJ] ;

G(s); f(aQ) e [Fj; K < k(t) < #; x e X). Upper

and lower bounds are distinguished by bars above and below,

respectively. A = 0 denotes the null matrix (au = 0, all i and j) and

/is the unit matrix (/ = diag (1, 1, . . . , 1)).

(iv) Function ranges (as in (iii) above) may be specified by the notation

k(t) e [
K

,
K], A bracket indicates a closed interval, whereas a

parenthesis indicates an open interval. Thus k(t) e (0, K

]

signifies

that 0 < k{t) < K.

(v) The transpose of a vector or matrix is designated by a superscript

T(xT = [x„ x2 ,
. . . , xj; AT = [fl

y7]),
and the inverse of a non-

singular matrix is denoted by a superscript —1 [(si — i4)
-1

].

(vi) The notation G(s) e {ZN} denotes the membership of G(s) in some

class [ZN]
of transfer functions. In particular, {PR} is the class of



xviii Special Notation

all positive real functions and {SPR} the class of all strictly positive

real functions (Chapter III, Section 5).

(vii) Systems may be classified as being

LTI (linear time-invariant)

LTV (linear time-varying)

NLTI (nonlinear time-invariant)

or NLTV (nonlinear time-varying).

(viii) The complete notational designation of nonlinear time-varying

gain functions (g(ct 0 , t) e {G
(
[N, T]}) is detailed in Chapter II, Sec-

tion 1.

(ix) The classes of matrices [A
x ] and {^ 0 } are defined in Chapter II,

Section 1.

(x) The superscript * denotes the complex conjugate of a scalar or the

complex conjugate transpose of a vector or matrix.

(xi) An open square (Q) indicates the end of a theorem, lemma, defini-

tion, or proof.

(xii) In all theorems and lemmas, Z(s)±1 implies that either Z(s) or

Z~ x {s) can be used in satisfying the indicated condition.
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INTRODUCTION

In this study we restrict our attention to real dynamic systems which are

governed by ordinary differential equations containing a finite number of

parameters; our principal aim is the development of conditions that are

sufficient to ensure certain stability properties of such systems. In the intro-

ductory comments that follow, an attempt is made to provide a brief outline

of the necessary theoretical background and to establish a context for the

derivations of succeeding chapters. First, however, it is necessary to consider

the class of dynamic systems under study in some detail.

1. The System

If x
1 , x2 , . . . ,

xn represent n coordinates in a Euclidean /z-space X, and

t the time, the behavior of a typical dynamic system is described by the

differential equations

dxjdt ~ x
{ fii.%1 5 » • • • ? xn , /), i 1

,
2,...,/?, (1-1)

or, if x
t
and f. are considered to be elements of column vectors x and /, by

the vector differential equation

* - fix, t). (1-2)

The variables x
t
are referred to as the state variables, and these constitute

the state vector x. X is said to be the state space.
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If a solution exists in some neighborhood of a given initial condition

Or0 , t 0) where x0 e X, t 0 e (- 00
, + 00 ), then it is denoted by x(t; x0 ,

t0).

This solution may be represented as a curve in the Euclidean (n + l)-space

M with coordinates x
l , x2 , . .

.

,

xn , t; points on this curve are specified by
the independent variable t. M is said to be the motion space; the curve

x(t
;
x09 t 0 ) e M specifies a motion in a general sense, that is, the state vari-

ables may represent voltages, temperatures, or pressures as well as spacial

coordinates. The projection of the motion onto the state space X is called

a trajectory. A typical solution to a second order system x
t
= x2 , x 2 = —x

x

[an oscillation with period T = In and initial conditions x^O) = A, x2(0)
= 0] is depicted both as a trajectory and a motion in Fig. 1-1.

t

Fig. 1-1. The solution x(t; x0 , 0) in the state and motion spaces: (a) state space X;
(b) motion space M.

The point xe
which satisfies the equation f(xe , t) = 0 for all t is called a

singular point of the differential equation. To a singular point corresponds

a constant solution which can be thought of as an equilibrium for a physical

system. Throughout this book, only systems with a single equilibrium at the

origin (x = 0) will be considered so that /(0, t) = 0.

It is crucial in the application of Lyapunov’s direct method that the

system be sufficiently well behaved so that a solution (not necessarily unique)

x(t ; x0 , t 0 ) exists in some neighborhood of any initial condition (x0 , t 0 ) e M.
The following well-known theorem provides elementary conditions that

suffice to guarantee the existence of solutions in one specific sense (see

Coddington and Levinson [1]).
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Theorem 1 (A vector form of the Cauchy-Peano existence theorem).

If f{x , t) is continuous with respect to x and t in a region

r): |f — f 0 |<a, ||x — x 0 ||</?; a, f > 0],

then for some a > 0 there exists a solution x(t
; x0 , t Q ) to Eq. (1-2) for

I

*
—

*oK which has a continuous time derivative.

Additional assumptions must be made about /(x, t) if the solutions to

the differential equation (1-2) are required to have other more stringent

properties.

(1) If x(t
; x0 , / 0 ) must be continuous with respect to all of its arguments,

then solutions for any (x0 ,
/ 0) e M must be unique [see (2)].

(2) If for every (x0 9 t 0) e M there must exist a unique solution, the

following conditions are sufficient.

Theorem 2 (see Coddington and Levinson [1, Theorem 2.3]). If

fix, t) is continuous with respect to x and t in R (Theorem 1) and in addi-

tion /(x, t) satisfies a local Lipschitz condition (LLC), that is, some K(a, /?)

exists such that

II fix, t)- fix', OIK^IIx — x' II

for all (x, t), (x', t) e R
,
then for some a > 0 there exists a unique solution

xit; x0 , / 0 )
to Eq. (1-2) for all

\

t — t 0 1
<; a which has a continuous time

derivative.

(3) If a constant y > 0 is to exist such that

id/dt)
1 1
xit ; x 0 , t0) 1 1 < y \ |

xit ; x 0 , t0) \ |,

then it is sufficient that /(x, t) satisfy a uniform Lipschitz condition (ULC)
with respect to t, that is, K = Kif) (see Hahn [1, §38]).

(4) If it must be possible to continue xit ; x0 , t 0 )
for all t ^ t

0 ,
it is suffi-

cient that fix ,
t) satisfy a global uniform Lipschitz condition (GULC), that

is, that a constant K exists such that

II fix, t) - fix ’

, OIK^II* -
*'ll

for all (x, t), (x', t) e M (see Kalman and Bertram [1]).

Whereas statements (1) to (4) are not directly germane to the derivation

of absolute stability criteria using the second method of Lyapunov, they are

mentioned here because they shed a certain amount of light on the properties

of solutions to differential equations. In applying the direct method of

Lyapunov to determine stability of solutions for all (x0 , t
Q ) e M,

however,

it is found that the solutions are not required to be unique or to have a con-



4 I Introduction

tinuous derivative with respect to time; hence the above restrictions on fix, t),

even those of Theorem 1, are unnecessarily stringent.

The following theorem provides conditions that are more nearly in con-

sonance with the requirements of this study.

Theorem 3 (The existence theorem of Caratheodory ;
see Coddington

and Levinson [1]). If for all (x9 1) e R (Theorem 1), fix, 1) is defined,

measurable in t for all fixed x, continuous in x for all fixed t

,

and

ll/(*> OIK MO
is satisfied where fi(t) is Lebesque integrable over \t — t 0K a, then for some

& > 0 there exists a solution x(t; x0 ,
t
Q) for

1

1 — t 0 1< a that is absolutely

continuous with respect to time and which satisfies (d/dt) x(t; x09 1 0)
=

f(x(t ; x0 , t0 ), 0 for almost all t
9

\t — t 0 1 < a.

The minimal conditions on fix, t) that are assumed hereafter are sum-

marized by defining the class {5} of acceptable functions /(x, 0-

Function Class {S}. A function fix, t) e {S} if

(a) fix, 0 is defined for all x, t ;

(b) fix , 0 is continuous with respect to x for all fixed t;

(c) fix, 0 has at most an enumerable set of isolated discontinuities with

respect to t for all fixed x;

(d)
1 1
fix, r)|| is bounded for all finite x and for all t as in Theorem 3;

(e) /(0, /) = 0 for all t, and there exists no xe ^ 0 such that /(xc , 0 = 0;

hence the origin is the sole singular (equilibrium) point.

Three important special cases arise naturally when dealing with the prop-

erties of systems of the form

x = fix, t), fix, t) g {S}. (1-3)

(i) Linear time-invariant iLTI) systems

x = A
0x, (l-3a)

where A 0 is an (« X n) matrix of constants.

(ii) Linear time-varying iLTV) systems

x = A^it)x, (l-3b)

where ^4 0(0 is an in X n) matrix any of the elements of which may be func-

tions of time.

(iii) Nonlinear time-invariant iNLTl) systems

x =/0(x), (l-3c)

where /0(x) explicitly does not vary with time. Such systems are often

referred to as autonomous systems. For the sake of completeness, systems

represented by the general equation (1-2) are considered to be a fourth class.
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(iv) Nonlinear time-varying {NLTV) systems

x=fo(x,t). (l-3d)

Iff0(x, t) satisfies /„(0, t) = 0 for all t, the origin x = 0 is by definition

an equilibrium point of the system. For cases (i) and (ii) this condition is

automatically satisfied, while for NLTI systems the origin is an equilibrium

state if/o(0) = 0. It is the behavior of the solutions of Eq. (1-3) with respect

to this equilibrium state that is of particular interest to us.

Exhaustive studies of the properties of LTI systems have been undertaken,

and the stability problem with respect to Eq. (l-3a) has been completely

resolved. Chapter IV outlines the two basic stability criteria for such systems

and relates these to the developments of succeeding chapters. The question

of the stability of LTV systems [Eq. (l-3b)] has been investigated extensively,

but the great complexity introduced by assuming the existence of time-

varying system parameters thus far has precluded any general solution. Many

techniques for treating specific forms have been developed, however, so that

numerous classes of systems may be successfully analyzed.

The stability properties of NLTI or NLTV systems [Eqs. (l-3c) or (l-3d)]

present even more formidable obstacles. Whereas Lyapunov’s direct method

provides a powerful general tool for use in such situations, the application of

this theory often is not practical. Until comparatively recently the stability

criteria derived in this area have been restricted to quite specific system

models that are generally of a low order and possess a given structure. A
widespread practice in dealing with such systems has been, in fact, to attempt

to relate a problem that is not amenable to fairly simple analysis to the more

tractable form of Eqs. (l-3a) or (l-3b).

When total linearization is not possible (for example, the physical system

contains a nonlinear device that is not sufficiently linear over the normal

operating range to be approximated by a linear element), partial linearization

is often profitable. Such systems become easier to deal with analytically while

they continue to reflect the effect of the nonlinearity on the nature of the solu-

tions. Partial linearization of Eq. (1-2) leads to the system of equations (1-4)

where the single nonlinear time-varying element g(-, t) is explicitly separated

from the linear part:

x=Ax + bx, o 0 = hTx + px, x = -g{o 0 ,t). (1-4)

The vectors b and h are of dimension n and p is a scalar constant, <r 0 is a

linear combination of the state variables x, and r, while x is a nonlinear

and/or time-varying function of er
0

. The time functions x{t) and a0 (t ) may be

thought of as the input and output of an LTI plant while the relation x =
—g(p0 , t) may be considered to be the mathematical representation of an

NLTV controller. This control theory terminology is an interpretation of

the diagram of Fig. 1-2 which represents the dynamics of Eq. (1-4).
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The four cases (i) to (iv) correspond to

(i') LTI systems: r = —Ka0 ;
A

0 = A — y-^-—bhT .

1 T" pK

(ii') LTV systems: r = -k(t)a0 ; A 0(t) = A - ^-ML^bhr .

(iii') NLTI systems: r = — /(cr
0).

(iv') NLTV systems: t = —g(a 0 , t).

2. Stability of Motion

If for the system described by Eq. (1-3), x{t) = x{t
;
x

0 , t 0) represents a

solution of particular interest arising from initial conditions (Jc
0 , t 0) and

x(t) = x(t; x0 , tc ) corresponds to a solution that is initially close to x0 in the

sense that
||

— *0 1| < p, then

* =fo(x, t), X =fo(x, t). (1-5)

If the difference e(0 A x(t) — x(t) is studied, e(t) satisfies the differential

equation

e =f0(x + e, t) -f0(x, t) A Me, t). (1-6)

As/j(0, t)
= 0, the solution e = 0 corresponds to the equilibrium of (1-6);

thus, the behavior of the solutions of Eq. (1-3) in the neighborhood of x(t)

corresponds to the behavior of the solutions of Eq. (1-6) in the neighborhood
of the origin. This implies that the general problem of determining the stabil-

ity of a motion x(t) of a system can be transformed into an equivalent

stability problem where the origin is the equilibrium point under investiga-



3. Lyapunov’s Direct Method 7

tion. Hence, without any loss of generality we can deal solely with the equilib-

rium state x(t) = 0.

This same approach also allows the study of the stability of a motion with

respect to initial conditions even when specified input functions are present,

namely,

x = fix, u, t). (1-7)

3. Lyapunov’s Direct Method

The direct method of Lyapunov, which is the most general method of

stability analysis available, is used exclusively in this book for all of the

problems considered. The system described by Eq. (1-3) is assumed to have

no input function so that the stability of the null solution x(t) = 0 is inves-

tigated in all cases.

A. Concepts of Stability

The most fundamental definitions of stability considered in using this

approach were originally proposed by Lyapunov.

Definition 1 Stability. The equilibrium x = 0 of the differential

equation (1-3) is stable if for every real e > 0 and t 0 ,
there exists a real S(s 9

t 0) > 0 such that

ll*oll<<5—HI*0;*0 >'o)ll<e

for all t0 .

Definition 2 Attractivity. The equilibrium x = 0 of the differential

equation (1-3) is attractive if for some p > 0 and for every rj > 0 there

exists a number T(rj, x0 , t 0 ) such that

l|xO;*o>'o)ll<>7 for all t-t0 ^T
for all

||
*0 ||</>.

Definition 3 Asymptotic Stability. The equilibrium * = 0 of the

differential equation (1-3) is asymptotically stable if it is both stable and

attractive.

In this case, for any given e > 0 and t 0 , there exists a constant <5(e, t 0)

such that

11*0; x0 , f 0)|| < s for all ||x
0 ||<<5 (l-8a)

and

lim x(t; x0 , t 0) = 0. (l-8b)
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Definition 1 ensures that all solutions can be made to lie within an arbitrary

neighborhood of the origin by choosing the initial state within a suitable

neighborhood of x = 0. If e is decreased, a correspondingly smaller value
of 8 can be found such that relation (l-8a) holds.

Definition 2 assures that condition (l-8b) holds for all trajectories starting

at time t 0 from a closed ball of radius p but does not indicate how the tra-

jectories behave for finite values of t. The concept of attractivity is indepen-
dent of the concept of stability; a system can be attractive while being
unstable. Hahn [1] has discussed several systems exhibiting such behavior, the

most interesting of which is an autonomous system of second order originally

suggested by Vinograd.

Hahn [1] has also suggested alternative definitions in terms of comparison
functions for the three concepts defined in Definitions 1 to 3, and has estab-

lished the equivalence of the two sets of definitions. The comparison functions

provide a convenient and intuitively satisfactory method of describing the

various concepts. We merely present the alternate definitions without proving
the equivalence of the two definitions. The comparison functions are found
to be particularly useful while considering further refinements of Definitions

1 to 3 (see Chapter II).

Function Class {K}. A real valued function t0) belongs to class

{K} if for the specified t 0

(a) it is defined, continuous and strictly increasing for all p, 0 </></>„
where p t > 0 is arbitrary;

(b) 0(0, t0) = 0.

Function Class {L}. A real valued function y/(f, x0 , t 0) belongs to class

{L} if for the specified x0 and t0

(a) it is defined, continuous and strictly decreasing for all t0 ;

(b) lim y/(t; x0 , /„) = 0.
t-*°o

Using these function classes, the alternative stability definitions of Hahn are

:

Definition 1
' Stability. The equilibrium x = 0 of the differential

equation (1-3) is stable if there exists a function 0 e {A"} such that

11*0; x
0 ,h>)ll< 0(ll*o II, t0)

for all t0 and for all t 0 .

Definition 2' Attractivity. The equilibrium x = 0 of the differential

equation (1-3) is attractive if for some p{t0) > 0 there exists a function

\p e {£} such that

11*0; *0 > 0)11 <i^0- h>;*0,O
for all t > t0 and ||x

0 || < p.
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Definition 3' Asymptotic Stability. The equilibrium x = 0 of the

differential equation (1-3) is asymptotically stable if there exists a function

0 e {.K}, and for some p(t Q) > 0 there exists a function y/ e {L} such that

\\x(t; x0 ,t 0) || <0(||xo ll>
t0)y/(t- t0 ;x09 t 0)

for all t > t 0
and \\x0 1| < p.

For autonomous systems either set of definitions is considerably simpler

both in concept and in application. The parameters <5, p ,
and T are not

functions of the initial time in Definitions 1 to 3, and the comparison func-

tions of Definitions 1' to 3' are likewise unaffected by t0
.

In recent years several other types of stability have been defined in terms

of the inputs and the outputs of the system. The functional analytic techniques

used in such cases when applied to the problems considered in this book

yield similar stability criteria. While no attempt is made to present these

techniques, references are provided wherever relevant since many of the

contributions to the field have been made using such an approach.

B. Lyapunov Functions

The most attractive feature of both the direct method of Lyapunov and

the more recent functional analytic approach is the fact that they enable

the stability of a system to be ascertained directly from the equations describ-

ing the system without recourse to the explicit form of the solutions.

In the former theory a suitable function is defined in the state space or

motion space and the sign of the function and the sign of its time derivative

are examined. For autonomous systems a positive definite scalar function

v(x) is chosen and the total time derivative of v along the system trajectories

is investigated. If v(x) = p for positive constant values of /? defines a family

of closed nested hypersurfaces [the surface v = p x
encloses all surfaces

v = p for 0 </?</?! for each p { > 0] in some neighborhood of the origin,

and v(x(t)) decreases monotonically along any trajectory x(t) for sufficiently

small
||

jc ||,
the trajectory crosses each curve v(x) = p from the exterior to

the interior for increasing values of the parameter t. If the origin is an interior

point of each hypersurface, the trajectory approaches the origin arbitrarily

closely and the equilibrium is asymptotically stable. For asymptotic stability

in the whole we require that v(x) = P remain closed for arbitrarily large

values of p ,
that v(x) —> oo as ||*|| —> oo, and that the time derivative v

be negative for all x ^ 0.

For the system described in Eq. (l-3c),

dvjdt Ai)A (V^)T* = (Vv)T/0(x) (1-9)
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where Vv is the gradient:

(Vw)T A [dv/dxu dv/dx 2 , . .
. , dv/dx„].

If V satisfies the condition v < 0, then v(x) is said to exist as a Lyapunov
function for the specific system (l-3c) and the system is stable. If v(x) < 0
but not identically zero for any solution x(t) =£ 0, then (see Chapter III,

Section 1) the equilibrium is also asymptotically stable. For nonautonomous
systems of the form (l-3d) a similar approach is used but the positive definite

function v is also generally a function of time. In this case the total derivative

v(x9 1) taken along the trajectories is given by

v(x, t) A dv/dt + C?v)
Tf0(x, t). (1-10)

If v(x> t) is positive definite and v 0, v is a Lyapunov function for the

nonautonomous system and the system is stable as before. For asymptotic
stability somewhat stronger conditions have to be imposed on the Lyapunov
function. These conditions are discussed in detail in Chapter HI.

For NLTV systems, treated in Chapter VI, the theorem of Corduneanu
[1] is applied in the development of one of the criteria for stability. In this

case, v(x> t) has to satisfy the less restrictive condition that

v(x
9 1) < m[v(x, t\ t] (1-11)

for stability where y = m(y
,
t) is an asymptotically stable scalar differential

equation. While v(x, t) defined in this fashion is strictly speaking not a
Lyapunov function, the Corduneanu theorem is based on concepts derived
from Lyapunov’s method.

4. The Quadratic Lyapunov Function

For all of the generality of Lyapunov’s direct method, it has one important
weakness when used in specific situations. There is no way of determining
the definitive Lyapunov function candidate that would yield necessary and
sufficient conditions for stability except for the case of LTI systems. In
general, when a candidate v(x

,
t) is chosen, the conditions that have to be

imposed on the system (1-3), in order to guarantee that v(x , t) satisfies the

inequality v < 0 or that (1-11) is satisfied, are conservative. For the example
of the damped Mathieu equation in Chapter VIII, for instance, extensive

effort has been made to determine a suitable form of v(x
,
t) which yields

necessary and sufficient conditions for stability. The failure to determine such
a function for a seemingly elementary second order LTV system demonstrates
the magnitude of this difficulty.

One of the principal modes of attack used in this study is the development
of Lyapunov functions from the quadratic form xTPx + kxtMx that yields

necessary and sufficient conditions for the stability of LTI systems (l-3a).
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This form is suitably modified to yield sufficient conditions for stability of

the many classes of nonlinear and/or time-varying systems considered. The
modifications in the form of the Lyapunov function for each specific class of

systems, the motivation behind each modification, and the resulting sufficient

conditions for stability form the essence of this book. To the authors, this

unified approach in studying the stability of various classes of systems using

a single form of the Lyapunov function is most appealing.

5. Some Problems in Stability

Within the framework provided by the system model given by Eq. (1-4)

a great variety of stability problems may be posed. Among these, three

important classes arise quite frequently and thus call for some discussion.

These may be categorized as questions concerning stability regions in state

space, in parameter space and in function space.

A. Stability Regions in State Space

The problem of determining the stability behavior of the equilibrium state

and the regions R in the state space such that x0 e R implies that the solution

x(t; xQ , t0) is stable (or is asymptotically stable) constitutes one of the most
significant questions of practical and mathematical interest. In general only

estimates R of the region R can be made; for instance, it is often only possible

to estimate p in Definition 2. If the relation (1-8) holds for all initial values

(that is, if R is the entire state space X), then the system (1-4) is said to be

asymptotically stable in the whole. Whereas local stability in the state space

is a very important concept, we are concerned in the following chapters only

with systems which are asymptotically stable in the whole.

B. Stability Regions in Parameter Space

If the dynamic system is represented by the differential equation

x = f(x, a, 0, (1-12)

where a is an explicit (r x 1) vector of parameters the elements of which are

a. (/ = 1, . . . ,
r), the properties of the family of motions defined by Eq.(l-12)

depends on the values of each parameter ar The constraints on the param-

eters a. which assure some degree of stability of the equilibrium state are

of considerable interest. In particular, we are concerned with conditions on
a. which guarantee the asymptotic stability of the system in the whole.

For linear time-invariant systems, definitive methods such as the Hurwitz

conditions and the Nyquist criterion exist for the determination of the con-
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ditions that must be satisfied by the parameters. By definitive, we mean

that the entire region A
s

in the r-dimensional Euclidean space A of the

parameters a
t

(i = 1, . .
. ,

r) within which a must lie for asymptotic stability

can be determined using such methods; the conditions are both necessary

and sufficient. For the LTV, NLTI, andNLTV cases it is difficult if not impos-

sible in most general cases to find such definitive regions of stability in param-

eter space. Again in such instances we must be satisfied with estimates of

the region A
s ,

so that a e A
s

is a sufficient condition on the parameters of

the system for asymptotic stability in the whole.

C, Stability Regions in Function Space

Given an NLTI system of the form described by Eq. (1-4) with r =
— /(o’ 0), we have the equations

x = Ax — bf(a 0) 9 <j 0 = hTx — pf(a 0 ). (1-13)

Frequently very little is known about the nonlinear function /(<x 0) aside

from the fact that it belongs to a specified function class {V} [/(<J 0) G {#}]•

Examples of such classes of nonlinear functions include continuous functions

which lie in the first and third quadrants of the <j, f(a) plane, functions

which are monotonically nondecreasing,

(f(<r i) - /(ff 2))A> i
— a 2) > 0 for a11

and those with a specified range, for example those that satisfy the inequality

0 < f(a)lo < F, denoted by f(a)\o e [0, F).

The problem, then, given specific system parameters aij9 bn hn and p in

Eq. (1-13), is to determine the constraints on the function /(<r 0) as to its

behavior and range that are sufficient to guarantee the asymptotic stability

in the whole of the system.

A more general form of Eq. (1-13) is

x = Ax + F(x), (1-14)

where F(x) is a vector, every element ft
(x

)

of which must be constrained to

belong to some class {N.} in order for the system to be asymptotically stable

in the whole for some given A matrix. Some problems of this type are con-

sidered in Chapter IX.

In general, many of the stability problems that arise in practice represent

a fusion of several of the above questions. R in Section 5A evidently is deter-

mined by the system parameters and functions that are specified. The class

{A} in Section 5C may be determined by the values of the parameters included

in A, h, b 9
and p. The Aizerman and Kalman conjectures and the absolute

stability problem mentioned in Sections 6 and 7, for instance, represent

natural combinations of questions 5B and 5C.
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6. The Conjectures of Aizerman and Kalman

For a linear time-invariant system described by the equation

x = Ax ,

applying the Hurwitz conditions to the parameters of the characteristic

equation

det[A/ - A\ = 0

determines the domain of asymptotic stability in the space of parameters a
tj

.

When au(Xj) is a nonlinear function of the variable x
J9

the question arises

as to whether the system is equiasymptotically stable in the whole (Chapter

II, Section 2) for all functions au(Xj) satisfying

Gu < atj(xj) < a,j

where the LTI system is asymptotically stable for all constant gains au in

the same range. This represents a procedure of linearization that is imple-

mented by replacing each nonlinearity A a^x^Xj with a linear gain

a.jXj, where the constant aij
takes on all values in the range

a„ A min{/,/*,)/*,}, a
tJ
A ma\{f,/xj)/xj}.

Xj X)

Aizerman [1] conjectured in 1949 that this would indeed be the case for a

system with a single nonlinear element. This conjecture stimulated consider-

able research in the area; it was ultimately shown by Pliss [1] and Krasovskii

[1] that the Hurwitz inequalities applied to the range of f^x^/Xj are not

sufficient to ensure stability in general.

A second conjecture along this same line by Kalman [1] in 1957 was also

prompted by the tantalizing prospect that some method of replacing a non-

linearity with a linear gain or gains might be meaningfully and rigorously

applied to NLTI systems. In this ca *e it was proposed that might be

replaced by a
ij
x

j9
where the const at a

ij
takes on values in the range

g'ij
A min{dfjdxj}, ciu A ma^{dfjdxj] ;

Xj Xj

if the Hurwitz technique guarantees asymptotic stability for a
tj
e \di} ,

a
f

u],

then it was hoped that the NLTI system could be guaranteed to be equi-

asymptotically stable in the whole. This conj^cure was disproved as was

that of Aizerman by the generation of counterexamples, that is, NLTI

systems with a single nonlinearity f(p0) were found exhibiting oscillatory

behavior, although df(a0)/da Q
lies in the Hurwitz range (Fitts [1]).

Had these appealing conjectures been shown to be true
?
the problem of

determining stability conditions for nonlinear systems would have been

resolved to a great extent. As this was not the case, however, attention has
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shifted to such related problems as the determination of conditions that are

sufficient to guarantee the absolute stability of a system.

7. The Absolute Stability Problem

A very important contribution to the area of nonlinear system stability

is the absolute stability problem of Lur’e and Postnikov [1]. In 1944 they

proposed the study of the stability of systems of the form depicted in Fig.

1-3 which are assumed to be completely linearizable with the exception of

a single NLTI element denoted by /(*)• The operator W is assumed to be

LTI, while the nonlinear characteristic /(.) satisfies the following conditions.

Function Class {F}. A function /(<r 0 ) e {F} if it is a real continuous

single-valued scalar function that satisfies

a cf(a o)>0. (1-15)

This system is equivalent to the time-invariant form of Eq. (1-4) or of Fig.

1-2, that is, to a system described by the differential equation (1-4) with

t = — /(<r
0 ),

where /(<r
0 )

is constrained to lie in the first and third quadrants

of the (7 o , f(cj q) plane.

Lur’e and Postnikov proposed to determine conditions that would serve

as constraints on the LTI plant that would be sufficient to ensure the stability

of the system for any nonlinear gain /(•) e {F}. The resulting criterion then

could be applied to any specific problem, where the nonlinear function is

any member of the class {F}. This concept is an important philosophical basis

for many recent developments in stability theory.

Another important contribution of Lur’e and Postnikov was the introduc-

tion of the Lyapunov function candidate

v(x) = l

x

TPx + p f °/(0 rff,
j 0

(1-16)



8. The Criterion of Popov 15

where P = PT > 0 [P is a symmetric positive definite matrix] and generally

ft ^ 0. For f(a) = kg this becomes a member of the fundamental form

xTPx + kxtMx mentioned in Section 4.

The precise reason for choosing the form (1-16) is not known, though

heuristic arguments can be presented. Using an argument of Pliss (see

Aizerman and Gantmacher [1]), for instance, it is possible to substitute a

search for v = xTPx + KxThhTx for an attempt to find a Lyapunov function

of the Lur’e-Postnikov form. As pointed out by Lefschetz [1], the great

merit of this form when applied to the Lur’e problem is that v is a quadratic

form in x and t, and thus the problem of manipulating v into a negative semi-

definite form is greatly simplified.

For over a decade after the problem was posed the significant results in

this area were obtained by research workers in the Soviet Union. The names

of V. A. Yakubovich, I. G. Malkin, M. A. Aizerman, V. A. Pliss, and E. N.

Rozenvasser are associated with some of the major contributions. More
recently, however, the works of Kalman, LaSalle, and Lefschetz in the

United States have also added considerably to our knowledge of this import-

ant problem.

8. The Criterion of Popov

Although numerous workers continued to deal with the absolute stability

problem, it was only in 1961 when the Rumanian applied mathematician

Popov [1] presented an elegant criterion based on the frequency response of

the linear part of the system that there was a resurgence of interest in the

field. Popov also demonstrated that the conditions of his theorem are satisfied

if a Lyapunov function derived from the form (1-16) existed for the given

problem. Further work by Yakubovich [1], and more recently by Kalman

[2], Meyer [1], and Lefschetz [1], showed that the frequency condition of

Popov was also sufficient for the existence of a Lyapunov function of the

modified Lur’e-Postnikov form. The many special cases of the Popov

criterion, as well as the intimate relationship that exists between the method

of Lur’e resolving equations and Popov’s method, have been treated in detail

in the monograph of Aizerman and Gantmacher [1].

The results of Popov are particularly attractive in that they are easy to

apply. A large body of similar results has accumulated over the past years

since Popov’s famous result and are termed “frequency domain stability

criteria.” This book is chiefly devoted to this problem of generating frequency

domain stability criteria for systems of the form depicted in Fig. 1-2 having

a single nonlinear and/or time-varying gain.
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9. Synopsis

The recent monographs of Aizerman and Gantmacher [1] and Lefschetz

[1] have considered in detail the work done on the problem of Lur’e and
Postnikov up to and including the work of Popov. The scope of this book
consequently is restricted to the result of Popov and the many subsequent

criteria inspired by his contribution. The material presented has been organ-

ized to provide insight into the relation between the class of nonlinear or

time-varying function in the system and the corresponding extension of the

Lur’e-Postnikov form of the Lyapunov function used for proving stability.

The system description and the basic stability definitions and theorems are

presented in Chapters II and III. The stability of linear time-invariant systems

is presented in Chapter IV. In particular, it is shown that (1) the Hurwitz
conditions for determining stability boundaries in parameter space corre-

spond to the necessary and sufficient conditions for the existence of a quad-
ratic Lyapunov function xTPx

,

and (2) the Nyquist criterion for determining

the stability range 0 k < K of a single constant parameter k is equivalent

to the conditions for the existence of a quadratic Lyapunov function of the

form xT[P + kM]x (P > 0, M ^ 0) over the same range, provided that the

LTI plant has more poles than zeros. It is this form of the Lyapunov function

that is subsequently modified suitably in all succeeding chapters for different

classes of nonlinear and/or time-varying systems.

The stability of nonlinear time-invariant systems is treated next in Chapter

V. The frequency domain criterion of Popov for systems with a single first

and third quadrant nonlinear function is derived. By restricting the class of

allowable nonlinear functions, less restrictive frequency domain conditions

are derived by suitably modifying the Lur’e-Postnikov Lyapunov function

used for the Popov problem. The classes of nonlinear functions for which
stability conditions are derived include monotonic and odd monotonic
functions.

The ensuing chapter deals with two generalizations of the problem treated

in Chapter V which render the results applicable to time-varying situations

as well. In the first instance, the application of Lyapunov’s stability theorem

to the system containing a nonlinear time-varying gain of the form k(t)f( •)

yields an upper bound on l/k(t) dk/dt. The use of a stability theorem due to

Corduneanu in lieu of that of Lyapunov yields a relaxation of the restriction

of dkldt by substituting an integral or time averaged constraint on dkldt.

The stability of linear time-varying systems is discussed at the end of the

chapter as a special case of the problems considered.

Several useful geometric criteria for determining the stability of the overall

system from the behavior of the linear part are discussed in Chapter VII.
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These criteria are expressed in terms of the Nyquist plot [Im W(i(o) versus

Re W{ico)\ the modified Nyquist plot [co Im W(i(D) versus Re W(ico)\, or the

root locus plot of the LTI plant. Since the geometric criteria assure the exist-

ence of a specific Lyapunov function, the stability properties of the system can

be determined directly from the characteristics of the linear part of the sys-

tem, which can be obtained experimentally.

The stability analysis of a damped nonlinear Mathieu equation is under-

taken in the next chapter. The study is intended to demonstrate the applica-

tion of every relevant stability criterion considered in the book and provide

a basis for the comparison of the different results with the necessary and

sufficient conditions obtained using classical perturbation techniques.

The final chapter indicates the generalizations of the various results to sys-

tems with multiple nonlinear and/or time-varying gains. It is demonstrated

that many of the criteria of Chapters IV to VI may be extended in a straight-

forward manner to such systems.



II

PROBLEM STATEMENT

In this chapter, we give a complete formal definition of the stability prob-
lems that are treated in all subsequent chapters save Chapter IX. This is

possible due to the basic unity of this subject: all systems whose stability

properties are to be investigated may be described by one general system
model (Section 1), and the concept of absolute stability introduced by I.ur'e

and Postnikov may be directly generalized to apply to all of these situations

(Section 2). The detailed specification of system properties and the extended
definition of absolute stability thus form the essential foundation for the
stability problem stated in Section 3, to which the remainder of this study is

directed.

1. System Definition

The most basic system model is described by the state-vector formulation
of Chapter I

:

x=Ax + bx, (j 0 =hrx + pT, r = -g(o a ,i). (1-4)

The structure of a system whose behavior is represented by this first-order

ordinary vector differential equation is depicted in Fig. 1-2. In the introduc-

tory comments we establish the somewhat arbitrary but convenient division

of the system into an LTI plant and an NLTV controller. Two alternative

representations of such a system prove to be useful in dealing with them.

18
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The first formulation equivalent to Eq. (1-4) is defined with the aid of the

Laplace transform pair:

H(s) A P h(t)e~ st dt A L[h(t)l
j 0

and the inverse transformation

h(t) A H(s)e+5t ds A L" 1

[//($)],
J Br

where Br denotes the Bromwich contour.

Formally substituting X for L[x(t)] (a vector of the Laplace transforms of

the state variables), sX for L[x], X 0
for L[(j

0
(t)], and T for L[r(t)], the LTI

part of Eq. (1-4) is reduced to transfer function form:

W(s) A S 0
/r = hT(sI - A)~ l b + p. (2-1)

If (h ,
A, b) are of a particular form (the phase variable canonical form),

that is,

~
0

"
0
”

K 0 0

h = , A =
/

, b =
,

(2-2)

K-i 0 0

_ ^ 2 ’ • ’ M l_

then by substitution,

W(s) = p +
h ns

n 1 + • •
• H~ h 2s ~h h

x

r + ans
n ~ l + • •

• + a 2s + a
x

(2-3)

The parameters />, h
t
and a

t
correspond to those of Eq. (1-4) with {h, A, b)

specified by Eq. (2-2). A second definition of parameters yields

^> = y+ fly+A+a^+a^ (2‘4)

where p. A (h. + pa .) allows a more compact notation. If p = 0, then we

have the special case where the number of zeros of W{s) is less than the num-

ber of poles, or, in terms of frequency response, WCJQ
A. lim^^ W(ico) = 0.

The representation of the system in transfer function form is portrayed in

Fig. 2- la. The nomenclature plant for W(s) and controller for g(*, t) is purely

a matter of convenience; as is demonstrated in Fig. 2- lb, the controller

dynamics may also be described by an NLTV differential equation. By defin-

ing W(s) A we have a system of the form of Fig. 2- la that

is equivalent to that of Fig. 2- lb for the purposes of this study.

The second alternative representation of the system takes the form of an
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(a)

Plant

(b)

Fig. 2-1 (a) The general system model, (b) An alternative form.

nth order ordinary scalar differential equation. The transfer function W(s)

[Eq. (2-4)] plus the controller equation t = —g(a 0 , t) corresponds to

[Dn + anDn ~ 1 + ... +a 2D + aX
+ g[(pD* + pnDn ~ 1 + • •

• + p2D + ptf, t] = 0, (2-5)

where in differential operator notation Dm A dmldt m ,
and again the param-

eters a.,p. and p are the same as in previous formulations. The variable £ is

related to the state vector by

*T = [£, D(,

This description is of less utility than Eqs. (1-4) or (2-1) for our purposes;

however, it is useful in proving certain subsidiary results.

In completing the formal definition of the system, various other properties

of the plant and controller must be specified. In the sequel, the triple (/z, A
,
b)

is in the phase variable canonical form [Eq. (2-2)], the A matrix possesses cer-

tain stability properties, denoted by A e {A.}, and the nonlinear time-varying

controller is specified as to its separability, nonlinear behavior and time

variation (denoted in the aggregate by g(<r 0
,t) e {(^.[N, T]}) and range

(denoted by g(<j 0 , t)/(j 0 e [GN9 G^], for example). Each of these properties

is discussed at greater length below. Before we concern ourselves with these
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details, however, we formally state the complete state vector differential

equation description of the system to be dealt with in Chapters IV through

VIII:

x = Ax + br, A e {A
t), a 0 = hTx + pr, r = —g(cr

0 , t),

0h , A) of the form (2-2), (2-6)

g(ct 0 , 0 e {G
f
[V, 7]}, g(cr

0 , 0/^o e [£?*, G*].

yf. Properties of the LTI Plant

Since the state vector description

x = Ax + br, <7 0 = hTx + pr (2-7)

of the single input [r(t)] single output [<7 0 (t)] plant has been analyzed more

fully and systematically from a systems theoretic viewpoint than has the

preceding transfer function formulation, the properties of this portion of the

overall system are best set forth in terms of (h, A, b) of Eq. (2-7).

In writing Eq. (2-7) we assume that the variables of the state vector x have

been chosen in such a manner that a knowledge of x(t) is sufficient to com-

pletely specify the behavior of the plant. In an electrical system, for instance,

x{t) might be made up of the node voltages or loop currents, while in mechan-

ics, the Lagrangian coordinates (x
i9 xt) serve this purpose. Knowing the

interrelations between these variables [the A matrix of Eq. (2-7)], the input or

control function r(t), and the vector b which defines the distribution of r to

the differential equations of the state variables, it is possible to obtain x{t\

x0 ,
t0) or the state vector solution as a function of time for the initial condi-

tion (x
0 ,

t0 ) as

x(t; x 0 ,
/ 0)
= &(t — t 0)x o + [

0(t — €)br(£)d£, t > t 09
J to

where

0(0 A exp(At) A L-'[(sI - A)~ l

]

is the transition matrix of the dynamic system. The output cr
0(0 is then

specified to be a linear combination of the state variables and the input,

(T 0 = hTx + pr. In discussing the properties of the LTI plant, the feedback

relation r = —g(cr
0 ,

t) is completely disregarded, that is, r(t) is considered

to be completely independent of o Q
.

Looking at the system dynamics from the viewpoint provided by the

concept of state, it may be appreciated that the following two questions are

of fundamental significance.

‘(i) Given an arbitrary initial condition (x0 ,
t0 ) and a second arbitrary

final condition (x
f ,

tf) where tf > t 0 and finite, is it possible to find a suitable
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control function r(t) such that x(tf ;
x

0 , t Q) = xf ? If this may be answered

affirmatively, the system is said to be completely controllable. The simple

example

x =
T
1

T(0

demonstrates that it is not always possible to do this
;
although we may take

one state variable or the other from any value to any other value, it is not

possible to change them both arbitrarily, as the difference 5 A x
1
— x2

satisfies S = —ad or 8{tf) = 8(t0 ) exp[— a(tf — t0)], irrespective of t.

(ii) Given a knowledge of r(t) and a 0
(t) over some finite interval of time,

is it possible to determine the state vector x(t) ? This question is concerned

with the mapping of the state into the output and the conditions under which

a unique state vector can be associated with every output that can occur. If

the system defined by Eq. (2-7) permits the determination of the value of each

state variable, it is said to be completely observable. Again, it is a simple

matter to construct a system that is not completely observable
:
given

x =
o i i p;
-a/? —(a + /?)_

* +
Aj

o a = [a l]x + px,

we can successively differentiate (c7 0 — px) to obtain

axj + x 2 = a 0(t) — px(t),

— jff(ax, + x 2) = (d/dt)(a0 — px) — (ctb
l + b 2)x,

P2(otx
1 + x2) = (d 2/dt2)(a 0 — px) — (ab

l + b 2)(dx/dt — fix).

where by assumption the right hand side of each equation is known. This

procedure always gives us the form (— fi)
m(ax

1 + x2), so only this particular

linear combination of x
x
and x2 may be determined.

In the statement of controllability we note that the output is of no rele-

vance; hence h and p do not come into consideration. Similarly in the case of

observability, the input enters into the determination of the state as a known

function, so that a formal definition can be given entirely in terms of the

parameters of A and h.

In the following chapters we are concerned only with feedback systems

whose linear parts are described by the linear time-invariant differential

equations (2-7). For such systems the conditions for complete controllability

and complete observability are well established in terms of the triple (h ,
A, b).

These conditions play an important role in considering the relation between

the frequency domain criteria and the existence of Lyapunov functions.
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This dependence is noted in considering the various forms of the Kalman-

Yakubovich lemma (Chapter III, Section 4).

Another result of Kalman [3] further clarifies the properties of controlla-

bility and observability : any dynamic system may be transformed by a non-

singular transformation y =Tx into the canonical form

Subsystem Class

:

1 : cc, no

2 : nc, no

3 : cc, co

4 : nc, co

a Q = [0 0 h
3

h 4]y + px.

~A U A
! 2 A 14

0 ^22 0 A 24 y 2 +
0

0 0 A 33 ^34 y 3 b
3

0 0 0 ^ 44_ -.y4— _ 0 _

The subsystems characterized by the states that make up y x
and y 3

are com-

pletely controllable (cc). The input x cannot affect the state variables of y 2

and y4 directly, as b 2
and b4 are null vectors, and since A 21 ,

A 23 ,A 41 ,
and A 43

are also composed of zero elements, the influence of x is not brought to bear

indirectly upon y 2
and y4 through its effect upon y x

and y3
either, so the

states of y2
and y4 are strictly noncontrollable (nc). Similarly the states of

y x
and y2 are strictly nonobservable (no), as h

l
and h 2 are null vectors which

precludes direct observation, and as the matrices A 31 ,
A 32 9

A 419 and A 42

are composed solely of zeros, y 1
and y2 do not interact with y 3

and y4 in any

way and hence they cannot be observed indirectly by their effect upon y 3
and

y4 . This canonical decomposition is shown in Fig. 2-2.

Fig. 2-2. Canonical decomposi-

tion of linear systems.

In the first example of a system that is not cc, the nonsingular transforma-

tion y = T
x
x yields

*n

^2 2

(1 "-(a - p)

0

d
x 2

— (a + ft)

y +
T
0

y = X
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(where t22 ^0 ensures the nonsingularity of Tf), so the second state y 2 =
^22(^2 ~ *

1 ) = —^
228 is evidently uncontrollable. The system in which it is

not possible to observe both states is reduced by y = T2x to

y =
t u

a

C7 0 — [0

OC (t lt fit 12)

_ 0 -/? _

l]j + P*\

y + c't

this transformation is nonsingular if t lx ^ at l2 - Only the state variable

y2 = ccx
1 + x 2

may be observed.

If a system cannot be transformed into one in which the control affects

only certain states (that is, if none of the system state variables fall into

categories 2 and 4 above) then the total system is completely controllable,

and similarly if no states of a system belong to categories 1 and 2, the entire

system is completely observable.

The formal conditions that must be satisfied by (A, b) for complete con-

trollability and by (/z
T

,
A) for complete observability and certain other rami-

fications of these properties are given as follows.

(1) Controllability

(a) The necessary and sufficient condition that Eq. (2-7) is completely

controllable is that the matrix B
,

B A [An~ l b
I

An ~ 2b \---\Ab\b], (2-8)

must be nonsingular, that is,
|

B
|
^ 0 (Kalman, Ho, and Narendra [1]).

(b) If A and b are in the phase variable canonical form (Eq. (2-2)], then

Eq. (2-7) are completely controllable. To demonstrate that this is so, deter-

mine the matrix B which is triangular with diagonal terms equal to unity.

For such a matrix, |2?| = 1, which by (a) establishes the result.

(c) Any system

y = Dy + cy/,
(t> 0 =PT

y + P¥

that is completely controllable may be transformed using the transformation

x = Ty into the phase variable canonical form set forth in Eq. (2-2), that

is, TDT~ l = A and Tc = b, where A and b have the forms indicated in Eq.

(2-2) (Johnson and Wonham [1]), and T is a constant nonsingular matrix.

From this viewpoint, then, this useful form may be considered with no loss

of generality.

(2) Observability

(a) The necessary and sufficient condition that Eq. (2-7) is completely

observable is that

C A [(A
Ty~ lh

j (A
Ty~ 2h i •••\ATh

j
h] (2-9)
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is a nonsingular matrix. The pair (h
T

,
A) is completely observable if and only

if (AT
,
/z) is completely controllable (Kalman [3]).

(b) Since the observability of Eq. (2-7) is determined by the h vector and

the A matrix, and the elements of h are not specified in the phase-variable

canonical form (2-2), the use of this form does not guarantee complete

observability.

A lack of either complete observability, or complete controllability, or both

results in a degeneracy of the impulse response of the system. This response,

w(t) A L~
1 [W(s)l

depends only on the controllable and observable states of the system (Kalman

[3]). For the examples of systems that are not completely controllable and

observable given earlier, we have

ncc:

nco:

W(s) = (h
x j- h 2)(s 4~ (X 4~ /?)

^

(s + a - /i)(s + a + fi)

w(t) = (/*!+ h
2
)e (a_/?)

',

W(s) = s + a
(s + a)(y + /?)

w(t) — e
~pt

.

The transfer function of the completely controllable and completely observ-

able part and the corresponding impulse response are those of a first-order

system. In general, if W
3 (s) A.h 3

T(sI — A 33
)~ 1 b

3
(Fig. 2-2), then w(t) =

L~Ws(s)l
Any function W(s) which is degenerate, that is, that has pole-zero cancella-

tions, may be described by a state vector differential equation that is either

not completely controllable, or not completely observable, or neither. Thus,

from our viewpoint, we may consider only systems that possess one or the

other of these forms of degeneracy, and hence the phase variable canonical

form is used throughout this book to guarantee complete controllability

with no loss in generality.

The stability properties of the total or closed-loop system (Fig. 2-2) are

always specified for at least one value of LTI feedback gain. In terms of the

lower bound GN of the NLTV function g(a 09 1) (usually this is GN = 0; see

Section IB), we take r = —Gng q
in Eq. (2-6); eliminating <j 0

and t yields

x = [A — (Gn/( 1 + pGN))bhT]x A AQnx . (2-10)

The elements of AQn are always assumed to be bounded (that is, pGN ^ — 1)

and the roots of the characteristic equation

1
2/ — AQn |

= 0

must have nonpositive real parts, Re X
t

0. The case most frequently treated

(the principal case; see Section 1C) is denoted and defined by

AQn e {A
x }: Re X. < 0, / = 1, 2, . . . ,

n.
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Only one particular case is treated

:

Aqn £ {^ 0 } : ^i=0, Re X
t <0, i = 2, 3, .

.

.

,

n.

If the stability properties of the matrix AQn are specified by AQn e {A
x },

this condition justifies not requiring that W{s) be the ratio of relatively prime

polynomials. By assuming the asymptotic stability of the overall system for

any value of k, A k g {A
x },

it is guaranteed that the eigenvalues of subsystems

1, 2, and 4 have negative real parts for all values of k. This point is demon-
strated in Fig. 2-2; it is also evident from the earlier analytic formulation:

\U-Ak |

=
I

A/ - A
t 1 1

1

XI - A 22 1

1

XI - (A 33 - (k/( 1 + pK))b,h 3

t
) || XI- A 44 1.

The value of k affects only the eigenvalues of subsystem 3.

Essentially, the direct method of Lyapunov applied to the absolute stability

problem using the techniques given in subsequent chapters provides a gen-

eralization of this result to the nonlinear time-varying case. If An e {A^
i = 1, 2, 4, then the absolute stability of the closed loop subsystem [W3 (s),

g((T 0 , 0} (Fig* 2-2) guarantees the absolute stability of the total system.

In the particular case AQn g {A
0 },

we note that X
t
= 0 must be an eigen-

value of subsystem 3 from this same line of reasoning; this means that s = 0

must not also be a zero of W3 (s). In phase-variable canonical form this

reduces to the requirement that h
l ^0; see also Section ID for a second

interpretation of this condition.

B. Properties of the NLTV Controller

A primary consideration in defining the properties of the nonlinear time-

varying function g(a Q ,
t) is its separability. It is said that g is separable

(denoted g e {G^}) if it can be expressed as the product of a memoryless

nonlinear function /(•) and a time-varying gain k(t); thus

g(cr 0 ,t) e {G,}—> g(a 0 , t) = k(t)f(o 0 ).

If g is not separable in this manner, then g e {G 0 }.

The behavior of g(<r 0 ,
t) with respect to a Q and t is restricted by defining

classes of nonlinear functions {A} and classes of time-varying gains {T}. Thus,

if g{o $ ,
t) g {GJA, T]}, it is understood that g is separable, /(<r 0 ) belongs to

class {A} and k(t) g {7
1

}. These classes are defined in terms of /(<

t

0 ) and k(t),

although the properties so defined apply equally directly to the more general

case ofg(o Q ,
t) g {G0 }. The meaning of the range of a nonlinear time-varying

gain is discussed simultaneously, first over the semiclosed interval [0, GN).

(1) The gain k{t) is a real single-valued nonnegative bounded function

of time, 0 k(t) < K < oo. Three classes of such functions are

considered.
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(a) {K0 }; Discontinuous functions: k(t) e {Fq} if it is discontinuous only

at an enumerable number of distinct instants of time.

(b) {K
x } ;

Continuousfunctions: k(t) e [K
x }

if it is continuous everywhere.

n
(c) {K2 } ;

Continuously differentiablefunctions: k(t) e {K2 }
if its derivative

exists everywhere and is continuous.

The class {A"0 }
is the most general considered in this study under the constraint

that solutions to the system differential equation (2-6) must exist for every

initial condition (x09 t 0) 9
as discussed in Chapter I, Section 1. Further con-

straints are often necessitated in the application of Lyapunov’s and Cor-

duneanu’s stability theorems.

(2) The nonlinearity f{a) is a real, continuous, single-valued, scalar

function of the real scalar argument <r, which again is a requirement for solu-

tions to the differential equation (2-6) to exist. It is guaranteed that x = 0is

an equilibrium of the system by requiring that /(0) — 0. It is further assumed

that f{o>) is a member of one of the following classes.

(a) {F}; First and third quadrant functions:

(i) The infinite sector case: f(p) e [F], f(a)/a e [0, oo) if

0 < f{o)!a < oo for all finite a ^ 0. Q
This condition constrains the function to lie within the sector corre-

sponding to linear gains kg for k e [0, oo), that is, the entire first

and third quadrants of the cr, /(cr) plane (Fig. 2-3a). The function

may tend to infinity more rapidly than |er|, for example /(a) = o 3

is allowed, but f(a) is bounded for finite g.

f(0) f(CT)

Fig. 2-3. Class {F}: First and third quadrant functions: (a)/(ff) e [F], f{a)l<r e

[0, oo); (b)/(<7) e {F},f(a)l<r e [0, F).
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(ii) The finite sector case: f{a) g {F}, f{a)\a g [0, F), if

0 C /(<r)/<7 < F < oo for all finite a ^ 0. Q
In this case the function must lie in the sector corresponding to

f{a) = kg, k g [0, F), as shown in Fig. 2-3b.

This type of nonlinearity and the concomitant concept of range are di-

rectly related to the Aizerman conjecture discussed in Chapter I, Section 6.

Given a system with a single nonlinear gain /(<7), it was proposed that

F A. mma{f(<j)/o} and FA max^lf(a)/a} be determined; if all linear

time-invariant systems corresponding to r = — kg, k e [F, F] prove to
be asymptotically stable, then it was incorrectly inferred that the nonlinear
system is equiasymptotically stable in the whole (Chapter IV, Section IB).

(b) {Fm}; First and third quadrant monotonic functions:

(i) The infinite sector case: f(a) g {Fm}, Af/Aa g [0, oo) if

0<XfriLT/(<F> <oo
G

l
— G 2

for all finite a
{
and a2 =£ a

x
.

(ii) The finite sector case: f(o) e {Fm} 9 Af/Aa e [0, M) if

o < lk.0 " f(°>) CM <OQ
o

1
— cr 2

for all finite a, and a Q
This class of functions and the related idea of range are related to the

conjecture of Kalman (Chapter I, Section 6). Rather than finding F and
Fas defined previously, it was surmised that the bounds UA minfdf/dcr}
and M A. maxfdf/dcr} should be obtained and the LTI system t = —kg,
k e [M, M] should be analyzed. The corresponding inference that the

asymptotic stability of the LTI system for k g [M, M] implies the equia-

symptotic stability in the whole of the NLTI system has also been dis-

proved (Chapter IV, Section IB).

Typical monotonic nonlinearities are depicted in Fig. 2-4. The upper
bound M is equal to F, the upper bound on /(cr)/cr, if f(o) achieves its

maximum slope at o = 0 or if df/da —* M as
|

er
|

^ oo. Further, f(a) need
not be differentiable everywhere in order for it to belong to this class of
nonlinear gains; where df/dcr exists it must lie in the range [0, M).

(c) {Fmo} ;
First and third quadrant monotonic oddfunctions:

(i) and (ii) In both the infinite and finite sector case, the only require-

ment over and above those of (b) is that f{q) be an odd function,

that is, f{—a) = —f(a) for all a. Q
The definitions used so far to specify range for various classes of NLTI

functions f(a) are generalized readily to the NLTV case. If g(a, t

)

is separ-

able and nonmonotonic, g(a, t) e {G,[F, T]}, then g(a, t)jo g [0, GF), where
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f(<7) f(o-)

Fig. 2-4. Class {Fm}\ First and third quadrant monotonic functions: (a) /(cr) e {Fm},

A/(<t)/A<t e [0, oo); (b)/(<r) e {Fm}, A/(<t)/A<7 e [0, M).

f(a)l<r g [0, F), k{t) g [0, F)_and GF_ A FK. If f{a) g \Fm} or {Fmo} then

Ag(a, t)/Ao g [0, Gm) where GM A A/ A'. Similarly for the case of nonsepar-

able gains, g{a, t) g {G0 [IV, T]}, we have

Gf A max{g(cr, t)/a], {N} = \F};
a, t

Gm A max {(g(a, t) - g{6, t))/(cr - <?)}, {N} = {Fm }
or {Fmo }.

a,d^=a, t

For the majority of the systems analyzed subsequently, the range spe-

cified is of the form [0, GN]. In treating systems with a marginally stable

plant (in particular, A having a single zero eigenvalue, A e {/4 0 }) d is neces-

sary to exclude zero gains: either g(a, t)/a > 0 or g(cr, t)/a ^ e > 0. At the

end of most derivations we consider the general finite sector case, g(a , t)/ct e

[Gn ,
gn].

If a system is linear but time-varying (LTV), it is denoted by g(a 0 , t)/a 0

= k(t) e {T}, and if it is nonlinear but time-invariant (NLTI) by g(cr
0 , 0 =

/(a 0 ) e {A/'}. If the system is LTI
[g((j 0 ,

t) = kg q],
this notation is dispensed

with entirely.

The parameter O defined by

O A min 0(a) A min
ex a

(2- 11 )

is found to arise in the stability criteria for separable NLTV systems, g(a, t) e

{GJV, T]}; it provides an effective index of nonlinearity for /(a). The bound

on the rate of time variation of the gain for stability, that is, the upper bound
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on dkjdt
, is shown to be proportional to $ (see Chapter VI). Thus it is im-

portant to be able to estimate $ as liberally as possible for a specific non-

linearity.

As a preliminary step, it is possible to establish ranges of
<J>

for each of

the nonlinearity classes defined previously. The following points and exam-

ples should be noted in obtaining the results tabulated in Table 2-1.

TABLE 2-1 Maximum Ranges of O for Nonlinearity Classes

Nonlinearity class {.N] Range of

{Fi [0, OO)

[F {Fmo} [1,0°)

f(a) = kg 2

(i) Only for /(cr) e {F} can f(a)= 0 for some o ^ 0 when

Jo f(0 > 0, so $ =0 may occur only for this class.

(ii) For monotonic gains we have O > 1, since for any finite value

of <7 ^ 0 we see that necessarily Jo f(C) < <r/(<x). The strict ine-

quality follows from the continuity of f{o) at a = 0. If the case

lini| ffHoo | /(<t)
|

= y/ (iff being any finite constant) is considered we
obtain 0 = 1.

(iii) If f(p) is a power-law function,

/(cr) = k\o\* sgncr, a > 1,

then f(u) belongs to all of the above classes of nonlinearities. By
substitution, 0(a) = a + 1 for all a, so O = a + 1. For a linear

system, a = 1 and 0=2.

For NLTV systems with separable monotonic gains it is noted in Chapter

VI that the rate of time variation that can be tolerated is at least one-half

that allowed for a comparable LTV system that satisfies the same frequency

domain condition. This is based on the magnitude of O which for monotonic

gains is never less than unity as compared with 0=2 for linear systems.

The above comments indicate that in some simple cases when the asymp-

totic behavior of f(a) is known an upper bound of O can be inferred directly.

For example, if f(a) approaches a power-law function as a —» ±°° 5
then

O < a +1, while O < 2 if it approaches a linear gain. If /(cr) approaches

some constant value y
+ or y~ as a —> ±oo, then O < 1.

C. Principal and Particular Cases

It has been a general practice in the past to consider a division of control

systems into equations of direct control and equations of indirect control

as being fundamental and to treat each case separately. The system described
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by (2-6) is said to be direct, and

x = Ax + bx ,
cr

0 = hTx + px ,
dxjdt = —g(cr 0 , 0 (2-12)

to represent the structure of an indirect control system. The feedback path

of such a system may be seen to include an integration. It is simply demon-

strated, however, that the two formulations are equivalent and thus one may
consider (2-6) with no loss in generality: Define

x 1 roi

z A. h A
5 U 0 = o ll>

A
i

X lb] .0, 0,...,0|0_

and h 0
T = [h

T
, p]; then Eq. (2-12) is transformed into the form of Eq. (2-6)

where by inspection A 0 has a zero eigenvalue, and p 0 = 0.

This transformed system still possesses the property that (A
0 ,

b
Q)

is com-

pletely controllable
;
the B matrix of Eq. (2-8) is again triangular with diagonal

terms of unity. Hence as previously stated a second nonsingular transfor-

mation T may be applied to bring the indirect control system of Eq. (2-12)

into the phase variable canonical form. It is easily shown that if A is in the

phase variable canonical form then

Since a control system may have a zero eigenvalue irrespective of the actual

physical nature of the controller (direct or indirect), the authors share the

belief of Aizerman and Gantmacher [1] that this classification is artificial

and unproductive. Thus, the principal case (when A is a stable matrix,

A e {A
x }) and particular cases (when A is marginally stable) are considered

as fundamental classes of control systems. Various particular cases include

A having a single eigenvalue of zero (A e {v4
0 }), having multiple eigenvalues
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of zero, and having distinct eigenvalues on the imaginary axis. The analysis

of the Lur’e-Postnikov problem for all of these cases has been treated by
Yakubovich.

The treatment of particular cases in this book is confined to a consideration
of those systems that possess a single zero eigenvalue, that is, A e {A

0 }. The
original system under consideration may have been an indirect control sys-

tem, or it may have possessed an inherently marginally stable linear part
(plant).

D. The Origin as the Sole Equilibrium Point

Now that an investigation of the system properties has been completed,
it is possible to show that * = 0 is the only equilibrium state of Eq. (2-6),

provided that the corresponding LTI system (t = — K(7
{] )

is asymptotically
stable for k in the same range as the NLTV gain. The principal case and the

particular case corresponding to a single zero eigenvalue must be considered
separately. The case GN = 0 is considered with no loss in generality.

( 1 ) The Principal Case

Since A is an asymptotically stable matrix, we may assume that 0 sg'

K(oa - ^ G (or < (7; the two cases are considered simultaneously).

Then clearly a necessary condition for absolute stability is that the linear

system corresponding jo g(a 0 , t) = K<j a be asymptotically stable for all

k e [0, G] or k e [0, G) ; this assumption is made prior to every analysis.

From the Nyquist criterion (see Chapter IV) this is equivalent to the state-

ment that W(ia>) does not intersect the negative real axis to the left of(— 1/G),

that is, that if Im W(ico) = 0, then Re W(ico) > -1/G [or >1 /<?]. Since
W(0) is real for the principal case, we require W{0) > — 1/G [or >1/G], or

-1Kp - hrA ~
1 b) = - IjW(O) > G [or > G],

Assume that x
e ^ 0 exists: then the first relation in Eq. (2-6) yields

xe = 0, or

Axe
= — bte ,

and since A~ x exists (because asymptotic stability of A ensures that \A\^0)

xe
= —A~ lbre

.

The next two relations in Eq. (2-6) subject to this condition give us

g(cr0e> t)/o0e = -1/1T(0)

which implies that g(a 0e , t)lo 0e must be greater that G [or >G], This contra-

diction to the assumed upper bound on g(a 0 ,
t)/a0 guarantees that x

e ^ 0
does not exist.
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(2) The Particular Case of One Zero Eigenvalue

Since A is only marginally stable, the range of g(o Q , t)/a 0
for absolute

stability must be either (0, G] or (0, G) ;
again both are treated simultaneously.

If the lower bound 0 is not precluded then g(cr
0 ,

t) = 0 is possible, and asymp-

totic stability cannot ensue.

By inspection, a
x
= 0 yields the requisite characteristic equation

|

XI — A
|

= Xn
-j- anX

n 1

-f-
• • •

-f- a^X 2
-f- afX — 0

with one zero root. Again consider Eq. (2-6) under the assumption that

xe ^ 0 exists: setting xe = 0 yields

“0 — I
1 " 0

"

0

/
* ii

*3*

—

0

°!
(

n \
0

L° a $ , . . . , an_ (
-Xj OiX,.)

The first (n — 1) conditions require that xle = x3e = • • • = xne = 0. Since

the last row gives xe
as a linear combination of just these state variables (not

Xu)> = 0.

Since a 0 = 0 is the only zero of x = —g(p Q , t ), then x e = 0 requires that

(7 0e
= 0. Finally the expression a

0 = hTx + px yields

h
l
xu = 0.

If h
l
=0, then W(s) is of the form

W{s) = p +
s[hns

n 2 + * - + h
3
s + h

2 ]

+ ans
n ~ 2 + • •

• + a
3
s + a 2]

hence, the possibility of the pole at s = 0 cancelling with a zero would allow

x le ^ 0 to exist. If, however, this is precluded by assumption, then xu = 0

or x = 0 is the only equilibrium. It is worth noting, however, that other

poles and zeros may cancel, that is, complete observability is not required.

2. Definitions of Stability

As indicated in Chapter I, the concept of stability with regard to general

nonlinear time-varying systems is quite complex. The most fundamental

definitions establishing the concepts of stability, attractivity and asymptotic

stability are considered in Chapter I, Section 3. The great variety of possibil-

ities that exist in the behavior of nonlinear systems has given rise to a mul-
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tiplicity of definitions which are extensions and refinements of these concepts.

Although the definition of absolute {G.[7V, 7"]} stability could be set forth

directly, a discussion of the foundation of this concept is called for to clarify

the significance of the various factors involved. This is accomplished most

simply by giving certain basic definitions and their interrelations.

In the definition of stability (Definition 1), the initial point x
0
and the ini-

tial time t 0 occur as parameters. For a stable system the function
||
x(t;x09

t0) ||
is bounded with respect to time by e when

||
x

0 ||
8(e

,
t0) and t0 are

specified, and this bound tends monotonically towards zero as x
0
tends to

the origin, that is, lim
fi
_>0 <J(e, t0) = 0. For attractivity (Definition 2), the

time T, defined by

II *0, h>)ll< tl, t^t0 + T (2-14)

is a function of x0 , t0 and rj. Simple examples can be given where the bound
on

||
x(t; x0 ,

J
0)||

for a given x
0
increases monotonically with t0 . Similarly

in an attractive system the time T(ij , x0 , t0) may increase arbitrarily with t0 .

Such systems may exhibit modes of behavior that are quite pathological and

not at all in accordance with the intuitive notions about stability that develop

from a study of LTI systems. As an instance of this (Kalman and Bertram

[1]) the first order system x + x\t = 0 is asymptotically stable but not

uniformly so with respect to time. As a consequence, it is apparent that we

must take care to emphasize the dependence of the motion on initial condi-

tions and to specify stability definitions that avoid such peculiarities. The

significant question to be investigated is whether or not the function

suP/>JII*0; xo , t0 ) 11}
can be uniformly estimated with respect to x0 and tQ .

This has given rise to Definitions 4 to 7 that follow.

Definition 4 Uniform Stability (Persidskii [1]). The equilibrium

x = 0 of the differential equation (1-3) is uniformly stable if for each e > 0,

a number 8 = <5(e) > 0, independent of t 0 ,
can be determined such that for

all ||x0 || <
11*0; *o>*o)ll<£, * > t 0 .

Definition 5 Uniform Attractivity (Hahn [1], Antosiewicz [1]).

The equilibrium x = 0 of the differential equation (1-3) is uniformly

attractive

:

(a) with respect to x
0 ,

if for some p > 0 and for every rj > 0 there exists

a T = T(rj, p, t0 ) such that

l|x(f;*o»fo)IK*7 for Ob + 7MI*0 ll</>;

(b) with respect to t 0 , if for some p > 0 and for every tj > 0 there exists

a T = T{rj, x0) such that

*0 > Oil < V for t 0 + T> Poll < P-
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In case (i) T is independent of the initial state x0
(but not of p^\\x0 \\)

while in case (ii) T is independent of the initial time t 0 .

Definition 6 Equiasymptotic Stability (Massera [1]). The equilibrium

* = 0 of the differential equation (1-3) is equiasymptotically stable if it is

both stable and uniformly attractive with respect to x0 .

Definition 6 obviously implies asymptotic stability as the system is both

stable and attractive. By the second condition equiasymptotic stability can

be interpreted as asymptotic stability which is uniform with respect to the

initial space coordinates x
0

. For LTI and LTV systems asymptotic stability

implies equiasymptotic stability; Massera has given examples to show that

this does not hold in the general case of nonlinear systems. It is shown by

Kalman and Bertram [1] that asymptotic stability and equiasymptoic stability

are equivalent if they are uniform in t 0 .

Definition 7 Uniform Asymptotic Stability (Malkin [1]). The equi-

librium x = 0 of the differential equation (1-3) is uniformly asymptotically

stable if the equilibrium is both uniformly stable and uniformly attractive

with respect to x 0
and t0 . Q

For the attractivity specified in Definition 7, it is guaranteed that for every

t] > 0 there exists a number T(?
7, p) such that the inequality

ll*(u* 0 >OII<>7 for t^t 0 + T

is satisfied for all ||x 0 ||<^/?, where p and t] are independent. Uniform

asymptotic stability is also seen to imply equiasymptotic stability.

From the above definitions it is clear that if an autonomous system is

stable (equiasymptotically stable) it is also uniformly stable (uniformly

asymptotically stable). The more significant result that asymptotic stability

and uniform asymptotic stability are equivalent for differential equations

that are time invariant or that have periodic coefficients was proven by

Hahn [1].

In Definitions 1' to 3' it is indicated that stability, attractivity, and asymp-

totic stability can be expressed in terms of comparison functions 0(-) e {-K}

and [//(•) e {L}. The various Definitions 4 to 7 can also be expressed conven-

iently in terms of these functions, which indicate the dependence of the

motion in each case on the initial values x0
and t Q

. For asymptotic, equi-

asymptotic, and uniform asymptotic stability respectively, the inequalities

II
x(t; x 0 , oil < 0(ll*o II;

to)w(* - * 0 ; 0>

II
x(t; x

0 , oil < 0 ( 11
*0 II; h)vif - t0 ; O,

ll*(f; *0 , 011 < 0(ll*o IIM' - O
have to be satisfied for any t0

and for all t ^ tQ and for all x0
in some fixed

ball
||

jc0 || < p. For further details on comparison functions the reader is
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referred to the recent book by Hahn [1], The relationships between the

stability concepts given by Definitions 1-7 are shown diagrammatically in

Fig. 2-5.

Fig. 2-5. Basic stability relationships (numbers refer to Definitions).

All Definitions 1 to 7 only imply certain system properties in some neigh-

borhood of x =0; for motions defined in the entire state space X further

extensions are needed.

Definition 8 Uniform Stability in the Whole. The equilibrium

x = 0 of the differential equation (1-3) is uniformly stable in the whole if

in Definition 4 5(e) exists for all e no matter how large, and

lim 5(e) = oo.

The latter condition added to the definition of uniform stability implies

that solutions to the differential equation (1-3) are uniformly bounded for all

xQ9 which is required for stability in the whole. This concept, like attractivity,

is independent of stability.

Definition 9 Uniform Attractivity in the Whole. The equilibrium

x = 0 of the differential equation (1-3) is uniformly attractive in the whole
(i) with respect to x0 or (ii) with respect to t0 if the provisions of Definition

5 hold for any p > 0.
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Definition 10 Uniform Asymptotic Stability in the Whole. The
equilibrium x = 0 of the differential equation (1-3) is uniformly asymptot-

ically stable in the whole if it is both uniformly stable in the whole and uni-

formly attractive in the whole with respect to x0 and t 0 .

The equivalence of Definitions 9 and 10 under the assumption that f(x, t)

satisfies a global uniform Lipschitz condition is shown in Kalman and
Bertram [1].

The interrelations between various concepts of stability defined in Defini-

tions 1-10 are displayed in Fig. 2-6. In this schematic representation L des-

GULC

Fig. 2-6. Interrelations between stability concepts (numbers refer to Definitions).

ignates the assumption of linearity, TI/P the assumption of time invariance or
periodicity and (G)ULC the assumption that f(x, t) satisfies a (global)

uniform Lipschitz condition. Note that each definition implies all those above
it, while other conditions (L, TI/P, etc.) are required for other relationships.

Thus, Definition 7 implies Definitions 6 and 3 but not 10 unless linearity is
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assumed. This topic is considered in detail both in Kalman and Bertram

and in Hahn; different forms of the Lipschitz condition (Chapter I, Section 1)

often play an important part.

Finally it should be stressed that all of the preceding definitions refer to

specific systems which can be expressed in the form (1-3) with all parameters

and functional relationships specified. In the following chapters a general-

ization of the concept of absolute stability (Lur’e and Postnikov [1]) is used

exclusively.

Definition 11 Absolute {GJ Stability. The equilibrium jc = 0 of

the differential equation (2-6) is absolutely [G
{
[N9 T]} stable if it is uniformly

asymptotically stable in the whole for all g(-, t) e {G
t
[N

9
T]}, g(a 9

i)\o e

[Gn, GnI
When g{a 9 t) = f(a) e [F], this definition corresponds to absolute sta-

bility which has been extensively investigated in the past. If a precise indica-

tion of the type of stability under discussion is not essential, the common
usage of the term absolute stability in the extended sense is utilized.

3. Formal Problem Statement

Within the framework provided by a basic system model (Section 1) and
stability definitions (Section 2), it is now possible to focus our attention on

one of the many problems posed in Chapter I. The formal problem as stated

below is a generalized Lur’e-Postnikov problem.

The Problem. Given a differential equation of the form (2-6), determine

conditions on the transfer function W(s) and on the rate of time variation

of g(a 0 , t) that are sufficient to guarantee the absolute {GJ stability of the

system.

In Chapter IV the frequency domain condition that is obtained to guar-

antee the asymptotic stability of LTI systems is shown to be equivalent to

the Nyquist condition. In Chapter V similar conditions are derived that

are sufficient to ensure the absolute {TV} stability of NLTI systems. The

stability criteria of Chapter VI for NLTV systems contain both frequency

domain restrictions on W(ico) and (except for the circle criterion, Chapter VI,

Section 1) upper bounds upon the rate of time variation of g(a 0 , t) that are

to be satisfied either at each instant or in a time-averaged sense.
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MATHEMATICAL PRELIMINARIES

The many stability theorems that have been derived based on the philos-

ophy of Lyapunov may in general terms be divided into three categories:

(i) Sufficiency theorems, which state that the existence of a Lyapunov
function is sufficient to guarantee the stability of the system in question.

(ii) Existence theorems, which for a given class of systems [such as the

LTV system x = A(t)x] that are stable, assure that a specific class of
Lyapunov functions [for example, xTP(t)x] exist.

(iii) Stability criteria, which state conditions directly in terms of system

characteristics that are sufficient to ensure stability. These criteria are proved
using theorems of classes (i) or (ii), but can be applied without direct recourse

to Lyapunov’s method.

A similar hierarchy of theorems also exists in considering the instability

of dynamic systems.

The central purpose of this study is the development of stability criteria

for systems of the type defined in Chapter II. First, however, it is necessary

to state the sufficiency theorems that are utilized in subsequent chapters.

Such a theorem consists of two parts : a statement of the properties of v{x, t)

[the Lyapunov function candidate] and the conditions that v [v A dv/dt +
(Vu)Tx, the total time derivative of v along system trajectories] must
satisfy before v may be said to be a Lyapunov function for the system. The
existence of a Lyapunov function is a sufficient condition for system stability

in the sense defined in the theorem.

39
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Since one of the primary unifying factors in this work is the use of

Lyapunov function candidates that are special cases of one general form,
this form is investigated to demonstrate that it is indeed a valid candidate.

This permits the simplification of the statements of the sufficiency theorems.

The final complement to this exposition of the rigorous basis for the sta-

bility criteria to be developed in subsequent chapters is the statement of several

forms of the Kalman-Yakubovich lemma. This lemma is the heart of all

subsequent derivations, as it provides the link between the existence of the

solutions to a certain set of matrix and vector equations and the stability

conditions in the frequency domain. If the solutions exist, it is possible to

guarantee stability by Lyapunov’s direct method [Theorems 1 and 2, in

Section 3]; the frequency domain condition that is demanded by each sta-

bility criterion devolves from the application of a form of the Kalman-
Yakubovich lemma. In connection with this lemma, the properties of positive

real functions are investigated.

In order to provide insight into the types of Lyapunov functions that may
be used in different situations, a few noteworthy existence theorems are

stated, generally without proof. Although they render assurance that the

search for a Lyapunov function for problems of the type defined in Chapter
II is not a vain one, these theorems often provide little or no specific guidance

in this quest except in the case of LTI systems: x = Ax. In treating this last

problem, an effective existence theorem and several useful corollaries are

given. Since the corresponding class of Lyapunov functions—the quadratic

form xTPx—is of fundamental importance to the study of absolute stability,

a proof of the theorem is presented, even though it is well known.

1. Sufficiency Theorems

The following theorem gives a general statement of conditions that are

sufficient to guarantee the uniform asymptotic stability in the whole of the

solutions of a differential equation of the form

X =f(x, t\ f{x, t) e {S}. (1-3)

This theorem is essentially due to Lyapunov, although he did not consider

the subtle distinctions between asymptotic stability (with which he was con-

cerned) and uniform asymptotic stability as later defined by Malkin (Defini-

tion 7).

Theorem A (see Hahn [1, § 42]). If a function v(x, t) that is defined for

all x and t satisfies

(i) for all fixed t
,
v{x

, t) is continuous with respect to
||
x

||
and bounded

for all ||x|| < oo, and for all fixed x, v(x, t) is continuous with

respect to t
;
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(ii) v{x
, t) is positive definite, that is, there exists a function a(/?) e {.K}

(Chapter I, Section 3) independent of t such that

0 < a(||x||) < v(x, t)

for all x 9^ 0 and /, v(0, t) = 0 for all t;

(iii) v(x, t) is radially unbounded, that is, a(/?) of part (ii) satisfies

lim^aO?) = oo

;

(iv) v(x
, t) is decrescent, that is, there exists a function £(/>) e {X} inde-

pendent of t such that

v(x, 0 <£(11*11)

for all t and for all
\

\x\
\ ^ p0 < oo where p0

is an arbitrary positive

constant;

then a sufficient condition for the uniform asymptotic stability in the whole

of the solutions to Eq. (1-3) is that

(A: v) there exists a function y(p) e {K} such that the total time deriva-

tive of v(x
,
t) along system trajectories satisfies

v A dv/dt + 0Vv)
T
f(x , 0 < - y(\\x\\) < 0

for all x 9^ 0 and t.

The conditions that v(x , t) must be positive definite and decrescent require

that v(0, t) = 0 for all t. The time invariance of the lower and upper bounds
of v{x , t) with respect to

||
x

||
required in conditions (ii) and (iv) respectively

is important. The function v(x, t) = e~ nt
\ \

x
1

1

2
is not positive definite if tj > 0,

even though v(x
,
t) > 0 for all t and and it is not decrescent if rj < 0,

since for any fixed x, v(x
, t) is unbounded with respect to t.

The application of condition (iv) is simplified by the use of the following

result from Hahn [1].

Lemma A. A function v(x
, /) is decrescent if the elements of VvT A

[dv/dx 19 dv/dx 2 , . . . , dv/dxn] are bounded functions of t for any fixed x,

|

|x
1 1 < p Q < oo where /?0 is an arbitrary positive constant.

In the above example Vv = 2xe~ nt
,
so v(x

9 1)
= e~ nt\\x

\\

2
is not decrescent

for rj < 0.

A corollary for time-invariant (autonomous) differential equations

* = /(*), fix) e {S}, (l-3c)

which notably weakens the stability requirement (A : v) is to be found in

Kalman and Bertram [1].

Corollary A1 (LaSalle [1]). If a function v(x) which is defined for all

x satisfies

(i) the elements of Vv are continuous with respect to x;

(ii) v{x) is positive definite;
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(iii) v(x) is radially unbounded;

(iv) v(0) = 0;

then a sufficient condition for the uniform asymptotic stability in the whole
of the solutions to Eq. (l-3c) is that

(A1 : v) v 0 for all x where v(x(t
;
x

Q ,
t 0 ))

= 0 cannot occur along any

system trajectory other than x(t ; x0 , t Q )
= 0.

For time-invariant systems [Eq. (l-3c)], uniform asymptotic stability and

equiasymptotic stability are equivalent (see Fig. 2-6). The conditions (i) and
(iv) of this corollary guarantee that v(x) is decrescent by Lemma A. The
relaxation of the final condition constraining dvjdt is particularly important,

as it is often a simple matter to check whether v(x(t
; x0 , t 0)) = 0 only if

x = 0. This corollary is used exclusively in Chapters IV and V.

The terminology used by those applying the direct method of Lyapunov
is somewhat diverse and contradictory. Some authors (see Hahn [1]) refer

to any function v(x 9 1) that is valid for testing the stability properties (asymp-

totic stability, stability, or instability) of a differential equation (1-3) as a

Lyapunov function. Others, following Yoshizawa [1], have defined a

Lyapunov function v(x, t) entirely in terms of the properties of v(x, t). This

definition does not restrict the sign of v(x9 t), but requires v(x 9 1) to be non-

positive along the trajectories of the system. We prefer a nomenclature that

more clearly delineates the procedure used here in stability analysis via the

direct method.

Definition A. A function v(x
,
t) or v{x) that satisfies the conditions

(i)-(iv) of Theorem A or Corollary A1 is called a global Lyapunov function

candidate. If for a specific system of the form (1-3) or (l-3c), the total time

derivative of v satisfies condition (A: v) or (A1 : v) then the system is uni-

formly asymptotically stable in the whole and v(x
, t) is said to exist as a

global Lyapunov function for the system.

If v(x, t) or v{x) is not radially unbounded, then it is simply a Lyapunov
function candidate which may be used to establish the local stability proper-

ties of the solutions of a differential equation. Although this distinction is

seldom made, it is worthwhile if this terminology is to be used with precision.

Some authors who make a distinction between Lyapunov functions and

Lyapunov function candidates use other definitions [for example, that con-

ditions (i), (ii), and (iv) must be satisfied by a candidate and that v < 0 for

the specific v(x, t) and /(x, t) for v(x
, t) to exist as a Lyapunov function for

x = f(x, t), which guarantees only uniform stability], but Definition A is

chosen to be consistent with the goals of the studies to be undertaken in

subsequent chapters, as defined in Sections 2 and 3 of Chapter II.

In purely geometrical terms, v(x, t) is constructed in such a way that if it

can be shown that along all system trajectories v goes to zero (specifically,

that v(x, t) is uniformly asymptotically stable in the whole), it follows that
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the system trajectories display the same property. Thus Lyapunov’s direct

method may be considered to be a mapping of the qualitative behavior of a

system with n states into that of a scalar function v whose time derivative is

determined in part by the system differential equation.

From this viewpoint, it may be appreciated that condition (A : v) is a very

strict differential inequality in relation to the goal of determining the uniform

asymptotic stability in the whole of the candidate v\ in fact, a more general

condition has been established in a theorem due to Corduneanu [1], which
makes the ideas implicit in Theorem A more evident.

Theorem B. If a function v(x
, t) exists satisfying (i)-(iv) of Theorem A,

then a sufficient condition for the uniform asymptotic stability in the whole
of the solutions to Eq. (1-3) is the following.

(B: v) There exists a function m(t/, t) such that:

(a) ra(//, t) is continuous for all 77 > 0 and t and of such a nature that

the scalar differential equation fj = m(rj
, t) has unique solutions in

this domain (the equilibrium solution being rj
=

0), which are uni-

formly asymptotically stable in the whole;

(b) v < m(v
, t).

A simple special case of this theorem is particularly useful in the develop-

ment of frequency domain stability criteria for NLTV systems.

Corollary Bl. A sufficient condition for conditions (a) and (b) of

Theorem B to be satisfied is as follows.

(Bl : v) There exists a continuous function p{t) such that

(a) lim^oo
\

T
to
p(t) dt = —oo uniformly with respect to t 0

if p is aperiodic,

or
\
T
0
p(t) dt <0 if p(t + T)= p(t) for all t

;

(b) v </?(/>.

This corollary corresponds to the special case m(rj
,
t) = p(t)tj

;
the differ-

ential equation 77 = p(t)rj is uniformly asymptotically stable in the whole if

the condition of (Bl : v) is satisfied, as is evident from the solution:

n = p(t)ih 7](t 0)
= t] o
—> /j(t; 7/ o , t 0) = 77 o exp

|
p(T) rfrj.

The latter result, used exclusively in our derivations, is essentially the theo-

rem of Krasovskii (Theorem E, Section 6); the stability mapping concept

and the generality of Theorem B are important to note, however.

In using this theorem, we modify the terminology given in Definition A.

Definition B. If for a specific system of the form (1-3), the total time

derivative of the global Lyapunov function candidate satisfies (B : v) or

(Bl:v), the system is uniformly asymptotically stable in the whole and
v(x, t) is said to exist as a global Corduneanu function for that system.
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In the general statements about stability analysis and the absolute stability

problem made in Chapter I, we stress that traditional analysis using the direct

method of Lyapunov entails a search for a specific Lyapunov function for

each specific problem encountered. In most meaningful cases, many candi-

dates must be chosen in a trial and error fashion and the corresponding

derivative along system trajectories inspected until one is found that satisfies

the final condition (v) of Theorem A or its corollary. If even a prolonged

effort fails to unearth a Lyapunov function for the system in question,

instability is not indicated, as an exhaustive search is almost never possible

(refer to the existence Theorems C, D, and E, Section 6), so this procedure

can be completely unproductive.

In treating the absolute stability problem, we would like to further empha-

size the important departure represented by the approach instituted by Lur’e

and Postnikov by using a slightly modified terminology in place of that given

in Definitions A and B.

Definition 1. If for a given class of systems of the form of Eq. (2-6)

with g{i7 , t) e {G
{
[N, 7]}, a corresponding form of Lyapunov function can-

didate is used, this form is designated an absolute 7]} Lyapunov

function candidate. If for all members of the class of systems, v satisfies

condition (A: v) or (A1 : v), then v(x 9 1) is the absolute {G[N9 7]} Lyapunov

function, or if v satisfies Condition (B: v) or (B1 : v), it is then the absolute

{G.[iV, 7]} Corduneanu function.

The existence of an absolute Lyapunov or Corduneanu function is thus a

sufficient condition for absolute stability in the same extended sense (Defini-

tion 11, Chapter II, Section 2). It is never necessary to find a specific v(x
, t)

for a specific system of any class; conditions are obtained which guarantee

that some member of an appropriate form exists, and what this member

might be (in terms of its parameters) is immaterial.

2. The Absolute Lyapunov Function Candidates

The most general absolute Lyapunov function candidate used in this

study is

m rcn

v = $

x

TPx + ]>]/?, g(C, t) dC + $0OPrl >

where
(3-!)

(i) p — pT > 0 (that is, P is symmetric and positive definite),

(ii) > 0
,

i = 0
,

1 , . .
. ,
m; p > 0

,

(iii) cr. = r.
Tx; <7 0 = hTx + px.
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In some cases (ii) is not required; in such an instance, the validity of v(x, t)

is reconsidered. Only the positive definiteness of v{x
, t) is potentially affected

by relaxing condition (ii).

The following are special cases

:

(1) v = \xTPx

in general; if p = 0, then

v == 1 vT P + kY, fat? = \xT[P + kM]x

(used for LTI systems and in deriving the circle criterion [Chapter VI, Sec-

tion 1]).

(2) = i A {[xTPx + k(t)x
rMx]xTPx + k{t) X Pi

xTr
i
r

i

Tx
i = 0

(used for LTV systems with g(a, t)jc = k(t) e {KJ; again, p = 0).

m rcn

(3) v = ^Px + SA /(O dC + %P0pT
2 (3-2)

1 = 0 J 0

(used for general NLTI systems. If f(p) e {i7}, then only the first integral

term (i = 0) is taken, and we have the candidate of Lur’e and Postnikov [1]

as modified by Popov [2]).

m cffi

(4) « = \x^Px + £ PMt) /«M + iA,/*
2

i = 0 J 0

(used for NLTV systems that are separable, with k(t) e {A^}).

A. The Validity of Candidates for Absolute Lyapunov Functions

We proceed to demonstrate which forms of v(x, t) may be used in treating

the various classes of systems considered in later chapters. For easy reference,

the results are established in the form of three lemmas.

Lemma VI. The positive definite quadratic form v(x) = \xTPx (P = P T

> 0 and P real) is a valid absolute {G
t
[N, T]} Lyapunov function candidate

for all classes defined in Chapter II, Section 2.

Before proving this result, we briefly review a number of important ele-

mentary properties of quadratic forms.

(1) Given a quadratic form xTPx
,
there is no loss in generality in assuming

that P is symmetric (P = PT
; pu — pjn i,j= 1,2,..., n). Any matrix R

may be expressed as the sum of a symmetric matrix R
s
and an antisymmetric

matrix Ra (raij = -raji , all i *j; r
aii = 0);R, = #R + i?

T
), Ra = #R - RT

).

For any real antisymmetric matrix Ra ,
xTRax = 0.

(2) A symmetric matrix P is positive definite, that is, xTPx > 0 for all
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x =£ 0 (positive semidefinite, that is, xTPx > 0 for all x) denoted by P = PT

> 0 (P = P T ^ 0) if and only if the 2" —
1 principal minors are positive

(nonnegative). For example, a (3 x 3) symmetric matrix P is positive definite

if the 7 principal minors

Pll P 12 P 11 P 13
J

Pll Pll

Pll P22 P 13 Pll Pll Pll

are all positive.

A special result exists for the case of positive definite matrices: P — PT

> 0 if and only if the n leading principal minors

Mi APiuMi =

M*- 1 4

Pit P 12

P 12 P22

P 11 P 12 *
*

' Pl(n- 1 )

P 12 Pll *
*

‘Pl(n-l)

Mn: (3-3)

I Pl(n— 1 )

* ’ *

P(n— 1 )(/»— 1 ) j

are all positive. The conditions that fit ^ 0 do not guarantee that P = P T

> 0, as the following example shows : Choose any a > 0, /? > 0, y > 0, and
any S ; then

a (aj?)
l/2

(5

^ <5(/?/a)
1/2

|

— /tj = cc > 0, p 2 = 0, ju 3 = 0,(a£)
,/2

5 W*)
1 12

but an investigation of the principal minors reveals that P is positive semi-

definite only if (5
2

ay.

(3) IfP = P T > 0, then the eigenvalues of P or the n roots kiP of the

characteristic equation \ll — P\ = 0 are all real and positive. If they are

ordered such that 0 < X lp < k 1P< • •
• < knP, then

0 < JU, P ||x||
2 < \x*Px <^/lJ|x|| 2

for all x ^ 0.

Proof: These observations essentially complete the proof of Lemma Yl.

The continuity conditions (i) of Theorem A are satisfied by inspection, and
the lower and upper bounds on \xTPx in (3) show that conditions (ii) to (iv)

are satisfied with oc(p) = \k XPp
2 and f{p) = \XnPp

2
, where the parameters

XiP are real and satisfy 0 < k lP < knP .

Lemma V2. The form

<x) = \x-Px + f; fi,rno dH + \p0p[f(<j Q )]\
i—0 '0

(3-2)
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where P = P T > 0, /?. 0, / = 0, 1, . . . ,
m and p^O, and cr 0 = hTx + px ,

<7,- = rfx, where r
t
are real n vectors, i = 1 , 2, . . . , m, is a valid absolute

{TV} Lyapunov function candidate for all classes {TV} defined in Chapter II,

Section 2.

Proof: The continuity of the elements of Vv,

« m
dv/dxk = 2 + PJ(o0) (d/dxk) [a0 + />/O 0)] + 2 Ptf(^Prik

7=1 i=l

follows directly from the observation that cr 0 = /fLt — pf(cr 0) [Eq. (2-6)] so

that (d/dxk) [a 0 + pf(cr 0)]
= hk ,

and from the assumed continuity of f(a 0).

Since P = P T > 0, /?t
. ^ 0, p > 0 and f(a) lies in the first and third quad-

rants of the a, f(o) plane (Fig. 2-2), we have v(x) \xTPx ^ £A 1P||
x

||

2 > 0

for all x ^ 0. Again, choosing cn{p) = ^2 1P/?
2

,
it follows that v(x) is positive

definite and radially unbounded. Also v(0) = 0, which according to Corollary

A1 completes the proof.

Lemma V3. The function v(x
, t) defined in Eq. (3-1) is a valid absolute

{G^TV, T]} Lyapunov function candidate for all classes {TV} and for {T} = {.K,}

or {K2 } as defined in Chapter II, Section 2.

Proof: (i) The continuity requirements of Theorem A are satisfied due

to the assumed continuity of g(cr
0 , t) with respect to a 0

and t.

(ii) and (iii) That v(x
,
t) is positive definite and radially unbounded

proceeds as in the proof of Lemma V2; all terms except \xTPx are positive

semidefinite under the assumptions made on the parameters and on g(cr 0 , t),

so v(x
, t) > \

x

TPx > %h lP\\x\\
2

.

(iv) The elements of Vv are Vi;
T = xTP + 2™ o Ptgfati where

r 0 = h; the decrescency of v(x
, t) follows from Lemma A and the assumption

that g(a 0 ,
t) is bounded with respect to t for all fixed <7 0 .

B. The Total Time Derivative of v(x, t)

Given the form of (W) found in proving Lemmas V2 and V3, it is conven-

ient to establish the total time derivative of v(x
, t) [Eq. (3-1)] for systems of

the form specified by the differential equation (2-6): v = (V^)Ti + dv/dt is

v = \xT{ATP + PA)x — g{o 0 ,t)x
T[Pb — (P0A

Th + y 0
h)]

- [Ji0h
Tb + y0(p + G^)]g\a0 , t) - yo0 og(cr o , /)[1 - g(a 0 , t)l(GNa 0 )]

m m pert

+ 2 t)r?[Ax + bx] 2 P, f t)/dt] d{ (3-4)
i= 1 i=0^0

In arriving at this expression we use

(i) xTPAx = xT(ATP + PA)x
,
that is, we take only the symmetric part

of the product PA
,
and
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(ii) the identity

r0sOo, t)Wx + pr - C7 0 ] - [g(a0 , t)/GN - cr 0g(<r 0 , t)/GNa0]} = 0.

This last manipulation—essentially, expanding v(x
, t) by adding and subtract-

ing equal terms—is a standard practice used in obtaining v in a form con-

venient for subsequent analysis.

3. Restated Stability Theorems

Since various forms of v(x
, t) in (3-1) have been shown to be valid candi-

dates, only v need be considered in the derivation of stability criteria. The
sufficiency theorems of Section 1 reduce to

:

Theorem 1 (from Theorem A and Corollary Al).

(a) If the system (2-6) is time-invariant, then for some ^(x) chosen accord-

ing to Lemma Y2, a sufficient condition for uniform asymptotic stability

in the whole is that v 0 where v(x(t\ xQ ,
/ 0))
= 0 only if x(t; x0 ,

t Q)
= 0.

(b) If the system (2-6) is not time-invariant, then for a v(x) or v(x , t)

chosen according to Lemma VI if
{
T

} = {X0 }
or Lemma V3 if [T] = {Xj}

or {.K2 ), a sufficient condition for uniform asymptotic stability in the whole

is that v(x , t) [Eq. (3-4)] is negative definite.

Theorem 2 (from Corollary Bl). If the system (2-6) is time-varying with

{T
7

} = (A!)} or {K2 }, and if for v(x
, t) specified by Lemma V3 there exists a

continuous real function p(t) such that v < p(t)v, then a sufficient condition

for uniform asymptotic stability in the whole is that

:

(a) limT_„\lp{t)dt = — oo uniformly with respect to t 0 if p(t) is aperi-

odic, or

(b) ft Pit) dt< 0 if p(t + T)= p(t) for all /.

4. The Kalman-Yakubovich Lemma

Inspecting the first three terms of v [Eq. (3-4)], it is useful to note that they

would form a complete square and a quadratic form if solutions to the

following equations existed

:

ATP + PA= -qqT - D;

Pb-k = [2J3 0h
Tb + 2y 0(p + G~N ')Y

/2
q A vV q-

The resulting terms of v would be — \[xTq — vV T]

2 ~ \xTDx. If D were

at least positive semidefinite, then much of the problem of showing that v

is negative semidefinite or definite is solved. A basic lemma that establishes
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conditions for the existence of solutions of this form has been proven by

Yakubovich [1]; this was the major step in relating the work of Popov with

that of Lur’e and Postnikov. A significant contribution of Kalman [2] was a

direct proof of the sufficiency part of the lemma, which has been widely used.

Many refinements and specialized forms of this lemma exist; we confine our

attention to those that are required in later sections. Of the five lemmas

stated, only Lemma 5 is considered in detail; the proofs of Lemmas 1-4

follow along similar lines.

Lemma 1 (Kalman). Given A e {A
x },

(A, b) completely controllable,

a real vector k and a real scalar y/, then a real vector q and matrices P =
P T

0, K = KT ^ 0 satisfying

(a) A*P + PA = -qq* -

(b) Pb — k =
j

< j

exist if and only if

(c) H(s) A \y/ + k\sl - A)~ l b e {PR}. (3-7)

This latter condition, that H(s) must be positive real, forms the core of the

derivation of all the frequency domain stability criteria that follow. We
should note that the statement of condition (c) was originally given as

Re H(ico) ^ 0; in the necessity proof of Lemma 5 we see that this is entirely

equivalent to the constraint H(s) e {PR} in this context. This condition and

other related constraints, that is, H(s) e {SPP} and H(s) e {SPP
0 },

are

considered in detail in Section 5.

Kalman, and subsequently Lefschetz and Meyer (see Lemmas 2 and 3),

explicitly required that y/ ^ 0. This condition, however, is seen to be implic-

itly ensured by the constraint (c) on H(s), as H

„

A lim^^ H(ico) = \y/\ the

term kT(icoI — A)~ l b goes to zero at least as rapidly as {ico)~
l as co — oo.

A less restrictive form of this lemma may be found in Lefschetz [1].

Lemma 2 (Lefschetz). Given A e [A j}, (A, b) completely controllable,

a real vector k
,
scalars y/ and & > 0 and an arbitrary real matrix L = LT > 0,

then a real vector q and a real matrix P = P T > 0 satisfying

(a) A'P + PA= -qq
r - eL, 1

(b) Pb-k = Jyq, J

exist if and only if s is sufficiently small and H(s) of Eq. (3-7) satisfies

(c) H(s) e {SPR}.

The relaxations vis-a-vis Lemma 1 are the conditions that P is definite

and that L = LT > 0, where L is arbitrary, may appear in Eq. (3-8); it is

significant, however, that requirement (c) is more strict in Lemma 2.

A second less strict form of Lemma 1 is due to Meyer [1]:
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Lemma 3 (Meyer, Lemma 1). Given A e {^i}, (A, b) completely con-
trollable, a real vector k and a real scalar y/, then a real vector q and matrices
P = PT > 0, M = MT ^ 0 satisfying

(a) ATP + PA = —qqT — M,

(b) Pb-k = Jljiq, 1 (3-9)

(c) (A, q
T
) is completely observable,,

exist if and only if H(s

)

of Eq. (3-7) satisfies

(d) H(s) g {PR}.

The condition Re H(ico) ^ 0 was not stated by Meyer. If y/ = 0 and k = 0
are chosen, H{s) = 0, which otherwise satisfies condition (d). Under this

assumption, Pb — 0 from Eq. (3-9), so bTPb = 0, which is incompatible with
the conditions P = PT > 0 and (A. b) completely controllable. We do not
consider H(s) = 0 to be a member of {PR}.

A further extension given by Meyer [1] is the removal of the requirement
that (A, b) be completely controllable; this is not required in the present
work, however. The relaxation of (d) (that H(s) need not be strictly positive

real) with respect to Lemma 2 is a result of the jem/definiteness of M.
It is found necessary to modify the lemma slightly in order to be able to

apply Theorem 2 (Corduneanu) in the generation of absolute stability

criteria (see Taylor and Narendra [2] or Chapter VI, Section 6). The follow-

ing is equivalent to Lemma 3 with A A A + fj.1. The relation between
Lemmas 3 and 4 is the same as that between the fundamental results of
Lyapunov (Theorem F) and Kalman (Corollary FI) stated in Section 6.

Lemma 4 (Taylor and Narendra). Given A A. A + fil <= {A,}, (A,b)

completely controllable,f a real vector k and a real scalar y/, then a real

vector q and matrices P — P T > 0, N = NT ^ 0 satisfying

(a) ATP + PA = -qq ' -N- 2/iP,

(b) Pb — k = J~yiq,

exist if and only if

(c) H(s) = \yf + kT((s - p)i - A)-'b 6 {RR}. (3-1 1)

Note that H(s) = H(s - ju) of Eq. (3-7).

In all of the above formulations of the Kalman-Yakubovich lemma, it is

assumed that A is a stable matrix. This evidently precludes the treatment of
the particular cases (Chapter II, Section 1C), especially the case of a system
with a single zero eigenvalue that arises in considering the so-called indirect

control system. As this problem is of quite general interest, the following

t (A, b) is completely controllable if and only if (A, b) is completely controllable.

(3-10)



4. The Kalman-Yakubovich Lemma 51

extension of Lemma 1 is presented as a means of unifying the stability analy-

sis of direct and indirect control systems. The proof of this lemma is quite

directly related to that given by Lefschetz [1], with suitable modifications to

take into account the relaxation A e {A
0 }

and the correction given by

Lefschetz, Meyer, and Wonham [1].

The zero eigenvalue presents a number of difficulties that must be resolved

before such a proof may be undertaken.

Lemma 5. Given the marginally stable matrix A, A e {A 0 }, of the form

"0 OO

A =
0

A

_0

(3-12)

A e {A
t j
and (A, b) are in phase variable canonical form (Chapter II, Section

1), a symmetric matrix L
0 = L

0
T of the form

Lo

r°
O o

0

L

O1

(3-13)

where L = (L)T > 0 is arbitrary, a real vector k, real scalars e > 0 and y/,

then a real vector q and a matrix P = PT > 0 satisfying

(a) ATP + PA = -qqT - SL0 ,

(b) Pb - k = J-yiq,

exist if and only if e is sufficiently small and H(s) of Eq. (3-7) satisfies

(c) H(s) e {SPR 0 }. (3-15)

It is important to note that H(s) e {SPR 0 } requires the strict inequality

k
x
> 0 (Section 5), which precludes the removal of the pole of W(s) at s = 0

by pole-zero cancellation (see Chapter V, Section 2), that is, H(s), which may
be factored into

(3-14)

H(s) = W(s)Z(s\ (3-16)

must retain the pole at s = 0.

The following points are important to consider before undertaking a proof

of the lemma.
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(1) If Q A A TP + PA is expanded, we have

® (/’ll
— a2Pln) (Pl2 — a3PlJ '

•
• (PKh-I) — anPl„)

(P 11 ®lP\n) #22

2 =

(/’l(n-l) — anPl„)

(3-17)

where only the <7 U terms are emphasized. Since qu =0, it is evident that Eq.
(3-14a) becomes

q i

2 + el11 =0.
As Z.0 0, it is clear that ^ 0 is required, so as both terms are non-
negative, q l

= lu = 0. This in turn results in the choice /„. = 0 for all j;
this is the form indicated in Eq. (3-13).

(2) Since A and b are in the phase variable canonical form, namely

A =

~
0

j

0
| 0

1

1
, b =

oi
1

0

_ 0
|

—a 2 -a
3

••• -a„_ _ 1 _

(3-18)

[which is equivalent to the assumption of complete controllability (Chapter
II, Section 1)], we have that

:

(a) <j)(s) A
|

si - A
|

= + ans"~
2 + b a

3 s + a 2]

A s0(s),

where 0(s) is assumed to be a Hurwitz polynomial.

(3-19)

(b) m(s) A (si — A)~ l b =

_
1

"

<Ks)

~
1

"

to)

s l

W) = m

sn-l S
n ~2

W)_

(3-20)

(c) kTm(s)
= ^ k^s + kj

<t>(s)

which is a real rational transfer function if & is a real vector.

(3-21)
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(d) The scalar function

7z(co) A m*(ico)L 0
m(ico) A mT(—ico)L 0m(ico) (3-22)

is a real rational function of co, and the first row and column ofL
0 ,

being

composed of zeros [Eq. (3-13)], implies that the poles at co = 0 are re-

moved
;
in particular

nico) = _ Si(<°
2
)K)

9(ico) 9(— ico)

I co
2(n~ 2)

where rj
1

is of order 2(n

9(ico)9(—ico)

2) in co and 6(ico) is of order 2(n

(3-23)

1); hence

lim 7z(co) = 0.

Since 9{s) has only poles with negative real parts, n(co) is continuous for

finite co, and hence has finite upper and lower bounds; in fact

0<7r(m)<//
1

(3-24)

for all finite co since L > 0.

(e) The scalar function

k(co) A m*/c + kTm — 2 Rt{kTm{ioS)} (3-25)

is also of the form

*<“> - <3 -26)

This may be seen by inspecting the expansion of the numerator of kTm(ico)

:

kTm(ico) = — [kn(ico)
n + • •

• + k 2(ico)
2 + k

x
m\6(— ico) .

co
26(ico)9(—ico

)

considering only the highest and lowest order terms of this numerator, we
have

—{kn co
2in l)

{i(o) + [kn _ l
—a nkn]co

2{n
b [a

3
k

x
— a 2k 2]co

2 + a 2k t
ico}.

In finding the real part of kTm(ico), only the even powers of co are taken;

hence

(m) = 2f-k^Abco^^ + • •
• + A t? 2(c»

2
)

' J
9(ico)6(—ico) 6(m)9(—im)

where the substitution kTAb = (kn_ j
— ankn) has been made. If kTAb ^ 0,

then rf 2{co
2

\
is of order 2(n — 2), as is q^co 2

). Since k(co) is of the same form

as 7i(co), it again must have well-defined upper and lower bounds. From
condition (3-15), it is seen that if y/ > 0, then

—y/ < (—y/ + v)< k(co) < // 2 < 00 (3-27a)

for all finite co, where jj 2 is arbitrary but finite and v > 0 is arbitrarily
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small, or if ^ = 0, then for any co < oo, there exists some v > 0 such that

0 < v < k(cq) < M 2 < 00
, I

co |< <5- (3-27b)

Finally, inspect the identity

[(<7 - ico)I - AYP + P[(a + ico)I - A] = -(A TP + PA) + 2aP,

which may be postmultiplied by m(s) and premultiplied by m*(s) to establish

m*Pb + bTPm = m*qqTm -f- em*L0m + 2am*Pm, (3-28)

where Eq. (3- 14a) is used.

Proof of Necessity: Substitute the expression for Pb [Eq. (3-14b)] into

(3-28) to obtain

m*[k + JVq\ + [&
T + v’V?

T
]m = m*qqTm + sm*L0m + 2om*Pm

or

2 Rc(kTm) > | q
Tm

\

2 — 2^/yf Rc(q
Tm) + 2am*Pm, (3-29)

where Eq. (3-24) is used and the condition s > 0 ensures the strict inequality

for all finite If the complex quantity q
Tm(s) is denoted by q

Tm(s) = a + iji 9

then adding y/ to both sides of Eq. (3-29) yields

2 Re H(s) A. y/ + 2 Re(/:Tw(5')} > (a — *J~y/Y + ft
2 + 2om*Pm ^ 0,

which essentially completes the proof of the necessity of Eq. (3-15); Re H(s)

> 0 is required throughout the right half of the s-plane {a > 0) since the

matrix P satisfying Eq. (3- 14a) is necessarily positive definite due to A e {A
x }

[Theorem F, Section 6]. We note below that Re H(ico) must not go to zero

as co —

>

oo more rapidly than co~ 2 (refer to Section 5).

Proof of Sufficiency: Using the preliminary definitions of /c(co) and 7z(co),

it is seen that

y/ + m*k + kTm — sm*L
0
m ^ v — eju

{

for all finite co where v, e, and ix x
are all positive and finite. It is necessary

to establish that e > 0 may be found such that this is positive, that is,

rj 2(co
2
) - erjfco

2
) A rj 3 (co

2
)

9(ico)9(—ico) ~ 9(ico)9(—ico)
(3-30)

for all finite co. It is not sufficient to use the result (3-27a) to say that e <
ensures (3-30); it is also necessary to consider the asymptotic behavior of

y/ + m*k + km and em*L
0
m as co —>00. From the previous comments, the

limit of the numerator of Eq. (3-30) is dominated by the terms

lim{//fco
2
)}
= lim{^co 2("-1) - 2kTAbco2{n~ 2) - elnnco

2{n- 2)
},

CO—*°° ct)-»oo

from which the necessity of demanding that either y/ > 0 (in which case

Re H(ico) approaches y/ > 0 as co —> 00) or that kTAb < 0 if y/ = 0 (in which

case Re H(ico) goes to zero no more rapidly than co~
2
). If neither of these
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conditions is satisfied, then Re H(ico) goes to zero more rapidly that co~
2 and

the numerator rj 3 {co
2
) is dominated by —elnnco

2{n ~ 2) and it is never possible

to choose e > 0 such that (3-30) holds. This eventuality is precluded by

condition (c) of the lemma, as is shown Section 5.t In the case that y/ > 0,

s < v/jLi
!
guarantees the condition (3-30), and if y/ = 0, then s < min [v/ju^

—2kTAb/lnn }
serves this purpose.

Given that e is sufficiently small as specified in the previous argument,

the numerator q 3 {a>
2
) has no real roots, and is of order 2(n — 1) at most

(if y/ > 0), having as its leading term y/co
2{n ~ l)

. Since t] 3 (co
2
) > 0, it may be

factored into real polynomials,

rj
3(co

2
) = C0‘co)C(-ico),

where the order of C is at most (n — 1) and £(/co) has as its leading term

ss/y/ (ico)
n ~ l

- Thus, £(s)/9(s) may be reduced to

asms) = + asms),

where £(s) is of order (

n

— 2).

We now define the vector q :

qm(s) = wr— =w ;

note that by definition, q {
= 0 so that the pole at .s = 0 is removed; this is

consistent with observation (i). It remains to be seen whether or not q as

defined here satisfies the remaining conditions.

The definition of q substituted into Eq. (3-30) leads to

y/ + kTm + m*k — em*L
0
m = (^y

7

— q
Tm){

/s/
r
y/ — nrf

q)

= m*qqTm — + m*q) + y/-

Subtracting y/ from each side and substituting for (m*qqTm + em*Lm) using

Eq. (3-28) with s = ico (<r = 0) yields

kTm + m*k = m*Pb + bTPm — /^
r
y/{q

Tm + m*q);

f Note that this problem arises only in Lemmas 2 and 5, where I or a part of L is

assumed to be positive definite (lnn > 0 in both cases). In Lemmas 1, 3, and 4, the corre-

sponding matrices K
,
M, and N, respectively, are only assumed to be semidefinite, so if

kTAb = 0 and y/ = 0, then knn ,
mnn ,

or n„n respectively is zero. For example,

H(s) = S + Ci2

s 1 + azs + a\
Re H{iu) = ^ 1^2

(<a\ — co 2)
2 + (^2Co)

2 ’
(3-31)

which goes to zero as co~4 even though Re H(ico) > 0 for all real finite co. By direct calcu-

lation using the standard phase variable canonical form for (k ,
A

,
b),

P T
{a\ + ci 2

2
) cii

Cl2 1 .

> 0 A?P + PA
—2a\d2 0

0 0_

and Pb — k A col [a 2 , 1], so Lemmas 2 and 5 are not satisfied, whereas Lemma 3 is. Note

that kTAb < 0 is not explicitly required in Lemma 2 or 5 since the present definition of

strictly positive real functions ensures this condition (Definition PR2; Taylor [1]).
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hence, for all co

Re{[P£ — k — *y~y/q]Tm] = 0.

Define the vector d by d A Pb — k — ^Aj/

q

. If the first element of (Pb — k)

is zero, then d
l
= 0 and

N(ico) A cFmiico) = ± LL1 + <kIB. + .

6{ico)

N(ico) can be expressed in terms of the matrix A [Eq. (3-12)], and reduced
vectors b A [0, 0, . . . , 1]

T of dimension (n — 1) and d A [d2i d3 , . . . , dn]
T as

N(ico) — dT
{icoI — Ay 1

!) A dT
m(ico).

This is the same form considered in Lefschetz [1]; in particular A e {A { } 9

and the same argument that Re{^Tm(zm)} = 0 for all co guarantees that d = 0

may be used to show that Eq. (3- 14b) is satisfied. For completeness, we
summarize this result.

Lemma. If A g (

A

,
b) is completely controllable and Re d T

(icoI —
Ay [ b = 0 for all co, then d = 0.

Proof: The function N(s) = dTm(s) is real, rational and, if we assume that

d ^ 0, then it is not identically zero. The poles of N(s) lie in the open left

half-plane, and at least one such pole must exist since numerator and denom-
inator order must differ by at least unity. Under the given condition that

Re N(ico) = 0, N(s) must assume only purely imaginary values on the imagi-

nary axis of the ^-plane. Thus, the function

N(s) A iN(is)

is a rational function of ^ with poles in the open upper half-plane (since

A e {A j}) which must have real values for ^ real. This provides a contra-

diction to the assumption d ^ 0: N(s) can be real for ^ real only if its poles

(which are necessarily complex) occur in conjugate pairs which is explicitly

precluded; thus, d = 0.

It is now necessary to demonstrate that it is possible to choose P such that

the first element of {Pb — k) is zero. This question is closely related to the

existence of P = P T > 0 satisfying Eq. (3-14a). The Lyapunov function v

= xTPx exists even for A of the form assumed in Eq. (3-18) (refer to Hahn
[1]); P = P T > 0 if Q in the equation

ATP + PA = -Q
is a suitable positive semidefinite matrix. It may be seen that Q as defined

in Eq. (3-14a) is the required form. Hahn has shown that the P obtained for

such a Q is indeterminable. It is precisely this indeterminability that permits

the choice ofP such that {Pb ~ k)
1
=0; from the expansion of the first row

or column of ATP + PA [Eq. (3-17)],

pn =a2k x , p 12 = a
3
fc,, . .

. ,pu = kv



5. Positive Real Functions 57

This observation completes the proof of this lemma, since P = P T > 0

requires that p lx >0, which in turn gives us the requirement that k
x > 0,

which is guaranteed by H(s) e {SPR 0 }, Section 5.

The Lemmas 1-5 have several important similarities. In no case is the com-

plete observability of the original triple (h, A
,
b) required; in fact, complete

controllability may be dispensed with as well (see Meyer [1]), but as men-

tioned in Section 1 of Chapter II, no apparent gain in generality is obtained

in our particular applications by dropping the use of the phase variable ca-

nonical form.

5. Positive Real Functions

Since the concept of positive real functions of a complex variable is central

to the development of frequency domain stability criteria, a formal definition

of this property and a discussion of some of its ramifications are in order.

The points considered here may be found in any text on circuit theory. Two
restrictions that are stronger than H(s) e {Pi?} are also defined and discussed.

Definition PR1. A function H(s) of the complex variable s = a + ico

is positive real (H(s) e {Pi?}) if

(i) H(a) is real,

(ii) Re H(s) ^ 0 for all Re ^ > 0.

The adjective “real” indicates the realness of the function for real values

of s and the adjective “positive” indicates the positiveness of its real part

for values of s with a positive real part. This property is both necessary and

sufficient to insure the realizability of H(s) as the driving point impedance or

admittance of a linear passive network. This definition and many of the

properties of H(s) that are implied by it (some of which are given below)

are due to Otto Brune.

(1) The analyticity of H(s) in the open right half-plane (ORHP) follows

from condition (ii). If H(s) is rational, this condition implies that no poles

or zeros may lie in the ORHP.

(2) If the coefficients of the polynomials are all real, condition (i) is

clearly satisfied.

(3) If H(s) has poles on the co-axis, they must be distinct and have positive

residues.

(4) The order of the numerator of H must not differ from the order of

the denominator by more than ±1, that is,

k A. order {Numerator} — order {Denominator} e [— 1, 1]. (3-32)

(5) Define the path TR in the s-plane : §

Tr A{s: s = ico, -P<co<+P; s = Re 9
, -n/2 < 6 < +tt/2}
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Fig. 3-1. The mapping properties of H(s ): (a) 5 = (a + mfhplane; (b) H = (U + iV)-
plane.

(Fig. 3- la) which is traversed in the sense shown by the arrows. The interior

is always on the “right-hand side” of a point traveling along r*. In the limit

as R —» 00
, the curve encloses the entire ORHP. Figure 3-lb shows the

mapping of the path F^ into the //-plane for a typical H(s) e {PR} ’, the

co-axis transforms to and the “infinite semicircle” maps to the origin in

this case.

Since the mapping is conformal, the interior of FR (the ORHP, that is,

the area to the right-hand side ofp as the point traverses FR) maps into the

area to the right of the point p (the image of point p) as p traverses T# as

shown in Fig. 3-1. Since H(s) is assumed to be analytic within FR ,
the maxi-

mum and minimum values of H(s) for s in the closed RHP must occur on the

boundary T#; hence only H(s) for s e TR and R arbitrarily large has to be
inspected to determine if condition (ii) is satisfied.

The behavior of for s on the infinite semicircle depends upon k, the

difference between numerator and denominator order [Eq. (3-32)] as shown in

Fig. 3-2. In the cases k = 0 and k = —
1, the limit as R 00 is formally

the point HM indicated, while if k — +1, the infinite semicircle in the s-plane

maps into an infinite semicircle in the H-plane (Fig. 3-2a). Since we always
consider Tooiffc^ —1 orO and TR if k — +1, we can use the notation F
with no ambiguity.

(6) If H(s) e [PR], then e [PR] also.

From the preceding discussion of the properties of H(s) e {P/?}, we arrive

at the following alternative definition for positive realness which is found
to be more useful.
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Definition PR1'. A rational function H(s) with real coefficients satisfies

H(s) e [PR] if

(a) It is analytic in the ORHP,
(b) The mapping T# A H(s e T) lies in the half plane Re H ^ 0.

To test a given rational function for positive realness, it is most advanta-

geous to first determine whether or not the poles and zeros of H(s) lie in the

ORHP. If any coefficients of either polynomial are negative, then the function

is immediately not positive real. If this simple test is passed, there are standard

procedures due to Routh and Hurwitz (see Chapter IV, Section 2) which

may be used to check for co-axis and ORHP poles and zeros. Only after these

points have been considered should the mapping TH be investigated.

A stronger measure of passivity is required for Lemma 3 ;
it is provided in

this context by the following recently proposed definition of strictly positive

real functions (Taylor [1]).

Definition PR2. A function H(s) is strictly positive real (H(s) e {&PR})

if H(s — e) e [PR] for some real e > 0.

An important property that a strictly positive real function exhibits in

relation to the LKY Lemma is that the real part of a strictly positive real

function cannot go to zero more rapidly than co'
2 as co goes to infinity. To

prove this, we need consider only functions which have one more pole than

zero
;
within a constant multiplier, we have

H(i) = = y"" 1 + K-I sZl + • •
• + hi + h

y ' d(s) s" + a„s" 1 + • •
• + a 2s +

e {SPR}.

Consider H(s — e) : the leading terms of the numerator and denominator
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of the real part of H(ico — e) are found by expansion to be

Re H(ico - e) = Regfr"

~

£
) = .(«.

~ ~ + : 1 :

.

Thus, for //(s — s) to be positive real, we must have — bn _ 1 ) > 5 ,
which

for s > 0 proves that Re //(/&>) goes to zero no more rapidly than co~ 2 as

co —* 00 .

It is worthwhile considering Definition PR2 from the viewpoint of network
theory. In terms of realizability, the class of rational functions {SPR

}

may
be realized as the driving point impedance or admittance of a network made
up of resistance, lossy inductance [L in series with a resistance of value eL
yielding the impedance L(s + £)] and lossy C [C in parallel with conduc-

tance of value gC yielding the admittance C(s + e)] ; clearly for any H(s) e

{
PR}

7
the replacement of every term sL by (.? + e)L and every term sC by

(s + g)C results in a network with a strictly positive real impedance and
admittance.

The points concerning the asymptotic behavior and realizability of H(s)

g {SFR} are best illustrated by an example taken from Guillemin [1]:

consider the input impedance of a network made up of two parallel paths,

the first a lossy capacitor [C in parallel with G] and the second a lossy inductor

[L in series with R], The normalized impedance is

where

H(s)
s + b

1

s
2 + a2 s + a

x

C= 1, L = [a
l
-b

l
(a 2 -b 1

)]-\

G = (a2 — b^C, R = b
l
L.

When b
x
= a2 ,

we see that G = 0 and [referring to Eq. (3-31)] that Re H(ico)

—>0 as co~
4 when co 00

; if b
x
— 0 then R = 0. In both cases H(s)

becomes only positive real and the network which has input impedance H(s)

cannot be realized with lossy elements. Only in the second case is Re H(ico)

zero for finite co (at co = 0); if b
x
= a

2
then Re H(ioo) > 0 for co e (— 00

,

00 ), so this condition is not in itself a useful definition of a strictly positive

real function in light of the requirements of Lemma 2.

For use in Lemma 5 we need a slightly less strict type of positive real

functions, namely, those that have a single pole at s = 0. For this purpose,

we define a third class {SPR
0 }.

Definition PR3. A rational function

H(s) = bms
m 1 + • •

• + b 2s + b
x

sn + an s
n ~ 1 + • •

• + a 2s

a xCO
~<£0)’

n m (n + 2)

is strictly positive real in the particular case of one pole at s = 0 (H(s) e
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{SPR0 }) if

H(s) A
~

e fPR}( ) = fa - e) - <K-e)
e

for some e > 0. Q
By subtracting the denominator factor [(— e)

n + an(— e)
n ~ l + • •

• +
a 2(— e)]> we ensure that H(s) retains the pole at s = 0; otherwise the last or

constant term in the denominator polynomial would be negative for e

arbitrarily small and H(s) could never be positive real; by the same reasoning

we must have b
x > 0. This definition thus ensures that H{s) satisfies the con-

ditions Re H(ico) > 0 and that Re H(ico) cannot go to zero more rapidly than

co~ 2 as co —> oo, and that k
x > 0 in H(s) [Eq. (3-7)] as required in the proof

of Lemma 5. In the standard second-order example.

if

H(s) = s b
i

s 2 + a 2s
e [SPRoi

H(s) = s + (b
x
— e)

s 2 + (a 2 — 2e)s
e {PR}

for some e > 0, that is, if 0 < b
x
< a 2 .

6. Existence Theorems

A basic question in the theory of Lyapunov’s direct method is the existence

of a specific form of Lyapunov function as a necessary and sufficient condi-

tion for the stability of the null solution of a differential equation of a given

structure. Many theorems establishing results of this sort have been derived;

we are interested in reviewing those few that are relevant to the class of prob-

lems defined in Chapter II.

As a rule, it may be said that as the system under consideration becomes

more general, the Lyapunov function that is guaranteed to exist becomes less

well defined. This is an inevitable state of alfairs that renders such theorems

less useful in most specific applications. The theorems given below cover

a wide range with respect to system generality and the corresponding class of

Lyapunov functions.

In the first instance (Theorem C) a system formulation is assumed that is

sufficiently broad that nearly all the problems of this book fall within its

ambit.

Theorem C (Massera [1]). Given a system x = f(x,t), where /
satisfies the local Lipschitz condition (Chapter I, Section 1) with respect to
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x and /(0, 0 = 0 for all t; a necessary and sufficient condition that the equi-

librium x = 0 is uniformly asymptotically stable in the whole is that there

exists a Lyapunov function v(x
, t) (per Theorem A) that possesses bounded

partial derivatives with respect to x and t of arbitrarily high order. Moreover,

if /(x, t) satisfies a uniform Lipschitz condition, the partial derivatives are

bounded uniformly with respect to time, and if /(x
,
t) is periodic or time

invariant, v satisfies the same condition.

Clearly this powerful result provides virtually no guidance in the actual

choice of a Lyapunov function candidate.

Next we restrict our attention to linear time-varying situations. As might

be expected, this greatly reduced generality allows us to consider a much
narrower class of Lyapunov functions: the time-varying quadratic form.

For LTV systems, two important theorems exist.

Theorem D (Lyapunov-Perron-Malkin
;

see Kalman and Bertram [1]).

Given a system x = A(t)x, where |M(/)|| is bounded above for all t\ a

necessary and sufficient condition that the equilibrium state x = 0 is uni-

formly asymptotically stable is that for any bounded positive definite matrix

Q(t) (that is

0 < gxtx < xT Q(t)x §xTx < oo

for all t and finite nonzero x where £ and 3 are both real and positive) that is

continuous in t
,
the scalar function

v(x, t) A j\ x 0
T
<&

T
0, x)Q(x)$(t, x)x 0 dx

existst and is a Lyapunov function in the sense of Theorem A.

Asymptotic stability implies asymptotic stability in the whole, due to

linearity, as shown in Fig. 2-6.

Theorem E (Krasovskii [1]). Given a system x — A(t)x where the a./t)

are bounded continuous functions of time; a necessary and sufficient condi-

tion that the equilibrium x = 0 is uniformly asymptotically stable is that P(t)

exists such that

(a) v = xTP(t)x is positive definite

;

(b) v = —xT Q(t)x = xT(ATP + PA + P)x^p(t)v, where lim^, jfo p(t) dt

— — oo uniformly with respect to t 0 .

The first of these theorems guarantees the existence of xTP(t)x in the sense

ofTheorem A (Lyapunov), while the second assures it in the sense ofTheorem

t 0(7, t) in v is known as the transition matrix of the system; it satisfies the matrix

differential equation d^jdt = A(t)O subject to 0(t, t) = /; thus, the solution of x = A(t)x

subject to x(/o) = *o is x(t; xq, to) = O (f, fo)*o.
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B (Corduneanu). It is unfortunate from our point of view that neither theorem
provides an effective method for generating P(t). The first form involves the

transition matrix d>(>, t), which is unknown, and the second is specified only

by the matrix differential inequality

dP/dt^p(t)P(t) - (A\t)P{t) + P(t)A(t))
9

where pit) is unknown but subject to the condition that lim^ Jfo p{t) dt

—— co uniformly with respect to t 0 .

Finally, when we consider LTI systems, a practically useful theorem is

available which provides not only a specific form, but also a method of

generation.

Theorem F (Lyapunov; see LaSalle and Lefschetz [1]). Given an LTI
system x = Ax; the equilibrium x = 0 is asymptotically stable if and only if

for any Q = QT > 0 there exists a matrix P = PT > 0 such that

ATP + PA = -Q. (3-33)

Since the system is time invariant, this also implies uniform asymptotic

stability in the whole.

If one chooses a simple form for Q (usually, Q = /), it is a relatively

straightforward matter to solve Eq. (3-33) to obtain the ^n(n +1) parameters

of the symmetric matrix P. The test for asymptotic stability then entails

showing that P > 0, that is, that p x
Apn > 0, p 2

A ip lxp22 — p\ 2) > 0,

• • • » Mn = |P| > 0, as mentioned following Lemma VI (Section 2).

An interesting corollary to this theorem due to Kalman provides an
example of a situation where the rate of decrease of v expressed in terms of

v/v can be related to the eigenvalues of the system.

Corollary FI (Kalman; see Kalman and Bertram [1]). Given an
LTI system x = Ax; the real parts of the roots of the characteristic equation

|

kl — A
|

= 0 are all strictly less than (— p) if and only if for any Q = QT

> 0 there exists a matrix P = P T > 0 such that

ATP + PA = -Q-2pP;

p may be positive (asymptotically stable systems) or negative (exponentially

unstable systems).

Note that the above relation demonstrates that for v = xTPx
,
the corre-

sponding time derivative is

v = —xTQx — 2juxTPx < —2pv;

since v satisfies the differential inequality v < —2juv, the preliminary com-
ment regarding the rate of variation of v and the eigenvalues of A is verified.

It should also be noted that the matrix equation of this corollary is intimately

related to Eq. (3-9a) of Lemma 4, and that the above comment is prompted
by Theorem 2.
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A second corollary to Theorem F is useful when, for computational sim-

plicity, a negative semidefinite form —xTQx, Q = QT
;> 0 is used as v in

accordance with Corollary Al.

Corollary F2. Given an LTI system x = Ax; the equilibrium x = 0

is asymptotically stable if and only if for any Q = QT > 0 such that xTQx
= 0 can occur along no trajectory other than x ee 0, there exists a matrix

P = PT > 0 such that

ATP + PA = -Q. (3-33)

Since Theorem F and its corollaries are of quite general significance in

the study of absolute stability, proofs are in order. Theorem F and Corollary

FI both follow directly from the proof of Corollary F2, so this result is con-

sidered first.

Sufficiency: Assume that some positive definite symmetric matrix P =
PT > 0 exists so that the matrix Q of Eq. (3-33) is symmetric and positive

semidefinite (Q = QT ^ 0; the symmetricity follows directly from P = P T
).

Use as a Lyapunov function candidate v(x) — xTPx; by Lemma Yl, it is

valid. For the differential equation x = Ax
,
the total time derivative of v(x)

is

v = xTP(Ax) + (Ax)TPx = xT(ATP + PA)x A —xT Qx,

which is postulated to satisfy condition (Al : v) of Corollary Al, which is a

sufficient condition for uniform asymptotic stability in the whole, that is,

A e {

A

Necessity: Assume that A e {A
x }. The solutions to x = Ax are

x(t; X0 , t0) = 0>(f - t 0)x0 A exp[^(f - t 0)]x0 ,

where O is the transition matrix which for LTI systems is a function of

(t — t 0) and is expressed in terms of the matrix exponential function

exp(At) A L~ x [(sl - A)- 1

]
A X! (kD^AV.

k — 0

This solution satisfies lim,^ x(t; x0 , t 0)
= 0 uniformly with respect to x0

and t 0 ,
by definition; also, x(t; xQ9 1 0) = 0 if and only if x 0 = 0.

Consider a matrix Q = QT ^ 0, which for solutions to x = Ax satisfies

the condition that xTQx = 0 only if x: = 0. Consider the symmetric matrix

P(t) A
|

exp[/4
T
(r — t)]Q exp[^(r — t)\ dr,

= exp(—AT
t)

| J
exp(A TT)Q exp(Ar) exp(—At),

(3-34)

which must exist since A e [A ,}. Since T A exp(Bt) satisfies the matrix

differential equation 'P = fl'P for any B, and the matrices B and exp(Bt)
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commute, that is,

B exp(fi?) A (B) f] k\-'Bk
t
k = S k\~'Bk

t
k (B) A[ew(Bt)]B,

k~0 LA:= 0 J

direct differentiation of Eq. (3-34) yields

dPIdt = -Q - ATP — PA.

Making the change of variable f A r — / in Eq. (3-34) yields

i>= f exp(/t T02 expMO (3-35)
•/ 0

which shows that P is a constant matrix or dPjdt = 0. Hence, the matrix

defined by Eq. (3-34) satisfies the relation

ATP + PA = -Q.

Consider the quadratic form xTPx for x = exp[A(t — r 0
)]x

0 ,
that is,

xTpx = {exp[^(T - / 0)]x0 )
T2 exp[/t(r - r 0 )]x0 dr

from Eq. (3-34). The integrand is xT(r; x0 , t 0)Qx(t; x
0 , t Q ) ^ 0, which is

not identically zero unless x == 0, so the integral must be strictly positive

unless x = 0, which proves that the matrix P is positive definite.

In proving Theorem F, the integrand xT(r; x0 , t 0)Qx(r; x0 , t 0 ) is strictly

positive, which does not affect the proof. Corollary FI follows directly by

making the substitution A A A + ///in Theorem F.
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LINEAR TIME-INVARIANT SYSTEMS AND

ABSOLUTE STABILITY

The most general LTI system that may be obtained from the specified

system model [Eq. (2-6)] is

x = Ax + bz , G o
= hTx + pz, z = —kg o, (4-1)

or, equivalently,

L(g
0
)/L(z) A W(s) = p + h\sl — A)~ l b A /? + n(s)/d(s),

Z = —KG 0

in our standard feedback control system configuration where n(s) is of lower

order than d(s). In differential equation form the system can be reduced to

x = Ax — b[K/(i + px)]hTx A (4-2)

by eliminating the variables <r 0
and z. If k — —1 Ip, then we clearly have

a degenerate situation, since the matrix A K has elements that are unbounded.

If we consider the total closed loop transfer function (Fig. 2-1)

U£o) A w M A FjM = n{s) ± pd{s)

L(v)
~~ ^ } —

1 + kW(s) (1 + pk)d{s) + Kn(s)

we also note that WK for k = —lip has more zeros than poles, that is,

WK(s) is not proper. We specifically preclude this situation by defining Eq.

(4-1) to be asymptotically stable if A K e {A
x } for some value or values of

66
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k (Chapter II, Section 1). Since we can always express Eq. (4-2) in the form

x = [A- KbhJ]x (4-3)

under these circumstances, that is, we can always take p = 0, we only con-

sider this simpler case in this chapter.

Determining the stability properties of the equilibrium x = 0 of LTI
systems of this form is the only general problem of the sort considered in this

study for which useful necessary and sufficient conditions are known. Not
only is this case far more tractable than that involving nonlinear and/or

time-varying parameters, but many applied mathematicians, most notably

Hurwitz, Routh and Nyquist, have dealt extensively with this question. The

techniques of stability analysis that were developed involve the generation of

conditions that are necessary and sufficient to guarantee that all roots X
t
of

the characteristic equation

p(X) A + KbhT
\

= 0

(eigenvalues of A — Kbit
1
) have negative real parts, that is, that the charac-

teristic polynomial p(X) is Hurwitz. This in turn is necessary and sufficient

for the asymptotic stability of the equilibrium x = 0.

1. Relations between Linear Time-Invariant and

Nonlinear Time-Varying Systems

Despite the existence of classical solutions to this question, there is a com-

pelling reason for the inclusion of this problem in the present work: the

stability analysis of an NLTV system is fundamentally and inextricably

related to the analogous LTI case. Virtually every technique for treating an

NLTV system is an extension of a method for LTI system analysis, and the

resultant stability criterion for the NLTV system is always measured against

the equivalent result for the LTI case. The following points should serve to

elucidate this relationship further.

A. Principle of Stability in the First Approximation

Let us consider the uniform asymptotic stability of the equilibrium x = 0

of the nonlinear time-varying differential equation

x=f{x,t), fe{S}, (4-4)

where we assume that f(x, t) possesses a power series expansion that is valid

in some neighborhood of x = 0;

x = A(t)x + f <2>
(x, t),
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where

/

(2) contains terms that are of at least second order in jc. This implies

that f(x, t) in Eq. (4-4) satisfies a local Lipschitz condition (Section 1 of

Chapter I). Following the terminology of Hahn [1],

x = A(t)x (4-5)

is called the reduced differential equation and the terms f (2)
(x, t) are per-

turbation terms. We then can use the following result.

Theorem (Hahn [1]). If the equilibrium of the reduced system (4-5) is

uniformly asymptotically stable, then so is the equilibrium x = 0 of Eq.

(4-4).

The special case of determining the stability of an NLTI system using

linearization by Taylor series expansion is due to Lyapunov.

The proof of this theorem is based upon the existence of a quadratic

Lyapunov function

v(x, t) = xTP 0(t)x > rjx
T
x, rj> 0 (4-6)

for the reduced system. If A(t) is bounded and Q(t) is chosen so that positive

constants e and 8 exist such that

0 < exTx xTQ 0(t)x SxTx

for all x ^ 0 and t
,
then by the existence theorem D (Chapter III, Section 6),

the function v(x, t) of Eq. (4-6) exists and PQ {t) satisfies

v = x*[A\t)P0 (t) + P0(t)A(t) + (d/dt)P0(t)]x A -x?Q 0x (4-7)

if and only if x = A{t)x is uniformly asymptotically stable. If the same
function (4-6) is used as a candidate for the perturbed differential equation

(4-4), then

v = —xTQ 0(t)x + w(x, t), (4-8)

where w(x, t) is at least of order three with respect to x. For sufficiently

small x, the quadratic negative definite terms of v dominate the higher order

terms represented by w(x, t), and hence guarantee the negative definiteness

of v in some neighborhood of * = 0.

This outline of the proof of the theorem allows us to see the importance of

the linearized system and the existence of the corresponding quadratic

Lyapunov function. However, from the viewpoint of our goals, this method
of stability analysis is of no avail : The region of uniform asymptotic stability

is not global with respect to x. It is generally very difficult to even estimate

how small \\x0 \\
must be so that x(t

; x0 , J 0 ) is a uniformly asymptotically

stable solution. The type of stability ensured by this technique is often called

infinitesimal stability for this reason.
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B. The Conjectures of Aizerman and Kalman

The possibility of the validity of the Aizerman conjecture (refer to Section

6 of Chapter I) provided great impetus to the study of absolute stability.

In its most general form, due to Krasovskii [1], this surmise may be stated in

the following manner.

Consider the system defined by

X = Ax + BF(x), F{x) A [/„(*,)]; (4-9)

the corresponding linear system is

x = Ax + BHx. (4-10)

Assume that Eq. (4-10) is asymptotically stable for h.. < h
ij < h

ij
. These

parameter ranges may be determined by the application of the Hurwitz

conditions, Section 2, for example. The generalized Aizerman conjecture,

then, is that the system of nonlinear differential equations (4-9) is equiasymp-

totically stable in the whole if

hij < fijiXjVxj < h
ij . (4-11)

This conjecture does not present a linearization procedure as in A
;
rather

than replacing/./*;) with a single linear term h.-Xj ,
it considers all linear

gains having the same range as //*,.)/*;.

Even in the case of second-order systems, this conjecture has proven to be

false in the context of the stability analysis to be undertaken in this book;

the Hurwitz inequalities alone cannot guarantee equiasymptotic stability in

the whole. Extensive study of the second order system

X\ ^ll(Al)’^'l “t
- ^2 = i)X i H~ #2 2 ('*' 2 )'*' 2 (4-12)

was undertaken by Malkin [1], Erugin [1], Pliss [1], and Krasovskii [1] in

the early 1950’s. The characteristic equation and resulting Hurwitz inequali-

ties for the corresponding LTI system are

2 2 - (#„ + a21)X + (ana22 - a 12a2l ) = 0 (4-13)

and

(1) #22 ^ (11) #11 #2 2 #12^21 '^>

The latter conditions are necessary and sufficient for asymptotic stability in

the LTI system.

The first complete investigation of Eq. (4-12) treated the special case where
only a ll {x l ) is nonlinear and « 12 ,

a21 ,
and a22 are constants. Malkin and

Erugin were able to show that the Hurwitz inequalities ensure the equiasymp-

totic stability of solutions near the origin for this case; however, it is further
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necessary to require either that the integral

I(x)A
\

X

[an(Oa21 -a i 2a 2iKdC
J 0

diverge (lim*^ I(x) = oo), or that a\ 2 + a 12a21 ^ 0, in order to be certain

that the system is equiasymptotically stable in the whole. Krasovskii gen-

erated a counterexample to the Aizerman conjecture by violating both of

these conditions : consider

where

A(x) =
g(x ,)

-1

{

1 -^/0+0 = 0 .9011
, x, < 1

,

S{Xl =
U - + «-*)], x, > 1.

The range of g(x
t ) is [0.901 1, 1), which is within the Hurwitz range (— oo, 1).

The solution corresponding to the initial conditions x^O) = 1, x2(0)
=

(e~ l — 1) is found from the transcendental equations

x
x + exi — t + 1 + e, x

2 = e~ Xl — x
x ,

which demonstrate that both \x
{ \

and \x2 \
grow without bound.

This solution satisfies the condition > 1 for t > 0, so it is also a solution

to the same differential equation with g(Xj) replaced by gCxj),

8(x i) A
1 -

1
-

l + e~

o 2 | Xl

I*! 1(1 +e-‘-')

0.9011,
\
Xl \< 1,

\*i\>h

where the nonlinearity g(xj) has been made symmetric [g(*i) = g(—xj\.

To place this system in the context of the system description adopted in this

book, make the nonsingular transformation

y =
+r
-l

X

to obtain

y =

/K) =

o ii roi .

-i -& ~[i\
f{<To) ’ a° = [

~ l ~ 1]y ’

(
1 ~

2

6

+ e-i )
g °
= 0.901 1<7„, | cr 0 j

< 1,

/ £
— 2 I <T0 I \

.l

1
_

|<7„|(1 + e~^))
a°’ |ffol> L

(4-14)

The forward path or plant is represented by W(s) = — (s + l)/(s
2 + £ + 1);



1. Relations between LTI and NLTV Systems 71

this system is shown in Fig. 4-1. Although the Nyquist (Hurwitz) range
ensuring asymptotic stability for the linearized system is (— oo, +1), the
fact that f(a 0)/<r 0 e [0.901 1 , 1.0) for all finite er

0 does not imply equiasymp-
totic stability in the whole for this system.

Fig. 4-1. A counterexample to

Aizerman’s conjecture.

For n > 3 the Aizerman conjecture was first studied by Pliss [1] and more
recently by Dewey and Jury [1], Although many special cases have been
found where the conjecture is valid (see Bergen and Willems [1], for example),

it is not true even locally in general. Pliss studied the system correspond-

ing to

fV(s) = (s
2 — j3)/((s2 + 1 )(s + a))

in our notation and developed conditions on /(cr
0 )

lying in the Hurwitz
range (0, a/jS) that are sufficient for the existence of periodic solutions. Dewey
and Jury simulated a specific system for which ft = joc

2
, so the Hurwitz

range is (0, 2/a). Choosing a nonlinearity that was within the Hurwitz range,
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they obtained a system that exhibited sustained oscillations, thus providing

a concrete example of a system that violated the Aizerman conjecture as had

been predicted by Plisst.

A similar conjecture of Kalman [1] replaces the conditions (4-11) with the

stronger restrictions

bu < dfiJ
{x

J
)idx

j < h
tJ

.

By constraining the slope of each nonlinear function to lie in the Hurwitz

range of the LTI system (4-10), a broad class of functions ftj
is excluded.

Neither the nonlinearities of Krasovskii nor of Dewey and Jury satisfy this

condition; hence, those examples are not counterexamples to the Kalman
conjecture.

The Kalman conjecture has, however, been disproven experimentally by

the generation of counterexamples. Fitts [1] simulated the fourth-order non-

linear system described by

\u( s(s oc)W
l(s + P)

1 + (0.9)
2
][(s + py + (1.1)*] (4-15)

/(<T 0) = KG 0
2

on an analogue computer where a was chosen to be sufficiently small so that

the Hurwitz range was [0, oo). Both the range and slope of the nonlinearity

satisfy the Hurwitz inequalities, yet by the proper choice of the parameter k
it was found to be possible to generate sustained oscillations (limit cycles) in

the system, invalidating the Kalman conjecture.

If either of these conjectures were correct, then the absolute stability

problem would be of little significance. We would have a method of analysis

which is quite simply implemented [replacing a nonlinearity f(t

j

0) by linear

functions kg 0
where the linear system that results must be asymptotically

stable for k g [F,F] if F < /(cr
0)/<7 0 < F in the case of the Aizerman

conjecture or for k g [M, M] if M df (G 0)/dG 0 M for the Kalman
conjecture]. That neither conjecture is valid does very little to detract from the

point that the stability analysis of LTI systems has evidently exerted a strong

influence on the treatment of NLTI systems.

C. The Describing Function Method

The describing function method is well established as an approximate

method of considerable utility in explaining quite general questions about the

behavior of nonlinear systems. In this approach to nonlinear systems analy-

sis, nonlinearities are replaced with quasilinear approximating functions,

f The stability range predicted by the Popov criterion (GSC 1, Chapter V) for this

problem is [e, a-1 ]. In the example chosen by Dewey and Jury, the nonlinearity lies out-

side the Popov range but within the Hurwitz range for small values of cr 0 .
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called describing functions, which approximately represent their transfer

characteristics. In view of the power and generality of this linearization

technique as a valuable aid to the design and analysis of nonlinear systems,

a comparison with rigorous methods of stability analysis is in order.

The technique suffers from several limitations, the most fundamental of

which is that the form of the signal at the input of the nonlinearity must

be guessed in advance. For example, in the sinusoidal-input describing func-

tion method applied to a feedback system with a single nonlinear element,

only the fundamental component of the output of the nonlinearity is taken

into account, since it is assumed that harmonic components are small and

that the linear elements of the system further attenuate them to such an extent

that the input signal to the nonlinearity is very nearly sinusoidal. This assump-

tion obviously implies that the results obtained are only approximate and that

additional means must be sought to determine the accuracy of the results.

As far as our study of absolute stability is concerned, we are principally

interested in pointing out that the describing function method is not a

rigorous method of stability analysis, so we confine our attention to two

specific examples in which the describing function method would seem to

predict asymptotic stability in the whole, while the systems are actually

unstable, with one of them permitting the existence of limit cycle oscillations.

A closed loop system of the standard form may consist of an LTI plant

W(s) in the forward path and an odd (symmetric) single-valued nonlinearity

f((7 0 ) in the feedback path (Fig. 2-1). If the input to the nonlinearity is of

the form

a 0 = rj sin cot ,

the output is of the form f(rj sin cot), and can be expressed by a Fourier series

expansion.

f(rj sin cot) = ^ ak sin(&coO-
k=l

The fact that /(<t 0 ) is single valued precludes the generation of a cosine com-

ponent, as the output is always in phase with the input, and since f(a0 ) is an

odd function, the constant term in the output of /(•) is zero. Assume that

the fundamental component of the output has an amplitude a
{
A ijk{tj),

that is,

K(rj) A(nt])~ l
f f(ti sin 0 sin £ </£.
J 0

If the plant W(s) is such that higher order harmonics at the output of the

nonlinearity are all attenuated (W(s) is said to be low pass) and only the

fundamental component of the signal is transmitted, it is possible to replace

the nonlinear gain with an amplitude sensitive linear gain for purposes of

analysis. For the simple example that we are considering, K(tf) is called the
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describing function of the nonlinearity. In any analysis of the behavior of the

feedback system, all the relevant information is assumed to be conveyed by
the describing function K{rf) and the frequency response W(ico) of the linear

part of the system.

If a closed-loop linear system with gain k permits sustained oscillations,

then the frequency response diagram in polar form (the Nyquist diagram;

see Section 3 for a more complete discussion) must pass through the point

—
l

I

k (Fig. 4-2b); oscillations of any amplitude may exist in this system at

the frequency co 0 defined by the intersection of rw(co) with the point — 1 jk.

In the describing function approach for a nonlinear feedback system, the

locus of points — 1 /k(tj) on the real axis is located as in Fig. 4-2c; where
this locus intersects Tw(co), oscillations are possible with both amplitude and
frequency specified; amplitude is specified by the equivalent gain curve

(Fig. 4-2a) and frequency by rw(co). This represents limit cycle operation,

since oscillations of amplitudes other than rj
1
and rj 2 cannot be sustained

in this example.

The stability of each limit cycle is determined by considering small per-

turbations in amplitude around q x
and rj 2

.

(1) Stability: If a small positive increment d moves the operating point

outside Tw (the inside of IV being defined as the region in the IT-plane

K kq)

Fig. 4-2. The describing function method: (a) the equivalent gain; (b) an oscillatory

linear system; (c) limit cycle operation.
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corresponding to the RHP of the s-plane; see Chapter III, Section 5, and
Section 3 of this chapter) then by appealing to the Nyquist criterion, the

oscillation at (rj
i + 3) must decrease in amplitude, moving back toward r\

i9

and if a negative increment (—3) moves the operating point inside Tw ,
the

resulting instability causes the oscillation to grow and thus approach rj.

from below.

(2) Instability: By reversing the above, that is, by having a positive

increment in rj correspond to a movement along the locus — 1 jK{rj) into the

inside of Tw and a negative increment taking the point — outside TW9

the limit cycle must be unstable.

In Fig. 4-2 the limit cycles at and 77 2 are unstable and stable respectively.

By continuing the analogy with linear systems analysis further, the follow-

ing criteria may suggest themselves as informal methods of stability analysis

:

(i) If the locus of —l/K(ri) always lies outside the curve IV, then the

system is asymptotically stable in the whole;

(ii) Only if intersects Tw in such a way that the locus is outside

IV for all large 77 (say for 77 > ifn where t]n is the largest value of 77

that leads to an intersection with IV) is the system marginally stable

or oscillatory;

(iii) If — 1/k(y/) passes inside IV for large 77 but falls outside Tw for small

77 ,
local stability is guaranteed;

(iv) If — 1 /tc(t7) lies inside Tw for all 77 e [0, 00), the system is unstable

for all initial conditions.

In the discussion of the conjectures of Aizerman and Kalman, we have

counterexamples which invalidate both (i) and (ii). The system defined by

Eq. (4-14), which is not asymptotically stable in the whole, is a counter-

example to (i); W(s) = — (s + 1 )/(s
2 + £ + 1) is definitely low-pass, and

the nonlinearity is quite regular (Fig. 4-1), having a describing function

K(tf) e [0.9011, 1.0) by inspection. The plant of system (4-15) is also low-

pass, although the nonlinearity is not as well behaved. The equivalent gain

is K{rj) = |/C77
2 e [0, 00

), which is well defined, however. This system permits

the existence of limit cycle operation, in contradiction to (ii).

From the existence of several systems that behave in manners contrary to

the expectations based on the describing function approach, it is clear that

while this technique is very useful for explaining many observed phenomena,
considerable care must be exercised prior to using it as a predictive tool.

D. The Common Lyapunov Function

Closely related conceptually to the Aizerman conjecture is the question

of the existence of common Lyapunov functions for nonlinear time-varying
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systems [Eq. (2-6)]. The idea of such functions arose from the following line

of reasoning.

For any LTI system

x = A 0x — b QK 0h 0
Tx A B0x , (4-16)

where A
0 , b 0 , k 0 ,

and h
0
are specified so that B

0
is an asymptotically stable

matrix, it is known that an infinite number of Lyapunov functions exists.

For convenience, this infinity of functions may first be subdivided into forms,

for example, the quadratic form or the quartic form; then functions of each

form may be further categorized by specific parameter values.

The particular form that has been most fully investigated as a common
Lyapunov function is the quadratic form, v(x) = xTPx. Each such function

may be specified by the set ofm = \n(n + 1) parameters p.. of the symmetric

matrix P; hence each matrix may be represented by a point p in an m-dimen-

sional parameter space (P. We denote this as

pa[/jg cp].

A subset of the space (P is (R ((R <= (P), which defines points in (P that corre-

spond to positive definite matrices, that is points p A {ptJ) where the pa-

rameters pk{ptj)
defined in Eq. (3-3) satisfy the given standard conditions for

P = PT > 0. A necessary condition that xTPx be a Lyapunov function for

x = B
0
x is that P A [p e (R].

The reason that this form has been used so often lies in Theorem F of

Chapter III, Section 6: The system x = B 0x is asymptotically stable fS0 e

{^j}] if and only if for any Q = QT A [q e (R] there exists a P = P T A
[P £ dt] such that

B0'P + PB0 = -Q. (4-17)

Thus, if B
0

is an asymptotically stable matrix, each point q e (R is mapped
into a point p e 61 by relation (4-17). The set of all points p e (R corre-

sponding to every q e (R for a given B
0

is denoted (R
0 (2? 0); (R

0
c= (R. This is

the only situation where we can readily determine all the members of a

family of Lyapunov functions for a given system defined by B 0 ,
which is the

great utility of the quadratic form.

This development and notation is best illustrated by a concrete example

:

Assume

The characteristic equation is p(X) = (A + 2)
2 = 0; so B

0
is asymptotically

stable. First let us define (R

:

V = xTPx=p lxx x

2 + 2p X2x x
x2 + P22x2

2
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is positive definite if (i) p n > 0, and (ii) p n p 2 2 — P
2u > 0- Without any loss

of generality, we can set pnn = 1 (ifp e (R, then otp e (R when a is a positive

constant). If this is done for the case w = 2, (R is defined by the single require-

ment

Pn>Pi 2 - (4‘ 19)

where p l2 is any real number. This gives the boundary of (R in the reduced

(2-dimensional) parameter space (p 12 ,pu ) as the parabola pn = p\ 2 . If

Q A [q e (R], then since B 0
is an asymptotically stable matrix, the matrix P

determined by Eq. (4-17) must correspond to some p e (R; hence, we can

ascertain (R
0 (2? 0 ) by solving for the parameters qu in terms of the pu ,

then

determining the constraints on ptJ
such that Q is positive definite:

8p l2 (4 + 4p 12 —pn )

_(4 + 4Pn—Pn) 2(4 -p J2 ) _

(4-20)

The boundary of (R 0 can be found by choosing p n and p 12 such that Q is

positive semidefinite. The conditions q xl 0 and q22 0 are satisfied if

0</7 12 <4, and the determinant of 0 is

I Q I

= 16/7 I2 (4 - p 12) - (4 + 4/> 12 - Pliy.

Thus, the boundary of (R 0
is defined by the ellipse

P\x - 2Pll (4 + 4

p

12 ) + 16(2/?

i

2 - 2p 12 + 1) = o, (4-21)

which is just tangent to the lines p l2 = 0 and p 12 = 4, as is shown in Fig.

4-3. This demonstrates the manner in which we can determine (R 0 ,
and hence

for any B
0
find the entire family of quadratic Lyapunov functions

{

v

q
°} A [v = xTPx ;

P A [p g (R 0C#o)]}.

From the continuity of Eq. (4-17) [each q(j
is linearly related to the pa-

rameters of B 0 ],
it is clear that a perturbation of the matrix B

0
for a given P

would result in a perturbation of the matrix Q. If v = xTPx is a member

of {^°} chosen as a Lyapunov function for a given matrix B 0 (where p lies

in the interior of (R
0(B 0 )),

then v(x) is also a member of {

v

q
!

], where {vq

!

)

is the family of quadratic Lyapunov functions for a stable matrix B
1
obtained

by perturbing B 0 . In particular, we observe that there must exist some range

(K,
K) such that v e [Vg\ for B defined by

B A A 0 - /7
0^ 0

t
, /c g (^ ^); (4-22)

only the gain k is allowed to take on different values. Hence the specific

function v(x) is common to all LTI systems defined by B in Eq. (4-22).

To return to our example, assume that B
0

in Eq. (4-18) corresponds to

k = 0, that is, B 0 = A 0 . The perturbed system

x = Bx — [A 0
— b 0Kh 0

T
]x (4-23)
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Fig. 4-3. Common Lyapunov functions.

is completed by choosing h 0
T = [1, 0], b 0

T = [0, 1] in the usual phase variable

form; hence the forward path and closed loop transfer functions are

W(s) = (s
2 + 4s + 4)" 1

,
WK(s) = (s

2 + % + (4 + k))~ 1

. (4-24)

From WK(s) it is seen that x = Bx of Eq. (4-23) is asymptotically stable for

k g (—4, oo). The gains K and K in the range (—4, oo) can now be found

such that

"12 T
v(x) = xTPx = xT

^ j

x (4-25)

is a Lyapunov function for (4-23) with k g (K,
K)

\
this matrix P was chosen

to be interior to (R 0 determined by (4-21); see Fig. 4-3. By inspection,

Since q12 > 0 we need only find the range of k for which
| Q |

> 0; inspect

|2|= 16(4 + k) — k 2 = 0.
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The bounds K and K are roots of this equation, that is, (K,
K) = (—3.312,

19.312).

The importance of the common Lyapunov function [for example, v of

Eq. (4-25)] lies not only in its existence for a range of k e (

K

, ^) for the

LTI system, but in the fact that it is independent of k. We thus may replace

kg Q
in Eq. (4-23), where <r 0 = hTx, with any nonlinear time-varying function

g(a 0 ,
t) without alfecting the sign of v as long as

K < g(o o > i)jc o < K. (4-26)

The search for common Lyapunov functions for the LTI system corre-

sponding to the most general NLTV system [Eq. (2-6)] has resulted in the

circle criterion described in Chapters VI and VII. By this criterion we can

guarantee that a quadratic common Lyapunov function v(x) = xTPx exists

for the system (2-6) provided that a simple frequency domain condition is

satisfied by W(s). For the example of Eq. (4-24), the maximum range of the

form [0, K ]
for asymptotic stability is found to be [0, 32 — s]

and a common
Lyapunov function is

v = xTPx = xT
“20

2
(4-27)

The boundary of 6^ corresponding to

B
i

(or to k = 32) also is shown in Fig. 4-3, and the matrix P of Eq. (4-27) is

the only common point of (R
0 (k — 0) and (Rj (/c = 32).

E. The K-Dependent Lyapunov Function

In this approach to generating Lyapunov functions for the linear system

x = Ax — bKhTx, (4-1)

a candidate that depends linearly on k is used to span a range (K ', K') of

gains k. As is usually the case, the quadratic form has proven to be most

useful, namely

v(x) = \[xTPx + kxtMx]
;

- (4-28)
p = pt > 0; M = MT = £M.ri

T>0,
r
0
ii.

i = 0

Although this function does not allow us to substitute a nonlinear time-

varying gain g(o 0 ,
t) for KhTx A kg 0

in the system (4-1) as simply as in the

case of the common Lyapunov function, the form v(x) of (4-28) is the linear
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special case of the generalized Lur’e-Postnikov form for p = 0, namely

m prt^x

v(x) = {xTPx + 2 A [ no dO (4-29)
/=o J 0

as is considered in Section 2 of Chapter III (Lemma V2) and utilized in

Chapter V. The time derivative of v(x) in Eq. (4-29) is exactly the same as

that for Eq. (4-28), with the nonlinear function /(r.Tx) substituted for the

linear term ky?x\ hence the use of (4-28) for the LTI system (4-1) has an
important bearing on the use of the Lyapunov function candidate (4-29)

for NLTI systems.

One reason that the ^-dependent Lyapunov function is of such utility and
appeal is that in the LTI case it may be shown to exist as a necessary and
sufficient condition for asymptotic stability over any entire Hurwitz range
of k (but not over all ranges simultaneously, if the LTI system is stable in

more than one range). To illustrate this point, we return to the example
treated under the common Lyapunov function

:

W(s) = (s2 + 4s + 4)-i,
(4-24)

for which the Hurwitz range is k e (—4, oo), We may take as a /c-dependent

Lyapunov function candidate

The first matrix is real and positive definite for 8 e (0, 4) and 8 e (4, 8],

and the second term is positive semidefinite if k > — (4 — <5) > —4. Hence,
since 8 may be chosen to be arbitrarily small, we have a Lyapunov function

candidate (4-30) that is valid for k e (—4, oo). The time derivative is

dv/dt = -\[8x
r + (8 - 8y /2x 2 ]

2
, (4-31)

which for 8 e (0, 8) is nonpositive and is equal to zero only if x
t
=

—((8 — 8)
1/2

I8)x2
A ~MX2 - It is easily shown that dvjdt cannot be identi-

cally equal to zero on any trajectory of

+ (4 + k — 8)
T 0“

0 0
x. (4-30)

as Xj = — jux2 implies x
and [x = that is, if

0

.(-4 - K)
x,

i
= x2

= —jlix2 . This is only possible if k = —4

0
M-

But k = —4 is outside the Hurwitz range we are concerned with, so v = 0
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only if x = 0. Hence the Lyapunov function (4-31) exists by Corollary F2

(Chapter III, Section 6) for the system for the entire Hurwitz range k e

(— 4
,
oo).

2. The Existence of the Quadratic Lyapunov Function xTPx
and the Hurwitz Condition

Consider the LTI ordinary vector differential equation

x = A 0x ,
(l-3a)

where A
0

is assumed to be in the phase variable canonical form (2-2). The

corresponding nth order ordinary scalar differential equation (2-5) is

[D* + anDn ~ l + • •
• + a2D + a

x ]£,
= 0, having the characteristic equation

p(X) =
|

XI — A
0 1

— Xn + onX
n ~ l + • •

• + #2^ a
\
= 0. (4-32)

If its roots l.(A 0) all have negative real parts, then asymptotic stability is

guaranteed; if some roots have positive real parts, then exponential insta-

bility results; roots on the imaginary axis are said to be critical. If all critical

roots are distinct, then marginal stability results [2, = ±ico0
yields solutions

of the form cos(ov) or sin(c*V); X
t
= 0 yields constant solutions], whereas

critical roots of multiplicity m^2 yield unstable solutions [t
m ~

l cos(co 0 t),

t
m ~

l sin(oV), or t
m ~

1

]. Multiple roots in the LHP do not result in instability,

as t
m ~

l e~ at tends to zero as t tends to infinity for finite m.

A characteristic polynomial (4-32) is defined to be Hurwitz if all of its

roots lie in the open LHP. The problem of stability analysis for x = A 0x

thus reduces to determining constraints on the parameters a
t
of (4-32) that

ensure that p(X) is Hurwitz.

A simple necessary condition is that all a
t
must be positive; to see that this

is so, assume that (— X 19 — X 2 ,

.

. . ,
—Xmi ) are real negative roots and

(—

A

mi+1 ± i(imi+l ) (-Xm , dz ijim,) are complex roots in the LHP. Then

pW = ft a + *,) ft [V + 2A
(
a + (V + A2

)];
i = 1 i= m i + 1

since all parameters are positive, it is evident that the indicated product

would yield only positive values of a
t

.

A. The Hurwitz Conditions

One well-known technique that yields both necessary and sufficient con-

ditions that p{X) has roots only in the LHP is due to Hurwitz. Each Hurwitz

determinant A,, / = 1,2,...,^ must be positive where A, is the zth leading
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principal minor of the n x n matrix

' an 1 000-.. 0 0“

a„-

2

a„ 1 0 ••• 0 0

a»-4 an_ 3 0 0

0 0

0 0

a2 a
3

0 a,_

(4-33)

with the parameters a
t
defined as in Eq. (4-32). Thus asymptotic stability

of x = A
0
x is guaranteed if and only if

(i) a
n > 0 > [A, > 0],

(ii) ^n®n- 1
> tln— 2 ^ [A2 > 0],

(n) a
,
> 0, [A, > 0].

B. The Existence of the Quadratic Lyapunov Function xTPx

A second criterion that yields necessary and sufficient conditions for the

stability of the system (l-3a) is based on Lyapunov’s direct method. Asso-
ciated with Eq. (l-3a) is the Lyapunov function candidate

v(x) = xTPx, (4-34)

whose derivative along the trajectories of x = A 0x is

dv/dt = xT(A
0
TP + PA 0)x A —xTQx. (4-35)

A necessary and sufficient stability condition for asymptotic stability has
been stated in Corollary F2 (Chapter III, Section 6). If we choose any Q =
QT > 0 such that xTQx = 0 can occur along no trajectory other than x = 0,

then Eq. (l-3a) is asymptotically stable if and only if there exists a matrix

P = PT > 0 satisfying Eq. (4-35).

C. The Equivalence

Since the two preceding conditions are necessary and sufficient, it is natural

to assume that they are equivalent. This was established formally by Parks
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[1], as follows : Consider

y = B0 y,

where B0 is in the Schwarz canonical form, namely,

(4-36)

B0

~
0 1 0 0

-K o 10
0 -bn_ x

0 1

0 0
~

0 0

0 0

(4-37)

0 0 0 1

0 0 —b2 —by

Parks demonstrated that the system (4-36) has the same stability properties

as (l-3a) [specifically, that the characteristic equation \XI — B0 |

= 0 has the

form

\xi-B0 \
= (-iy-'P(X) = o,

and hence the same roots as p(X) of Eq. (4-32)] if

b
'

= A„ b 2 = b
3
= ...,b

r = AA-, ,

A
r
-,A r _ 2

where A, are the Hurwitz determinants of the matrix A 0
previously defined.

Thus a necessary and sufficient condition for asymptotic stability of y = B0y
is that b. > 0, / = 1, 2, . . . , n, as was shown by Schwarz [1]; in fact he

proved that for any matrix B
0
such that b. ^ 0, / = 1, 2, . . . ,

n, the number

of eigenvalues with negative real parts is equal to the number of positive

terms in the sequence {bn ,
bnbn_ 19 . . . , XX”=i ^/}-

If we consider

Qo = Qo
T = diag[0, 0 , . . . ,

0
,
2b, 2

] > 0,

then the unique P0 satisfying Q 0 = —(B 0
TP0 + P0B0) is

P
0 = P0

T = diag (n bi)’ (n */)» • • • > oax b
i .

which is clearly positive definite if and only if b
t
> 0, i — 1, 2, . . . ,

n. To

complete the proof of the equivalence of the Hurwitz conditions and the

existence of xTPx ,
the semidefiniteness of Q necessitates showing that it is

not possible for yn
(t ) [the «th scalar component of y(t) satisfying (4-36)] to

be zero along any trajectory other than y = 0. From the form of B0 [Eq.

(4-37)], this result follows by inspection: if y„
= 0, then yn_,

= 0, and so on.
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3. The Existence of the Quadratic Lyapunov Function

xTPx + kxtMx and the Nyquist Criterion

The alternative system description corresponding to x — A
0x in transfer

function formulation is

A W(s) = hT(sI - A)- 1 b

zLlllJlAjL+A
s" + <V‘"' + • •

• + a 2s + a,’

T(0 = ~K(7 0(t) A —KhT
X.

A E {^}
(4-38)

In the latter context, the usual stability problem that is treated is some-
what different from that considered in Section 2; rather than finding the

ranges (often interdependent) of all the parameters of A
0
that are necessary

and sufficient for the asymptotic stability of x — A 0x, it is assumed that

W(s) defines a given stable plant and the stability range of the single param-
eter k is to be determined.

A, The Nyquist Criterion

The application of the Nyquist criterion is a standard technique for deter-

mining the range of k such that the system (4-38) is asymptotically stable.

For reference we note that a recent and quite general statement of this cri-

terion is to be found in Desoer and Wu [1]; since the systems under con-

sideration have plants W(s) that are simply real rational functions of s
,
we

do not require this degree of sophistication.

For systems described by Eq. (4-38), where W(s) has at least one more
pole than zero (since p = 0) and W(s) is asymptotically stable, the frequency

response diagram Tw [fAim W{ico) plotted versus UA Re W(ico) for all

real co e (— oo, +oo)] allows a direct determination of stability for any k.

First locate that portion of the U, V plane representing the mapping of the

RHP of the y-plane [refer to Section 5 of Chapter III, especially Fig. 3-1, for

a more detailed discussion of the mapping properties of W(s)]. This is accom-
plished by determining the direction of increasing co on Tw(co)\ the region to

the right of a point traversing Tw in the direction of increasing co corresponds

to the RHP in the s-plane (Fig. 4-4).

Theorem (Nyquist, special case). The closed loop system described by
Eq. (4-38) is asymptotically stable if the point U = —\/k, V=0 lies

neither on nor in the region that corresponds to the mapping of the RHP
of the j-plane.
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V = lm W(icu)

Re W(icu)

U)> 0

and increasing

Fig. 4-4. Application of Nyquist’s criterion.

The specification of some p 0 does not substantially alter this criterion;

as shown in Fig. 3-2b, only the location of A lim^^ W{ico) = p is

changed. Then we must not allow (— \/k, 0) to lie on Tw even in the limit

as co — oo to preclude k = — 1 Ip.

This criterion may be used with equal facility to determine the complete

ranges of k that lead to asymptotically stable closed loop systems. The values

of k are determined such that the point (— l//c, 0) lies on TW (KU K {
and K2

in Fig. 4-4); these form the endpoints of stability ranges. In this example,

k g (Ku K x ) where K
x < 0 < K

x
and k g (K2 ,

oo ) specify all values of k

that yield asymptotically stable closed loop systems. The segments of the real

axis that lie on or inside Tw (in the sense defined in the theorem) correspond

to all values of k that lead to the instability or marginal stability of the closed

loop system.

Since W(s) has only real coefficients the functions U(co) and V(co) are even

and odd functions of co respectively; U(—co) = U(co) and V(—co) = —V(co).

Thus the plot for co < 0 is a reflection of the plot for positive frequency

about the real axis, and since no new information is conveyed by IV(co) for

co < 0, this part of Fw is often omitted.
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B. The Existence of a Shifted LC Multiplier

Consider a transfer function W(s) that has as one of its Nyquist ranges

[0, K). A conjecture due to Narendra and Neuman [2] is that for any system

of this form (where A e {A
x } and (A,b) is completely controllable) a

/c-dependent Lyapunov function (4-28) must exist as a necessary and sufficient

condition for the asymptotic stability of the system (4-1) with k e [0, K).

In proving the validity of this conjecture, use is made of a constructional

technique similar to that of Brockett and Willems [1]. The equilibrium £ = 0

of

[p(D) + Kq(D)]Z = 0

(where p and q arepolynomials in the operator D A dfdt) is asymptotically

stable for k e [0, K) if and only if a rational strictly positive realt function

Z(s) exists such that

H(s) A WR(s)Z{s) A [q(s)/p(s) + K~']Z{s) E {PR}. (4-39)

In proving this result, it is noted that the Nyquist criterion under these

circumstances guarantees that 0*(co) A arg[WR{ico)\ satisfies

—n < 0*(co) < + 7r,

and hence a preliminary transfer function Z(s) satisfying Eq. (4-39) can be

determined by inspecting
(f) R (co), Fig. 4-5. Define two sets of frequencies

2. and p. such that

:

(i) = 0 and <o,
1a>= ki

i = 1,2,..

(ii) MMi) = 0 and >0,
CO= fli

(4-40)

i= 1,2,. .
. ,k

(frequencies co such that <j>R((o) = (d/dco)<l)R = 0 may be ignored). Considering

a function Z(s) e {Z^},

II (.

s

2 + V) if s
+1

: / = k - 1, k; 0 < Ml < k, •
• •

Z(s) = s ±l^ —— ;

JJ (-s
2 + Mi

2
) if s 1

: l = k,k + 1 ; 0 < A, < /*,
• • •

(4-41)

where y
+1

is taken if
(f)R(0

+
) < 0 and y

-1
if

<f>R(0
+
) > 0, we see in the example

of Fig. 4-5 that Z{s) WR (s) is positive real.

f If Z(s) and H(s) are both only constrained to be positive real, then marginal stability

could result for some value or values of k e [0, K).
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Since this function Z(s) is only positive real, it is not satisfactory for our

purposes. Thus, a slight modification of this argument must be used: For any

k e [0, K) define

WK(s) A W(s) + K~ l

and

<f>K(co) A arg,{WK(ico)}.

Since there are no imaginary poles or zeros of WK(s) [no poles because WK{s)

is asymptotically stable; no zeros, as seen in Fig. 4-6],
(f) K(co) is continuous as

shown in Fig. 4-6b.

Since this is the case, a frequency domain multiplier Z(s) of the form (4-41)

that has a discontinuous argument is not required to satisfy Eq. (4-39).

— 7T

Fig. 4-6. The shifted LC multiplier.
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Instead, the shifted function Z
e(s) A Z(s + e) can be chosen where e is an

arbitrary positive constant

:

II [0 + e)
2 + A,*]

Zc(s)A(s + e)
±li^ (4-42)

II [(J + e)
2 + H

2
]

i — 1

By choosing e sufficiently small, it can always be guaranteed that

WK{s)Ze{s) e {PR} (4-43)

since as e —> 0 the argument of ZE(s) approaches that of Z(s) arbitrarily

closely.

An important observation is that given a value ofk
,
only the a of the shifted

multiplier needs to be determined; the frequencies X. and //. as determined

by Eq, (4-40) are independent of k, If
<f>K(X^) = 0

2 d<l>K/dco\Q)=Xi < 0 for one

value of k 9 then the same is true for any k e [0, K), and similarly for

As k —> K, then it is necessary that a — 0 if the argument of WK(ico) is dis-

continuous; if, however, k e [0, K), then we take e arbitrarily small, and

ZE{s) exists satisfying (4-43).

C. The Equivalence

The fact that one multiplier Z(s) exists for the whole range [0, K) allows us

to guarantee that a single ^-dependent Lyapunov function

v(x) = \xT[P + kM]x (4-29)

exists over the entire Hurwitz range of at, as the matrices P(P = PT > 0)

and M{M = MT ^ 0) are determined solely by the parameters of W(s)

[given in Eq. (4-38)] and of Z(s).

The actual proof that this Lyapunov function exists for (4-1) whenever

(4-43) is satisfied and hence that it exists for the entire Hurwitz range [0, K)
as argued above is undertaken in Chapter V as a special case of the stability

ofNLTI systems. It is shown that as the nonlinearity /(<7 0 ) is constrained the

class of frequency domain multipliers Z(s) that may be used to guarantee

absolute stability becomes more general until for linear systems the shifted

LC multiplier of Eq. (4-42) is permitted with e arbitrarily small. For this

reason the proof in its entirety is not repeated here.

The validity of this conjecture was essentially proved by Thathachar and
Srinath [1], using an approach very similar to that presented here. The
^-dependent Lyapunov function was shown to exist whenever

ri (*
2 + ^ 2

)

Z(s) = 5 + si?

n (*
2 + m,

2
)

t=i
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exists satisfying Z(s)WR(s) e {
PR }. This proof is applicable only for systems

such that 0(O+
) < 0.

This result has important implications for our analysis of NLTI systems

in Chapter V and of NLTV systems in Chapter VI, as the ^-dependent

Lyapunov function is only a special case of the most general Lyapunov

function used in these situations. The fact that in this special case the result-

ing stability conditions are necessary and sufficient reinforces the idea that

the generalized Lur’e-Postnikov form is of fundamental significance and

that the resulting stability criteria are thus not adventitious.



V

STABILITY OF NONLINEAR SYSTEMS

The approach used in this chapter to generate conditions that are sufficient

to guarantee the equiasymptotic stability in the whole of various classes of
nonlinear time-invariant systems may be viewed as a logical extension of the

developments of the previous chapter, although the original derivations were
not necessarily prompted by such considerations. In actuality, many of the

results pertaining to the stability of LTI systems obtained via the direct

method of Lyapunov were formally proved more recently than some of those

presented in this chapter for nonlinear systems; however, the fundamental
concepts of the common and K-dependent Lyapunov functions were recog-

nized and unquestionably exerted an influence on these developments,
particularly in the choice of absolute {A} Lyapunov function candidates.

We start with a derivation of the Popov frequency domain solution to

the problem of Lur’e and Postnikov. This result—which is obtained using
the Lur’e-Postnikov Lyapunov function (as modified by Popov) and the

Meyer form of the Kalman-Yakubovich lemma (the MKY lemma, Chapter
III, Section 4)—is very general in that the continuous nonlinearity is con-
strained only with respect to its range; /((T 0) e [F] implies only that

0 < /OoV^o < F (or < oo).

The philosophy that is developed in considering this problem and the prac-
tical utility of the resulting stability criterion lead us to a treatment of NLTI
systems with nonlinear gains belonging to more restricted classes offunctions.

All systems dealt with in this chapter are described by the state vector

90
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differential equation

x = Ax + br, o o
= hTx + pz, r = — /(<r0), (5-1)

where the triple (/?, ,4, b) is in phase variable canonical form. There are

generally two types of problems considered in terms of the specification of

the nonlinearity /(<7 0 )
and the A matrix: the principal case,

/(<7 0) e [N], f(a 0)/<7 0 g [FN9 Fn] 9

(5
_2a)

AFn e Mil’ AFN G MlK

and the particular case of one zero eigenvalue,

fit

7

0) e [N], fiesta o g (Fn,Fn],

(5_2b)^ e [A 0 }>
afn e Mj],

where the lower bound /v is zero in all sections except Section 5. We for-

mally treat the case /(<t 0)/ct 0 g [0, T), A e [A for the problem of Popov

in Section 1, but not for other classes of NLTI gains.

As a preliminary to all developments, we must assume that A K satisfies

Ak A [A - (k/( 1 + Kp))bhT] g Mj] (4-2)

for all values of k in the range of /(<

7

0)/a 0 ,
in order to ensure that ^ = 0

is the only equilibrium of Eq. (5-1), as shown in Chapter II, Section ID.

The frequency domain condition that ensures absolute stability is a sufficient

condition to guarantee that A K g [A
x ]

for k g (Fn ,
Fn), so this constraint

need only be retained for those extreme values of f((J 0)l(T 0
that may be

achieved, that is, for k = FN and FN in Eq. (5-2a) or only for k = FN in

Eq. (5-2b).

As a final general point, we note that in the particular case with FN = 0,

the condition h
x
>0 is required for x = 0 to be the only equilibrium of

Eq. (5-1) and for stability in the limit (see Sections ID in Chapter II and 1

in this chapter, respectively). The frequency domain condition for absolute

stability in the particular case always guarantees that h
,
> 0 as indicated in

the derivation of Criterion lc, so we need not be explicitly concerned with

this condition. The same is true for the case when FN ^ 0 in Eq. (5-2b).

1. The Popov Stability Criterion

The problem considered by V. M. Popov is identical to the absolute

stability problem posed by Lur’e and Postnikov, except for a minor difference

in system model. He considered the vector differential equation

x = Ax — bf(a), A g {A,}, £ = f(a), a = mTx - y£
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which alternatively may be described in block diagram form (Fig. 2-1) with
W(s) in the forward path and /(•) in the return path in the standard negative

feedback configuration where

W(s) = y/s + mT(sI — A)~ l b.

If y = 0, then this system is in the form of a direct control system with p = 0
[Eq. (2-6)]. If y 0, then W(s) may be realized without transformation by
a direct control system with A e {A

0 }.
As the Popov model is thus formally

equivalent to the standard form of Eq. (2-6), it is not treated here.

The system whose stability properties are to be analyzed in the first instance

is represented by the vector differential equation (5-1) with the constraints

f(<7 0) g [F], f(cr0)l<T 0 G [0, F), A e {A,}. (5-3)

The absolute Lyapunov function candidate considered is the Lur’e-

Postnikov form with the additional term 0opx
2 introduced by Popov,

v(x) =^Px + h (£7(0 dZ + \px 2

} ,
(5-4)

which, as has been demonstrated in Lemma V2 (Chapter III, Section 2),

is a valid absolute Lyapunov function candidate for NLTI systems, provided

that P = P T > 0, /? 0 0, and p ^ 0. From the general expression for v =
(Vv)Tx [Eq. (3-4)], we have

* = + PA)x - f(po)x^[Pb - fi 0A
Th - yQh]

- [hh'b + y0(p + F-')]/ 2K) - fo^o/KX 1 - /(ff„)/*a

The only additional algebraic manipulation performed on v is the inclusion

°f l-»ko/(ffo)(/(^o)/^o) - f 2
(<ro)/n which is identically equal to zero.

The first three terms of v are in a form that may be guaranteed to be negative

semidefinite by requiring that the frequency domain restriction on W(s) that

devolves from the application of the MKY lemma is satisfied. We identify

the parameters

\V = KhTb + y0(p + F- 1

),

k A paA^h + y0h.
{ )

The lemma then states that there is some matrix P, P = P T > 0; a matrix

M, M = MT ^ 0; and a real vector q satisfying

(a) ATP + PA = -qqT - M,
(b) Pb — k = 7y/q ,

(c) (q
T

,
A) is completely observable,

if and only if

(d) H(s) = \y/ + kT(sI - A)~ 1 b e {PR}.
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Since P in Eq. (5-4) has not been previously specified, we can thus state

that some valid candidate of the form given in this equation exists such that

v = -\Wq + vV/K)] 2

_ (5_6)
-jxTMx - y0<r0 f(<r0)[l - f(a 0)IFa 0l

' v

if and only if

H(s) A p 0(h
Tb + hTA(sI - A)~ l b)

+ 7o(P + + h\sl - A)-'b) E {PR}.

The condition H(s) e {Pi?} precludes H{s) = 0, so fi 0 and y 0
cannot simul-

taneously be zero.

The constraint on the transfer function H(s) may be reduced to

H(s) = fi 0sh
T
(sI - A)~'b + y 0[W(s) + F~'] e {PR}, (5-7)

where we recall that W(s) — p + hT(sI — A)~ l b represents the transfer

function of the LTI plant [Eq. (2-1)], and we make use of the relation

hTb + hTA(sI - A)~ l b = hT[(sI - A) + A](sl - A)~'b

= shT(sI — A)~ l
b.

Thus far we have shown that v{x) is a valid absolute Lyapunov function

candidate for Eqs. (5-1) and (5-3), and v < 0 if

(0 fi 0 ^ 0, p ^ 0 (for v{x) to be positive definite),

(») y0 ^ 0 (for v to be negative semidefinite),

(iii) either fi 0 0 or y 0 ^ 0 (H(s) ^ 0; the MKY lemma),

(iv) H(s) e {PR} (Eq. (5-7); the MKY lemma),

and hence these conditions, in conjunction with

(v) A k e [A^k e [0, F),

(vi) v ^ 0 unless x = 0 (Theorem 1, Chapter III, Section 3),

suffice to guarantee the absolute stability of the system.

The only constraints that need to be kept as sufficient conditions for

absolute stability for the system determined by Eq. (5-3) are

(a) y 0 > 0,

(b) H(s) A
[
W(s) + F- l

](P 0
s + n)-

1 e {PR} where p, > 0, y 0 > 0.

Conditions (i)—(vi) may be eliminated because they are unnecessarily strict or

because they are subsumed by (a) and (b), as we proceed to demonstrate.

Conditions (ii) and (iii) are satisfied if y 0 > 0, and thus they may be dis-

carded. We see shortly that there is no loss in generality in this restriction.

The requirement that y 0 > 0 also implies that condition (vi) is satisfied.

Since no term of v [Eq. (5-6)] can ever be positive, clearly v = 0 requires that
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each term is identically zero. The last term contains the factors y 0 > 0 and
1 — f(a0)/(Fg q) > 0, since /(<7 0 )/<7 0 e [0, F), so it is necessary that f(tr 0 )

= 0 if the last term is to be identically zero. This reduces Eqs; (5-1) and (5-6)

to

x = Ax , A g {Tj},

v = —^(xTq)
2 — \xTMx

along any trajectory where v = 0. The MKY lemma guarantees that (q
T

, ^4)

is completely observable, which means that the only trajectory of x = ,4x

for which xTq = 0 is x = 0.

It next may be demonstrated that (i), that is, )S
0 > 0 and p > 0, is not

necessary. These two conditions are clearly not required to guarantee that

v 0 and v ^ 0 unless x = 0, so //(y) g {Pi?} guarantees that

v(x) = {x\Px + p0 {
/(C) </C + i/>?

2

J

(5-4)

corresponds to the form

V = + vV/(^,)]
2

—jXTMx - y0CT 0 /(CT 0
)[l - f(o 0)IFo0 ], (5-6)

in that q, F = PT > 0 and M = MT ^ 0 exist by the MKY lemma. It is

thus only necessary to show that conditions (a) and (b) imply that v(x) is

positive definite irrespective of the signs of and p.

It has been assumed that the linear system corresponding to /(a 0)
=

kg 0 , k e [0, F) is asymptotically stable [condition (v)]. The candidate v(x)

and its derivative are, by inspection, quadratic forms under the assumption

of linearity, and v(x) A —xTQx satisfies Q = QT ^ 0 and xTQx ^ 0 unless

x = 0 when y Q > 0. Thus we may appeal to the theorem of Kalman (Corol-

lary F2, Chapter III, Section 6), which states that the corresponding quadratic

form of v{x) for k g [0, F) must be positive definite; v(x) = xTPx, P =
PT > 0, whatever the signs of fi0 and p might be.

For the nonlinear system, it is seen that if f(o Q)
= k(g 0)g 0 ,

the form of

the time derivative v is the same function of k as when zc is a constant, that is,

the expression for v in Eq. (5-6) is the same function of k for both linear and

nonlinear systems. This is due to the fact that

djdt f Ck(0 d£ = gk(g) doldt
J 0

whether k is a constant or a function of a. For the linear system with /(<7 0 )

= kOq, it is observed that v(x) in Eq. (5-4) is a Lyapunov function for all

values of k g [0, F) whatever the signs of fi 0 and p might be, so for f{o G )

= k(o q)g q ,
k(o g ) g [0, F), v(x) in Eq. (5-4) is of the same form and hence

is positive definite.
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Returning to the frequency domain condition (b), we note that if

H
1
(s)Ams) + F~ i]Jvs + r0)

or

H1(s) A [FF(j) + F-'](-0os + y0
)~ l

satisfy Re H,(ico) ’> 0, then the same condition is satisfied by fl(ico) [Eq.

(5-7)] and vice versa, since

Re H,(im) = Re H(ico),

Re H2(ico)
= - Rc//(/c,))-; [(P^Y + y 0

2
] > 0.

(fio")
2 + n 2

Furthermore, if /? 0 0, then /^(y) e {PR} guarantees that H(s) e {PR}

and vice versa, whereas if /? 0 < 0, then H2 (s) e {PR} accomplishes the same

end. These results follow from the condition that the nonlinearity range

[0, F) lies in a Nyquist range of the corresponding LTI system, so both the

zeros and poles of W(s) + F~ l must lie in the closed left half of the .y-plane.t

Thus we obtain the condition (b) that H(s) e {PR}, where

H(s) A [W(s) + F-'](J}0s + yor\ 0O > 0, y0 > 0. (5-8)

Finally, condition (v) may be eliminated in light of this last constraint.

The argument of the term ({S 0 ico + (denoted <£(/? 0 zcd + y 0)
±1

) ?
given

y Q > 0, is in the range (— 7i/2 , 0] for all real co if — 1 is taken, or in the range

[0, +7r/2) if +1 is taken. Thus, since <^H(ico) e [— n/2 , +7i/2] by the condi-

tion restricting Eq. (5-8), it is necessary from the additive property of argu-

ments,

= $.mico) + E->] + <030ico + y0 )
±]

,

that

= <[fE(/<o) + -F" 1

] g (-Tt, +b),

which is an alternative statement of the Nyquist criterion for k g [0, F). If

y 0
were permitted to be zero, condition (b) would not prevent the polar plot

of W{ico) from touching the negative real axis to the left of (— 1/F, 0) in

the U, V plane (Chapter IV, Section 3). Since this must not happen for abso-

lute stability to be guaranteed (in fact, if this did occur some linear gain k
x

e [0, F) would exist such that oscillations occur), y0 > 0 must be assumed

t If F is not in a Nyquist range, this equivalence is not valid. Consider W(s) = — £ +
(

s

+ l)
-1

,
which has a Nyquist range (—2, +2). Taking F = oo and yo = 2, fio

= 1, we
have H(s) = (5 + l)

-1 e {PR} from Eq. (5-7), whereas H(s) = - J(s
-

1)(s + 2)/(s + 1)

in Eq. (5-8), which is not positive real. In this case, v is negative definite since the scalar

form of the MKY lemma is satisfied, but v is not positive definite since the argument given

above does not hold. This problem does not exist if p > 0, as shown in Chapter VII,

Section 3.
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or the additional condition that
\(f)F(ico)\ < n must be introduced. Since

A e {A
x ] (or later, A e {^ 0 }) is assumed, the frequency at which

\(f>F(ico)\

approaches ?

z

must be either (i) finite, co0 e (0, oo), or (ii) infinite (that is,

in the limit as co —> oo); A e {A.} precludes
|
(j)F \

—
> n as co —> 0. In the first

case, the above constraint is equivalent to
| (f)F(ico) | < {n — s) with e > 0,

which permits the use of (fi0s + y 0 )
±1 in Eq. (5-8) with y0 > 0. If

(f)F(ico) —> n
as co —> oo, then

W(ico) + F’ 1 = hT(icoI- A)~'b,

that is, p — —
1 /F, and furthermore, h

n = 0 so that

lim W(s) = lim ,

where an > 0, an _ t > 0, and h„_
t > 0. In this case, fi 0s + y 0 , where y 0 > 0

and yQ/p o ^ a
n
gives an overall function H(s) which is positive real for large

values of s. Since the use of (y? 0j)
±1

is thus never required for A e {A J
(or even for A e [A

0 ],
by the same argument), we do not consider it; for

those instances when can profitably be utilized, the interested reader

may refer to Kalman [2] or to Aizerman and Gantmacher [1].

These observations have reduced conditions (i)-(vi) to the very simple

frequency domain stability theorem of Popov and successors.

Criterion la (Popov, principal case). The system defined by Eqs.

(5-1) and (5-3) is absolutely
{F} stable if H(s) [Eq. (5-8)] satisfies H(s) g {PR}.

If one additional condition is added to the system constraints, a result for

closed ranges [0, F] ensues. Consider

f(Oo) G [F], f(a o)/<7 0 e [0, F],

A e {A
x } 9 Af g {A

x }.

The constraint Ap g {A
x },

in conjunction with the condition H(s) g {PR},

guarantees that A K g {A
x } for k g [0, F] and that (1 + FW) has as many

poles as zeros. The only remaining step that must be altered in the proof of

Criterion la is the demonstration that v = 0 only if jc = 0. In the present case,

the last term of v [Eq. (5-6)] is identically zero if /(<

t

0 )
= 0 or if f(cr 0)

= Fa 0 .

In either case, the proof proceeds as before, since such trajectories are

described by the asymptotically stable LTI differential equations x = Ax or

x = AFx.

Criterion lb (Popov, principal case, alternative conditions). The
system described by Eqs. (5-1) and (5-9) is absolutely {F} stable if H(s) of

Eq. (5-8) satisfies H(s) g {PR}.
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In treating the particular case of the A matrix having a single zero eigen-

value, we consider

f{o0)e{F), f(<r0)/a 0 e (0, F],

A E {A 0 }, Ap e {A
{ }.

The condition h
l
>0, which we see below is guaranteed by the absolute

stability criterion, ensures stability in the limit, that is, the differential equa-

tion (5-1) as constrained by Eq. (5-10) is asymptotically stable for r =
—S(T 0 , 5 > 0 but arbitrarily small. This is evident from the characteristic

polynomial \kl — A s \

or the numerator of 1 + SW(s), namely,

s
n
(l + dp) + s

n ~ l
[an + 5(pa n + hn)] + • • •

+ s[a 2 + S(pa 2 + h 2 )] + Sh l9

which must have positive coefficients; thus h
x > 0 is a necessary condition

for absolute stability.

The proof of an absolute stability criterion for such a system proceeds as

in the principal case, except that the replacement of the MKY lemma (which

is no longer applicable) by Lemma 5 (Chapter III, Section 4) requires that

H(s) e {SPR
0 }

rather than the weaker condition obtained in the principal

case. The form of v is not essentially altered by the use of this different lemma,

V = -${[xrq + vV/K )]
2 + exrL 0x}

-^o/KX 1 - f(c0)/FaQ], e > 0,

except that L 0
= L0

T ^ 0 and q are of the specific forms
1

ooo

°
!

^2

II
o

<1
. c

•
i

l
1

> <1
=

I

'

oi jc1

where L = 17 > 0 is arbitrary. Thus v = 0 requires that xTL0x = 0 or xT =
[x 1? 0, 0, . . . , 0]. From the form of A and b in Eq. (5-1) (the phase variable

canonical form), this implies that x
l
= x2 = 0 or x

x
= x le . The existence of

such an equilibrium state for x le ^ 0 is not possible, so v = 0 only if x = 0.

Finally, we note that H(s) e {SPR
0 } guarantees that h

x
> 0. We see in

Chapter III, Section 5, Definition PR3, that the numerator polynomial of

H(s), which is of the form

bms
m ~

1 + •
• + b2s + b

t ,

must satisfy b
x >0; by referring to Eq. (5-8) we observe that this is only

possible if h
l
> 0.
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The remainder of the steps taken in proving Criterion 1c remain un-

changed. Thus we can directly state the stability condition applicable to the

system specified by Eq. (5-10).

Criterion lc (Popov; particular case). The system defined by Eqs.

(5-1) and (5-10) is absolutely {F} stable if H(s) of Eq. (5-8) satisfies H(s) e
{SPR

0 }.

If one is willing to tighten the restriction of the bounds on /((T 0)/a 0
to

[s, F], where e is arbitrarily small in the particular case just treated, the

frequency domain condition becomes that of Criterion lb. With /(<7 0)/(7 0 e
[e, F] and h

1 > 0, we may use the standard general finite sector transfor-

mation (Section 5) to obtain the condition

£(*) =
1 + mf) • (/?°5 + yo)

+- 1 6 {PR}, /?. >0, y0 > 0,

which is satisfied if H(s) = [W(s) + F" 1]^ + y0)
±l e {PR}. Since in the

particular case we are only interested in the possibility of f(<T 0)/a 0
approach-

ing zero (the problem /(<7 0)/c

7

0 e [e, F] with A e {A 0 } is actually a principal

case problem since A e e {A
x }), this type of result is not considered further.

In applying these criteria, it is actually only necessary to consider the factor

(1 + QCqS^ 1 in Eq. (5-8), since y0 > 0 is always assumed with no loss in gen-

erality. It is then necessary to determine analytically whether some a
0 ^ 0

exists such that [W(s) -f F_1
](l + oc

0
s) ±l satisfies the requisite frequency

domain condition. Having the freedom to choose two parameters (fi 0 , y0 )

as in Eq. (5-8), while of no utility in the present case, is maintained through-

out this development because it is required for future derivations (Sections

2 and 3).

It is also usefuUo observe that if W„ A lim^ W{s) = p satisfies the con-

dition = —F" 1

,
then only Criterion la can be applied and (f3 0s + y 0)

+1

must be used. This is the case because p = —F"
1 yields [W(s) + F _1

]
=

hT(sI — A)~ l b
,
which has one or two more poles than zeros, so (P0s + y0)

1

cannot be used to obtain a positive real H(s).

Finally, we would like to emphasize that as in the case of the criterion of
Nyquist for LTI system stability analysis, the great merit of the various forms
of the Popov criterion lie in the simple and direct geometric interpretation

(Popov [3]) of the frequency domain conditions for absolute {F} stability.

This is considered in detail in Chapter VII.

The original result of Popov [1, 2] appeared in 1960 and 1961. Popov also

investigated the relation between his frequency domain criterion and the

existence of a Lyapunov function for the system. Yakubovich [1] and Kalman
[2] treated this problem extensively, and for the principle case both showed
that Popov’s criterion is necessary and sufficient for the existence of a Lyapunov
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function that is a quadratic form in the state variables and r plus an integral

of the nonlinearity. Yakubovich [2, Part I] treated discontinuous nonlin-

earities and considered the problem of stability of motion with an input

present; in this latter case, slope restrictions were found to be necessary. The
historical credits for all the developments related to Popov’s criterion are well

documented in Aizerman and Gantmacher [1], Lefschetz [1], and Hahn [1].

It is noted in Chapter I that following the pioneering work of Popov,

several new approaches have been suggested for the stability analysis of

dynamic systems. Among these, the functional analysis approach has proved

to be very successful. The stability definitions using this approach are not the

same as those of Lyapunov; instead, they are based on the input-output

analysis of feedback control systems. Many authors, notably Zames [1],

Sandberg [3, 5], and Desoer [1], have contributed significantly in this field

and have derived stability conditions for systems with different classes of

inputs.

2. Stability Criteria for Monotonic Nonlinearities

The nonlinear function /(<

r

0 ) considered in the above section is so unre-

stricted that the frequency domain condition that must be satisfied by the

LTI plant W(s) in order to guarantee absolute stability is sometimes very

conservative, that is, the sector of absolute stability may be small compared
to the Hurwitz sector. It is thus to be expected that as /(<

r

0) is more strictly

constrained (or more closely specified), the frequency domain conditions

on W(s) may be relaxed. This idea provides the basis for the problems inves-

tigated in Section 2 to Section 4. In the subsequent developments, criteria

of the basic forms given in Criteria lb and lc are derived.

The conditions obtained in Section 1 may be viewed as requiring the deter-

mination of a frequency domain multiplier Z(s) such that

Z±l
{s) e {ZF(s)} A {Z(s) = (/30s + y0 ),

and one of the following conditions is met:

Po >0, y0 > 0], (5-11)

lW(.s) + F~']Z(s) e {PR}, A e {A
or (5-12)

[W{s) + F~']Z{s) e {SPR
0 }, A e {A 0 }.

It may thus be said that
{
ZF} defines a set of frequency domain multipliers

for the problem considered by Popov, where /(<

j

0) e {i7}.

The generalization of Criteria lb and lc that is sought for restricted classes

of nonlinear gains, f(a 0 ) e [A], is that absolute (A) stability is guaranteed

if someZ(.s) exists such that Z±l
(s) e {ZN(s)} and condition (5-12) is satisfied.
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This implies that as the nonlinearity /(<

y

0 ) is restricted by assuming that it

belongs to some class [N], a frequency domain multiplier of some class must
be chosen in an attempt to satisfy condition (5-12); the main problem of the

remainder of this chapter is essentially that of ascertaining the correspondence

between nonlinearity classes and multiplier classes.

In Section 5 of Chapter III, the properties of general rational positive real

functions are investigated. The class {ZF(s)}> defined in Eq. (5-1 1), is a specific

subset of strictly positive real functions. The general multiplier classes [ZN(s)}
generated in the following sections also consist of strictly positive real

functions and include [ZF(s) } as a subclass, since {A} c= {F}. Since rational

positive real functions may be realized in network theoretic terms as driving

point impedances of electrical networks consisting of passive elements [resis-

tance (R), inductance (L), and capacitance (C)], we sometimes designate a

class by the elements required for its realization. For example, the multiplier

Z(s) used in the Popov criterion is realizable either as the impedance of

a series combination of resistance and inductance (R + ^L) or as a parallel

combination of resistance and capacitance (R -1 + sC)" 1

,
and hence can be

considered to be a member of a subclass of {ZRL} u {ZRC}. By convention, we
consider the RL function (fi Qs + y 0 ) to define the fundamental class of fre-

quency domain multipliers for the problem of Lur’e and Postnikov and the

RC multiplier to be subsidiary; this practice leads to a more convenient

formulation of later results (see General Stability Criterion 2). The realization

of a class of multipliers is particularly important in considering monotonic

gains.

The general system considered next is described by the state vector differ-

ential equation (5-1), constrained by

f(a0)G{Fj, A/(<70)/A<t0 e [0, M],

A E {^i}j Atf E {A
x }.

The analysis of such a system is necessarily somewhat more complex than

that just completed, so the presentation is subdivided into several steps.

A. System augmentation is introduced to allow for the generation of

frequency domain multipliers Z(s) with arbitrary poles for the infinite sector

case.

B. The infinite sector problem, that is 0 <; Af(cr 0)/A<7 0 < oo for all

finite c 0 ,
is treated, and the class {ZFm} is obtained.

C. A transformation is presented which converts a finite sector problem,

namely, A/(<j 0)/A<t 0 e [0, M), into an infinite sector problem that may be

analyzed as in B; the case A/(<t
0)/A<7 0 e [0, M

]

is then considered.

D. An inversion-transformation procedure is given that allows an inverse

multiplier to be used in the stability analysis of some systems, that is, ifZ~ 1
(s)

e {ZFJ, then Z(s) may be used in condition (5-12).
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A. System Augmentation

We are ultimately interested in obtaining frequency domain multipliers

that are rational; as a simple example, say Z = (s + X)/(s + rj). The fre-

quency domain condition for the infinite sector problem that W(s)Z(s) e
[PR] arises from the MKY lemma requirement that H(s) A [j-yr +
kT{sI — A)~ l b} e {PR}. The denominator of H(s) is determined solely by the

A matrix, so as matters stand, W(s) and W(s)Z(s) must have the same poles.

This problem has been circumvented in two ways.

(1) Pole-Zero Cancellation

Choose Z(s) such that poles of Z{s) [y — —
// in our example] are zeros of

W(s)\ then Z(s)W(s) differs from W(s) only in its numerator terms (zeros),

which are determined by y/ and k :

W(s) = p + hT(sI - A)-'b AA aAhJl' + Hi
d{s) d(s)

Z(s) = (s + X)/(s + r/

)

Z(sW(s) + kT(sI — A)~'b = AIA±A).

In a simplified system model with p = 0, a lemma due to Narendra and
Neuman [1] may be used to accomplish this objective; here it is modified to

become applicable to situations when p ^ 0.

Lemma 5-1 a. If [1*MU ~ft
-- p + hT(—tjI — A) 'b = 0, then define

cT A hr(til + Af 1

; (5-14)

this vectorf satisfies

(a) II
(5-15)

(b) cT(sI - A)-'b = W(s)l(s + rj) (5-16)

(c) crAx = hTx — t]c
T
x. (5-17)

Proof:

(a) cTb = —[hT(sI - A)~ lS£ II
-a

ll>

(b) hT(tiI + A)~' (si - - A) -'b

= hT(t]I + A) 1 rW + A) + (si - Af
s + T]

(si- Af 1 b

= (s + «)~W(sI - A)~'b + cTb],

which by substitution of cTb = p establishes the result;

(c) cTAx = hT(t]I + A)-'[(tjI + A) - r\l]x

= hTx — rih
T
{riI + A)~ lx A hTx — tjc

T
x.

t The vector c exists only if (77/ + A)~ l exists, that is, only if (— rj) is not an eigenvalue

of A.
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This approach is often quite restrictive. If W(s) has only complex zeros,

then a multiplier with real poles could not be used, although there is no reason

to believe that a multiplier Z{s) with real poles cannot exist such that W(s)Z{s)

e {PR}- For this reason, a different technique is used.

(2) Increased System Dimensionality

The problem that is encountered when pole-zero cancellation may not be

used is in achieving the correct denominator for Z(s)W(s); since we note that

poles of ZW must be eigenvalues of the A matrix, a second solution is to

modify the A matrix. This is accomplished by creating an augmented system

defined by {

p

a ,
ha ,

A a ,
ba}\ for our example the parameters of this set must

satisfy

\sI-A a \

= \sI-A\-(s + fj),

and

wa(s) A pa + h?(si - AJ-'ba = W(s) . (s + Ms +
clearly

~h~ "0"

Pa = P, K =
_h_

+ n
_ 0

'_
> ba =

b_

and

“ 0

0

0

/

-(a, + fja 2 ), — (a„ + if)

completely specify the desired augmented system indicated below [Eq. (5- la)]

in phase variable canonical form. Once this system is established, it is possible

to find a vector c as in Lemma 5-la that satisfies cT(sI — AJ” 1^ = Wa(s)/

(s + tj); by inspection,

a
i

h

+ P

an

0 _ 1 _

It is not possible to express c in the form (5-14), as (— tj) is an eigenvalue of
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A a and thus [r)l i A a
]~ 1 does not exist. The vector c defined above may be

seen to satisfy Eqs. (5-15) and (5-17), however.

The use of this second approach does not preclude the use of pole-zero

cancellation in considering H(s) A Wa(s)Z(s). It can be appreciated that pole-

zero cancellation is of great practical utility where it is possible to use it,

since the difficulty of showing that H(s) e {PR} increases rapidly as (n + m)
increases where m is the number of poles added in fVJs).

With the preceding motivation, the procedure of augmentation and its

implications can be considered precisely. From Eqs. (2-3) and (2-4),

W(s) = p +
1 + • •

-Ji^s + hj

s" + ans
n ~ l + • •

• + a 2s + a,

= + PX 1 + • •
• + Pi

s" + ans
n ~' + • •

• + a2s + a,

The transfer function of the augmented system may be expressed as

wa{S) = w(s)

.

where

(5-18)

(5-19)

0(s) Asm + gms
m ~

l + • •
• + g2s + gl (5-20)

is the polynomial with roots (real and negative in this instance) that are the

desired poles of Z(s) which are not zeros of W(s). The state vector repre-

sentation of the augmented system is given by

Z = A„Z + bja , oa = hjz + pax„, ra = -f(oa\ (5-la)

where pa , ha ,
Aa and ba are defined as

“0“ “0“ “0" ~h~
0 0 h

~0

o' 0

0

+ Srn

0

+ • • + Si +
•

0 h 0 0

It _ _ 0 _ _ 0 _ _ 0 _~
0

~

0 0

0

Aa =
0

/

0 0
i

~b_ —(«1 gz + a2gt ), . .

.

,—(gm + a„)_

(5-21)
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As mentioned earlier, a difficulty encountered in using the augmented system

arises in the application of Lemma 5- la. Since the vector c as defined in Eq.

(5-14) cannot be explicitly determined in this manner, the following construc-

tive procedure is adopted. If (s + tjj), i = 1,2,..., m, are factors of Q(s),

then

9(s) = 0 + tli)6
l
(s) A (s + + gm- l^

m ' 2 + • • + g,']-

Appropriate vectors c. may be defined as follows.

Lemma 5- lb. If

“
0
“ ~

0
“

0 0

0 0

0
+ Sm-l

Pi

Pi Pi

Pi

Pn

Pn P

_/>_ _cT_

Pi

Pi

Pn

0

0

0

(5-22)

then this vector satisfies

(0 c?bm = p (5-23)

(ii) c?(sl - Aa
)~ l ba = Wa(s)/(s + f,

t)
= W(s)/(s + ti,) (5-24)

(iii) c?A az = hjz — nf'Az. (5
‘25)

Relations (5-23)—(5-25) , which may be proved by direct expansion, corre-

spond to the relations (5-1 5)—(5-17), so that identical procedures may be used

for both the original and the augmented systems.

Before considering the absolute stability of the augmented system, we must

prove the equivalence of the stability properties of Eqs. (5-1) and (5-la).

Since this same procedure is used in considering time-varying systems, a

lemma regarding its validity is stated in general terms. The time-invariant

case used in this chapter is due to Brockett and Willems [1], who utilized it

for the same purpose.

First we express the system equations in the form of ordinary scalar dif-

ferential equations: If W(s) A n(s)jd(s), then as in Eq. (2-5), the most general
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system modeled by Eq. (2-6) is equivalent to

+ gHm, t] = 0 (5-26)

in differential operator notation, where Dm A dm/dt m . The augmented system,

similarly, is of the form

d(D)d(DX + g[n(D)Q(DX, t] = 0, (5-26a)

where 6(D) is defined in Eq. (5-20).

Lemma 5-2. If 9(D)C = 0 is an asymptotically stable differential equation,

then the original system (5-26) is uniformly asymptotically stable in the whole
if and only if the augmented system (5-26a) has the same property.

Proof: If £(t; £0 , t0) is a solution to Eq. (5-26), then £(/), defined by the

differential equation

0(DX(t) = Z(t), (5-27)

is a solution to Eq. (5-26a). Since £(t) and C(0 are related by this linear

time-invariant differential equation, it is well known that all solutions £(t)

correspond to all solutions C(t), that is, the set of solutions to Eq. (5-26)

corresponds in a one-to-one manner to that of (5-26a).

(a) If £(/) is an asymptotically stable solution to Eq. (5-26a), then 9(D)C(t)

is also bounded and goes to zero as t —> oo
;
this property is not dependent

upon the stability of 6(D)C = 0 as C(t) is obtained as a linear combination of

C(0» DC,..., Dm
C-

(b) If £(t) is an asymptotically stable solution to Eq. (5-26) and 6(D)C — 0

is asymptotically stable, then £(?), the solution to the nonhomogeneous linear

time-invariant differential equation (5-27), is likewise asymptotically stable.

B. The Infinite Sector Problem

Now consider the system defined by Eq. (5- la) with

/(<70) e [Fm ], Af(<Ta)/Aoa e [0, oo), A e {A,},

and the absolute Lyapunov function candidate

v(z) = wpz + pQ
r /(o dc + y 0

P

[f(oa)Y
j 0

+ flpt r /(C) dC, (5-28)
i= l J 0

where P = P T > 0, 0O > 0, p > 0, p, > 0, / = 1, 2, .

.

.

,

k, and f(oa) e
{Em) cr [F] ensure that it is valid. Choose the upper limits of the newly intro-

duced integral terms to be

A r?z = (yJPPcfz, i = 1, 2, . .
.

,

k, (5-29)
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where c. are the vectors defined in Eq. (5-14) or (5-22). From Eq. (3-4), v is

V = W(AJP + PAa)z - f(oa)z
r[Pba - P 0Aa

Tha - yX

]

- (PoK
TK + yap){f(Ga)Y - y^af^a)

+ £ yJ(°l)c?[Aaz - baf(oa)l
1=1

The last term of v may be simplified by using Lemma 5-la or Lemma 5-lb

and Eq. (5-29) to become

£ - ihiPJydo,],
i= 1

which may in turn be expanded to obtain

£ yJ(<7i)[Va - vkPJyX,]

-f(pa)z\- £ ykK - r,)

- £ yAfivj? - £ (fin, - yXJ(°d

- £ yk°a
- <r,)[/<>„) - f(<r,)]-

/= i

The reasons behind this more complex formulation are seen by inspecting

the right hand side term-by-term: when substituted into v, the first term

becomes part of the expression —f{c^zT[Pb — k], the second term becomes

part of —^y/[f(cra)]\ and the third and fourth terms are negative semi-

definite if P i
rj

i ^ yt > 0. That the last term is never negative is a direct con-

sequence of the definition of the class {Fm}. By substitution, then,

v = \zT(Aa
TP + PAjz - f(oa)z

TlPba ~ P0A a
Tha - y0ha - £ ykK ~ r

t)

]

1 = 1

- (fi0KTK + £ y,p)[f(<ra)]
2 - y*°af(°a)

i = 0

- £ (n,fi, - yi)<*tf(°i)
- £ yk°a - ^)[/(0 - /<>,)]> 030)

i=i i=i

which is now in a form appropriate for the application of the MKY lemma.

Identify

k A y0K £ ykK -
j = l

W = PoK
TK + £ y,p;

i = 0

(5-31)

then corresponding to some P = P T > 0 [Eq. (5-28)], a real vector q and

a matrix M = MT 0 exist such that

V = -\[zTq + v'V/OOl 2 ~ \zrMz - y0oj(pa)

- £ (fin, - y,)tr,f(<r,)
- £ yk°,

- - /(*»)].
i=i i=l

(5-32)
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if and only if

H(s) A p a[hjba + hJA/sI - Aay'ba]

+ VoIP + K\sl - Aay'ba]

+ £ y t[p + (K - nHsi - Aay i ba]

satisfies H(s) e {PR}. The first two terms yield the Popov multiplier term as

in Section 1 . The last summation may be simply evaluated by using Lemma
5-la or 5-lb to be

£ y,( 1 - (yJPXs + tiX'WM
i= l

The zero at .s = —rj. + yjp. lies in the range (— rjn 0], as we must choose

Pt
under the constraint p.rj. — y.

^

0 to keep the fourth term of v negative

semidefinite. The frequency domain condition thus may be expressed in

the standard form

:

H(s) A Wa(s)Z(s)

= (y0 + p0s) + i yt

s-+M£jJM
\
6 {PR}. (5-33)

L i=i s -+- rji J

The simplicity of the statement of this frequency domain condition for abso-

lute stability stems from the observation that the class of RL functions is

defined by

{ZrlC?)} A lz(s) = II (s + (s + fit);
\ i = 1 / i=l

/ = k or k + 1, 0 < Aj < < X 2 < tj2 . .

. |

(within a constant factor) if {ZRL}
cz {SPR} is assumed; otherwise = 0 is

possible, but that case is not considered for the same reason y0 = 0 is not

treated in Section 1. The most important points are that the first singularity

is a (real) zero, and that poles and zeros alternate. This form may readily be

expanded into

[zrl(j)} a jz = (s + A,) y? 0 + Xj yAs + nl) ;
o < a, < min{//,.},

Po = 0 if / = k, p0 = 1 if / = k + 1
; y, > o|. (5-34)

Returning to H(s) [Eq. (5-33)] and defining the parameters y 0
and

fi.

appropriately,

= ^0^1 > 0, Pt = yM - ^) > 0, (5-35)

where p. > 0 is guaranteed by the condition that X
x
is smaller than any pole

rjn it is demonstrated that {ZFm(s)} = (ZRL(^)} as it is defined in Eq. (5-34).

Hence for the absolute stability of the system under consideration, a suffi-
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cient condition is that some Z(s) e {ZRL}
exists such that fVa(s)Z(s) is positive

real. If this condition is satisfied, then

V = —i[zTq + Wf(<7,)]
2 - ±zTMz - P0XtOjiO')

-S ~ L tiffa - cr
f
)[/(cra) - f(ot)],

i=l i = 1

all terms of which are nonpositive given the parameter constraints of {ZRL},

that is, yt > 0, /?, > 0, y?0 ^ 0, k
x
>0. For absolute stability to be ensured

by the frequency domain condition, it remains only to show that v ^ 0

unless z = 0. This can be done following the same procedure used in the

derivation of the Popov criterion.

C. The Finite Sector Problem

A finite sector problem, f(c

r

a) e {Fm), Af(<Ta)/Aaa e [0, M), may be

analyzed using the result of Section B directly. The property that

0 < f(°<P ~ UeA < M
aa
-

<*o

for all oa and 6a (Chapter II, Section 1) makes the following elementary trans-

formation due to Rekasius and Gibson [1] (see also Thathachar, Srinath, and

Krishna [1]) valid.

Define W
x
(s), o

t
and fx (o x ) by

W
x
(s) A L(o

x
)IL(t) A W(s) + M-\

CTi = cr„ — f(oa)/M, (5-36)

fMl) = /(<0 ‘

Figure 5-1 demonstrates that the feedback system having W
{
(s) in the forward

Fig. 5-1. The finite sector/infinite

sector transformation.
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path and /,(•) in the reverse path is equivalent to the original system (5-la)

in both its behavior and its mathematical form:

z = Az -j- bx , A £

<T[ = hTz + (p + M~')x (5-37)

T = -/,(<? ,)•

It only remains to be shown that /,(c,) is a monotonic gain lying in the

infinite sector: define

where

m A.
~

— oa ~aa
’ ~ *1

*1 = <7* - f((*a)lM9

By direct substitution, m
x

— m/( 1
— m/M); ifm e [0, M), thenm^e [0, oo).

The result for the finite sector problem Af(oa)/Aoa e [0, M) follows

directly using the transformation (5-36); absolute stability is guaranteed if

Z(s) g {ZRLf?)} exists such that

W,{s)Z(s) A [W(s) + M~ l ]Z{s) e {PR}. (5-38)

This condition is of the desired form (5-12), and is the direct extension of

Criterion la.

As in the alternative case of the Popov criterion (Criterion lb), the sector

within which the nonlinearity is constrained to lie may be less restrictedjf

one further frequency domain condition is applied: Af(aa)/Aaa e [0, M]
is permitted if we assume that [1 + MW{i(o)\ ^ 0, co e [— oo, oo], that is,

that A m e {A j}. In the developments below, which allow Z~ x
(s) to be used

as a frequency domain multiplier, we see that a certain degree of symmetry

is revealed if this type of criterion is considered.

D. Multiplier Inversion

We note in the Popov criterion that (fi 0s + y 0 )
± 1 can be used as a frequency

domain multiplier. In the case that the Nyquist diagram of [W(ico) + F -1
]

lies in quadrants 1, 3, and 4 [that is, 2^[W(i(D) + F -1
]
A (f)p(co) e (— n,

+7t/2)], the special RL multiplier (fl 0s + y 0 ) is used, while if $?((£>) lies in

the range (— n/2, +n), the RC multiplier (f} 0s + y 0 )
_1 must be utilized.

Similarly, for /(<r 0 ) e {
Fm }, it would be expected that Z{s) e {Zrc}

could be

used to guarantee absolute stability, as [ZRC(s)} A {ZR i(j)}.

The standard approach used to obtain this last result is inversion, which

necessitates three transformations. For monotonic gains in the finite sector,
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we consider

a)
1 - efV(s)’

fiicrj Afier,) + ecr„;

fii<ra) e [FJ, A

f

1
(<ra)/A(ja e [e, M + ej.

This rearrangement of the system elements does not affect the stability

properties of the system (see Fig. 5-3). Hence, the original system {W , /} is

absolutely stable if {W
l ,fl \

is guaranteed to be absolutely stable.

(2) W2is) A (IF,)-' = (1 - slV(s))/W(S) A L(ob)/L(z„),

T„ A ~f2{ab) A —ffffa,)) A_-<j
a ; (5-39)

flier,) e {Fm}, Af2(ab)/Aa, e \(M + «)-*, a' 1
].

This transformation represents the actual inversion procedure. If the system

is represented by the nth-order scalar differential equation

[D" + d„D»-* + • •
• + d

2
D + dtf

+ f[(pD" + pnD"-' + ... +pz
D + = 0,

which is the NLTI form of Eq. (2-5), then the inverted system is

\pDn + ^D"- 1 + +p2D + p£
+ f' l [iD

n + d
n
D + • •

• + d 2£> + «,)£] = 0,

which is alternatively achieved by inverting W(s) and interchanging the roles

of <7 and t. The reason for the preliminary transformation is apparent; if

the original gain range is not shifted by e where e > 0, then the inversion is

not valid for /(<r
0)/<

r

0 e' [0, M ]. The justification for treating the inverted

system
{ fV2 , f2 ] in order to determine the stability properties of the preced-

ing system {IFi,/,} was first given by Brockett and Willems [1], using the

latter scalar differential equation formulation.

(3) W
3is) AWM

1 + W 2{s)HM + s)
= (M + S)

[1 + MWis)]

f3 ierb) Af2i<rb) - ejbj(M + e),

Uerb) e {FJ , Af3(a,)/Aa, e [0, M/(e(M + «))].

(5-40)

This final alteration is used to shift the range of/,((x,
; ) to have a lower bound

of zero; it is the same type of transformation made in (1).

Before applying the result of Section C to the final system {W3(s),f3 (<jb)},
it is necessary to guarantee that this system is of the required form. The
assumption that Au e {A,} ensures that Wfs) is asymptotically stable and
that it has no more zeros than poles. We should also be certain that f3(ab )

is indeed a monotonic function lying in the indicated sector, that is, that

m. flier,) - fjjOjP
z

ejh — a.
0,

M
e(M + e).
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By reversing the transformation,

M — m A f(<7a) — /(<7a)

(M + e)(m + e)
~ cra -oa

which, since m e [0, M], establishes the result.

The condition for absolute stability in the finite sector [0, Mj(e(M + e))]

is applied to the third transformed system to yield the frequency domain

restriction that Z(s) e {ZRL(s)} must exist such that

[W
3 + e(M + e)/M]Z(s) = [(M + e)IM] 2[W{s) + M~ l ]~ l Z(s) e {PR},

which is equivalent to the condition

[W(s) + M~']Z~\s) e {PR},

that is, an RC multiplier may be used in guaranteeing absolute stability.

The closed interval [0, M] has been considered so that the frequency

domain criterion using either Z(s) orZ _i
(j) may be stated in a unified manner.

If the interval [0, M) were considered, then it would only be necessary that

A e {A
t } for Z +1

(s) to be used in Eq. (5-12), while A e {A^andAa e {A
x }

are required if Z~ l
(s) is used.

Criterion 2a (Monotonic gains, principal case). The system described

by Eqs. (5-1) and (5-13) is absolutely {
Fm}

stable if there exists some Z{s)

such that Z ±l
(s) e {ZRL} and

[W(s) + M~ x ]Z(s) e {PR}. (5-12)

The particular case, A e [A
0 ],

indicated in Eq. (5-26) with f(a 0) e {Fm}

and A/((J 0)/A(7 0 e (0, M], may be treated in essentially the same manner

with only a few modifications to take into account the use of Lemma 5 instead

of the MKY lemma.

The class of multipliers {ZRL} has the property that if Z(s) e {Zrl}, then

0 < arg Z{ico) < nj2 ,

as does the Popov multiplier (J30s + y 0 ); however, the phase angle no longer

needs to increase monotonically from 0 to n/2. For this reason there are many
situations when an RL multiplier may be used and ((l 0s + y 0)

cannot. Several

examples of Z e {Zrl} are shown in Fig. 5-2. The same comment applies

vis-a-vis {ZRC} and (/3 0s + y 0)
_1

,
except that arg Z(ico) e (— n/2, 0].

Frequency domain conditions sufficient to guarantee the stability of sys-

tems with a single monotonic gain were first sought by Zames [1,2] and

Brockett and Willems [1]. The criterion derived in the latter work is the same

as Criterion 2a except that dfjdo is assumed to exist everywhere, whereas an

equivalent condition restricting — a 2) is sufficient. The

result of Zames is also similar to Criterion 2a. While the LTI portion of

the system may be more general, that is, W(s) is not necessarily rational, the

nonlinearity is never allowed to occupy the infinite sector, as 0 ^ /(<r 0
)/c

r

0
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< F < oo is always demanded. This restriction precludes the formal treat-

ment of nonlinear gains such as /(er0) = kct0
3

. At about the same time
Yakubovich [2, Part II], Dewey [1], Dewey and Jury [2], and Willems [1]

reported stability criteria for slope restricted nonlinearities which are not
expressed in terms of frequency domain multipliers, but are more nearly

related to the analytic formulation of the off-axis circle criterion [Eq. (7-24)].

In 1966 O’Shea [1, 2] introduced a new approach to the study of stability of
systems with a monotonic gain by use of the bounds of cross correlation

functions; this approach was corrected and refined in Falb and Zames [1, 2],

Zames and Falb [1], and further extended by Baker and Desoer [1].

The treatment presented here combines the multiple-integral Lyapunov
function approach of Narendra and Neuman [1] with the augmentation
method of Brockett and Willems [1] and the zero-shifting or finite sector-

infinite sector transformation of Rekasius and Gibson [1],

If the nonlinearity lies in a sector [0, F] which is much smaller than the

range of the slope, that is, if A/(cr
0)/A<70 e [0, M] where M»F, then a

less strict result due to Srinath and Thathachar [1] may be used.

Criterion 2b (Monotonic gains, sector and slope restrictions). The
system described by Eq. (5-1) with

0 < /(<t„)/ct0 < F, 0</(^ ~ /(g2) <M>F,
& \ (5-41)

A e {A,}, AP e {A ,},

is absolutely stable if Z(s) e {ZRL} [Eq. (5-34)] exists such that

— m _ _
[fF(.s) + F-']Z(s) - 2 J'/F’*

1 - M-‘) e [PR], (5-42)
i- 1

where the parameters y. are defined in Eq. (5-34).

A similar criterion for use for unrestricted slopes (M = oo) was proved
by Narendra and Neuman [1], Since the frequency domain condition is not

of the standard type [Eq. (5-12)], we do not consider this result in detail.
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The inversion transformation used in deriving Criterion 2a is found to be

invalid in this case, so Z~ l (s) e {ZRL}
cannot be used as a multiplier.

3. Linear Systems

The preceding section demonstrates that as the class of nonlinear functions

allowed in the feedback path is made more restrictive, the conditions on the

linear part of the system that ensure absolute stability may be relaxed. The

question naturally arises, in considering the limiting case when the feedback

gain is linear, whether this approach can yield conditions equivalent to the

Nyquist criterion, that is, conditions which are both necessary and sufficient

for stability. In Chapter IV it is mentioned that the Nyquist condition to be

satisfied for asymptotic stability with k g [0, K) guarantees the existence of

a shifted LC multiplier Z(s) e {Za(s)} such that [IF(s) + K~ l ]Z(s) e {PR}-

This in turn implies, as is briefly shown in this section, that a Lyapunov

function that is quadratic in the state variables and r, and linear in the gain

parameter, namely

v(x) = |X
T[P + kM]x + pz 2

exists to assure the stability of the system for k g [0, K). This fundamental

result relating the Nyquist criterion to the Lyapunov approach consequently

provides an additional justification for the search for frequency domain multi-

pliers discussed in this chapter, since the application of this technique to the

LTI case is no more restrictive than the Nyquist criterion.

The frequency domain multipliers used in Section 2 for monotonic non-

linearities contained only real poles and zeros. For more restricted types of

nonlinearities, we are interested in obtaining frequency domain multipliers

with complex poles, for example Z(s) g {Za(s)}. While the techniques used in

dealing with such systems are conceptually simple extensions of those

presented in Section 2, the generation of multipliers with complex poles adds

to the computational work involved in the analysis.

Consider

T = —KG 0 , K G [0,^), A G {A
t }, (5-43)

where [0, K) is one of the Nyquist ranges of the system described by Eqs.

(5-1) and (5-43).

The canonical form of the class of impedance functions that may be real-

ized using only inductance (L) and capacitance (C) is given in Eq. (4-42).

The shifted LC function is identical, except that (s + a) is substituted for s:

Sfa + a) .

1

2

„ 2 5

(5-44)

{Za(i)} A {z = p0(s + a)
k

+ s
s -f- (X 1=1 (s -(- oc)

2
4~ /^/

2

a > 0, /?„ > 0, y, > 0, 5, > 0, fcj.

By choosing a > 0, it is guaranteed that {Za }
c_ {SPR}.
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In deriving the frequency domain criterion, it is necessary to augment W(s)
by creating a matrix A a which has both the eigenvalues of the original A
matrix and additional eigenvalues corresponding to the poles of the multiplier
Z(s). If Z(s) must have poles at s = — a and s = — a =t ifin i = 1, 2, . . . , k9

this augmentation procedure can be implemented by successively adding poles

and zeros. For simplicity, we only consider one set of complex poles and
zeros in all that follows, since the addition of a real pole has been treated.

Let

Wa(s) = + g + g ==pa + hj(sl - Af'b.;

as in Eq. (5-21), we expand directly to obtain

0"
r°i

0“
h

II
S3

ii
51 0 , h.=

;
i

O

jci

+ 2a ~h

0 _

+ (a
2 + p

1
) o’

_ 0 ^

and denoting the last row of A a as —a,, — d2 , .

.

.

,

— d„+2 , we have
A
*1

“ 0
- "0“

<*1

A
a1 0 a

i

a i a 2

= • + (a2 + p 1
)

an

&n+ 1 1 an 1

_ an _ _1_ 0

(5-45)

(5-46)

In order to obtain a general term in a multiplier Z(s

)

that has these two
poles, it is necessary to define two vectors that correspond to the vector

c of Section 2.

a
l

h2 * 2

+ p

K
0 1

_o_ _ 0 _

"0“ “0"

A.

+ />

K
_o_ _1_

(5-47)

The last expression for e may be obtained by performing the indicated matrix

multiplication. These vectors may be shown by expansion to satisfy

(i) drba = 0, eTba = p, (5-48)
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(ii) e
T
(sI — Aa

)~ l ba = s[d
T(sI — Aj~'ba]

sW(s)
~

s
2 + 2ay + (a 2 + /i

2)’

(iii) dTAa = e
T

, e
TAa = hj - 2aeT - (a2 + fi

2)d\

(5-49)

(5-50)

Lemma 5-3. Given that the augmented system Wa(s) has poles at s = —a
± i/i, vectors d and e exist such that Eqs. (5-48)-(5-50) are satisfied.

We now choose as a Lyapunov function candidate

v(z) = 2tPz + p0(Koy + (na ) + 2j Pi*°r
i = 1

(5-51)

where

Ci A >T
t
^ = (7i/^i)c

T
z,

C 2
A r2

Tz A y 2d
Tz + (5-52)

c
3
A r 3

Tz A y 3
af
T
z + eTz

and according to Lemma 5- lb (with p + K~ l substituted for p), the vector

c satisfies

(i) c
Tba — p + K~ l

9

(ii) c
T
(sI - Aa

)~ 1 ba = (WJLs) + K^)/(s + a), (5-53)

(iii) cTAaz = ha
Tz — ucTz.

The vectors d and e satisfy Eqs. (5-48)—(5-50) with p replaced by (p + K~ l

),

so that the finite sector problem may be treated directly.

As in the previous sections, the validity of v(z) as an absolute Lyapunov

function candidate is easily verified. Considering the total time derivative of

v(z) along the trajectories of the system and using algebraic operations similar

to those described in earlier sectionst we obtain

t = \zT[Aa
TP + PAa]z — KGaz

T[Pba - fi 0(A a
Tha + ocha) — y t

c

- S^ocd + e)\ - P 0
[ha

Tba + a(p + K~ x )](Koa)
2

- p ocucaa
2
[l - k/K) - ak± Pp 2

. (5-54)
i = 1

The last two terms of Eq. (5-54) are negative semidefinite, and using the

MKY lemma, the first three terms may be made negative semidefinite by

satisfying a frequency domain condition of the form

[W(s) + K~']Z(s) e {PR}, (5-12)

f This procedure involves the following interrelations between the variables yt and pi :

Pi = yi(l - k/K) >0, p2 = p 3 = ic5i/(l - k/K) > 0,

y2 = a + n, y 3 = ct - fi,

where \i ^ 0 is arbitrary.
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where Z(s) e {Za (s)}. Hence we have the result that v < 0 if the above fre-

quency domain condition is satisfied. The argument that v 0 unless

z = 0 proceeds as in previous cases. Since Z(s) e {ZLC} implies Z~ l
(s) e

[
zlc(s)}> an<i similarly for Z(s) e [Za(s)}, a separate development is not

needed for inverse multipliers. The final criterion for linear time-invariant

systems may be stated as follows.

Criterion 3 (Linear systems). The system described by Eqs. (5-1) and
(5-43) is asymptotically stable if and only if Z(s) e {Za (j)} [Eq. (5-44)] exists

such that

[W(s) + K~i]Z(s) g {PR]. (5-12)

As mentioned earlier, this result is formally equivalent to the Nyquist cri-

terion, thus supplying an alternative necessary and sufficient condition for

asymptotic stability. The derivation presented here follows closely that of

Thathachar and Srinath [1], who proved a conjecture of Narendra and
Neuman [2]. The class of multipliers {Z

flC

(i')]is not the entire class of multi-

pliers that may be used for linear time-invariant systems. A simple argument
demonstrates that the existence of any multiplier Z(s) g {SPR} such that

H(s) = [W(s) + K~']Z{s) e {PR}

is a necessary and sufficient condition for asymptotic stability (see Chapter
IV, Section 3).

4. Odd Monotonic Gains

The derivation of stability criteria for other classes of nonlinear gain func-

tions proceeds as in Sections 2 and 3. By constraining the nonlinearity class

{V} to be less general than {Fm }, a frequency domain condition that is inter-

mediate in strictness between those of Criterion 2 and Criterion 3 may be

obtained. There are, however, two compelling reasons for considering only

relatively simple nonlinearity classes: If {iV) is closely specified, then it may
require extensive measurement of the input-output characteristics of the

nonlinear device (/(c

r

0 )
versus cr

0 ),
which runs counter to the philosophy of

absolute {V] stability, and if
{
N

} consists of a complicated class of functions,

then [ZN(s)} is likewise apt to be unwieldy and the application of such stability

criteria becomes extremely difficult at best. Even the stability criterion out-

lined briefly in this section suffers from this defect, and is therefore found to

be primarily of theoretical interest.

If the class of odd monotonic functions is defined by

{Fm0} A {/(ff0 ) ; /Oo) e {FJ, f(-a 0 )
= -/(<r0 ) for all cr 0 },

(5-55)
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the following lemma is found to be useful in rearranging the terms of the

derivative of the absolute Lyapunov function candidate prior to an applica-

tion of the MKY lemma.

Lemma 5-4. If f(o a ) e {Fm0} and A/(<70)/Act 0 e [0, oo), then aj(a
{ )

+ a 2f(a 2 ) ± [aj(a t) ± oJ{gJ\ > 0 for all <r, and a 2 .

The Lyapunov function candidate chosen has the same form as that for

the monotonic case [Eq. (5-28)] except that the upper limits of the integrals

o. are defined in terms of dTx and eTx as well as crx, as in Eq. (5-52) for the

linear case. The time derivative v contains terms of the form and

Lemma 5-4 can be used to incorporate these terms into negative semidefinite

forms as in the monotonic case. This procedure, in conjunction with Lemma

5-4, permits er, composed of dTx and eTx to be used in the absolute Lyapunov

function candidate and consequently allows the use of complex poles in the

multiplier Z(s ). The resulting class of multipliers that may be used in estab-

lishing absolute {Fm0}
stability corresponds to a special class of RLC func-

tions, that is, {ZFmo} cz {ZRLC}.

Lemma 5-5. •

Z(s) A (s + A 0 ) P0 + E y,

i = l S + TJi

+ £ V'T+f
. / = ;11+

1

s tJi

i yt i ++ m °‘s
2 + 2X,s + (A,-

2 + /t,
2
)

+ g +*/±r, (5-56)
i = nf+ 1 S 2 + 22,5' + (X 2 + fl

2
)

is a member of [ZFmn{s)} if each term of Z(s) is strictly positive real, if the para-

meter constraints 1 < pt < 2, £. < 21., 0, < 22. A n
i
and y/. < (2.

2 + ji
2
)

are satisfied, and if the auxiliary parameters v
f
. and £. defined by

I 1 1/2

0 < v, A l

i = 1, 2, . .
. ,

n 2[M'+AT+'i:
Ki(n ‘

2j +
^p‘— iMui -a

—

2

+ ij

i = (n 2 -f
-

1). 2 >

1+ «,-w 2

-i]n
,/a

L2A- H Me
2

/ ]
fj

(5-57)

0 < Z,,

A

i = 1, 2, . .
. , n 2

*,(*- <A,)

|^
+ [(a- - v,)/(«,- h) - A,p

y
2 _

i = (n 2 + !)?•••?

satisfy

(i) (?o +
.
S k)- %^ + OAe^O,

\ Z=/J2+l / l—l

(ii) (A,. — /*,)
— v

;
Aeji^O, i = 1,2,..., m 2 .

(5-58)
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One important feature is the position of singularities of Z(s). Denoting
the singularities of Z(s) by s,.(Z), we define the sector S', in the s-plane:

Sj A {3n/4 < arg[s,(Z)] < 5nj4).

The condition that 1 < p, < 2 restricts the terms 1 and 2 of Eq. (5-56) to

have their zeros in sector S, , and the second part of condition (5-58) requires

that poles of Z(s) must lie in the same sector. That the singularities of Z(s)
must lie in S

t
is a necessary but not sufficient condition for Z(s) e {ZPmJ.

The first two terms of {ZPJ were obtained by Narendra and Neuman [!].

The multiplier class defined in Lemma 5-5 was first obtained in its entirety

by Thathachar, Srinath, and Ramapriyan [1], using the same approach
outlined here. A similar result using functional analytic techniques is due to

Narendra and Cho [1],

Some of the complexity of the parameter constraints detailed above is

avoided by using the shifted LC function [Eq. (5-44)] whenever possible.

The chief simplification occurs in the auxiliary parameters v,- and they
become v,. = £. = 0.

Corollary to Lemma 5-5. A shifted LC function Z(s) e {ZJs)} [Eq.

(5-44)] is a member of {ZFJs)} if y ,
< a 2

/?0 where /?„ > 0, and if

(i) fi0a - £ (M) 1/2 A «i > 0, (5-59)
/=1 7

(ii) a - ft, - (3Jp')
1'2 As^O, / = 1, 2, . .

.

,

k.

Again, these constraints guarantee that s
t
{Z) e S

1
.

The obvious complexity of even the latter conditions [for Z(s) e {ZJs)}]
indicates that they are not particularly useful for most practical purposes,
unless a multiplier containing a few terms is adequate to satisfy the frequency
domain condition. In some circumstances it may prove to be useful to con-
sider other, more complicated classes of nonlinear gains, however; this would
certainly be the case if a specified type of nonlinearity were intentionally

introduced in the design of a system in order to achieve a particular type of
response. Results for power law nonlinearities are reported by Thathachar

[1], and for nonlinearities with restricted nonmonotonicity by Thathachar and
Srinath [3],

5. The General Finite Sector Problem

A single elementary transformation may be used to extend all of the

previous results to the general finite sector case. Thus, it is possible to state

all of the earlier criteria in one succinct result.
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Fig. 5-3. The general finite sector

/

finite sector transformation.

The general finite sector-finite sector transformation of Rekasius and

Gibson [1],

Ms) A W{s)K 1 + FnW(s)), f(t

7

0 ) A f(cr0 )
- Fno o , (5-60)

may be demonstrated not to affect the stability properties of the system;

in Fig. 5-3 we see that it is the complement of the transformation shown in

Fig. 5-1. Thus the absolute stability of the system represented by [Ms)^

f (<r0)} guarantees the absolute stability of the solutions of Eq. (5-1) con-

strained by Eq. (5-2a) or (5-2b). Thus, it is only necessary to show that the

transformed system is in the correct form to fall within the ambit of the

earlier work.

(i) W(s) is by definition asymptotically stable if Eq. (5-2a) holds, since

AFn e {

A

j}, and it has no more zeros than poles. If condition (5-2b) is

considered, then AFn e j/4 0 }
yields a similar result.

00 /(o’o) £= {^}> /(o’o)/o’o ^ [Oj Fn Fn\
or e (0, FN Fn]i this trans-

formation guarantees these conditions by inspection.

Being satisfied that the previous conditions for absolute stability are appli-

cable, we inspect condition (5-12) which restricts W(s)\ by direct substitu-

tion, Z{s) must exist such that Z ±1
(s) e (Z^s)} and

"w =Ltt4w)]zw (5 -61)

satisfies H{s

)

e (PR} if Eq. (5-2a) is considered, or H(s) e {SPR
0 } if f(oQ)

is constrained by Eq. (5-2b).

General Stability Criterion 1 . The system described by Eq. (5-1),

constrained by Eq. (5-2a) or (5-2b), is absolutely {N} stable if Z{s) exists such

that Z ±1
(s) e {ZN{s)} and H(s) [Eq. (5-61)] satisfies H(s) e {PR} for Eq.
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(5-2a) or H(s) e {SPR
0 }

for Eq. (5-2b), where the nonlinear function classes

{TV} and the corresponding multiplier classes ZN(s) are given by:

Definition 1

:

{N} = {F}
;

{ZF(s)} A {Z(s) = (fi0s + y0 ), 0O > 0, y0 > 0}. (5-1 1)

Definition 2

:

[N] = {Fm} ;
[ZFm(s)} A {ZrlWJ. (5-34)

Definition 3

:

{iV} = {Fmo}\ {ZFmo(s)} A {Z(s) satisfying Lemma 5-5 or its corollary}.

Definition 4

:

{N} = {L}; {ZL(.0} A {SPR} ^ \ZJs)}. (5-44)

General Stability Criterion 1 summarizes most of the results presented

in this chapter. For the problem considered by Popov, the multiplier

consists of a single term
(fi0

s + y 0 )
or ^ ts inverse - When the class of

nonlinear functions includes only monotonic nonlinearities, the multiplier

can have an arbitrary number of alternating real poles and zeros. For odd

monotonic functions in the feedback path, the multiplier belongs to a

restricted class of ZRLC functions. Finally, for a linear gain, the multiplier

can be any arbitrary rational strictly positive real function, and the stability

criterion is equivalent to the Nyquist criterion.



VI

STABILITY OF NONLINEAR TIME-VARYING

SYSTEMS

The first absolute stability criterion that was developed for an extension

of the Lur’e model of Chapter V to the time-varying case [g(a 0 , t) or

f(a 0)k(t) replacing /(<r
0 )

in Eq. (5-1)] is the circle criterion. The derivation

of this sufficient condition for system stability utilized the common quadratic

Lyapunov function v = xTPx rather than an extended Lur’e-Postnikov

form with integral terms based on the NLTV gain. Since v does not contain

g(a 0 , t), the continuity of g(a 0 , t) with respect to time is not required in

order to satisfy the conditions necessary to establish the validity of v as a

candidate (Chapter III, Section 2). Similarly, as v does not contain dg/dt,

the rate of time variation is completely unconstrained.

It is shown [Eq. (6-11)] that if the circle criterion is applied to the system

described by Eq. (5-1) for /(<7 0)/ct 0 e [0, F], it is required that

H(s) = [IT(j) + F" 1

] e {SPRj.

This is essentially a special case of the Popov condition (see Criterion lb,

Chapter V, Section 1), where 0O = 0 and y0 = 1, except that the frequency

domain condition is somewhat more strict. The same closed range [0, F] is

valid for any nonlinear time-varying gain g(a 0 , t) by the circle criterion,

regardless of its rate of time variation. The fact that a special case of the

Popov criterion can be extended to an NLTV situation makes it reasonable

to expect that the general form of the Popov condition (/30 ^ 0) may be

121
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extended in some way to render it applicable to nonlinear time-varying sys-

tems. The Lyapunov function candidate that makes this generalization pos-

sible is a straightforward extension of the Lur’e-Postnikov form where /(cr
0)

is replaced with g(cr
0 , t) or f(<J 0)k(t) in the integral term. This form is related

to the concept of the ^-dependent Lyapunov function candidate introduced

in Chapter IV; in particular, for LTV systems with p = 0, this candidate is

linear in k(t)

:

v = i-[x
TPx + k(t)xThhTx].

Since v A (Vi;)
Tx + dv/dt now must contain dkldt or dg/dt ,

it is to be anti-

cipated that the rate of variation of the gain with respect to time must be

restricted in some manner.

All of the stability criteria of Chapter V for nonlinear systems may be

generalized using the same arguments applied to the Popov criterion to allow

their application in time-varying situations. The resultant conditions that

the rate of time variation must satisfy are found to depend on a certain index

of the nonlinearity of the system ($, defined in Chapter II, Section 1) and
a property of the frequency domain multiplier Z(s), defined in Section 2 of

this chapter to be the multiplier margin A.

The direct utilization of Lyapunov’s stability theorem yields a point con-

dition that dg/dt must satisfy, that is, dg/dt must be constrained at each

instant in order to guarantee that v < 0 for all t (see General Stability Cri-

terion 2, Section 4). The application of a corollary of the theorem of Cor-

duneanu, on the other hand, yields the requirement that dg/dt be bounded
only in a time-averaged sense. This latter criterion (General Stability Criterion

3, Section 6) is more general than General Stability Criterion 2 in this respect,

and in fact contains General Stability Criterion 2 for the infinite sector prob-

lem as a special case.

Since the systems under investigation in this chapter are no longer auto-

nomous, Theorem 1 used in obtaining point constraints on dg/dt necessitates

showing that v is negative definite (except in the case of periodic systems,

Section 5); for this reason, the Lefschetz form of the Kalman-Yakubovich
lemma (the LKY lemma) is used in lieu of the MKY lemma in Sections 2

and 3. The application of the LKY lemma results in a frequency domain
requirement that

H(s) A \\j, + k\sl - A)~'b e {SPR}.

The negative definiteness of v is thus obtained at the expense of requiring

that H(s) satisfy a more restrictive frequency domain condition than that

obtained in Chapter V.

All stability problems treated in this chapter pertain to a system described

by the state vector differential equation

x = Ax + br, g 0 = hTx + /?t, * = -g(°0’ 0 - (6
- 1 )
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We note in Section 2 that there is no advantage to be achieved in treating

the particular case. Thus we generally assume that

g(? 0 , 0 G T]}, g(oQ9 t)/(7 o G [|
Gn ,

G*],

g ^ e {^j},

where, as in the NLTI case, we usually take GN to be zero (except in the

derivation of the circle criterion) until we treat the general finite sector

problem by the elementary transformation of Chapter V, Section 5. The

same initial assumption that A K g [A
x } 9 k g [

GN ,
GN], is made as in the

NLTI case and it is subsequently discarded except at the extrema [Eq. (6-2)],

since the frequency domain condition for absolute stability subsumes this

condition for k g (GN9 Gn).

1. The Circle Criterion

The system whose stability is to be determined is described by the vector

differential equation (6-1), where the NLTV gain and the A matrix are con-

strained by

g(p 0 , 0 e [G
t
[F, K0]} 9

g(ct 0 ,
t)!a 0 g [G, G], G < 0 < G,

Aq g {A
x } 9

Ag g {.

A

j}.

The nonlinear time-varying gain function g need not be separable, and this

is the only case considered in this book where g(a Q9 1) may have a discontinu-

ous time variation. From the specified range, the useful inequality

(G<j 0 + t)(G<j 0 + t) < 0 (6-4)

follows directly.

It is possible in this case that G < 0, that is, that g(a 0 , t) may pass outside

the first and third quadrants; however, in this sector g must still behave like

a member of {G.[F
9
K0]}, in that Eq. (6-3) is the only restriction. We do not

consider G > 0 at this time, since this case may be simply treated by the

transformation of Section 4.

It is desired to find the range [G, G] such that v(x) = \xTPx exists as a

common quadratic Lyapunov function for the dynamic system described by

Eq. (6-1); directly,

v = \xT(ATP + PA)x - g(cr 0 , t)x
TPb.

Using the practice established in Chapter V, this derivative may be expanded

to yield

v = ^{xT(ATP + PA)x + 2TxT[Pb — \{G + G + 2pGG)h\

- (1 + pG)( 1 + pG)t 2 - GG(hTx) 2 + (Go Q + r)(Go 0 + r)}.
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This expression is very much like that obtained in each development of
Chapter V just prior to the application of the MKY lemma (Lemma 3,

Chapter III, Section 4). This lemma gives a necessary and sufficient frequency

domain condition that the equations

ATP + PA= -qq-1 - M, Pb - k = q

have appropriate solutions; the first three terms of v [Eq. (5-4)] then form
a negative perfect square and a negative semidefinite quadratic form. The
development presented by Narendra and Goldwyn [1] provides a similar

reduction for the first four terms of the above equation; however, the con-

ditions which ensure that v is negative definite as required in treating time-

varying systems (Theorem 1, Chapter III, Section 3) are not given explicitly.

This problem is circumvented by using a lemma of the Lefschetz form which
yields v having a nonpositive perfect square and a negative definite quadratic

form. A general statement of suitable form is adapted from the result of

Rekasius and Rowland [1],

Lemma 6. Given A e {/f,}, (A,b) completely controllable, a real vector

k, scalars y/ ^ 0 and e > 0, and arbitrary matrices R = RT > 0 and 5 =
ST > 0, then the matrix P = PT > 0 and a real vector q satisfying

(a) ATP + PA = -qqT - eR - S, (6-5)

(t>) Pb — k = */y/q, (6-6)

exist if and only if e is sufficiently small and

(c) H(s) AV + 2kTm(s) - m*(s)Sm(s) e {SPR}, (6-7)

where m(s) A (si — A)~'b, m*(s) = mT
(s*) and s* = a — ico.

This result differs from the lemma of Rekasius and Rowland in that S is

more general (not specified to be proportional to hhT) and a term —eR is

included in Eq. (6-5) to ensure that v is negative definite. To achieve this

end, a more strict frequency domain condition (6-7) has to be satisfied.

The steps in the proof of this lemma are almost identical to those taken

in demonstrating the validity of Lemma 5 in Chapter III, Section 4. A great

deal of simplification arises from the assumption that A e {zf,}.

In deriving the desired stability criterion, we identify

S= —QGhhT >0, k A $(G + G + 2pQG)h, yj A (1 + pQ)( 1 + pG)

(6-8)

so that v becomes

v = —\{[xTq — ^/y/x] 1 — (Gir 0 + t)(G<t 0 + r) + exTRx} < —\exTRx,

(6-9)
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which is negative definite due to inequality (6-4) and Lemma 6. Substituting

Eq. (6-8) into Eq. (6-7) and taking the real part of H(ico) gives us the relation

Re H(ico) = 1 + (G + G) Re W(ico) + GG
|

W(ico)
|

2 > 0,

where we recall that W(s) = p + hT(sI — A)~ l b. Note that this is the num-

erator of

p /I + GWQco)
1 _ 1 + (G + G)U+ GG(U2 + V 2

)

U + GtV(ico) I (1 + GU) 2 + (GV) 2

where W(ico) A U(co) + /V(co), so Lemma 6 subject to Eq. (6-8) is satisfied if

[1 + GW(s)]/[ 1 + GW(s)] e {SPR}. (6-10)

Criterion 4 (The circle criterion). The system defined by Eqs. (6-1)

and (6-3) is absolutely {G.[F, /f
0]} stable if condition (6-10) is satisfied.

This criterion is of great utility owing to its simple Nyquist-like geometric

interpretation in the polar plot (Im W(ico) versus Re W(ico)) as detailed in

Chapter VII.

The genesis of this criterion is quite complex. The first incidence appears

to be due to Rozenvasser [1], who proved a special case of the above corre-

sponding to a nonlinear time-varying function g(a 0 , t) in the sector [0, G];

his proof involved the use of a common quadratic Lyapunov function. Bon-

giorno [1, 2] used an appeal to Floquet theory and Fourier transform tech-

niques to prove a special case for an LTV system with
|

k(t)
|

G.

The criterion for nonlinear time-varying gains in the statement above

with p = 0 is due to Narendra and Goldwyn [1], who again used a common
quadratic Lyapunov function approach. An independent result of Kudrewicz

[1] gives the same frequency domain constraint (6-10) as a sufficient condition

for energetic stability, that is, if a system input exists (see Fig. 2-1) satisfying

||u|| Alim Tt' 1

[

T

\v{t)\
2 dtT

1

= Q,

then the system output g 0
satisfies ||cr 0 ||

— 0 if condition (6-10) is satisfied.

Shortly thereafter, more general forms of the circle criterion were obtained

by Sandberg [2] and Zames [2], using functional analytic techniques. The

generality of the latter results devolves from an integral formulation of the

LTI portion of the system, which allows the representation of plants with

pure time delays [e
Ts in W(s)\ and distributed systems; p = 0 is still assumed

in these derivations, however.

If the lower bound on g(<7 0 , t)/a Q
is G = 0, then the condition of Criterion

4 simplifies to

[G" 1 + W(s)] e {SPR}, (6-11)

which is essentially a special case of the Popov condition for the finite sector



126 VI Stability of Nonlinear Time-Varying Systems

problem [Criterion lb, refer to Eq. (5-9)] with fi 0 = 0, y 0 = l. The full

importance of this case also lies in its geometric interpretation.

2. An Extension of the Popov Criterion—Point Conditions

The stability criteria developed in this section represent a straightforward

extension of the results of Chapter V for NLTI systems with first and third

quadrant gains. The application of Lyapunov’s stability theorem results in

a condition that dg/dt must satisfy at each instant of time (a point condition)

in order to render v negative definite for all t. Since the rate of variation of

g((J 0 , t) with respect to time is being restricted in general, it is not at all

surprising that the condition to be satisfied by W(s) may often be less strict

than that imposed by the circle criterion. This in turn may mean that the

upper bound on g(<j 0 , t)/a 0
may be allowed to be higher for a given W(s)

if dg/dt is restricted. As dg/dt becomes less restricted, the constraint on W(s)

approaches that imposed by the circle criterion for the range [0, G]. These

relationships, which provide the main motivation for this study, may be most
clearly appreciated by considering the corresponding geometric criteria

(Chapter VII) and applications (Chapter VIII).

The system under consideration is represented by the vector differential

equation (6-1) with the NLTV gain and the matrix A specified by

g(<r
0 , 0 e {G

{
[F, £J}, g(<r0 , t)/a 0 e [0, G],

A e {

A

j},- Ag e [A^.

This formulation is similar to that considered in deriving the circle criterion,

except that the gain g must be a continuous function of time, that is, K
x

replaces K
0
in the specification of the behavior of g with respect to time,

as required for the validity of the absolute Lyapunov function candidate.

Only separable gains are considered in detail; the result for inseparable

nonlinear time-varying functions is obtained directly at the conclusion.

The absolute Lyapunov function candidate is an obvious generalization of

the Lur’e-Postnikov form as modified by Popov and used in Chapter V,

Section 1

:

<X, t)
- Px + fam f°/(0 dC + (6-13)

j 0

As in previous developments P = PT > 0 and, initially, >0 and /?> 0

are assumed to guarantee its validity according to Lemma V3, Chapter III,

Section 2. There are several reasons for this choice of Lyapunov function

candidate, aside from the obvious one that Eq. (6-13) arises from a direct

substitution of k(t)f(G 0)
in lieu of /(cr 0) in the original Lyapunov function
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candidate for NLTI systems (Chapter V, Section 1), as indicated earlier

(Chapter III, Section 2, and Chapter IV, Sections 1 and 3).

In considering the finite sector problem for separable gains, we have

G A FK, where the upper bounds F and K are specified only within an arbi-

trary constant multiplier;

o < (o oy'f{aQ)k{t) = (c0
)- 1

[«/(<r 0)] [a
-

1

&(7)] < G (6-14)

yields upper bounds aF and K/a, for any a > 0. The total time derivative of

v(x, t) along trajectories of the system described by Eqs. (6-1) and (6-12) is

v = %x\ATP + PA)x - k(t)f(a 0)x
r[Pb - $ 0A?h - y ah]

~lP 0
hTb + y0{p + <T‘)][A:(0/(<7 0)]

2

- (yJK)a 0f(a 0)k\m - f(a 0)/(F<r „)]

-m P /(O4 [ro0(ffo){i - m/K] - p0k-' dk/dt]. (6-15)
j 0

We arrive at this point using manipulations that are analogous to those

used in deriving Eq. (5-4); the principal departure is the appearance of the

term involving dkldt. The first three terms of this expression may be guaran-

teed to be negative definite by stipulating that the frequency domain condition

imposed by the LKY lemma is satisfied. The fourth term is never positive

if 7o ^ 0, since f(a 0)/a 0 e [0, F]. The fifth term contains the ratio

0K) A K/K)/Jo7(0 dQ > $ A min(0(<x
o)} > 0; (6-16)

CTO

the lower bound $ provides an effective measure or index of the nonlinear

behavior of the gain. This last term of v leads to the constraint on dkjdt .

To be more explicit, two conditions suffice to ensure that the system de-

scribed by Eqs. (6-1) and (6-12) is absolutely stable:

(a) H(s )
A [W(s) + G~ l

](fi0s + yQy- 1 e {SPR}; y 0 >0, > 0,

(6-17)

(b) y&k(t)[ 1 - k(t)/K] - dkldt > 0. (6-18)

In obtaining the first or frequency domain condition, the application of

the LKY lemma to obtain what is essentially the Popov constraint on W(s)

proceeds as in Chapter V. Define the parameters k and y/ according to Eq.

(5-5) with G replacing F; then H(s) e {SPR} is demanded where

H(s) A fi 0s[h
T(sI - A)-'b] + y0[W(s) + G -1

]

in order to render the first three terms of v negative definite [see Eq. (6-19)].

Then we extend the argument of Chapter V, Section 1 to relax the require-

ments that /? 0 ^ 0 and p ^ 0 for v(pc
, t) to be a valid absolute Lyapunov

function candidate. This entails replacing k(t)f(o Q) by k(a 0 , t)a 0
and utilizing

the fact that k e [0, G] in proving that v(x
, /) is equal in value at every instant
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to a positive definite quadratic form. As in Chapter V, the frequency domain
condition H(s) e {SPR} with fi0 allowed to be positive or negative is equiva-

lent to condition (a), where f} 0
A

| fi 0 1. We again express this restriction in

terms of the class of multipliers {

Z

F(s)},

{ZF(s)} A {Z(s) = (fi0s + y 0 ), p 0 > 0, y0 > 0); (5-11)

thus condition (a) may be expressed as the equivalent requirement that Z(s)

must exist such that Z ±l
(s) e {ZF(s)} and [W{s) + G~ l ]Z(s) e {SPR}. This

condition again permits the removal of the implicit assumption that A K e
{Tj}, k e (0, G) as in the NLTI case.

The second or instantaneous time-domain restriction on dkldt directly

guarantees that v is bounded above by the negative definite quadratic form
provided by the application of the LKY lemma. To demonstrate this, we
substitute for k and y/ in v, eliminate the fourth term of Eq. (6-15) (which

is never positive due to the finite sector condition), and arrive at

* < —%Wq + */VKt)f(o0)Y - { sxJLx

~m - m/K) - hk' dkldt] < -\zx*Lx,

(6-19)

where the right-hand inequality is valid by virtue of condition (b), Eq.

(6-18). If (fi 0s + y 0)
+1

is used in the frequency domain constraint (a), then

condition (b) is simply

dkldt < (yjfi0)®*(0[1 ~ k(t)/Kl (6-20
+
)

whereas^ if the use of (fi Qs + y 0
)~ l

is required by the form of W(s), then

taking fi 0
= —fi 0 < 0 in condition (b) yields the constraint

dkfdt > -(yjfi0)Qk(t)[l - k(t)/K]. (6-20")

The above definition of {ZF{s)} may be used to refine the time domain
restriction on dkldt as well. If a frequency domain shift of A units is made
for some specific member of

{ZF(s)}, we have

Z(s - A) = [J3 0(s - A) + y 0 ].

If we constrain Z(s — A) to be a member of [ZF(s)} and define the multiplier

margin of Z(s) to be the upper bound on the frequency domain shift allowed

under this restriction, we have

A A max A: Z(s - A) e {ZF(s)} for all A e [0, A). (6-21)

In this case, Z(s — A) e {

Z

F(s)} if (yQ — y5 0 A) > 0 or if A < y 0/P 0
A A;

this ratio appears in condition (6-20± ).

The above derivations, definitions and comments complete the proof of

the first extension of the Popov criterion for the absolute stability of NLTV
systems.
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Criterion 5a (A point criterion, first and third quadrant gains). The sys-

tem defined by Eqs. (6-1) and (6-12) is absolutely {GJF, FJ} stable if

(1) there exists some Z(s) such that Z±l
(s) e {Zp(s)} [Eq. (5-11)] and

[W(s) + G-']Z(s) e {SPR}; (6-22)

(2) dk/dt is restricted by

dk/dt < ®A*(/)[1 ~ k(t)/K] if Z+1 e {ZF(s% (6-23
+
)

or

dk/dt > -®A*(f)[l ~ k(t)/K] if Z 1 e {ZF(s)}, (6-23")

where A = y 0/fi 0
is the multiplier margin of Z(s) [Eq. (6-21)] and <X> is the

index of nonlinearity [Eq. (6-16)]. Qj

It is important to emphasize that this theorem enables us to completely

separate the constraint on dkjdt from the values of cr
0
and f(cr 0 )

at each

instant. This was accomplished by two artifices : discarding the fourth term

of Eq. (6-15) and defining O as an index of nonlinearity. Without taking

these steps, the time domain condition would be

dk < y 0 <r Qf(<r 0 )

dt J-/(C)rfC
m 1 - f(°o)k(ty

G<J 0 _

(for Z +l
(s) e {ZF(s)}) 9 which is difficult, if not impossible, to apply directly.

On the other hand, the above might conceivably be less strict, since condi-

tion (6-23 +
) is only a sufficient condition for this constraint to be satisfied.

The comparative simplicity of Criterion 5a would seem to far outweigh any

such considerations. The parameter <D was introduced by Narendra and

Taylor [1]; since it is important to be able to make a liberal estimate of this

parameter so as to allow dkjdt. as large a variation as possible, a detailed

discussion of <X> is given in Chapter II, Section 1.

It is noted [Eq. (6-11)] that the circle criterion for g(cr 09 t)/<J 0 e [0, G]

requires that condition (6-22) be satisfied for Z(s) = 1. Since y0 > 0, A =
y0 lfi 0 becomes infinite as /? 0

— 0, so the same result (unbounded time varia-

tion) is allowed by (6-23 ±
). Thus the extended Popov condition agrees with

the result obtained by an application of the circle criterion; in this sense, the

circle criterion may be viewed as a special case of Criterion 5a.

In application, this theorem lends itself to a quite direct interpretation.

First, the class of multipliers [ZF(s)} provides an explicit constraint on the

type of behavior that [IV(s) + G~ l

] can exhibit. This condition is equivalent

to a simple geometric restriction on W(ico) 9 considered in detail in Sections

2 and 5 of Chapter VII. Once this part of the absolute stability criterion is

known to be satisfied, it is necessary to extract two pieces of information,

one from the LTI portion of the system (A, or the multiplier margin of Z(s)) 9

and one from the behavior of the nonlinearity (O, or the index of nonlinearity).

Based on these parameters, it is then possible to constraint dkjdt in such a
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manner as to guarantee absolute stability by using condition (6-23*). The
parameter A is simply obtained from the geometric constraint onJV(ico), and
condition (6-23 ±

) also permits a simple graphical interpretation in the

phase plane {dk/dt versus k) (Chapter VII, Section 5A).

Considering the form of v under the substitution of g(a 0 , t) for k(t) /(cr 0 )

(that is, under the assumption that the nonlinear time-varying gain is not

separable), the only condition of Criterion 5a that must be altered is (2)

[Eq. (6-23 ±
)]. Since g(ij 0 , t) is not separable, it is no longer possible to express

the restriction on the rate of time variation in such simple terms. As all other

details in considering g e {G
0 }

are identical, the stability criterion may be

written by inspection.

Criterion 5b (A point criterion, inseparable gains). The system defined

by Eqs. (6-1) and (6-12) is absolutely {G
0 [.
F

,
K

x ]} stable if

(1) condition (1) of Criterion 5a is satisfied;

(2) dg/dt is restricted by

r<ro —
<?£(£, t)/dt dC < Aa

0
g(a

0 , r)[l - g(ff
0 , t)l(Go 0 )]

(6-24+ )J 0

for all <7 0
and t if Z +,

(s) e {ZP(s)}, or

r<ro — _
dg(t, t)ldt dC > -Aa 0g(a 0 , r)[l - g{a

0 , t)/(Ga 0 )]
(6-24“)

J 0

for all cr 0 and t if Z” 1 g {Zf(s)}\ A = y 0//? 0 is the multiplier margin [Eq.

(6-21)] of Z(s).

The stability condition (2) in Criterion 5b is difficult to apply in general.

In the infinite sector case, however, this criterion may be tractable.

Criteria for the particular case of one zero eigenvalue may be obtained by

making suitable modifications in the derivations of Criterion 5a and Cri-

terion 5b. We find, however, that in order to constrain v to be negative

definite as required in time-varying situations, it is necessary that g(<7 0 , t)/a 0

^ e > 0 for all <j 0
and t. Ranges of the form [g, G] may be treated by the

general finite sector transformation (Section 4), since stability in the limit

(see Chapter V, Section 1) guarantees that A e e {A
x }.

The rationale for

considering the particular case for NLTI systems is that we can permit f(a 0)/

o' 0
to approach zero asymptotically, that is, f(o 0)/o 0 e (0, F] ;

since this

cannot be allowed in NLTV situations, there is no point in treating this

problem separately.

The first instance of point constraints on dkjdt is due to Narendra and

Goldwyn [3]. Brockett and Forys [1] derived the special case of Criterion 5a

for LTV systems (O = 2). Rekasius and Rowland [1] obtained a number
of possible constraints on

J^
0

<?g(£, t)/dt d£, one of which corresponds to

Criterion 5b. Sandberg [5] extended the result of Brockett and Forys by

using a more general integral formulation and functional analytic techniques.
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3. Stability Criteria for Restricted Nonlinear Behavior—Point Conditions

The derivation of stability criteria for all NLTV systems with restricted

nonlinear behavior is sufficiently similar to the extension of Popov’s theorem

that only the class {G
x
[Fm ,

K^} requires complete analysis. Even this case

is made relatively simple in some respects, given the result of Chapter V for

monotonic gains. In particular, the extensive preliminaries regarding system

augmentation and the validity of treating the augmented system to determine

the stability of the original system (Lemma 5-2) are identical, as is the fre-

quency domain analysis leading to the use of the RL multiplier in the stability

criteria. We denote the state vector by z so that it remains evident that the

system under consideration has been suitably augmented, but the system of

subscripting (A a ,
ba ,

ha) is eliminated. This reduction in preparatory con-

siderations is counterbalanced to some extent by the greater complexity of

the various transformations due to the time variation of the gain.

We should again stress that the motivation of this analysis is the under-

standing that as the nonlinear behavior is restricted, we would expect in

general to be able to relax the conditions to be met by the remainder of the

system. This usually leads to either an increase in the range permitted for

the NLTV gain, or a less stringent restriction on dkjdt or dg/dt, or both.

The stability properties of the system described by the vector differential

equation (6-1) with the NLTV gain and matrix A specified by

g(cr 0 ,0 e [G,[Fm , AT,]}, Ag(<r 0 , t)/Aa 0 e [0, GM],

. , . . . ,
. ,

(6-25)
A e {A

t }, AGm e {A
t },

are to be ascertained. For the finite sector case we have k(t) e [0, K] and

0 <
~

< M for all er, and o 2 *o t : Gm Az MKG
1

G 2

in the separable case, or

0 < ^ ^ Gm for all cr
1

and a 2 a
1

and t.
G

i

~ G
i

In the developments that follow, the subscript M on the upper bound is

suppressed.

The multiplier class {ZFm(s)} consists of arbitrary RL functions. The
class {ZRL}

is defined in Chapter V by the expansion

{ZRL(s)} A{Z = (s + + 2 yj(s + nd

o < Aj < min(iy
f), > 0, y. > 0} c= {SPR).

(5-34)

The reciprocal multiplier, Z(s) g {Zrc(^)} A {Zii(j)j also may be used for

monotonic gains. Since the singularity of Z(s) that is closest to the origin
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in the s-plane is at s = — k v we have the result that Z(s — X) e [ZRL}for

any value of A e [0, Aj), so

AAli (6-26)

establishes the multiplier margin [as defined in Eq. (6-21)] of any frequency

domain multiplier belonging to {ZRL}.

A. The Infinite Sector Problem

The steps for determining the conditions for stability in this case closely

resemble those that have been presented for the previous case. The time-

varying absolute Lyapunov function candidate has the form

m reri

v(z, t) = jz?pz + s pm I m di

:

+ \ poP (6
-27)

1=0 J 0

where the usual parameter constraints hold and on i = 1, 2, . . . ,
m are

chosen, as in Section 2 of Chapter V, to give the desired poles in Z(s). After

application of the LKY lemma, the corresponding derivative v contains

terms of the form — X?=o PMO Jo‘ /(C) [AjO — k~ l dk/dt

]

in addition to

the negative definite term —j-ezTLz and other negative semidefinite forms.

As in the previous case, dkjdt has to be bounded by A<&k(t) to yield a negative

definite v. For the infinite sector problem, the absolute stability of the system

is thus guaranteed if Z(s) e {ZRL}
exists such that .

W(s)Z(s) e {SPR}

and (in the separable case)

dk/dt < AQ>k(t). (6-28a)

When the nonlinear gain is not separable, the latter condition must be

changed to

d/dt f g(C, 0 dC < Aoig(at ,
t). (6-28b)

j 0

B. The Finite Sector Problem

While considering the extension of the Popov problem in Section 2, the

stability conditions are investigated directly for the finite sector case. For

the case when the feedback gain is monotonic, the finite sector criterion is

obtained using the results for the infinite sector case and a transformation

procedure similar to that of Chapter V, Section 2. In Chapter V, we must

consider the range A/(<7 0)/Aa 0 e [0> M) in order t0 guarantee the validity

of the transformation; here we see that it is possible to treat the case

Ag(cr 0 , 0/Act 0 e [0, G ]
directly by making minor modifications in this pro-
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cedure. This is because the final frequency domain condition is in the form

H(s) e {SPR}. Define

W{s) A W(s) + (G + e)~ l

, (6-29)

<?0 A ~ k(t)f(cr0
)/(G + e), (6-30)

g(a
0 ,

t)
A k(t)f(cr0 ); Ag/Acr0 e [0, G(G + e)/e], (6-31)

where 0 < k(t)Af(p0)IAo 0 G. Applying the previous criterion to the

transformed system [W(s), g(<r
0 , /)}, it is found that the system [W,g] is

absolutely stable if the conditions

lW(s) + (G + e)-']Z(s) e {SPR}, Z(s) e {ZRL }

($&(&» 0)" 1 d/dt f Kf> 0 < ^1 = A for all 6. and t

^ ^

j 0

are satisfied. Interpreting the second condition in terms of the original

system gain function k(t)f(aQ ) requires inversion of the transformation

[Eqs. (6-29) to (6-31)]; we ultimately obtain

dk/dt < A®k(t)[l - k(t)/K]. t (6-23
+
)

The frequency domain condition in Eq. (6-32) can be shown to be equivalent

to the standard condition that Z(s) must exist such that Z(s) e {Zrl}
and

[W(s) + G~ x ]Z(s) e {SPR}. I (6-33)

Thus, conditions (6-23 +) and (6-33) may be demonstrated to be sufficient

conditions for absolute stability in the finite sector [0, G]. For inseparable

gains, the condition (6-23 +
) must be altered to the equivalent constraint

(6-24+ ).

C. The Inverse Multiplier

The derivation of a general stability criterion of the form of Criterion 5a

may be completed by observing that for all monotonic gains, the system

f In terms of the transformed variables 6 = a — k(t)f{o)l(G + e), we have

j>C, Orff = k(t) - [k(t )f(a)\ 1j(G + e),

m odt = dk/dt
J

’

o
md(.

t By making the standard approximation (G + e)
-1 ^ G-1 — e/G 2

,
the condition given

in (6-32) is essentially

[W{s) + G-qZfy) - (e/G2)Z(s) e {SPR}.

If condition (6-33) is satisfied and Z(s) g {SPR}, then e can be chosen to be sufficiently

small that (e/G 2)Z(s) is dominated by the first term for all finite 5 in the closed right half

plane. This is also true as \s
\

-» oo if 1 -f pG > 0, that is, if Ao e {A\ }, as assumed.
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differential equation may be inverted as in Chapter V, Section 2. The relation

(5-39) and the subsidiary transformations used in this procedure are more
complex as we are considering a time-varying situation.

By successively using the transformations

(0 W x
(s)

,

fV(S)

1 - efV(s)’

gi(g 0 , 0 kU)f(o 0 ) A— g [e, G + e].

(ii) ^
2(5)A(^,(5))->; g [(G + e)“‘,

e"
1

],

(iii) W3(s)A
W t(s)

1 + W2(s)/(G + £)’

(G + eY 1 eg3(g0, £) A ^l£cni)_
0,

the final transformed system {fE3 (y), g3
(d

0 , f)} is of the correct form so that

the preceding finite sector result can be applied. This in turn can be used to

show that conditions (6-23 ~) or (6-24~), with Z(s) g {ZRC(y)j satisfying the

frequency domain condition, are also sufficient to prove the absolute stability

of the system under consideration. Although several transformations are

again required in various parts of the proof, this result is seen to be identical

in form to the extension of the Popov result.

Criterion 6 (A point criterion, monotonic separable gains). The

system defined by Eqs. (6-1) and (6-25) is absolutely K
x ]\ stable if

(1) there exists some Z(j) such that Z±1
(s) e {ZFm(s)\ [Eq. (5-34)] and

[W(s) + G~m']Z(s) e {SPR}; (6-22)

(2) dkldt is restricted by

dkfdt < QAk(t)[l - k(t)/K] if Z+1 e {Zf»}, (6-23
+
)

or

dkldt > -®A*(0[1 ~ k(t)/K] if Z~ 1 e [ZFm{s)}, (6-23“)

where A = k
x
is the multiplier margin of Z(s) [Eq. (6-21)] and $ is the index

of nonlinearity of /(<7 0 ) [Eq. (6-16)].

The criterion for the principal case with inseparable gains is derived from

Criterion 6 directly as in the extension of the Popov criterion (Section 2),

so it is not repeated here.

Zames [3] obtained this result with the conservative index of nonlinearity

$ = 1. Narendra and Taylor [1] obtained Criterion 6 in the infinite sector

case; more general results are reported in Cho and Narendra [1] and

Narendra and Taylor [2]. Independent work by Srinath, Thathachar, and

Ramapriyan [1] established identical results for the inseparable case.
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The derivation of stability criteria for systems with other classes of re-

stricted nonlinearities and for LTV systems is identical to that given above

for monotonically nondecreasing functions. In all cases, the stability of the

system is assured if a frequency domain condition is satisfied by the linear

part of the system and dkjdt or dgjdt is constrained in the fashion indicated

above. For a given LTI plant W(s), it may be appreciated that the constraint

on the rate of time variation of the NLTV gain generally becomes less strin-

gent as the allowed type of nonlinear behavior specified by {V} is made more
restrictive. This arises from two phenomena: as {TV} is restricted, the class

{ZN(s)} becomes more general, so it may be possible to find a multiplier Z(s)

satisfying the frequency domain condition (6-22) which has a larger multiplier

margin A, and also as [TV] is restricted it may be possible to arrive at a higher

estimated value of the nonlinearity index O (see Chapter II, Section 1). This

is discussed from the point of view of geometric interpretations in Chapter

VII, Section 5.

Results for various classes of nonlinear behavior may be found in Cho
and Narendra [1], Narendra and Taylor [1, 2] and in Srinath, Thathachar,

and Ramapriyan [1]. Brockett and Forys [1] obtained the condition corre-

sponding to Z(s) = (1 + flw)/( 1 + fis) and A = min(a-1
,
/L 1

) for LTV
systems. A notable result for LTV systems was obtained by Gruber and
Willems [1]: a system is absolutely {A^} stable if k(t) e [0, K), Z(s)[W(s)

+ K~']e {SPR}, Z(s - X) g {SPR} for 0 < X < A and dkjdt < 2Ak(t)[l

~ k(t)/K].

4 . The General Finite Sector Problem

The stability criteria given in the preceding sections apply to nonlinear time-

varying gains which lie in the interval [0, G*]. Using the simple transforma-

tions discussed in Chapter V, Section 5, these results can be easily extended

to the case where the NLTV gains lie in a range
[GN , GN]. Define the trans-

formed system {IV(s), g(cr 0 , t)} by

W(s) = W(s)/( 1 + GNW(s)\ g(a 0 , 0 = g(a0 , 0 - Gng 0 ;

if the original system described by Eq. (6-1) is constrained by Eq. (6-2),

then
{ W, g] falls within the ambit of one of the preceding absolute stability

criteria. Hence we can summarize all of these results as follows.

General Stability Criterion 2. The system described by Eq. (6-1)

constrained by Eq. (6-2) is absolutely {C,.[A, A^]} stable if

(1) Z(s) exists such that Z ±1
(s — 2) e {ZN(s)} , X e [0, A) where the

classes
{ZN{s)} are defined in Definitions 1-4, General Stability Criterion 1,
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and

i

+

e (spR
> ;

(2) dkjdt or dg/dt are restricted by (a) or (b)

:

(a) Separable gains:

< $A[A:(t) - £][1 - k(t)/K] -
Gn

, Z+1 e {ZN},
ai — Cj aJ N ~ N

or

die — —

-QAim -m - m/K}^

(6-34*)

Gn - Gn
Z 1 e {ZN},

(b) Inseparable gains:

f d/dt g(C, t) dC < Aa 1

J 0

g(&, 0
Gn

or

g(y, ty

GnO J Gn — Gn

Z+1 e {ZN},

(6-35±)

f d/dt g(C, t ) d( > —Act 2

J 0

'&iD - G, 1
g(<7, t)

-

G ng Gn — Gn
Z 1 G {Z„},

where <I>, the index of nonlinearity for separable gains, is defined by

$ A mino/(a)/^/(C)^C; (6-16)

the multiplier margin for each class {ZN} is

Definition 1 : A = yjfi 0 ,

Definition 2: A = X l9

Definition 3 : A = min {2 0 ;
— />,), i — n

{ + 1, . .
.

,

m
x ;

j ^2/5 l 1,2,..., ^ 2 }

if Z(s) in Lemma 5-5 is used, or

A = min {[a - (yJpoy
/2

]\ e
t ; e 2i , i = 1, 2, . .

.

,

k]

if Z(s) g {.Za{s)} is used according to the corollary to Lemma 5-5,

Definition 4: A = a.

This result clearly subsumes all of the earlier criteria derived in Sections 1

to 3. In the case Z{s) — 1, we have A = 00 and the condition H{s) e {SPR}

is identical to Eq. (6-10); this situation corresponds to v{x) = ^xTPx, so we

have an exact duplication of the circle criterion in that the NLTV gain may

be discontinuous with respect to time; in fact, the result here is more general
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than that given in Section 1 in that the range [G, G] need not include zero.

If the gain is separable the restriction on dkjdt is easily interpreted in the

phase plane (a plot of dkjdt versus &), as shown in Chapter VII, Section 5.

For inseparable gains, however, condition (6-35 ±
) would most probably

prove to be very difficult to apply.

5. Periodic Nonlinear Time-Varying Gains

The constraints derived in the previous sections may be significantly

relaxed if the system is periodic. In this case, we may use the theorem of

LaSalle, which provides the same conditions for stability as in the NLTI case.

Corollary A2 (LaSalle [1]). If a function v(x
, t) = v(x, t + T) for all

t and fixed a satisfies conditions (i)-(iv) of Theorem A, then a sufficient

condition for the uniform asymptotic stability in the whole of the solutions to

* = /(*.

0

e (S),
(1 .3e)

f(x, t) = f(x, t + T) for all / and fixed x

is that condition (A1 : v) is satisfied.

Thus, we can permit v to be equal to zero as long as v =£ 0 unless x = 0;

this in turn allows the use of the MKY lemma rather than the LKY lemma,

which results in the less strict frequency domain condition H(s) e {PR).

To see that this theorem is directly applicable, we consider only the point

constraint on dkfdt obtained in extending the Popov criterion to the separable

NLTV case. Assume that H(s) [Eq. (6-17)] satisfies the condition H(s) e

{PR); then v < 0 and v = 0 only when

(i) xTMx — 0 where M = M T
0,

(ii) [xTq + vV 0 )]
= 0,

[by the application of the MKY lemma to Eq. (6-15)];

(iii) k{t)f{Ga )
= 0 or f{<ja )

= Fo0 ,

(iv) y0koj(o0)[\
- k(t)/K]

= pQ dkldt f7(0 d{ or k(t)f(c 0 )
= 0

J 0

[from the fourth and fifth terms of Eq. (6-15)]. If v = 0 along a trajectory,

then from (iii), either k(t)f(cj 0) = 0 (in which case v = —j(xTq)
2 — \

x

TMx
,

which is identically zero only if x = 0), or f(cr 0)^ Fa 0 . In the second case,

condition (iv) requires that 2yQk[\
— k/K] = fi 0 dkjdt. From a practical

viewpoint, very little loss of generality results by assuming that k(t) does not

satisfy this relation.
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Corollary to General Stability Criterion 2. (Periodic separable sys-

terns). If gfy

7

0 , t) = k(t)f(a0 ) = k(t + T)f(a0) for all t in Eq. (6-1), then
the frequency domain condition of General Stability Criterion 2 can be
replaced by

1 + GnWs)
1 + G v fV(s)

Z(s) e {PR},

provided that dkjdt ^ ±2A[k(t) - K][ 1 - k(t)/K]GN/(GN - GN).

Similar relaxed frequency domain conditions may be stated for the absolute

stability of inseparable periodic systems. Since for periodic gains the con-

straint g((j0i t)/<7 0 e 0Qn , Gn) is equivalent to g(a0 ,t)/a0 e [GN + e, GN - e],

there is again no point in treating the particular case, AGn e {A 0 }, for the

reason discussed in Section 2.

6. Extension of the Popov Criterion—Integral Conditions

In deriving less restrictive results for time-varying systems, it has been
found to be beneficial to weaken the requirement that v be negative definite.

The standard conditions v > 0, v < 0 used heretofore are actually rather

strict in view of the ultimate goal of Lyapunov’s direct method
:
proving the

asymptotic stability of a system by showing that v(x(t), t) — 0 uniformly

as t goes to infinity. Theorem 2, which is a special case of the noteworthy
result of Corduneanu [1], provides the desired relaxed conditions for stability.

To recapitulate this stability theorem, a system is uniformly asymptotically

stable in the whole if v(x, t) is a valid absolute Lyapunov function candidate

(Lemma V3) such that there exists a real-valued continuous function p(t)
that satisfies

(0 v<p(t)v (6-36)

and

(ii) lim (* p(T)dr = — oo (6-37a)
t-*oo J to

uniformly with respect to t0 if p(t) is aperiodic, or

fp(t)dt< 0 (6-37b)
J 0

if p(t + T) = p{t) for all t.

As previously mentioned, this theorem demonstrates the direct relationship

between the stability properties of x and v(x, t).

Due to increased complexity, we only consider the separable gain case.

Ultimately, /?(/) in condition (6-36) contains the term k~ l dkjdt
, so in order
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to satisfy the continuity requirement of this theorem it is necessary that

k(t) e {
K2 }, that is, that k(t) possesses a continuous derivative, and that

k(t) > 0. Hence consider the behavior of the system described by the differ-

ential equation (6-1) constrained by

g(a 0 ,t) e k(t) e (0, K],

P> 0, A E {A
x } y

In order to apply this theorem, it is necessary to have a term in v that is

proportional to each term in v; that is, since we use the absolute Lyapunov
function candidate indicated in Eq. (6-13), we require in v terms proportional

to xTPx
,
to k{t) Jo° /(0 d0 and to t 2

. It has been demonstrated in Section 2

that the derivative of this candidate evaluated along trajectories of a system

with a separable gain in the finite sector is

v = + PA)x - k(t)f(o0)x
T [Pb - p0A^h - y 0

h]

- [fio

h

Jb + y0(p + (Gf)-')]t
2 - (yJK)a

(3
kHt)f{G0 ){\ - f(a0)/(Fa0 )]

+ p0 k(t) P/COdCt*- 1 dk/dt - (yo/Ao)0(^o){l - Kt)/K}]. (6-15)
J 0

One term proportional to k(t) j
a
0
° f(Q d£ and another that varies as r 2

exist, but none that varies as xTPx is in evidence.

At this point, as in Chapter V, Section 1 ,
we might directly apply the MKY

lemma, which provides a condition that guarantees that the first three terms

of v are negative semidefinite. If, however, A A. A + pi e {A
x },

then we may
apply the following modification of the MKY lemma.

Lemma 4 (Chapter III, Section 4). Given A e [A
x ],

real vectors b and

k ,
a real scalar y/, then a real vector q and matrices P, P = PT > 0, and

N, N = NT ^ 0, exist satisfying

(a) ATP + PA = -qq T - 2pP - N
(b) Pb — k = J~y/q

if and only if

(c) H{s) A \y/ + kT[(s — p)I — A]~ l b e {PR}.

In applying this lemma, we define

f(a0)la0 e [0, F],

Apr = e {^j}.

(6-38)

k A /3 0A
Th + y 0

/z,

^ A + (7o - &/*)(/> + (^r 1

);

(6-39)

then the terms of are reordered so that an application of Lemma 4 yields

V < /?(r> - [2p + p(0][ix
TPx + £/?o /?T

2
]

- f}Qk{t) f°/(0 dC[p(t) + A0(<7 O) - ((A - p)IK)k(t)<K<j 0 )
- dkldt]

J o

-/Vo* 2«/(*o)[(A - a)/X](1 - /(<70)/(F(7 0)] (6-40)
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(where the nonpositive terms — \[xTq + J~y/kit)fi<j 0)]
2 and —\xTNx have

been discarded in view of the inequality sign and p(t)v has been added and
subtracted), if and only if W(s — p) is asymptotically stable [A e {^j}] and

H(s) e {PR}. By substituting for k and y/ into the latter condition, the

equivalent constraint is that H(s — p) e {PR}, where

as in the earlier derivations.

The last term of v is negative semidefinite if

AAy
0 /jJ 0 >//>0; (6-41)

the first inequality is satisfied if H(s — p) e {PR}, since the factor [fi0s +
(y 0 — fiofi)] must represent a closed left hand plane zero of H(s — p).

In order to satisfy condition (6-36), it is necessary that

(0 PiO > -2/x and [{xTPx + ^ 0 pr
2
] > 0,

(ii) pit) > -[{A - ((A - p)/K)k(tM ~ k
-

1 dkldt ]

and p0k(t) P/(0 dC > 0.
j 0

On the other hand, it is desired that p(t) be as negative as possible so that

the integrals in condition (6-37) may be negative; thus it is most advan-

tageous to choose

pit) A sup {—2p\ -[{A - (A - M)kit)/K}<& - k
~

1 dk/dt]}. (6-42)

Here we see the necessity of assuming that and p^ 0: this definition

ofpit) guarantees that v < pit)v only if vix , t) has been divided into two parts

satisfying v
x ix , t)^0 and v2ix, t) ^ 0; if fi Q < 0 is allowed, it cannot be

guaranteed that v
x
A xTPx + px 2

is nonnegative, for example.

The corresponding result that permits the use of [/?0 (s — p) + y 0 ]

_1
in

condition (b) presents some difficulties that are not resolved at this time.

The results of the derivation above are collected to give us the first example

of a stability criterion which does not constrain dkldt at every instant.

Criterion 7 (A time-averaged criterion, first and third quadrant gains).

The system defined by Eqs. (6-1) and (6-38) is absolutely {CJi7
, KJ} stable if

(1) Wis — p) is asymptotically stable for some p > 0;

(2) His — p) is positive real where

His) A [Wis) + iGF)-')iPQs + y0 ); j3 0 >0, y 0 > 0; (6-43)

(3) pit) [Eq. (6-42)] with A = y 0/J} 0
and O as defined previously [Eq.

(6-16)] satisfies condition (6-37).

As p —> 0, this criterion clearly approaches Criterion 5a except that the

inverse multiplier cannot be used. In some instances it is advantageous to allow
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// to be as large as possible, while in other circumstances the most lenient

conditions for absolute stability may be obtained by taking intermediate

values of // [ju e (0, A)] or by using Criterion 5a. This is demonstrated in

Chapter VIII, Section 5 in treating a nonlinear differential equation related

to the damped Mathieu equation. In treating lineartime-varying situations,

experience has so far indicated that taking p = A or using Criterion 5a

yields the least stringent conditions for absolute
{
K2 }

stability (see Chapter

VIII, Section 4, and Section 8 of this chapter), so it does not appear to be

necessary to keep p as a free parameter and formally determine ft e [0, A]

by using standard techniques of calculus to find the greatest permitted range

of k(t) or its maximum frequency if k(t) is periodic. In NLTV situations,

however, any attempt to find such optimal conditions for absolute stability

does require these techniques, as demonstrated in Chapter VIII, Section 5.

In general, Criterion 7 with p = A is the most lenient if the phase plane plot

of k(t) is symmetric about the k-axis, while condition (6-23
+
) is apt to be

less strict if dk/dt exhibits large negative excursions but takes on only small

positive values, as shown in the example given in Section 8.

7. Integral Conditions for Restricted Nonlinear and Linear Gains

The procedures used in the development of the previous section may be

applied to any criterion for NLTV gains of restricted nonlinear behavior

(see Section 3, especially Criterion 6) for the infinite sector case essentially

by inspection. In order to obtain the stability criterion for the finite sector

case, however, we would be forced to resort to rather extensive transforma-

tional methods, so we do not consider this case.

General Stability Criterion 3. The system described by Eq. (6-1)

constrained by

g(a09 t) e {CjfV, K2 ]} 9 k(t) e (0, K < oo)
(0-44)

/(<70 )/(T0 e [0, oo), (A + nl) e {A
t }

is absolutely [G
X
[N, K2]} stable if

(1) Z(s) exists such that Z(s — X) e {Z^C?)}, X e [0, A), where the classes

[ZN(s)} are defined in Definitions 1-4, General Stability Criterion 1, and for

some p > 0

W(s - p)Z(s - p) e {PR};

(2) dkjdt is restricted by demanding that

p{t) = sup{— 2 fj\
—

[<J)A — k
~

1 dkjdt]} (6-45)
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satisfy condition (6-37), where the index of nonlinearity $ is defined by
Eq. (6-16).

It is quite clear that there is little point in attempting to derive any directly

analogous result for inseparable NLTV gains; the time domain condition

would be virtually intractable. It is not possible to derive an analogous result

for A e {A 0} and k{t)f(oa) <= (0, GN\, because under these circumstances
W(s) has a pole at j = 0 and thus the condition that W(s — p) must be
asymptotically stable [A + pi e {A

, J] cannot be met for any p > 0.

The same comments made in reference to Criterion 7 apply to this result

also; in particular, the stability criterion corresponding to Z 1 e \ZN] has
not been obtained in a final form.

The interpretation of the various steps taken in the application of this

criterion is similar to that given for the point criteria. The two principal

differences are that dkldt is only constrained in an average sense and that

two parameters must be evaluated on the basis of the properties of the LTI
plant; in addition to the multiplier margin A used in General Stability

Criterion 2, we take p as a measure of the passivity of H(s) = W(s)Z(s).

Obviously ju and A are interrelated; usually A must be reduced if p is

increased as shown in the applications indicated in Chapter VIII.

The application of General Stability Criterion 3, as well as the circle cri-

terion and General Stability Criterion 2, to linear and nonlinear systems is

demonstrated in Chapter VIII. Several conclusions may be drawn in light

of this analysis of two forms of the Mathieu equation (see Chapter VIII,

Sections 4 and 5); we particularly stress that the degree to which each theorem
approximates the necessary and sufficient condition for stability (a “figure

of merit” of each criterion) is nearly in direct proportion to the sophistication

of the criterion and hence the complexity of its application.

The above result with p = 0 was first reported by Taylor and Narendra [2].

8. Integral Conditions for Linear Time-Varying Systems

Since the transformation procedures required for the generalization of
General Stability Criterion 3 to the general finite sector case for LTV systems

are quite straightforward, we treat this case to obtain the most general result

for this class of systems. For periodic gains, we then obtain the result of
Freedman and Zames [1] as a special case. Consider Eq. (6-1) constrained by

r = -k{t)a0 , k(t) g \K2 \, k(t) g [K + e, K - e],

(4/s + pi) e [A
t ], (Ag + pi) g {A !}.

The two transformations used extensively in previous developments are
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defined by the relations (5-36) and (5-60). Applying these successively, we

consider the equivalent system defined by

W
x
(s) A l±KW(s) 9—

1 + KW(s)

k(t)* W-* ek
'
{t) = K-k(t)

e
-K- K- e

(6-47)

Applying General Stability Criterion 3 to this transformed system {Wu k J,

we obtain the conditions that Z{s) must exist such that Z(s) e {Za(s)} [Eq.

(5-44)] and W
x
(s — p)Z(s — p) e {PR}, and that dk/dt must be restricted

by demanding that

/>0) Asupj-2/*; - 2a
K-K dk~

(k - K)(K - k) dt.
(6-48

+
)

satisfies condition (6-37).

Although the class [Za{s)} contains its own inverse as noted previously,

the time domain condition is different if we consider the equivalent system

W2(s) A, -W(s)/(l + KW(s)) 9

k2(t) A K - k(t) e [e, K - K - e]

obtained by a simple transformation similar to that discussed in Chapter Y.

Since this is in the form considered in Eq. (6-46) with K2 = 0 and K2
— K

— K, we have to satisfy

[W2{s
-

H) + CK2y']Z(s - //)

1 + KW(s_- ju)~
(K - K)[ 1 + KW(s - ix)\

• Z(s — ju) e {PR},

where Z(s) e {Za(s)}, while p{t) [Eq. (6-48 +
)] becomes

p{t) = sup
K-K (

.

(K-k)(k- K)\ dt ) JJ
(6-48")

The ability to choose the sign of the term in dkldt in Eq. (b^^ is useful in

some applications.

Criterion 8 (Integral conditions, linear time-varying systems). The sys-

tem described by Eqs. (6-1) and (6-46) is absolutely [K2 ] stable if Z(s) exists

such that Z{s) e {Za(^)} [Eq. (5-44)] and

J±|^5$Z(J -„) S (FR), (6-49)

where ju > 0, and p(t) [Eq. (6-48 ±
)] satisfies condition (6-37).

Note that the specification k(t) e [K + e, K — e] guarantees that k
x
(i)

and k
2 (t) are always bounded (General Stability Criterion 3). For periodic
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gains, the distinction between k(t) e (

K

, K) and k(t) e [K + e, K — e] dis-

appears since these conditions are equivalent for finite t.

To arrive at a special case of Criterion 8, we consider periodic gains and
define

Jjf

>

(s)
a 1 +KW(s-u)

"w -l + WJ-/I)' (6-50)

If ^(j) satisfies the condition

—n < arg{WM(ia>)} < +n (6-51)

as required by the constraint (6-49), then we note in Chapter IV, Section 3

that there must exist some Z(s) e {ZLC}
such that WM(s)Z(s) e {PR}. This is

equivalent to the statement that Z(s) e {ZM(s)} exists satisfying Eq. (6-49),

so we know that if Eq. (6-51) is satisfied, we can take a = ju in p(t).

If we take the period [0, T] and define the two sets of subintervals tp and

*„by

Tp A t e [0, T\\ dk/dt ^ 0,

r,A(e[0J]: dk/dt < 0

t e t d

then according to one definition [Eq. (6-48
+
)], we have

r (R - £) dkjdt

p(t)=\(K- m-K)
1-2//, / e t„,

and condition (6-37) for periodic gains is satisfied if

{R - JQk
f
J r, (K -

-dt < 2pT. (6-52)
K,(K-k)(k - K)

We recall that the integrand is (A:,)
-1 dkjdt or (d\dt) (log k

,
). Since we are

assuming that k is periodic, the same must be true of log £,(/); thus

fa*,)"
1 dkjdt) dt = log [kJTJkJO)] = 0,

J 0

and in terms of the instants of xp and t„ we consequently have

f ((k.y 1 dkjdt) dt = f
(A:

1

)- 1
|/tt:

1
////|/* = | {k

l
)~ l \dkjdt\dt.

d Tp J Tn d 0

The constraint (6-52) is thus equivalent to

-i r_^L
h(K-

(K-K)\k\
- dt < 4//, (6-53)

'

0 (.K - k)(k - K)

and we see that considering dkfdt only when dkjdt ^ 0 as in Eq. (6-52) is

entirely equivalent to constraining \k\ over the entire period.
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Criterion 9 (Integral conditions, periodic LTV systems). The system

described by Eqs. (6-1) and (6-46) with k(t) = k(t + T) for all t is absolutely

[K2 ]
stable if

—7t < arg
1 + KW{ico - m)\

11 + KW(ico - n)\
< 71 ,

(6-54)

and k(t) satisfies the constraint (6-53).

While this result is quite easily applied, it should be noted that it is weaker

than Criterion 8 in several respects. In the first instance, although condition

(6-54) guarantees that Z(s) e {ZLC}
exists satisfying WM(s)Z(s) e (PR), the

existence of Z(s) e {Z.(s)} satisfying the same condition is not precluded.

If Z(s) e {Z„} in this constraint, then Z(s) in Eq. (6-49) satisfies Z(s) e {Za+ „},

that is, Z(s) is an LC multiplier shifted by (a + /i) units and the condition

restricting dk/dt is less restrictive than Eq. (6-53). The second shortcoming

found in Criterion 9 arises from the implicit assumption that k{t) is least re-

stricted by taking A =
fj,,

which is not always the case. This latter point may

be clarified by considering the following situation. Given

W(s) = (s
2 + 2t/s + CT 1

|
exp (5(t - nT)), nT^t<(nT+ t.) A nT + S~ l In (1 + fi)

|exp(45[(n+ 1)T— t]),(nT+

1

i)^t<(n + l)TAnT+ 51n(l +^)/(4<5)

n = 0, 1, 2,

This time-varying gain is an exponential “sawtooth” function varying from

1 to (1 + /?). A:" 1 dk/dt is given by the discontinuous function

AT 1 dk/dt
f 5, nT^t <(nT + /,),

1
—4(5 ,

(«r + i,)<K(»+l)r;

to render the criterion valid we assume that k(t) is actually a continuously

differentiable function that approximates this form as closely as desired.

First we apply Criterion 9 : W(s — fi) is asymptotically stable for 0 < n

< £, and the Nyquist plot of W(ico — fi) does not intersect the negative

real axis. Thus only the integral condition remains to be satisfied:

I, AT- 1 C k~'\ dk/dt \dt = T~'[St
t + 4<5(T - f,)] = f<5.

J 0

Choosing ji to be as large as possible yields the final stability condition

Now we consider Criterion 8 applied to the above problem: again W(s

—
//) is asymptotically stable for all ji < The Popov multiplier (

s

+ oc)

is used as a special case ofZ^) e {Za }; the function W(s — //)*(^ + a — //)
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is positive real for all a ^ 2£ — p. Hence these first two conditions are

satisfied if for any p e (0, 1) the parameters p and a satisfy

M = (1 - pX, a = (1 + pX.

The time-averaged constraint that /2 A \

T
0
p{t) dt < 0, where

1-2(1 -pX, t^tCT,
yields I2 = j[5 - (| + f/?)C] < 0, which is satisfied if 8 < (f + !/?)£. If

^ 0 is chosen, then the result corresponding to Criterion 9 is obtained

;

if, however, p ^ 1, the stability condition [as dictated by the point condition

(6-23 +)] is

5 < S 2 = 4£.

In this simple example, it could be seen by inspection that the point

condition would yield the less restrictive upper bound on 5. If k(t) were more
complex, however, it would not be clear which criterion to apply. As demon-
strated above, Criterion 8 takes this problem into account.

Criterion 9 is essentially identical to a theorem of Freedman and Zames
[1], except that they used a more general system formulation allowing the

theorem to be applied to nonrational transfer functions W(s). The relation

between General Stability Criterion 3 and the result of Freeman and Zames
was noted in the infinite sector case by Taylor and Narendra [2].



VII

GEOMETRIC STABILITY CRITERIA

In the preceding chapters, stability criteria are derived for systems con-

taining a single gain that may be nonlinear, time-varying, or both over a

specified range. In the application of such criteria, the primary system de-

scription is given in terms of the LTI plant W(s) and the NLTV gain g(a 0 ,
t)

in the closed loop negative feedback configuration specified by

W(s) = L(<t
0
)/L(t) = p + h\sl - A)~'b,

t = -g(<w)» 0 e [G
t
[N, T]},

(7-1)

as depicted in Fig. 2- la. The state variable formulation (involving />, h, A, b)

is suppressed here, although it is recalled that W(s) is rational and that it

may not have more zeros than poles.

If the NLTV gain lies in the closed range [GN , GN] as we generally assume,

then the subsidiary conditions AGn e {A
x }
and A0n e {A

x }
must be imposed

(see Eq. (4-2)); the same type of constraint is required in NLTI situations.

We have also discussed the case /(ct0)/<t 0 e (0, FN]
if the matrix A has a

single zero eigenvalue, that is, if W(s) has a single pole at s — 0; we consider

that eventuality in this chapter only in passing.

In all cases, the primary condition for absolute stability is expressed in

terms of the transfer function W(s), the range of g(a 0 , t)/a0 ,
and a multi-

plier function Z(s) such that Z ±l
(s) e [Zn(s)}, where the class (Z^(j)} is deter-

mined by {V} or {G.[N, T]}. The function

H(s) A 1 + GnW(s)~
1 + GnW(s)

Z(s) (7-2)

147
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is always constrained to be at least positive real; for NLTV systems, H(s)
must be strictly positive real (Chapter III, Section 5) unless the system is

periodic (Chapter VI, Section 5). For an NLTI system, a frequency domain
condition of this form is all that is required for absolute stability, whereas in

NLTV situations the time variation of the gain must generally be constrained.

Consequently, the investigation of the stability properties of a given NLTI
system, using the frequency domain approach, generally reduces to a search

for specific members of classes of multipliers. Whereas the multiplier Z(s)

has a simple form for the problem of Lur’e and Postnikov as treated by
Popov, that is, Z(s) = (fi Qs + y0 )

±1
»

it becomes increasingly more complex
as the class of nonlinear functions in the feedback path is made more restric-

tive. For a given W(s), particularly when the order of the system is high, it

is seldom apparent how such multipliers can be found to satisfy the frequency

domain criteria.

It is shown in Chapter IV that the existence of a shifted LC function

Z(s) e {Za(s)}, Eq. (5-44), where a > 0 may be arbitrarily small, which
satisfies the condition H(s) e {PR} (Eq. (7-2), with GN = 0, GN = K) is

both necessary and sufficient to ensure that the closed loop system is asymp-
totically stable for all linear gains r = — kct0

in the interval 0^k<K.
For stability in this range, Nyquist’s criterion may be stated in terms of the

argument of W(ico) as

-71 < </)R(co) A 2LTg[W(ico) + K~ l]< 71. (7-3)

In the above multiplier condition, the argument of Z(ico) lies in the range

(—7t/2, n/2). By making a arbitrarily small, the derivative of the argument
with respect to co can be increased without bound, and in the limit when
a —> 0 we obtain the LC function, which has a discontinuous argument. It is

not surprising that this condition does not impose any constraints on the rate

at which the argument of W(ico) can vary with co as long as (/>R(co) is continu-

ous, since it reduces to the Nyquist criterion (7-3) for LTI systems. In the

following sections, it is seen that the rate at which the phase of W(ico) varies

with co is related to the stability properties of the system with nonlinear func-

tions in the feedback path. In general terms, it is found that as the rate of

variation of <Pr(co) decreases, a member of a more restricted class of multiplier

functions {ZN(s)} may be chosen to ensure that Z(s)[W(s) + K~ l

] e {PR};

this in turn assures that the closed loop system containing W(s) is stable for

a larger class of nonlinear functions /(cr 0 ).
This correspondence is only

implicit in the geometric criteria that follow, however; there is generally no
direct relationship that can be used in the determination of frequency domain
multipliers for a given plant W(s).

In the case of NLTV systems, the rate of time variation of the gain must
usually be constrained. The severity of this restriction is determined both by
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Z(s) (specifically, by A, the multiplier margin, Eq. (6-21)) and the nonlinear

behavior of the gain (as quantified by the index of nonlinearity <I>, Chapter

VI, Section 2). Thus, in the application of absolute stability criteria for time-

varying systems, the problem of determining frequency domain multipliers

is compounded by the desire to maximize A so as to obtain the least restric-

tive constraint on the rate of time variation of the gain. The examples treated

in Chapter VIII demonstrate the degree of complexity that may be encoun-

tered even in considering relatively simple systems. In dealing with more

complicated systems, this may lead to the necessity of resorting to tedious

trial-and-error methods or to the use of a digital computer.

In this chapter, some criteria are derived which completely by-pass the need

to determine multipliers to prove stability. The criteria are geometric inter-

pretations of the frequency domain criteria for absolute stability developed

previously, and are, in general, sufficient conditions for the existence of speci-

fic classes of multipliers. In situations where the geometric condition is not

necessary (not in one-to-one correspondence with the existence of Z(s) e

[ZN(s)}), the result may be more stringent than the stability theorems stated

in Chapters V and VI. The ease with which such criteria can be applied to

specific problems makes them particularly attractive, whether or not they are

as general as the criteria developed earlier.

1. Linear Time-Invariant Systems

The intimate relation that exists between the stability properties of LTI

systems and the corresponding stability problems for NLTI and NLTV
systems is indicated in Chapter IV. The forms of the Lyapunov functions

chosen to establish stability and the corresponding frequency domain con-

ditions are motivated by the LTI case. It is therefore not surprising that the

two approaches used to obtain geometric criteria for NLTI and NLTV
systems are both closely related to corresponding criteria for LTI systems.

The first and most widely used approach entails constructions on the

Nyquist plot of W(ico) or on some modified frequency response diagram,

and thus is related to the Nyquist criterion. A significant amount of informa-

tion regarding the stability of a system comprised of a linear plant repre-

sented by W(ico) and a nonlinear and time-varying gain in a closed loop

configuration [Eq. (7-1)] can be extracted from such a plot; for example,

the geometric criteria might be used to aid in the design of compensators in

the frequency domain to suitably modify the stability characteristics of the

feedback system by changing the frequency response of the LTI part of the

system. Such frequency domain compensation has been extensively treated
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in the control theory literature, although only with the goal of achieving

some performance specification for LTI systems and not as a solution to

the problem of NLTV system stabilization.

The second approach deals with the poles and zeros of the overall transfer

function W(s)/( 1 + kW(s)) as determined by the poles and zeros of W(s)

for constant values of the feedback gain k, and hence is linked with the root

locus technique.

A. The Nyquist Criterion

The criterion of Nyquist permits the use of the frequency response W(ico)

of LTI plant and the behavior of JV(s) as
|

s
|

—> oo in the right half-plane in

making precise inferences about the stability of the closed loop system speci-

fied by t = —kg
o

in Eq. (7-1). The condition for asymptotic stability is

stated in terms of the phase-amplitude characteristic (Nyquist plot) of

W(ico), that is, the curve determined by the parametric equations

U(co) A Re W(ico), V(co) A Im W(ico)

in the U9 V plane as co takes on values co e [-R, R], and the knowledge of

the behavior of W(s) on the semicircle y = Reie
, —nil < 0 < + n/2

,
where

R is arbitrarily large.

As detailed in Chapter IV, Section 3A, if F* represents the above contour
in the complex s-plane and (R^ denotes the finite RHP or the region specified

by r* and its interior, the Nyquist plot can be considered to be a mapping
of the contour TR under the transformation W(s) — U(s) + iV(s), s e FR .

According to the criterion, the closed-loop system (7-1) with t = —kg q
is

asymptotically stable for all values of the gain in the interval 0 k < K,

if the LTI plant W(s) is asymptotically stable (A e {TJ) and the Nyquist

plot does not intersect the negative real axis to the left of the point

—K~\ as shown in Fig. 7-3a for the value Kv If the Nyquist plot intersects

the negative real axis at several points, several ranges K
} < k < Kj exist

within which the system is asymptotically stable. These ranges can be deter-

mined by traversing the plot Tw in the direction of increasing co ;
if the interval

(—Kj\ — Kj 1

) on the real axis lies to the left of the curve, then the closed

loop systemjs asymptotically stable for all values of the gain k in the interval

Kj < k < Kj. This is the technique used to determine *W((R^) or the mapping
of (Rr ;

only those values of k such that the point (—k~\ 0) is outside ^((R*)

lead to asymptotically stable systems. If W(s) goes to a constant value or

zero as s —> oo, then we generally locate ^((RJ, as in Fig. 7-3a. Since it is

always clear which region is under consideration, the subscript R or oo is

dispensed with.
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While treating various absolute stability criteria, it is found beneficial to

consider ranges of the nonlinear gain other than [0, G]; in particular the

range may be [Q, G], which does not necessarily include zero. This implies

that W(s) is not required to be stable for the closed loop system to be asymp-

totically stable. This is found to be the case for the circle criterion considered

in the next section, for example. In order to discuss the absolute stability

criteria in this general form, we first consider the stability of LTI systems

using the Nyquist criterion under the same conditions.

Assume that W(s) has m poles X
t
such that Re X. 0. It is necessary to

modify FR ,
the contour in the .s-plane previously discussed, to include all

of these m poles. This curve is thus indented into the left half-plane to enclose

any of these poles on the imaginary axis (Re X
t
= 0), as shown in the case

of a single imaginary axis pole at ^ = 0 in Fig. 7- la. The region (R is again

made up of the extended curve and its interior. The region W((R) is located

as described previously; the Nyquist criterion in terms of this mapping is a

direct extension of the special case given in Chapter IV, Section 3A.

Definition of Region (R. For any W(s) having poles at s = X
t
satisfying

Re X
t ^0, / = 1, 2, . . . , m; Re X

t <0, / = (m + 1), . . . , n, the region (R

in the j-plane consists of the union of all points satisfying

(i) \s\ g [0, R] and <£> e [— n/2 , n/2], where R is arbitrarily large (or

R —> oo if W(oo) < oo), and

(ii) \s — X
t | < p0i i = 1, 2, . . . , m, where p0 > 0 may be arbitrarily

small.!

Theorem (Nyquist). The closed loop system described by Eq. (7-1)

with t = —kcr
0

is asymptotically stable if the point (

U

= —k~\ V = 0)

does not lie in W((R).

In the example W^s) = (s + (l)/(s(s — a)) shown in Fig. 7-lb, the region

corresponding to k > a is outside W((R), which guarantees that the overall

transfer function

WK(s)
=

(.s
2 + (k — a)s + kP)' 1

has its poles in the open left half plane for k > a.

This formulation of the criterion of Nyquist is equivalent to the more
common “encirclement” statement: two poles of W

x
(s) are encircled by the

extension of FR in the clockwise sense, so stability of the closed loop system

for some value of k is ensured if the point (—AT 1

, 0) is encircled twice in the

counterclockwise sense. This implies by the principle of the argument that

[a:

-1 + W(s)] has no zeros in the closed right half-plane; the only singularities

t None of the remaining poles at j i = (m + 1), . .
. , n may lie in (R.
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in (R are the prespecified poles. Using the mapping properties of (R *W((R),

a somewhat more unified and direct statement of the criterion is obtained.

The reason for enclosing all of the poles of W(s) in the closed right half-

plane is demonstrated by taking W2(s) = (s(s + a))" 1

;
as shown in Fig.

7-2a, this contour correctly gives the asymptotic stability range as (0, oo),

whereas the polar diagram of W2(s) for 5- on a contour that does not enclose

the pole at s = 0 would seem to imply asymptotic stability for k e [0, oo)

(Fig. 7-2b).

B. The Root Locus Technique

A second approach to the stability problem for LTI systems uses the root

locus plot. If the poles and zeros of the open loop transfer function W(s)

are specified, the root locus plot of the LTI system is defined as the loci of the

poles of the closed loop system [zeros of 1 + kW(s)] as a function of the

parameter k. The constructional methods used to generate these loci are

treated in most introductory texts dealing with the theory of feedback control

systems. Since an LTI system is asymptotically stable when all of its poles

are in the open left half of the complex s-plane, the asymptotic stability of

the system in the range K
l
< k < K2

of the parameter k is assured if the root

locus corresponding to this range of parameter value lies in the open left

half-plane. Any Hurwitz range Kj < k < Kj , therefore, is determined by

finding those values of the gain k at which the root locus intersects the imagi-

nary axis, provided that the root locus for k g (Kj ,
Kj) is in the open left

half-plane. A root locus plot corresponding to the plant W(s) whose Nyquist

plot is shown in Fig. 4-4 demonstrates these ideas in Fig. 7-3b.

Fig. 7-3. The Nyquist and root locus techniques: (a) typical Nyquist plot, (b) corre-

sponding root locus plot; ©: open loop zeros, x: open loop poles.
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If a specified range K
l

k ^ K2 lies within some Hurwitz range, that is,

Kj < K
x

k K2 < the poles of the closed loop as determined by

k satisfy the inequality

Re{A,.(/c)} < 0, kz[K
x
,K2}. (7-4)

If we define the parameter /. by the relation

max Re{A,(K)} —% < o, (7-5)
Ki^k<K z

then X > 0 represents the minimum distance between the loci of the poles

of the closed loop system and the imaginary axis as shown in Fig. 7-3b for

k ^ K3 > K2 . This parameter is generally used as a measure of the stability

of the closed loop system in the given range [Ku K2 ] of the gain, in this case,

k e [A
3 ,

oo). The impulse response

w*(0 A L~'[Wk(s)} A L-'[W(s)/( 1 + KW(s))]

of the closed loop system with k e [A3 ,
oo) decays at least as fast as

0 exp{—It), where 0 is an arbitrary constant. If the feedback path contains

a time-varying gain k(t) 9
the stability of the system may be expressed in terms

of A; quantitatively, the maximum rate of variation of k{t) that may be toler-

ated in order to maintain stability is directly proportional to X.

While the root locus plot which yields the stability range of the parameter

k of the closed loop system can be drawn from a knowledge of the open

loop pole and zero locations (as determined directly by the differential

equation), the Nyquist criterion yields the same Hurwitz range or ranges

Kj < k < Kj from the frequency response of the open loop, which can be

obtained experimentally. The practical implications of this fact are evident

:

If stability criteria are established in terms of the frequency response of the

open loop, stability analysis and compensation of nonlinear systems can

be attempted (as in the linear case) using experimental data rather than the

exact mathematical model of the open loop plant that is required for a root

locus analysis. This not only saves effort, but leads to an avoidance of the

inaccuracies that are inherent in the modeling procedure and the measure-

ment of system parameters. If, on the other hand, the plant transfer function

W(s) is known, it is not necessary to reverse this procedure to determine

W((R), since the root locus technique may be used directly to obtain those

values of k which lead to imaginary axis crossings by the root loci.

The importance of LTI systems in the study of the stability properties of

NLTV systems is reemphasized by again considering the role played by the

Hurwitz range of k in the absolute stability problem. Although Aizerman’s

conjecture was disproved by Pliss and other workers, which implies that the

stability of the LTI system in a Hurwitz range Kj < k < Kj does not guar-

antee the stability of a nonlinear system with the nonlinear gain in the same
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interval, the Hurwitz range is important since it represents the maximum

range for which one can hope to prove absolute stability.

2. The Circle Criterion

Among the geometric criteria for absolute stability that exist at the present

time, perhaps the most well known is the circle criterion, which provides a

sufficient condition for the stability of a system with a single nonlinear time-

varying gain. In Chapter VI, Section 4, it is shown that if W(s) is the transfer

function in the forward path and the nonlinear time-varying gain in the feed-

back path g(a0 , t) lies in the sector [G, G], that is,

Q < gOo> O/tf 0 <
where zero need not lie in the range [G, G] as assumed in Chapter VI, Section

1, absolute stability of the null solution is assured if a common quadratic

Lyapunov function of the form ^xTPx exists over the entire range G K G

for the corresponding LTI system. This in turn reduces to the frequency

domain condition

H(s) A (1 + GW(s))K \ + GlV(s)) e {SPR}

if g(e7 0 ,
t) is aperiodic or H(s) e {PR) if g(ff

0 , t) = g(a0
,t + T) for fixed a0 ;

we first consider the aperiodic case. This condition guarantees that

/(co2
)
A. 1 + (G + G) Re IV(ico) + GG

|
W(ico)

|

2 > 0, co e (— oo, oo). (7-6)

This result may be interpreted in the U, V plane by noting that if neither

bound is zero, condition (7-6) may be rewritten in the form

/(co
2
) = GG{[U + ±(G-' + G->)] 2 + V 2 -US' 1 - 6' 1

)
2
)

A GG{[U - D 0]
2 + V 2 — p0

2
} > 0. (7-7)

The relation /(co
2
)
= 0 thus corresponds to the circle (U — o0)

2 + V 2 = p0
2

.

The region in the U, V plane that corresponds to /(co
2
) > 0 depends upon

the signs of G and G; if sgn G = sgn G (GG > 0), then /(co
2
) > 0 outside the

circle, while if sgn G = —sgn G, then /(co
2
) > 0 inside the specified circle.

The U-axis intercepts of this circle are of particular interest; they are v
0 ± p0 ,

or

U
t
A o0 + />„

= -£-, U2 = o0 — p0 = —

G

-1
. (7-8)

Two special cases arise when g(c

r

0 , t) lies in a range having an extremal

value of zero.

(i) g e [0, G] requires that /(co
2
)
= 1 + G Re W(ico) > 0;

(ii) g e [G, 0] requires that /(co 2
)
= 1 —

|

G
|

Re H^ico) > 0.
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In situation (i), the Nyquist diagram of W(ia) must lie strictly to the right

of a vertical line passing through U2 = -G> < 0, while in (ii) the polar
plot must lie strictly to the left of a vertical line passing through U

1
= —G 1

> 0; in both of these eventualities the boundary is a degenerate circle.

The statement of the circle criterion in all of the cases considered heretofore

can be simplified using the following definition.

Definition. In the U, V plane C[G, G] denotes the generalized circle

'{(t/, V): [U + + G- 1

)]
2 + V 2 = ^(G- 1 - G" 1

)
2
}

C[G, G]a|((C7, V): U = —

G

-1
}, Q = 0 (7-9)

mV): U=\G\-'}, G = 0

and the closed interior of C[G, G] is the region in the U, V plane defined by

\(U, V):

I[G^] ={(U,V):

rn V):

QG[(U + (2G)“‘ + (2G)
-1

)
2 + V 2

-KG' 1 -G-‘) 2]<0}
G<-G- 1

}, G = 0

-G-'}, G == 0.

(7-10)

In essence, the circle C[Q, G] excludes the origin on the U, V plane in every

case, that is, 0 ^ I[G, G].

The three cases, (a) 0 < G„ < G„, (b) Gb < 0 < G
b ,
and (c) G

c < Gc < 0,

are shown in Fig. 7-4 along with representative Nyquist diagrams Wa(ico),

Wb(ico) and 1V
c
(ia>), for which a closed loop NLTV system [Eq. (7-1)] with

g((70 , t)la o e [G, G] is absolutely stable. In each case the circle criterion

simply reduces to the condition that W((R) or the mapping of the y-plane

region (R (Section 2) defined by IV = W(s e (R) must lie outside I[G, G]

:

W((R) n I[G, G] = 0 (the empty set).

In Fig. 7-4, it has bee_n assumed that W(s) is asymptotically stable [A e
{A

t } in Eq. (7-1)]. If QG > 0, or if 0 0 [G, G], then W(s) may have poles

in the closed right half of the complex y-plane, that is. Re 2,. > 0. This situa-

Fig. 7-4. Applications of the circle criterion for aperiodic gains.
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tion corresponds to the more general statement of the Nyquist condition for

LTI systems stated in Section 1A; the condition for absolute stability is

still that no point of %*?((&) can be permitted to lie in I[G
,
G].

In treating periodic systems, we can allow V?((R) and C[G, G] to have points

in common subject to the standard constraint AQ e
{

AG e {A
t j.

Geometric Criterion 1 (The circle criterion). The system described

by Eq. (7-1) with

g(a0 ,t) e {GJF, *„]},

dq e Mi}»

is absolutely
{G.[F,

7C0]} stable if

(i) *W((R) n /[G, G] = 0, g((701 1) aperiodic, or

(ii) *W((R) n (7[G, G] - C[G, G]) = 0, g(<j 0 , t) = g(a 09 t + T) for all t

and cr 0
fixed.

For a given transfer function W(s), an infinite number of ranges of the

nonlinear time-varying gain can result in absolute stability. In general, either

G, or G, or the arithmetic mean of aQ/g(a 0 , t) must be specified to determine

the largest possible circle uniquely. These parameters determine one of the real

axis intercepts or the center of the circle respectively; given this information,

the least restrictive range of g(cr
0 , t) is obtained by drawing the largest circle

in the U, V plane which fails to have a common point with V?((R) if the sys-

tem is aperiodic, or which contacts *W((R) at points other than on the real

axis if g(a 0 , t) = g(cr
0 ,

t +_T).

In general, the range [G, G] obtained by an application of the circle criterion

for NLTV gains may be much smaller than the range permitted by the

Nyquist criterion for g(cr 0 , t) = atct
0 ,

as is the case for the plant W{s) whose

Nyquist diagram is shown in Fig. 7-5a. For the special case shown in

Fig. 7-5b, where the circle through (—

G

-1
, 0) and (—

G

_1
,0) passes arbi-

trarily close to the curve Tw at those points, the two ranges coincide almost

exactly. This is a rather exceptional situation in which a restricted form of

Aizerman’s conjecture (where the gain may approach the extreme values of

the Nyquist range as closely as desired for finite a 0
and t but it may not

approach the Nyquist bounds asymptotically) is valid even for NLTV gains.

The circle criterion as stated above was derived from conditions guarantee-

ing the existence of a common quadratic Lyapunov function; it is thus a

sufficient condition for the stability of a nonlinear time-varying system. The

question naturally arises as to whether the condition is also necessary. For

the case of a linear time-varying system, it has been shown that the condition

is not necessary. If a second-order system is represented by the differential

equation x + 2£x + k{t)x = 0, then the circle criterion guarantees absolute

{AT0 } stability in the range 0 < e k{t) 4£
2 — e. Variational analysis

g((T0 ,t)/<T0 e [G, G];

Ag e {A
t }

(7
- 11 )
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Fig. 7-5. A comparison of stability ranges: (a) [G, G] much smaller than the Nyquist
range [g(cr o, 0 periodic]; (b) [G, G] coinciding with one Nyquist range.

indicates that stability is guaranteed for larger upper bounds on k(t). Specific

examples are treated by Taylor and Narendra [1] and Brockett [1]; the analy-

sis of Chapter VIII indicates this same point. For NLTI systems with r =
—/(? 0) £ {^}> f(Go)l<7 0 £ [0, F], the application of the circle criterion also

often fails to yield the largest range possible, as is demonstrated in Section 3

by a graphical interpretation of the absolute stability condition of Popov.
However, for nonlinear time-varying systems, Geometric Criterion 1 may
indeed prove to be a necessary condition for absolute stability.

3. The Popov Criterion

In Chapter V, it is first shown that when W(s) is asymptotically stable and
a multiplier of the form_ Z(s) = (0o

s + y0)
±l where y 0 > 0 and 0 O > 0

exists such that [W{s) + F~ l ]Z{s) e {PR}, the system described by Eq. (5-1)

is absolutely stable for all first and third quadrant nonlinearities restricted

to the finite sector [0, F). Criterion lb allows the range [0, F] if another con-
straint is imposed, and particular cases may be treated, as we consider sub-

sequently. In his original paper, Popov [3] suggested interesting algebraic and
geometric interpretations of Criterion la.

A. Algebraic Conditions for Absolute {F} Stability

In terms of the real and imaginary parts of the asymptotically stable

transfer function W(ico), Popov’s criterion may be expressed as

y0 J(co
2
) Ay 0[U + ^_1

] - KcoV>0, CO e (- oo
,
oo) (7-12)
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(where we can allow j}Q to be negative), provided that ^ — 1/F. This con-

straint corresponds to condition (5-7), which necessitates the additional

restriction p ^ — 1/F, as we note subsequently.

Dividing by y Q
and defining a as a A pjy0 ,

this reduces to

J(co 2
) = (U + F- 1)-acoV'^0 , a> e (- 00

,
00 ). (7-13)

The numerator of J(co 2
) is a polynomial in the variable co

2 and can be

expressed as h{9, a) where 9 A co
2

. Condition (7-13) consequently reduces to

the requirement that a polynomial in 9 must be nonnegative for all 9^ 0.

The choice of the arbitrary parameter a to satisfy the condition for any speci-

fic case can be carried out using standard algebraic methods. Generally this

method is useful only if W(s) is given analytically and is of low order.

Example. To demonstrate the application of this method to a system

with a single zero eigenvalue, consider

W(s) = (s
3 + a 3s

2 + a 2s)~
1

.

Since the Nyquist range is (0, a2
a

3 ),
we apply Criterion lc with F = (a2a 3

— e). Absolute stability for f(a 0)/a0 e (0, a2a 3
— e] is guaranteed since

h(9, a) = 9{(a 2 — 9)
2 + (a 2 — 9)[<x(a 2a 3

— e) — a
3

2
] + ea 3 ] > 0

is satisfied for all 9 > 0 by choosing a = a
3

2/(a2a 3
— s).

B. Geometric Conditions for Absolute {F
}
Stability

A geometric interpretation of the criterion can also be derived from the

Popov inequality (7-13). In the U
9
V plane the equation

[U(co 2
) + F" 1

]
- uV(co 2

)
= 0 (7-14)

represents a straight line with slope a" 1 passing through the point(—F~\ 0).

Thus, according to the inequality (7-13) the imaginary axis of the s-plane

transformed by Re W{i(6) A £/, co Im W(ico) A V must lie on or to the right

of this straight line as shown in Fig. 7-6. The plot of co Im W(ico) versus

Re W(ico) is referred to as the modified phase amplitude characteristic, the

modified Nyquist plot, or the Popov plot; note that since U(co 2
) and V(co 2

)

= coV(co) are both even functions of co ,
the diagram for co < 0 is identical

to that for co > 0. According to the Popov criterion the modified Nyquist

plot of W{ico) must lie in a half plane for absolute stability.

Geometric Criterion 2 (Popov, Criterion la). Given a system de-

scribed by Eq. (7-1) with p ^ —F~ l and

g(<r0 , t) = /(cr
0 ) e {F}, /(<r 0

)/cr
0 e [0, F), (7-15)

then if in the U, V plane, the Popov plot TV of W touches or lies to the right

of a straight line passing through the point (—F~ l

, 0) with nonzero slope,

the system is absolutely {F} stable.
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Since the slope of the line is a
-1

, it is observed that the specific multiplier

used in the Popov criterion can also be directly obtained from the modified

Nyquist plot. If a > 0, then the multiplier (1 + as) may be used in Criterion

la, while if a < 0, the multiplier Z(s) = (1 + |

a
|

^)

~

1 satisfies this criterion.

Since the lower bound is specified to be zero, the largest range of /(<r 0 )

that guarantees absolute stability is uniquely determined. This maximum
upper limit F is determined by the intersection with the negative real axis of

a line tangent to the modified Nyquist plot Tw of W(ico). Any system which

permits the use of a straight line tangent to Tw at a point on the real axis

(Fig. 7-6a) provides an example of a system for which the Aizerman con-

jecture is valid: one Nyquist range of the system is [0, F), as can be appre-

ciated from the fact that any real-axis crossings of TV are also real axis

crossings of the Nyquist diagram and vice versa for co finite. In case the Popov
plot does not lie to the right of the line tangent to Tw at a point on the real

axis, the upper limit Fis determined by drawing a straight line twice tangent

to the plot (once above the real axis, once below it) as shown in Fig. 7-6b.

Fig. 7-6. Obtaining the largest range [0, F) by Popov’s criterion
:
(a) tangency point on

the real axis; Aizerman’s conjecture valid; (b) two tangency points, one above the real axis,

one below it.

The necessity of the constraint p V —

F

_1
in addition to the graphical

condition is due to the fact that the point = lim^*, W(ico) = p must lie

on the real axis of the U
,
V plane, that is, = p, JV — 0, while in the

U
,
V plane we have = p, V c„ = —hTb = —hn ,

since for large frequency

W(ico) ^ p + hjico. Thus, although the Popov graphical condition prevents

IV or the Nyquist diagram of W(ico) from contacting the real axis to the left

of —

F

_1
for finite co, it does not preclude from satisfying < —

F

_1
,

which thus must be explicitly avoided by this subsidiary condition. This
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A

Fig. 7-7. The failure of the graphical Popov condition : (a) Nyquist range — 2 < k < 2;

(b) absolute {F }
stability range 0 </Oo)/ffo < 2.

point is demonstrated in Fig. 7-7, where we treat the example W(s) =
+ (s + l)

-1
introduced in Chapter V, Section 1; the graphical condition

alone [Popov Line 2] fails, that is, it incorrectly predicts absolute stability for

/(cr 0 )/cTo e [0, oo).

There are some simple cases where the criterion can be applied directly to

the Nyquist plot of JV(ico) rather than the modified frequency response curve

specified in the above criterion. The modified Nyquist plot is obtained by

multiplying the ordinate of each point on the Nyquist plot by the corre-

sponding frequency co. Hence, if all the points of the Nyquist plot are to the

right of a vertical line through U = —F\ then so are all the points of the

Popov plot, and the absolute stability of the system can be concluded directly

from the Nyquist plot. The circle criterion, however, guarantees that a system

satisfying this condition strictly (the vertical line does not contact IV) would

be absolutely {G,.[F, #0]} stable for all nonlinear time-varying gains g(a 0 ,
t) in

the range [0, F], so that this observation is redundant.

A second situation where the Nyquist diagram alone suffices for a deter-

mination of absolute stability arises when Tw for co e [0, oo) lies in the upper

or lower half of the W-plane; we consider only the latter situation which is

subdivided into two cases:

(i) p > 0 and — n < arg W(ico) <0, co e [0, oo)

guarantees absolute stability for /(cr
0
)/cr

0 e [0, oo);

00 p < 0 and — n < arg [W{ioo) — p] < 0, co e [0, oo)

guarantees absolute stability for /(cr
0
)/cr

0 e [0, — /T 1

).

In treating these cases, the multiplier Z(s) = (s + e) rnay always be used in

proving absolute stability, as shown in Fig. 7-8.
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Fig. 7-8. The Nyquist plot of W lying in the lower half plane
:
(a) p > 0, with asymptotic

behavior {W(ico) — p] ^ (ico)~ 2
; (b) p < 0, with asymptotic behavior {W(ic6) — p] ^

0‘co)
-1

; (c) p < 0, with asymptotic behavior {lV(ico) — p] ^ (ico)~ 2 .

In any situation where F = —p~ l (this includes the infinite sector case with

p = 0), absolute stability is guaranteed only when a nonnegative parameter
a exists such that

Re {[ W(ico) + F_1
](l + a/co)} = Re{[AT(/ro/ — A)~'b]([ + a/co)} 0;

the asymptotic behavior of hr(icoI — A)~ l b as co—» oo precludes the use of
a < 0. Since the phase angle of (1 + /aco) lies between zero and nil for

a > 0, it is clear that such an a cannot be found if the Nyquist plot of W(ico)

enters the second quadrant. If F =£ —p~ l

,
then it is always possible to use

a < 0 if necessary, in which case the Popov line has a negative slope.

Many of these observations, particularly the direct relation between the

graphical condition for absolute stability and the verification of the Aizerman
conjecture, and the validity of the use of a vertical line in the standard polar
plot (Nyquist plot) of W(ico), are due to Popov [3].

The geometric criterion stated above is merely an interpretation of one
form of the Popov criterion, and therefore provides the same sufficient con-
dition for absolute stability. It is thus no more restrictive than the frequency
domain condition upon which it is based, Criterion la of Chapter V, Section
1. Since the interpretation of the other forms of the Popov condition for the

principal and particular cases follows directly, we simply summarize these

results (see also Fig. 7-9).

Criterion lb. We require in addition to the conditions of Criterion la

that Ap e or that^l + FfV(ico) ^ 0, co e [

—

oo, oo]. For finite co, this

condition is satisfied if rw does not contact the Popov line on the real axis,

and as cu —> oo, by demanding that P > —F~ l
.

Criterion lc. We add to the requirements of Criterion lb the condition

H(s) e {SPR 0 }, or J(co2
) > 0 for finite co. The Popov line can only be con-

tacted as co — oo (provided V

^

^ 0); again p > —F~ l
is required. Q
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Criterion la

(b) (0

Fig. 7-9. Geometric interpretation of the Popov criteria: (a) A e {A i}, /(<7o)/<7o e

[0, F); (b) A e [Ai], f(a 0)l<ro e [0, F]; (c) A e {A 0 }, f(a0)/a o e (0, F].

C. The Parabola Criterion for Absolute [F] Stability

The finite sector stability problem considered in the previous section

specifies a range of the NLTI gain having a lower bound of zero. For con-

ditionally stable systems where several sectors of absolute stability can exist

(see Fig. 7-10) or for systems having an unstable plant W(s), it is not possible

to obtain such sectors [F, F] by the direct application of Criterion lb, Chapter

V, Section 1. In principle, it is possible to transform the problem into the

form considered earlier so that the lower bound on the nonlinear gain of the

transformed problem is zero as in Chapter V, Section 5, but this procedure is

generally tedious. For every choice of F, a corresponding value of F can be

found so that the system is absolutely stable in the interval [F, F]. One of the

main difficulties of the procedure lies in choosing F to maximize the sector

[F, F] ; this generally involves a process of trial and error, and the Popov plot

of W(ico)/( 1 + FW{ioo)) would have to be constructed for each value of F.

In view of this difficulty, it would prove most helpful if the sectors for

absolute stability could be determined without transformations. Such a

method was proposed by Bergen and Sapiro [1] in 1967, and the correspond-

ing result is called the parabola criterion. In deriving this criterion, the Popov

condition is applied to the transformed system as in Chapter V, Section 5,

and the resulting frequency domain condition for absolute stability is reinter-

preted in terms of (U, V) defined for W(ico), as in the previous section.

Taking the general finite sector result of General Stability Criterion 1,

absolute stability for f((J 0)/<J 0 e [F, F] is guaranteed if A F e {A
x },
AF e {A

x }

[Eq. (4-2)] and if

| X + *»)*' s TO 0-16>

where a 0. Provided that AK e {A
x }, k g [F, F], this is equivalent to

FFU 2 + (F+F)C/+ l>aco(F- F)K-FFK 2
, a e (-00,00). (7-17)

This relation is useful only if it can be interpreted simply in the U, V or U,
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V plane. If FF> 0, we may discard the last term of inequality (7-17) to

obtain the stronger constraint

(FU + l)(FU + 1) > a(F - F)V,

which is thus a sufficient condition for absolute stability.

Geometric Criterion 3 (The parabola criterion). Given a system de-

scribed by Eq. (7-1) with

S0o, 0 = o) e [F], f((70 )l<T0 e [F, F] (7-18)

and Ak e {A
t }, k e [F, F], if in the U, V plane the parabola

{FU + 1){FU + 1) = a(F - F)

V

(7-19)

does not intersect any part of the modified Nyquist plot of W(ico), then the

system is absolutely {F} stable. Q
In application, this criterion is most clear if both the normal and modified

Nyquist plots of W(ico) are made. In this way the range [T, F] such that

Ak e {A
t } for k g [F, F] may be easily ascertained from 'W(Ol), and then

the parabola is drawn with respect to fw or the Popov plot of W(ico). The
estimation ofFand Fsuch that a suitable parabola can be drawn is simplified

by noting that the parabola specified in Eq. (7-19) has several useful prop-
erties:

(i) Real axis crossings (

V

= 0) are at U = — F"
1 and U = —

F

-1
.

(ii) The parabola is tangent to straight lines drawn through these crossing

points of slope — 1/a and 1/a respectively. Again, the Popov mul-
tiplier (1 + ay)* 1

is explicitly available from the graphical analysis.

(iii) At U = -4(F-‘ + F-‘), dV/dU = 0 and V = ~(F - F)/(4aFF).
(iv) The intersection of the two straight lines of tangency occurs at

(U ~ —i(F ^ + F“ ‘), V = — (F — F)/(2aFF), which is just twice

the value of V on the parabola at the same ordinate.

These relations are shown in Fig. 7-10 in one example of the application of
the parabola criterion. For a given choice of Fand F, it is usually advantage-
ous to choose

|
a

|

as large as possible, as estimated by drawing the pair of
tangency lines. Taking a < 0 merely reverses the sense of the parabola.
As in the case of the circle criterion, it is not necessary that W(s) be stable

if the range of /(tr0 ) does not include zero (0 [F, Fj). Again, consider the
example W(s) = (s + P)l(s(s - a)): We have

U(co 2
)

(« + §)
co

2 + a 2 ’ V(co 2
) = a/?

a

r

= -1 - at/.

which demonstrates that the Popov plot is a straight line segment with
endpoints^ (

U

= —(a + p)/a
2

, V = /?/a) corresponding to cu = 0 and
(U = 0, V = —1) as co —> ±oo. The result shown in Fig. 7-11 (in which
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Fig. 7-10. An application of the parabola criterion.

Fig. 7-11. An application of the parabola criterion to an unstable open-loop plant.

^((R) is an enlarged version of Fig. 7-1) is that the parabola criterion guar-

antees stability for all gains /(<r0 ) e [F], /(<j 0
)/gt

0 e [(a + e), e" 1

], where

e > 0. This system provides another example of a plant W(s) for which a

restricted type of Aizerman conjecture is valid.

Like the other geometric criteria, the principal advantage of this criterion

is the ease with which it can be applied, compared with the direct application

of Popov’s criterion to the transformed system on a trial and error basis.

However, it is considerably more difficult to apply than Geometric Criteria
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1 and 2; the values of F and F must be estimated, then values of a must be

chosen in the search for a parabola that does not intersect the modified

Nyquist plot.

It must be noted that the criterion imposes stricter conditions than Popov’s

Criterion since it is a sufficient but not necessary condition for the existence

of a Popov multiplier. While its advantages are most obvious for condition-

ally stable systems, it can be used in all situations where the Popov criterion

is applicable. For the particular case where F = 0, the parabola reduces to

Geometric Criterion 2 (Popov) since the discarded term —FFV in Eq. (7-17)

is zero.

4. Monotonic Nonlinearities: An Off-Axis Circle Criterion

For a conventional feedback system having an LTI plant W(s) in the for-

ward path [Eq. (7-1)] and a single time-invariant monotonic nonlinearity in

the return path,

gfro , t) = /((T 0 ) g {FJ, Af(cT0)lAcr0 g [M, Ml (7-20)

the sufficient condition for absolute stability has been demonstrated to be

that there must exist some Z(s) such that Z±1
(s) e {.ZFm(s)} and

H(s) = ri + mw{s)~]

_1 + MW(s)_
Z(s) g {PR}, (7-21)

where [1 + MW(ico)\ 0 and [1 + MW(ico)\ ^ 0, co g [— oo, oo]. In treat-

ing the problem of absolute stability for monotonic gains (Chapter V,

Sections 2 and 5), it has been determined that the class of multiplier functions

{ZFm(s)} contains the class of functions that can be realized as driving point

impedances of RL networks; {ZFJ = (ZRL).

When for a specific choice of M, M and W(s), it becomes necessary to

extend the search for a suitable multiplier Z(s) satisfying the above con-

ditions to RL functions having several poles and zeros, say 0 < < jj, x

< A 2 , for example, it becomes a very difficult task to determine whether

values of these parameters exist such that H(s) is positive real. For this reason,

geometric criteria are especially desirable in cases when multiplier classes

include complicated functions. An off-axis circle criterion has been derived by

Cho and Narendra [2] to answer this need for monotonic gains. This result

provides a sufficient condition to be satisfied by the Nyquist plot of W(ico)

that ensures the existence of some Z(s) such that Z ±1
(s) e {ZRL}

and condi-

tion (7-21) is satisfied.

The basis of this theorem can be most simply presented in terms of the

phase characteristics (argument) of RL multiplier functions. The stability
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criterion follows from a basic lemma concerning the realizability of a useful

class of functions {Ze(s)} that is a subset of the class {ZRL(^)}.

Lemma 7-1 (ZRL multipliers). Let [a) 15 o) 2 ]
be any closed subinterval of

(0, oo), 0 any constant in (0, n/2) and e > 0 a constant that may be arbitrarily

small. Then there exists a function Z(s) such that Z(s) e {ZRL(V)}and

|

arg Z(ico) — 9
1
< e, co e [a> 19 co 2],

0 < arg Ziico) < 9 + £, co $ [co
x , co2].

A member of this class (depicted in Fig. 7-12) is denoted Z(s) e {Ze(s)}

<= {Zrl(5)}.

A heuristic explanation of the method of proof may be outlined as follows.

The multiplier Z(s) e [ZRL] is defined as a function having alternating poles

and zeros on the negative real axis; the first or smaller of these singularities

is a zero. The argument of Z(ico) can then be expressed as a convolution of a

“step-function” and a “smoothing function” and this in turn may be used to

obtain a bound on
|

arg Z(ico) — 9
|

using Holder’s inequality. For e arbi-

trarily small, the first zero of Z(s) is likewise arbitrarily small in magnitude.

Since this proof is quite technical, the reader is referred to Cho and Narendra

ra-

First consider the finite sector case, Af(a0)/Aa 0 e [0, M] or Af(a0)/Aa 0

e (0, M], depending on the stability properties of W(s). Suppose on the

Nyquist plot Tw of W(ico) it is possible to draw a straight line of positive

slopet through the point (U = —M~\ F = 0) such that IV lies strictly to

the right of the line, co e [0, oo]. Denoting the angle between this line and

the imaginary axis by 6 ,
this means that

-njl -9< <I)m(co) A arg [W(ico) + M~ l

] < nil - 9, 9 e (0, n/2).

t We consider only finite slopes here. If the slope is infinite, we have absolute {G,[F, F0 ]}

stability by the circle criterion, Section 2.
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Since the points where Tw approaches this line must be in finite U, F-plane

even if W(s) has a pole at the origin and since (/>a(co) cannot approach 0

asymptotically as a) — oo or as co — 0 (0M(co) must approach 0 or n/2 in

either case, that is, [W(ico) + M~ 1

] must approach a positive constant or it

must behave like (ico)
_1

as co — oo or as co —* 0, since W(s) is rational), this

assumed constraint is equivalent to

-nil - 0 + fij < 0^(co) < n/2 - 0 - e2 , (7-22)

where > 0 and s 2 > 0 are arbitrarily small. There are two cases that

must be taken into account; the first is the only one to be considered if

A g [A j} (if W(s) is asymptotically stable), whereas the second may occur if

A e [A
0 ]

(if W(s) has a single pole at s = 0).

(i) Two frequencies co
l
and co 2 >co 1

exist such that — nil < </>m(co)

< n/2 — 0 for co e [0, co
{ ) and co e (co2 ,

oo] [Fig. 7-13a]: Choose Z(s) e
[Ze(s)} to have its argument between ({9 — e) and (0 + e) for co e [co 1? co 2 ]

where e < min^
, e 2 ). Then define e

t
A e, — s > 0, e 2 A e 2 — e > 0,

and we have

-n/2 + 2, < arg {[W(ico) + M~']Z(ico)} < n/2 - e2 , (7-23)

w e [gJj, co2 ]. Since 0 < arg Z(ico) < 0 + e outside this closed range of co,

it is evident that this restriction on the argument of [W(ico) + M _1
]Z(/o>)

must hold for all cu e [0, oo]. Thus there must exist some Z(s) e fZe{s)} a
(ZRL(^)} such that [W(s) + M~ l }Z(s) g {PR}

L
or e {SPR

0 }. Furthermore,

the graphical restriction guarantees that [1 + MW(ico)\ ^ 0, co G [— oo, oo].

These two conditions are sufficient to ensure absolute stability as demon-
strated previously (Chapter V, Section 2).

(ii) A frequency co2
exists such that 0^(co) e (—n/2, nil — 0) for co G

(co2 ,
oo

] but (/)a(co) g (—n/2 — 0, —n/2) for co g (0, co2) [Fig. 7-13b]

:

As co —

>

0, (f)tf(co) must approach — n/2 from below. In this case we choose

Fig. 7-13. Off-axis circle criterion, two cases: (a) A e {A\}, A/(cr 0)/A<7o e [0, M];
(b) A e {Ao}, A/(<t 0)/A<7o e (0, M].
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Z(s) e (ZeO)} as in (i) except oo
Y > 0 is taken to be arbitrarily small so that

arg Z{ico) dominates 0^(cw) for small co ,
and thus we can ensure that [ W(s)

+ M~ l \Z{s) g {SPR
0 }.

Actually in all of these cases the fact that the straight line does not contact

Tw at any^ point implies that [W(s) + M~ l ]Z{s) g {SPR} (if A g {A
x }), or

[W(s) + M~ l ]Z(s) g {SPR
0 }

(if A g {^ 0 }), as seen in the inequality (7-23).

Thus in either case we have a sufficient condition for absolute stability.

To this point we have considered 0 g (0, nil) in which case Z{s) g
{Ze(s)} c= {ZRL(s)} exists to satisfy Eq. (7-21) with M = 0. If 9 e (— zr/2, 0)

then as in previous developments Z~ l
(s) g {Z0(s)} exists such that

[W(s) + M~ l ]Z(s) g {PR}, that is, Z(s) is a member of {ZRC }. Thus Tw may
lie to the right of a line of negative slope, and we proceed to prove abso-

lute stability as above.

Geometric Criterion 4a (Monotonic gains, finite sector). Given a

system described by Eqs. (7-1) and (7-20), where A/(cr
0
)/Aflr

0 e [0, M] if

A g {A
x }

or Af((J 0)/A(j 0 e (0, M] if A g {A
0 }. Then if Tw or the Nyquist

plot of W(ico) for co e [0, oo] lies strictly to the right of a straight line through

the point (U = —M~\ F = 0) with nonzero slope, the system is absolutely

{Fm } stable.

We should emphasize that the portion of Tw for co < 0 is not drawn in

applying this theorem. In one respect, the conditions are actually more strict

than those of the Popov criterion in that the monotonic line cannot be

touched by Tw ,
whereas TV can contact the Popov line. This is due to the

argument ofZ(s) e {Z0(s)} lying in the range (0 — e, 8 + e) over the specified

range of co and not being strictly constant.

To prove the analogous result for the general finite sector case, f(o 0 )

e [M, M], we again make use of the standard transformation of Chapter

V, Section 5, to obtain a system [W, /} that may be considered to lie

within the ambit of Geometric Criterion 4a. In algebraic terms, we have U A
Me{IE(5)/(l + MW(s))}, V AIm{IT(5)/(l + MW(s))}\ thus the condition

to be satisfied for absolute stability is that there must be some jj, ^ 0 (ji be-

ing the slope of the line specified in Geometric Criterion 4a) such that

VL-'V <(U + (M- M)" 1

), CO G [0, oo].

Solving for U and V in terms of U and V of the original system, this condition

is equivalent to

J»(co 2
) A [MM{U 2 + V 2

) + (M + M)U - ((Af - M)l/i)V + 1] > 0. (7-24)

To interpret this constraint in geometric terms, consider a circle passing

through (C/j = -M~\ V
t
= 0

)

and (U2
= - M~\ V2 = 0) with slope

and +ju at those points respectively. If jx ^ oo, then the center of the circle
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does not lie on the real axis; elementary geometric relationships reveal that

center: v0
= —(M + M)I(2MM), v0 = (M — M)/(2//MM)

radius: = <,. + I)[f=£7. <
7'25>

LljuMM J

Substituting these quantities into (U — v0)
2 + (V — v0)

2 = p
2 and simplify-

ing, this circle corresponds to the condition JJco 2
) = 0. The significance of

the inequality in Eq. (7-24) depends upon the signs ofM and M: ifMM > 0,

that is, if both M and M have the same sign, then points (U, V) satisfying the

condition (7-24) lie strictly outside the circle in the usual loose sense, while

if MM < 0, then points that are consistent with this constraint are strictly

inside. As in Geometric Criterion 1, we formally define the interior of the

circle defined by JJpo2
)
— 0 to exclude the origin.

Definition. In the U, V plane, C'U[M . M] denotes the generalized off-

axis circle

'{(U, V): [MM(U 2 + V 2
) + (M + M)U

r \m ifn a J
~W-M)tn)V+ 1] = 0}

]= {(^F):F/a = (C/+M- 1

)J, M — 0 (
7‘26)

l(U, V): V/p ==(£/-)- M~ 1

)}, M= 0

and the closed interior of CU[M, M] is the region in the U, V plane defined by

{(U, V): [.MM(U 2 + V 2
) + (M + M)U

TX„ A -
(tf* - M)/n)V + 1] < 0}

V):(MU+ 1)<MK//j}, M = 0 (
7'27)

.{(£/, F): (MU + 1) < MVjp], M = 0.

As stated previously in considering the finite sector case, only the Nyquist
plot for co ^ 0 must avoid the line or circle specified by this criterion. Thus
rather than being interested in the mapping of the entire right half plane,

that is, in *W((R) = W(s e (R) as defined in Section 1A, we must ascertain

the mapping of the infinite first quadrant (Re j ^ 0, Im s ^ 0) alone. If we
denote the finite first quadrant of the j-plane by

Sr A {5 = pew ; p e [0, R], 6 e [0, n/2]},

then the comparable region in the U, V plane is W(3:

) A W(s e J?) where
again, R is taken to be arbitrarily large if lim,,^..^

|
W(ico)

|

= oo, or we formally

take the limit as R — oo if lim
(u |

iV(ico)
\
< oo. If W(s) has any poles on

the boundary of T, that is, on the positive real or imaginary axes, then the

contour must be extended to include these points.

Definition of Region 5F. For any W(s) having poles at s = A, satisfying

[Re 2,. >0, Im > 0], i = 1 , 2, . .

.

, m;

<£ h; e (n/2, 2k), i = (m + 1 ), . .
. , n.
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the region SF in the y-plane consists of the union of all points satisfying:

(i)
|

s
|

e [0, R] and <^s e [0, n/2] where R is arbitrarily large (or R —> oo

if W(oo) < oo), and

(ii) \s — A,
| < pQ , i = 1, 2, ... ,m where p 0

may be arbitrarily smallt.

Geometric Criterion 4b (The off-axis circle criterion). A system de-

scribed by Eqs. (7-1) and (7-20) is absolutely [Fm ] stable if n Im[M,
M]

= 0 where // g [-oo, oo] is not zero.

Example 1. Again we consider W
x (s) = (s + fi)/(s(s

— a)). Taking SF or

the first quadrant of the s-plane extended to enclose both of the poles, we
plot the mapping fW(3:

) A W(s e $) using the conventional techniques; see

Fig. 7-14. We note that an off-axis circle may be drawn touching at

(U = —a -1
,
V = 0) and at the origin. Thus any monotonic gain f(cr

0 ) e
{Fm }, A/(<70)/Ac7 0 e [a + e, e~ l

] may be used in conjunction with W
{ (s)

to result in a closed loop system that is absolutely {Fm } stable since I
M [a + e,

fi
_1

] n CW(9:

) = 0 where s > 0 may be arbitrarily small. This is exactly the

same range obtained by use of the parabola criterion (Fig. 7-1 1), so this result

is only included for demonstrative purposes.

Fig. 7-14. Example 1 : the off-axis circle criterion for an unstable plant.

t None of the remaining poles at j = A/, / = (m + 1), . .
. , n may lie in JF.
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Example 2. Given a feedback system described by Eqs. (7-1) and (7-20)

with the linear plant having a transfer function

Ms) = *+_ l

K)
s{s + 0.1) (s

2 + 0.5s + 9)

(a) The Nyquist plot of W(ico) and the region *W((R) are shown in Fig.

7-15, which indicates that the Hurwitz range for the stability of an LTI

feedback system incorporating this plant is (0, 4.28).

(b) Since the Nyquist plot is asymptotic to a vertical line through the

point (U = —10.06, V = 0) as co —> 0 [analytically, U(co) U(0) =
— 815/81], the system is stable for all nonlinear time-varying gains g(a0 , t) e
{G

Z
[F, F0]} in the sector [e, 0.0993] by the circle criterion (Geometric Criterion

1).

(c) The modified Nyquist plot is also indicated in Fig. 7-15. The straight

line that is almost tangential to the modified Nyquist plot at two points inter-

sects the negative real axis at (—2.85, 0), yielding a Popov gain upper bound

Fig. 7-15. Example 2: Comparison of stability criteria; (—) V — co Im W{ico)\ ( )

V=lm fV(fco).
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of F — 0.35. The system is thus stable for all nonlinear functions /(<j 0 ) e
{F} in the sector (0,0.35] by Criterion lc (see Fig. 7-9c).

(d) A straight line nearly tangential to the Nyquist plot at two points

intersects the negative real axis at (—M~\ 0) where M = 3.13. The system

is consequently stable for all monotonic nonlinearities in the sector (0, 3.13]

by Geometric Criterion 4a.

Example 3. Consider W(s) = 3(^ + 1 )/(s
2
(s

2 + s + 25)), with the lower

bound on the nonlinearity being specified to be unity.

(a) The Nyquist criterion applied to the system indicates that the system

is stable for all linear gains in the range k e (0, 8) [Fig. 7-16].

(b) A circle C[l, G] with its center on the negative real axis is drawn
passing through the point (—1,0) to be nearly tangential to the Nyquist

plot. Since C[l, <7] intersects the negative real axis again at (— 2.22
-1

, 0), by
the circle criterion the system is stable for all nonlinear and time-varying

gains g(a
0 ,

t) e {G,[F, Kq]} in the sector [1, 2.22].

(c) A parabola satisfying the Geometric Criterion 3 passing through

(—1,0) and tangential to the Popov plot Tw intersects the negative real axis

at U = —0.37. Hence, by the parabola criterion, the system is stable for all

nonlinear gains /(<

j

0) e {F} in the sector [1, 2.70].

Fig. 7-16. Example 3 : Further comparison of stability criteria.
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(d) A circle CM [ 1, M] passing through (—1,0) and nearly touching the

Nyquist curve Tw at two points intersects the negative real axis at (— 7.25
-1

,

0). By the off-axis circle criterion, the system is stable for all monotonic

gains in the range [1, 7.25].

Comments on the Off-Axis Circle Criterion

1. The circle criterion (Section 2) for nonlinear and time-varying systems

calls for a circle with its center on the negative real axis. The circle criterion

for monotonic nonlinearities stated in Geometric Criterion 4b calls for any

circle intersecting the negative real axis at the two points (—

M

_1
,0) and

(—M~\ 0). In the very rare cases where W(ico) is symmetrical about the real

axis for co ^ 0 (not including Fw for co < 0), the two criteria become identi-

cal.

2. The off-axis circle criterion may be applied in many ways in various

practical situations. In particular, if the lower limit M is specified, the maxi-

mum range of stability given by the criterion can be determined by drawing

a circle through (—M~ \ 0) and touching the Nyquist plot of W(ico) at two

points. The second intersection of the circle with the negative real axis yields

(—M~ 1

0), see Example 3; and similarly the best (least restrictive) lower

limit M may be found if M is specified.

3. Since this criterion only assures the existence of a multiplier function

Z(s) such that Z±1
(s) e [Ze(s)} c {ZRL(^)}, it is only sufficient and not

necessary for the existence of an absolute {Fm } Lyapunov function. In this

respect, the off-axis circle criterion is analogous to the parabola criterion for

the absolute (F) stability problem. This implies that even when the Nyquist

plot of W(ico) does not satisfy Geometric Criterion 4, it may be possible to

find a multiplier Z(s) such that Z ±1
(s) e \ZRL]

and condition (7-21) is

satisfied.

4. If W(s) is asymptotically stable and the lower limit G = 0, the sector

k e [0, K ] given by the Nyquist criterion, the range [0, M] given by the

monotonic criterion, the Popov sector [0, F] and the range [0, G] provided

by the circle criterion can all be determined given the Nyquist plot and

Popov plot of W(ico). The bounds K, F, and G necessarily satisfy the inequal-

ities

G<F<F.

In general, the monotonic gain upper bound M lies between the Nyquist gain

limit K and the Popov gain bound F, that is, F M K. There may be cases,

however, where the application of the off-axis circle criterion yields a sector
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that is more restrictive than the Popov sector. Since F is obtained using a

modified Nyquist plot and M directly from the Nyquist plot, the relative

magnitude of F and M depend on the behavior of the frequency response

diagrams in the vicinity of the negative real axis. It may be possible for the

line specified by the off-axis circle criterion to cut the negative real axis at a

point —1/M which is to the left of the Popov line intersection at —1/E, that

is, thatM < E is obtained as a result of the application of the off-axis circle

criterion. In such a case the criterion is a failure since absolute {F} stability

in the sector [0, F] is also applicable to monotonic functions.

5. Further Geometric Interpretations for Time-Varying Systems

The various point or instantaneous constraints (Chapter VI, Sections 2-4)

on the rate of time variation of k(t) in the linear and nonlinear feedback

systems treated previously all permit simple graphical interpretations if k(t)

is represented in the phase plane or the plot of dk/dt versus k. This plot is

in wide use in the analysis of oscillations and other nonlinear phenomena
by graphical and analytic techniques (see Cunningham [1]). Thus this condi-

tion may even be applied to time-varying gains that are generated as non-

linear oscillations which cannot readily be expressed in analytic form (see

Fig. 7-17).

We consider only the most general criterion of this category, General

Stability Criterion 2 (Chapter VI, Section 4), which deals with the general

finite sector problem for nonlinear time-varying gains. We have the restric-

tion

dk/dt < a.
0
[k(j) - £][1 - k(t)jK]GJ(GN - Gn), Z(s) g \Zn\

_ _ _ (6-34*)

dk/dt > -<x0 [k(t) — AT][1 — k(t)/K]Gj(GN - GN), Z~\s) e {ZN}

where

a 0 AA$. (7-28)

Assuming that all of the parameters involved are known or can be simply

estimated (some useful comments pertinent to the determination of A and

$ are given in this section), this constraint is easily visualized in terms of

k and k. Two special cases occur when the ranges [0, G^] and [0, oo) are

considered. All three types of restriction are shown in Fig. 7-17. In the first

and third case, we assume thatZ _1
(y) e [ZN(s)}, so the condition correspond-
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(0

Fig. 7-17. Typical phase plane restrictions of k(t): (a) infinite sector restriction Z_1
(>)

€ [Zn}\ (b) finite sector restriction Z(s) e {ZN}\ (c) general finite sector restriction

Z~Ks) e [ZN].

ing to Eq. (6-34“) is depicted, whereas in the second example it has been

assumed that Z{s) e [ZN(s)}. The oscillations shown in these examples are

(a) a solution of the Raleigh equation, (b) a solution of the van der Pol

equation, and (c) the solution to a differential equation representing the

dynamic behavior of a mass on a hard spring (see Cunningham [1]).

A. Comments on Constraint (
6-34 ±

)

(1) It is a rare occurrence that k(t) actually occupies the entire range

l

K

,
K]. In general, the shape of the phase plane portrait is not compatible

with the parabolic constraint, so usually k(t) e [Ku K2 ] where K < K
x <

K2 < K. This is particularly true when dealing with periodic functions: The
phase plane trajectory of a periodic function must cross the fc-axis with infi-

nite slope, which is not permitted by the parabolic restriction on dkjdt at
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K and K. Thus in all of the examples indicated in Fig. 7-17, k(t) occupies a

range that is smaller than [

K

,
K].

(2) If k{t) is periodic the choice of the extremes K and K in terms of the

mean value of k(t),

k0
AT' 1

[

T

k(t)dt (7-29)
Jo

is generally not straightforward. If the phase trajectory is not symmetric

with respect to a vertical line passing through k = k 0 ,
it is usually easiest

to do this graphically. If it is symmetric, however, we can simply choose

K and K so that K — k 0 = k 0
— K. Sinusoidal gains give rise to elliptical

phase plane plots, for example, so in Chapter VIII, Section 4B, we take this

course of action. These two cases are depicted in Fig. 7-18.

Fig. 7-18. The choice of ko = T~ l

J
T
Q k(t)dt to maximize the range or frequency:

(a) unsymmetric phase plane_ portrait: k 0 = K/2 is suboptimal; (b) optimal k 0 to yield

maximum range of K(t)\ (c) K — kq = kq — K for symmetric phase plane plots.

(3) The constraint on dkjdt can be applied in several ways. The shape of

the phase plane plot of k is determined by the wave form in the time domain;

considering periodic gains, sinusoidal gains correspond to ellipses in the

phase plane, while nonlinear oscillations are generally irregular (see Fig.

7-17). The horizontal dimension of the trajectory corresponds to the range

[Ku K2 ] of k{t), while the vertical dimension is directly proportional to the

range and frequency. Thus if the range is prespecified, we extend the tra-

jectory only in the vertical direction until it touches the parabola to deter-

mine the maximum frequency that is allowed. If the frequency is fixed, then

the entire portrait is enlarged until it touches the parabola which determines

the maximum range permitted by the constraint. The choice of k 0
and deter-

mination of the maximum permissible range of a gain is shown in Fig. 7-18a

and b and ascertaining the maximum frequency is demonstrated in Fig.

7-1 8c.
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(4) Finally, if k(t) is of prespecified frequency co0 , it is often advan-

tageous to choose A first before applying the frequency domain constraint on
W(s). This is important, because co 0

determines the proportions of the phase

plane trajectory of k(t) and it is desirable to match the shape of the parabola

to that of the portrait of the gain k(t). We see in Fig. 7-19 that if A is too

small, then we must make poor use of the nominal range, that is, K<^K
X

< K2 <C K, and if A is too large (or if K and K are too close to K
l
and K2

in value) then the frequency domain condition which gives this large value

of A is probably too restrictive. A reasonable choice of A is shown in Fig.

7-19 for the range K2 ,
K2 .

Fig. 7-19. Three choices of A for a specified gain.

If the system under consideration is completely determined, then it is a

relatively simple matter to ascertain whether or not it satisfies a given abso-

lute stability criterion. If, however, certain parameters are free (generally

these are range and/or frequency) and it is desired to find the maximum
values they can take while still ensuring absolute stability, then several or

all of the above points must be taken into consideration and the analysis

becomes quite involved. Many of these same points are made in Chapter

VIII in applying this constraint analytically to the damped Mathieu equation

in its linear and nonlinear forms.

With these comments and guidelines as a basis, the parameters A and $
for the infinite sector and finite sector cases have to be determined so that

oc 0 [Eq. (7-28)] may be evaluated. In the general finite sector case [Eq. (6-34± )],

it is also useful tojcnow the range [GN ,
G^] of the nonlinearity as well. The

determination of A and O depends upon W(s) or the behavior of the linear

plant, on the nonlinear behavior of the gain (on {A)), and on the correspond-

ing class of multipliers [ZN(s)}.

Bo Nonlinear Time- Varying Gains in the First and Third Quadrants

The first step in the determination of a 0
in Eq. (7-28) is the evaluation of

$. For a nonlinear function lying in the first and third quadrants, this para-

meter can be determined by inspection in some simple cases, or estimated
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quite accurately in other situations. A detailed discussion of this matter is

provided in Chapter II, Section IB.

Once O is known, the absolute stability criterion is completely graphical

in nature. The value ofA may be found directly from the geometric form of

the frequency domain condition. For the infinite sector and finite sector

cases, the Popov line (see Geometric Criterion 2) has a slope of absolute

value
|

or 1

1

= y 0 //? 0
A A (the slope is positive if Z(s) e {ZF(s)} and negative

if Z~ l
(s) e {ZP(s)}). When treating the general finite sector case, the parabola

criterion may be used to determine A; if the parabola cuts the real axis with

slope ±y 0 //? 0 ,
then |y 0 //? 0 1

= A. For the NLTV case, the only change that

has to be made in applying these graphical frequency domain conditions is

that the Popov plot of W(ico) must not touch the constraining line or parabola

for all co e [— oo, oo] if k{t) is not periodic (refer to Chapter VI, Section 5).

Geometric Criterion 5. The system described by Eq. (7-1) with

T = —k(t)f{a0 ),

k(t

)

e {AT,}, k(t) e [K, Z]
j
G„ = KF (7-30)

fioo) e {F}, /(*„)/*, e [F, F]J GP = KF

is absolutely [G
X
[F, K

x ]} stable if

(1) the Popov plot of W(ico) lies outside [strictly outside if k(t) is aperi-

odic] a parabola passing through the points (U
l
= — (G>)

-1
, V = 0) and

(U2 = — (CF)
_1

, V — 0), co E [— 00
,
00 ], with slope —v at U = Uu +v at

U = U2 where v ^ 0;

(2) the phase plane portrait of k lies in the semi-infinite strip bounded

by k = K, k = K and the concave parabola

k = v$(k - K)( 1 - k/K)GF/(Gp - GP), (7-31)

where $ is determined by /(cr
0) [Eq. (2-11)].

We note that the slope of the frequency domain parabola (or Popov line

if GP = 0) at U2 = —(GpY 1 determines not only A but whether Z(s) e {Zp}
or Z~ x {s) e {ZF}in the original analytic frequency domain restriction; thus in

constraining k(t), we need to specify only one parabola, Eq. (7-31), as a bound

of the permitted region of k versus k in the phase plane. The sense in which

this parabola is said to be concave is evident in Fig. 7-17.

For the case when k{t) is completely specified, it is most effective to choose

A (or v in Geometric Criterion 5) and
[
K

,
K] first as mentioned in Comment

(4). The interrelation between A and Gp for the periodic finite sector case is

shown in Fig. 7-20.

Some of these relationships are given by Brockett and Forys [1] in their

discussion of a stability criterion for LTV gains. In that result (see Chapter

VI, Section 2), Z(s) = (1 + as)/(l + fis) is used as a multiplier and A =
min(a _1

, P~
l

). They noted that a Popov line of positive slope // corresponded
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Fig. 7-20. The extended Popov criterion for periodic NLTV systems.

to a = P = 0, A = ju, and one of negative slope —fi to the conditions

a = 0, P = /2
_1

, A = /?.

C. Nonlinear Time-Varying Gains with Monotonic Nonlinear Behavior

In this case, f(c

j

0) e {Fm } (Chapter II, Section 1) and a reasonable estimate

of O = 1 may be used. If /(<t 0 ) is specified completely, however, a better

estimate of <J> may be obtained, as in the previous case, either analytically or

with the aid of a computer.

The determination of A is a more difficult problem in this case as the

corresponding frequency domain condition is considerably more complex.

If a multiplier Z(s) exists such that Z(s)±l e {ZFm(s)} satisfying the condition

H(s) e {SPR} (Eq. (7-2)) if k{t) is aperiodic or H(s) e {PR} if k{t) =
k(t + T), then A is the distance from the origin to the nearest singularity

of Z(s). Choosing a multiplier Z(s) that maximizes A in any specific situation

may be difficult to accomplish and trial and error methods may have to be

resorted to.

The off-axis circle criterion (Geometric Criterion 4, Section 4) provides a

method of obtaining an estimate of A (Taylor [2]). We cannot apply Geo-
metric Criterion 4 directly, since although the criterion guarantees the exist-

ence ofa multiplier Z(s) e {Z0(s)} c= {ZRIX?)} satisfying the required frequency

domain condition, the exact form of Z(s) (and thus the multiplier margin A)
cannot be determined. This problem can be circumvented, if W(s) is known
analytically, by using a frequency domain shift: If the Nyquist plot of

W{ico — X) satisfies the off-axis circle criterion (Geometric Criterion 4b)
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for some A > 0, then A is a conservative estimate of A since if [W{s — A)

+ M~ l ]Z{s) g {PR} by Geometric Criterion 4, then [W(s) + M~ l]Z(s + A)

g {SPR} (Chapter III, Section 5) and the multiplier margin of Z(s + A)

must be at least A. In applying this condition, we formally define <SX to be

the s-plane region Re s ^ —A, Im s ^ 0 suitably extended to enclose any

poles on the boundary (as in Fig. 7-14). In the special case when GM = 0 and

the off-axis circle reduces to a straight line, the condition is considerably

easier to apply.

Geometric Criterion 6 (Taylor [2]). The system described by Eq. (7-1) with

T = - k(t)f(<T0)

m e {K,}, k(t) G [K, K]
J

Gm = KM,

/(*o) e {FJ, Af((J0)/A<J0 e [M, M]
J

GM = KM,

is absolutely [G
r
[Fmi Kx ]} stable if for some A > 0

(1) 'WOFJ n Im[GM 9 Gm ] = 0, where // g [— oo, oo] is not zero;

(2) condition (2) of Geometric Criterion 5 is satisfied with v = +A if

Gm]
is centered above the real axis, or v = —A if GM ]

is

centered below the real axis, and GF/(GF — GF) is replaced with GM/(GM —
GmX

Fig. 7-21. Geometric Criterion

6: applying the shifted off-axis

circle criterion to determine A.

Note that even if k(t) is periodic, the off-axis circle cannot be allowed to

contact W(ico — A) for co 0; refer to Geometric Criterion 4.

D. g(<7 0 , t) = k(t)(T
0
: Three Methods for Estimating A

In the case of systems with a single time-varying gain k{t) in the feedback

path 0 = 2. Three methods are outlined for estimating A given the transfer

function W(s) of the linear part of the system in analytic form.

(i) Define (Rx to be the half plane Re s ^ —A, extended where necessary

to enclose any poles of W(s) on the line Re 5 = —A as before. Locate the
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region ^((R*) by plotting the Nyquist diagram of W(ico — X), denoted FWfX ,

and locating its interior in the usual manner. Choose any AT and K such that

the line segment (U = —k~\ k e [K,K\, V = 0) is touched by TW)k but

none of the points of this segment lie in the interior of ^((RJ. The system

{W(s — X), k} for k e [AT, AT] is thus at least marginally stable, so from the

argument presented in Chapter IV, Section 3, there exists some Z(s) e
[ZLC(s)} such that

1 + KW(s - X)

1 + KW{s - X)
Z(s) e {PR},

or, according to Definition PR2, Chapter III, Section 5,

1 + KW(s)
1 + KW{s)

Z(s + X) e {SPR}. (7-32)

This condition immediately yields X as an estimate of A.

(ii) A second equivalent method for obtaining the estimate ofA is based

on the root-locus technique. Suppose that for k e [AT, K], each of the n

root loci lies on or to the left of the line defined by Re s = — X . This implies

that the closed loop system

WK(s
- n _ W(s - X)

}
1 +kW(s-X)

is at least marginally stable for all k e [AT, K]. Since this is precisely the

assumption made in the previous case, X again provides a conservative

estimate of A.

(iii) A third equivalent method for the determination of A uses the

Hurwitz criterion (Chapter IV, Section 2). The Hurwitz criterion can be used

to determine whether or not a characteristic equation has its roots in the open

left half plane. If W(s) A n(s)/d(s), we consider the shifted characteristic

polynomial

Px(s) A p(s — X) = d(s — X) + Kn(s — X)

= sn + dns
n~ 1 + • •

• + a2s + a
i

(7-33)

and set up the array indicated in Eq. (4-33). If the n Hurwitz determinants

are positive for all_^c e [AT, K ] then the feedback system is asymptotically

stable, so we find A such that pk(s) has its roots in the open left half plane

for 0 < X < A.

In all three cases there is a shifted LC multiplier Z(s) e {Zk{s)} that satis-

fies condition (7-32). Since this class contains its own inverse, we may use

either of the constraints (6-34± ). If the phase plane portrait of k{t) is not sym-

metrical about the k-axis, then this choice is useful.

Geometric Criterion 7 (g(a0 , t) — k(t)o 0 ,
general finite sector case).

The system described by Eq. (7-1) with

r = -k{t)a0 ; k(t) e {ATj}, k(t) e [AT, K],
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is absolutely {K
x } stable if

(1) (a) the segment of the real axis corresponding to U — —K~ l

,

k e [

K

,
K

] is only touched by Tw x (no point is interior to ^((Rx)), or

(b) the root locus of W{s) for k e [
K

,
K] lies on or to the left of the

vertical line Re s = —A, or

(c) the characteristic polynomialpA(s) [Eq. (7-33)] satisfies the Hurwitz

condition for k e [

K

,
K] and 0 < X < A;

(2) condition (2) of Geometric Criterion 5 is satisfied with v = dbA,

O = 2 and GF/(GF - GF) replaced by K/(K - K).

The three completely equivalent criteria presented provide sufficient con-

ditions for absolute {K
x } stability. All three require us to know W(s) analyt-

ically; empirical information as to the frequency response of W(ico) is not

useful. Which of the three parts of condition (1) is used is in part a matter

of personal preference. The main difference is that the root locus technique

requires a knowledge of the poles and zeros of W(s), so it is necessary to

factor n(s) and d(s) for this form and not for the others. This method has the

advantage that only one root locus diagram needs to be made for W(s),

whereas the other two criteria may require several applications of the Nyquist

or Hurwitz criterion to W($ — X) for various values of A on a trial and error

basis. This point again depends on the type of stability problem being con-

sidered.
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THE MATHIEU EQUATION: AN EXAMPLE

The theorems developed in the foregoing chapters giving sufficient con-

ditions for the stability of nonlinear and time-varying systems may appear

to be deceptively simple. It is only when they are applied to specific problems

in an attempt to derive the least restrictive results that the real difficulties

involved in their utilization become apparent. Further, it is also desirable

to know how these results compare with conditions which are both necessary

and sufficient for the stability of the system under investigation. In most

cases, deriving necessary and sufficient stability conditions is an almost

impossible task, and consequently no comparisons can be made to evaluate

how stringent the absolute stability conditions (which are merely sufficient)

really are. One significant exception is the Mathieu equation, which has been

studied extensively in the past and for which stability boundaries in parameter

space have been derived.

In this chapter, some of the theorems developed in this book are applied

to a damped version of the Mathieu equation as well as to a nonlinear equa-

tion derived from it. The various steps involved in applying the theorems

to determine the least conservative conditions for stability are carried out in

detail to acquaint the reader with the magnitude of this task. In addition,

since the actual stability boundaries can be calculated for the linear problem,

the conditions derived can also be compared with those given by the known
stability boundaries.

Many authors have used various techniques and assumptions in deriving

estimates of stability regions for the linear damped case. Since our intent is
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only the comparison of the stability criteria of Chapter VI with the necessary

and sufficient conditions for stability, a comparison with other results is not

attempted here.

The Damped Mathieu Equation

The Mathieu equation is a special case of the Hill’s equation

d 2x/dt 2 + p(t) dx/dt + r(t)x = 0 (8-1)

(where p{t) and r(t) are periodic time functions). This equation is central to

the analysis of the infinitesimal stability of periodic solutions in a nonlinear

system (see Stoker [1]). If y0
(t) is a periodic solution [yQ (t + T) = yQ (t)] of

a second-order nonlinear differential equation, Hill’s equation is obtained

as the variational equation about the nominal trajectory y0 (t). The differential

equation considered by Mathieu is of the formf

x + [a — 2q cos(2r)]x = 0, (8-2)

where a and q are constant parameters. It first arose in the study of vibrational

modes of a stretched membrane having an elliptical boundary. The Mathieu

equation also comes up naturally in a variety of problems including wave

propagation in elliptical wave guides, study of parametric amplifiers, and

modulation theory. The solutions of Eq. (8-2) have been studied by many
mathematicians (see McLachlan [1] for details) and the form of the stability

boundaries has been established in some regions of the (a, q) plane.

The stability of two forms of the Mathieu equation are investigated in this

chapter. The first is linear and contains a damping term (one involving i):

x + 2£x + [a — 2q cos(2r)]x = 0. (8-3)

This is referred to as the linear damped Mathieu equation in the following

sections. The second has a nonlinear term in x:

(x + 2£x + C
2x) + [a - C

2 - 2q cos(2t)]f(x) = 0,

/(x)e{F}; 0 <*/(*),
1 ' ’

and is referred to as the nonlinear damped Mathieu equation.

Since our primary aim is to compare the sectors of stability given by the

different stability criteria with those obtained using traditional analytic

methods, the first section deals with some of the solution properties of the

linear forms of the Mathieu equation, and the next two sections will be

devoted to. determining stability boundaries in the (a, q) plane by classical

means.

t There are many different formulations in terms of parameter nomenclature (<a , q),

which makes comparison of results difficult at times. This form seems to be dominant.
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1. Solutions of the Mathieu Equation

The behavior of the system described by Eq. (8-2) as determined by the

parameters a and q is considered in detail by McLachlan [1], Cunningham

[1], and Stoker [1], among others. We confine our attention to a few salient

points that are relevant to this study.

We are interested in the stability characteristics of Eq. (8-2) only for

positive values of a and q. Since the theorems to be applied require that the

time-varying gain in the system be positive, negative values of a cannot be

considered. The behavior of solutions for q = q0 < 0 is identical to that for

q = | q0 1
> 0, that is, the stability boundaries in the (a , q) plane are symmetric

about the //-axis, and negative q thus need not be considered.

Our principal concern is with the stability boundary or the locus of transi-

tion points in the space of the parameters a and q. We first consider the

undamped system [Eq. (8-2)] and the corresponding stability boundaries

designated by the curves {q(a, 0)}. Subsequently, we consider the damped
Mathieu equation (8-3) and once again determine the stability boundaries,

denotea by [q(a, 0} for any specified value of damping £, in the same param-
eter space.

The boundary {<q(a, 0)} divides the parameter space so that the values of

the parameters (a, q) on one side of the curve render Eq. (8-2) unstable with

exponentially growing solutions, while any value of (//, q) corresponding to

a point on the other side leads to a stable system. Typical curves are depicted

in Fig. 8-1; P
x e {£/} corresponds to solutions that grow exponentially,

P 3 E {S} to stable solutions and P2 e {q(a, 0)} to a transition point.

Floquet theory may be used to show that the following property is enjoyed

by at least one solution of Eq. (8-3) for P e {q(a , 0}:

For all P e {(q(a, £)}> there must exist at least one periodic solution of

Eq. (8-3) with period n or 2n. Except at (q
= 0; a = 1, 2 2

,
3 2

,
. . . ,

n 2
)

where the Mathieu equation degenerates into the ordinary harmonic

oscillator, other solutions become unbounded.

This result is basic to the analysis of the damped Mathieu equation that

follows (Sections 2 and 3).

The points P e {{/} may be associated with specific rates of exponential

growth. Curves have been established by McLachlan [1] and more recently

and extensively by Smirnov [1] that correspond to given growth rates in the

[U] regions. An iso-// curve in the (a,q) plane is defined as the curve on
which all points correspond to the same exponential growth rate. The point

P0 on the iso-// curve for // 0 then corresponds to values of a and q that lead
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Fig. 8-1. The stability boundary {g(a, 0)}.

to solutions of the form

x(t) = exp(//
oO0(r),

where (f>(t) is periodic. Iso-// curves in their most comprehensive form are

reproduced in Fig. 8-2.

If we consider the damped Mathieu equation [Eq. (8-3)] under the transfor-

mation y{t) = ect
x(t)i we obtain

z~ l,
[y + (a — C

1 — 2q cos 2t)y] = D. (8-5)

Equation (8-5) implies that iso-// curves corresponding to // = £ for the

undamped Mathieu equation y + (a — C
1 — 2q cos 2t)y = 0 are the stability

boundaries of the damped Mathieu equation (8-3). It is evident that the sta-

bility of the linear damped Mathieu equation (8-3) may be ascertained by
locating the point (a — £

2
, q) on Fig. 8-2; if this point lies below the iso-//

curve for // = f, then solutions to Eq. (8-3) are stable.

2. Linear Case {a ^ I) : A Perturbation Analysis

In the undamped case, the solutions of the Mathieu equation are unstable

for any q ^ 0 if a — 1 . Introducing damping as in Eq. (8-3) produces stability

for small q ,
as is evident from the iso-// curves of Fig. 8-2. Our objective in
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Fig. 8-2. Iso-fi curves for the Mathieu equation.

this analysis is to obtain a first-order approximation to the exact stability

boundary.

The damping £ (£ 1) will be used as the perturbation parameter in this

analysis. It is subsequently seen that on the boundary qQ = 0(£), so we
define q A /?£. Substituting * = *

0 + £*j + • • •, a = 1 + £a, + • • • into

the differential equation and equating terms of equal powers of £, we obtain

(0 C° : *o + *o = °;

(ii) C
1

: *!+*, = [2p cos(2t) — — 2i0 .

The solution of (i) [the generating solution] is

x
0
= B0 sin t + C0 cos t

;

substituting into (ii) and using standard trigonometric identities,

*i + x
i = [— (^i + + 2C0 ]

sin t + [—2Bq — (

a

{ — p)C0 ] cos t

+ p[CQ cos(3 1) + B0 sin(3r)].

The driving terms proportional to sin(/) and cos(0 would produce unstable

solutions, as they are at the resonant frequency of the undriven system x
x
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+ *!=(). Stability to the first approximation is thus ensured if these secular

driving terms may be eliminated for some (B 0 , C0 ) other than the trivial

solution (0, 0); that is, if

+ P) +2 ~B0

- "0“

i
1

K>
1 1 _c„_ 0

for (B 0 ,
C

0) ^ (0, 0). This can only occur if

-(^j + /?) +2
—2 —(a, — p)

Hence for a

a
i

2 ~ P
2 + 4

= ((* - l)/0 2 -
(q/O

2 + 4 = 0

1 , the stability boundary is defined by the hyperbola

(<7o)
2 = (a - 1 )

2 + (2C)
2

. (8-6)

This hyperbola is asymptotic to the lines q = — 1), which are the

stability boundaries for the undamped case to the first approximation. It

should be stressed that this boundary is only valid in the small region where

\a-\\ = 0(£). At a = 1, q 0 = 2f. This value of is important for compari-

son purposes in the succeeding sections.

3. Linear Case (aw4); A Floquet Analysis

As previously noted, for values of a, q on the stability boundary, Eq.

(8-3) must admit to one solution that has period n or 2n. The hyperbola for

a ^ 1 (Section 2) may be found by an analysis like that to follow taking

T=2n and three terms of the Fourier expansion;

x
Q = c

0
4- d

x
sin t 4- c

x
cos t.

However, the boundary at a ^ 4 corresponds to T == n 9
and must be found

by taking a second order approximation

:

x0 = a0 + a
\
cos(21) + b

{
sin(2r) + a2 cos(4t) + b 2 sin(4f). (8-7)

The solution x
0 (8-7) must be an approximate solution to the differential

equation (8-3); to facilitate substitution, we inspect the last term of (8-3),

namely, [a — 2q cos(2/)]*
0 • Using standard trigonometric identities, this

can be expanded into

x
0
[tf — 2q cos(20]

= (aa0 ** qa
l ) + \aa

l
— 2qa0 — qa2 ] cos(2/)

+ [ab
{
— qb 2 ]

sin(2t) + [aa2 — qa
x ]
cos(41)

+ [ab2 — qb
x ]

sin(4/) — q[a2 cos(61) + b
2
sin(6/)].

(8
-8)
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To this relation, xQ + 2£x 0
is added and the coefficients of the constant

term and the sin(2£), cos(2/), sin(4r) and cos(41) terms are set to zero. In order

for the resultant fifth-order system of simultaneous equations to have solu-

tions other than the trivial one, it is required that the following determinant

be zero

:

a —q 0 0

-2q (a- 4) 4£ -q

0 —4£ (a- 4) 0

0 —q 0 (a — 16)

0 0 -q — 8£

0

0

-q

K
= 0 .

(a - 16)

(8-9)

Expanding the determinant results in a quadratic equation in q
2

:

(32 - 3a)q4 + 4(a - 8)[(* - 4)(a - 16) + (4Q2
]q

2

-a[(a - A) 2 + (4Q 2][(a - 16)
2 + (8£)

2
]
= 0. (8-10)

It is no longer a simple matter to interpret this relation in the a, q parameter

plane. It is not difficult to calculate a single point on the curve £q(a , Q} for a

specified value of £, but to obtain a segment of such a curve would be tedious

without the use of computer calculations. The complexity of this result (and

it is only an approximation valid for a ^ 4) should enforce our motivation

in practical situations to try the stability criteria of Chapter VI rather than

resorting directly to classical methods where iso-pi curves (Fig. 8-2) are not

precomputed.

4. Application of Stability Criteria to the Linear Case

To apply the stability criteria developed in the preceding chapters, Eq.

(8-3) must be expressed in the standard form,

w(s) = (s2 + 2Cs + sy\ .

t(0 = —k(t)a0(t) A — [a — 8 — 'Iq cos(2^)]cr 0 .

Since W(s) must be asymptotically stable and k{t) ^ 0 for all t, 5 must

satisfy the condition

0 < 8 < {a — 2q).

Further, as before, we also assume that £ 1 [£ = 0(0.1)] and a ^ 0(1).

The problem, then, is to choose 5 so that q in Eq. (8-11) is maximized under

the constraints of the stability criteria.
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A. The Circle Criterion

Of the three criteria we consider in this section, the circle criterion is the

easiest to apply to any specific problem. In view of the simplicity of the sys-

tem (8-11), we do not use the geometric criterion but instead calculate the

stability sector analytically. According to the theorem given in Chapter VI,

Section 5, we have

:

Theorem 1. The system governed by Eq. (8-1 1) is absolutely
{
K0 } stable

if k(t) e [0,KC]
and W(s) satisfies [W(s) + (K

e
)-'] e {PR}.

If we define h
x
A min^ h

x ico
2
) A minJ^Re W(ico)}, then by this theorem, the

solution of the damped Mathieu equation is stable if

k(t)^K
c
= -(hi)-K (8-12)

By inspection,

j ( 2 \ <5
— co

2

AC0 } “
(5 - co

2
)
2 + (2Cc0)

2
'

Since

dh
1 2co[(S - co

2
)
2 -

(2C)
2S]

dco ~ [(S - co
2
)
2 + (2£co)

2
]

2 ’

the extrema of h^co 2
) are located at co

2 = 0, ~ 2£] and a/7
[VT + 2Q. The minimum is given by co 2 = + 2£], and the

corresponding value of h
x ico

2
) is

k = -(40/7 + C])-
1

.

By inequality (8-12), we require that &(0 fS 40/7 + £] ;
defining^ to

correspond to the supremum of kit), we have

sup k{t) = a — 5 + 2q x
= 4^/T + £].

r

The circle criterion then guarantees that the system is uniformly asymptoti-

cally stable for any q < q x
.

The parameter <5 is still unrestricted in the range (0, a — 2q], so it can be

chosen to maximize q x
. This yields

q, = C(a - C
2
)
1/2 ^ Cv/^~ (8

’13)

which defines a stability sector in the parameter space (a, q). At a= 1,

^ ^ f, which is just one half of the limit obtained using the perturbation

method. This result was obtained earlier by Graham [1] and Narendra and

Goldwyn [3].

It must be noted that the circle criterion assures absolute {AT0 } stability

for all nonlinear and time-varying gains in any sector [0, Kc ]
where K

c < q x
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and not merely for the sinusoidal variations that arise in the Mathieu equa-

tion. It is therefore not surprising that the range of stability predicted by the

criterion is less than that given by the perturbation analysis which deals

specifically with a time-varying gain of the form [a — 8 — 2q cos 2t]. Further,

for values of a ^ n 2 (n = 1, 2, . .
. ) the range ofq given by Eq. (8-13) is found

to be quite conservative as compared to even the actual stability ranges of

the undamped Mathieu equation, which are clearly within the stability regions

of Eq. (8-3). This again is to be expected since the nature of the criterion is

such that the best results can be expected precisely at those values of a at

which the system has the smallest range of stability; the sector q x
= ^/J~a

must lie below the curves at their lowest points, that is, at a ^ 1, 4, . . . ,
n 2

.

B. The Extended Popov Criterion; Point Conditions

The circle criterion assures stability for a range of k(t) independent of the

rate at which k(t) changes with time. The time-varying function under con-

sideration is sinusoidal, however, and has a well-behaved derivative with

respect to time. In such a case, the application of the extended Popov cri-

terion (Chapter VI, Section 5) may be expected to yield a larger range of q

for stability, since the criterion takes this factor into account.

Theorem 2. The system governed by Eq. (8-11) is absolutely {Xj} stable

for k(t) e [0, Kp] if some A > 0 exists such that

H2(s) A [W(s) + (Kp)-'](s + A) e {PR} (8- 14a)

and

dk/dt < 2Afc(l - k(t)/K,). (8-14b)

Before proceeding to apply Theorem 2 to the stability problem of the damped

Mathieu equation it is instructive to outline the various steps involved and

interpret the restriction on k(t) in terms of the parameter q to be estimated.

For a specific choice of Kp ,
Eq. (8- 14a) may be used to determine a maxi-

mum value for A A X(KP). Since the form of k(t) is known, inequality (8-14b)

yields a relation between q , £, 8, and Kp that guarantees uniform asymptotic

stability; the upper bound on q can then be maximized by appropriate choices

of <5 and Kp .

In the phase plane (k, k) the trajectory of k{t) must lie in the range [0, Kp\;

by the inequality (8- 14b), this curve must lie below a parabola with a vertical

axis passing through the point {\KP , 0). Since the phase plane plot of [a — 8

— 2q cos(2/)] is an ellipse as shown in Fig. 8-3, with its major axis the vertical

line through the point (a — 8, 0), to obtain the maximum value of q under

the constraints (8- 14b) we choose

Kp = 2(a - 8)
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Fig. 8-3. The phase plane rep-

resentation of inequality (8-14b).

in accordance with the discussion given in Chapter VII, Section 5. Defining

the parameter a by {a — (5) A 2a? yields

W(s) + (Kp)~
l - (4a?)- 1

s
2 + 2£s + (a + 2a?)

.

y
2 + 2Is + (a — 2aq)

where by inspection 1 a < ajlq from the constraint on 8. If we define

h 2 (co
2
) to be the numerator of Re {H2 (ico)} (Eq. (8- 14a)), we have

A
-1

/j 2(co
2
) co

4 — 2co
2
[a — 2

C

2 — 4a?C/2] + [a
2 ~ (2a?)

2
].

For Hx(s) e {PR], it is necessary that h(co z
) > 0 for all co G (— oo, oo);

this condition is satisfied if 2 satisfies

x <jf A 4ogC- = (a - 2£2
) - (a 2 - (2a?)2

)
1 ' 2

(8-15)

Substituting X into Eq. (8- 1 4b) yields the requirement that q<q2 , where

q2 satisfies

sin 6
,<

2Cq2

a 2 — cos 2 (a — 2£ 2
) — (a

2 — (2a?2)
2 )‘' 2

(8-16)

where 0 A. 2t. The maximum / of the left hand side of inequality (8-16)

occurs at 9
X
= jt/2 if a lies in the range 1 ^ a < ^/~2

,
or at two points

02 e (0, tt/2) and 0 3 e (n/2, n) for a and has the values

j[2(a 2 - i)
i'T\ i<«<yr,

((a2)" 1

,
^T<a.

To solve for q2 using the relation (8-16), it is useful to make the approxima-

tion

(a 2 - (2a?2 )
2
)
l?2 ^ a[l - |(2a,q2/a)

2
].
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which is valid, as it turns out that (2aqja)2 <C 1. This yields q2 (the optimum
upper bound on q) defined by

/ = aCq2l((aq2y - at2
). (8-18)

It may be seen that the maximum value of q2 occurs at a0
A [1 + a/

(1 + a)]u

2

e [1, /y/T) for a e [0, oo), and this is

q2 = t(a(l + a)) i/2
. (8-19)

For large values of a we have q2 % at, so that since a < *J~2 and a > 0(1),

the assumption (loLq/a) 2 <C 1 is valid.

For large values of a, the stability range given by Eq. (8-19) is found to

be significantly larger than that given by the circle criterion (Eq. (8-13)).

Further comparisons are made subsequently.

C. The Extended Popov Criterion; Integral Conditions

Since this criterion involves a time-averaged condition, it imposes even
less stringent requirements on lc(t) than the point criterion of Theorem 2
[Eq. (8-14b)]. In the problem under consideration, this leads to a larger value

of q, the upper bound on q that ensures absolute stability.

Since General Stability Criterion 4 is more complex to apply than Theorem
2, we consider only the infinite sector problem; 0 < k(t) < K < oo, where
K is arbitrarily large.

Theorem 3. _The system governed by Eq. (8-11) is absolutely \K2 \
stable

for k(t) e (0, K < oo) if W(s — p) is asymptotically stable for some p > 0,

if some A > 0 exists such that H3(s) A. {W(s — p)[s + A — p]} e {PR} and
if

Pit) A sup {-2p; - [2A - k~'(dk/dt)]} (8-20)

satisfies

I A fo

P(t)dt <0. (8-21)

The inequality (8-21) is used since k(t) (and thus p(t)) is periodic.

If A is the largest value of A such that H3(s) e {PR} and q 3
is defined as

that value of q such that

J o
P(t) dt = 0 where p(t) A sup{— 2^; — [2A - k-^dk/dt)]},

then Theorem 3 ensures the uniform asymptotic stability of the solutions of
the Mathiew equation for all q < q 3

.

From Eq. (8-11), W(s — p) is asymptotically stable if (i) p < t, and (ii)

t
2 < 5, and H3(s) e {PR} for any A < X given by (iii) X = 2£ — p. The
requirements (i) and (iii) are simultaneously satisfied for any a e (0, 1) if we



4. Application of Stability Criteria to the Linear Case 195

define

M A (1 - OCX, U(l+ OCX. (8-22)

The function p(t ) can now be expressed in terms of a, £, and k(t)

:

m - supj-20 - DC; -[2(1 + DC -
„ _

(8-23)

The main difficulty now lies in choosing a and 8 such that q is maximized

while satisfying inequality (8-21). If 8 is chosen as 8 ^ £
2 <C « ,

however,

then p(t) may be simplified considerably by setting a — 8 — 2q cos It ^ a
,

which is valid since q = 0(aQ <C a\ hence consider

Pit) A sup{— 2(1 - a)C; -[2(1 + a)C - (4q/a) sin It]}. (8-24)

The form of p{t) is shown in Fig. 8-4. Inequality (8-21) may be expressed as

fm dt
j 0

= P {- 2(1 + 0)C + (Mia) cos x] dx - 2(1 - a)C(n - x.) < 0
J 0

by the change of variable indicated in Fig. 8-4, where x
t

lies in the range

0 x
x

n/2 and is defined by

2(1 - a)C = 2(1 + a)C - (4q/a) cos x
x

.

The value of a that minimizes the integral of p(t) is a = 0, and the corre-

sponding value of / is 4/ — 4qja — 2n£. This implies that for all q < q 3

where

$,=-yflC (8-25)

the system (8-3) is uniformly asymptotically stable.

pit) [solid curve]

Fig. 8-4. The determination of p(t).
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Fig. 8-5. Application of three absolute stability criteria to the linear damped Mathieu

equation.

For a < a0
A .681, Theorem 3 seems to yield a smaller value of q than

Theorem 2 (aQ
corresponds to the value of a when (a(a + l)) 1 2 = (71/2)0).

This occurs because K was assumed to be arbitrarily large, which is very

restrictive for a < 0(1). It can be seen, however, that as jj,
—> 0, the stability

conditions of Theorem 3 are the same as those of Theorem 2, so it is never

more strict if applied in the same manner. The three stability boundaries

are shown in Fig. 8-5.

D. Comments on the Stability Theorems

The preceding analyses indicate how the different stability theorems

developed in Chapter VI for general nonlinear time-varying problems can be

applied to a specific problem, that is, the damped Mathieu equation. It is

clear that Theorem 1 (the circle criterion) is the most direct in application,

even without recourse to the simple frequency domain geometric inter-

pretation of Chapter VII. Condition (8-13) can be used for all values of a

and £, since no simplifications requiring £ <C a were necessary.

Theorem 2 is more complex to apply than Theorem 1 and simplifying

assumptions which are valid for £ <C 1 had to be made to render the problem

analytically tractable. Theorem 3 requires further simplifying assumptions

(that is, K = 00) if an analytic expression of the maximum value q of q in

terms of a and £ is to be obtained. It must be noted, however, that if values

of a and £ are specified and a numerical estimate of q is desired, Theorems 2
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and 3 are still applicable. A digital computer may have to be used in such

a case.

As mentioned earlier, these three stability theorems can be applied to any

time-varying system, resulting in sufficient conditions for absolute stability.

Such an application generally leads to the determination of a large region

in the appropriate parameter space that ensures absolute stability, while

classical techniques often only give small segments of stability boundaries.

This point is one of the strongest arguments that can be made in favor of the

use of absolute stability criteria for the analysis of simple systems. (If a

system is of higher order or of greater complexity, the use of most classical

methods is virtually out of the question.) Although the results of Section 4

are presented mainly for illustrative purposes, they have theoretical interest

as well : The iso-// curves discussed earlier have not been obtained (to the best

of the authors’ knowledge) for a > 16, whereas the use of Theorem 3 has

resulted in the definition of a sector of absolute stability that is of infinite

extent [a e (0(1), oo)].

In judging the efficacy of these criteria, it is of particular interest to compare

the result given by their application with the necessary and sufficient condi-

tion for stability obtained by a classical analytic technique. In considering

the damped Mathieu equation, the points of greatest importance correspond

to a ^ 1, 4, . . . , /t
2

, since the known stability boundaries approach the

parameter-space absolute stability boundaries most closely at those points.

In making such a comparison, we use a = 1, £ ^ 0.1, q = 0.2 as obtained

in Section 2, and a = 4.4, £ = 0.2, q = 1.94 as obtained from Eq. (8-10)

(refer to Fig. 8-5). The pertinent information is given in Tables 8-1 and 8-2.

The result of the analysis at a = 1 (Table 8-1) shows that the circle criterion

is the least effective, but not decisively so. The difference between the per-

TABLE 8-1 Comparison of Stability Boundaries, a = 1, £ = 0.1

Stability method 4 NASC (%)

Theorem 1 0.1000 50.0

Theorem 2 0.1414 70.7

Theorem 3 0.1571 78.5

Perturbation analysis 0.2000 —

TABLE 8-2 Comparison of Stability Boundaries, a = 4.4, C = 0.2

Stability method 4 NASC (%)

Theorem 1 0.4195 21.6

Theorem 2 0.9749 50.2

Theorem 3 1.3823 71.3

Floquet analysis 1.94 —
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centages 70.7% (Theorem 2) and 78.5% (Theorem 3) obtained by Theorems
2 and 3 is not significant. A much more compelling comparison may be made
at a = 4.4; in Table 8-2 we see that the circle criterion is extremely conser-

vative for large values of a since q x
= whereas q2 ^ a£ and q 3 =

(nl2)a£ for 1. Theorem 3 gives an upper bound on q that surpasses

that obtained using Theorem 2 by the factor n/2 (57 %) for large a.

The primary aim of this analysis is to indicate in a rather detailed fashion

how the stability theorems can be applied in a specific situation. Comparison
of the results obtained with actual stability boundaries indicates how effective

the various theorems are. For more complex problems where the actual

stability regions may be impossible to derive theoretically, the results provide

a qualitative idea of what might be expected from an application of these

criteria.

5. Application of Stability Criteria to the Nonlinear Case

We consider in this section the stability of Eq. (8-4) where f(x) is any
nonlinear function in the first and third quadrants of the x, f(x) plane,

that is, 0 f(x)/x. The advantages of the stability theorems of the form
used here become particularly evident while dealing with problems of this

type where stability boundaries are not known. The application of classical

techniques as in Section 3 is significantly more complicated than in the linear

case, if not impossible. Also, it is not evident that these classical stability

regions coincide with the actual stability regions of the problem, that is, that

they are both necessary and sufficient. The stability theorems 2 and 3 of

Section 4, on the other hand, can be applied directly to the problem with

but slight modifications. The circle criterion, however, cannot be used since

the nonlinear function lies in the infinite sector and Re W(ico) cannot be made
nonnegative for any choice of 8.

Theorem 2 . The system governed by Eq. (8-4) is absolutely {G^F, K
x ]}

stable for k(t) e [0, K < oo] if some A > 0 exists such that

and

H1(s) A W(s) • (s + 2) g {PR} (8-26)

where

dkjdi < l$k(t) (8-27)

OAminj*/(*)//*/(£)#}

Theorem 3 . The system governed by Eq. (8-4) is absolutely {G X
[F

,
K2 ]}

stable for k(t) e (0, K < oo) if W(s — ju) is asymptotically stable for some
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0, if some 2 > 0 exists such that

H3
(s) A W(s - n) • (s + 2 - p) g {PR},

and if

p(t) A sup{— 2/i; — [A<J — k 1 dk/dt]} (8-28a)

satisfies

1A C p(t) dt< 0.
J 0

(8-28b)

Since Theorem 2 is essentially a special case of Theorem 3, we treat the

application of Theorem 3 in detail and derive the corresponding result for

Theorem 2 in passing.

The preliminary development is identical to the linear case (Section 4C)

except that O replaces 2 where it is appropriate. From Eq. (8-22), W(s — //)

is asymptotically stable and H
3
(s) is positive real if for a e (0, 1) jx and 2

satisfy

/iA(l -<x)C, 2A(1 +oc)£.

Using these definitions for the parameters 2 and pt in terms of the auxiliary

parameter a, 1 may be expressed as

= P {-(1 + a)®£ + (4?/a) cos *} afc - 2(1 - aX(n - xj. (8-29)
J o

Defining P A 4#/(a£)> in Eq. (8-29) is given by

P cos = ($ — 2) + oc($ + 2), (8-30)

as depicted in Fig. 8-4. If p 3
represents the value of P for which / in Eq.

(8-29) becomes zero, by the application of Theorem 3, absolute stability is

ensured for all q c q 3 aP 3Cl4. Corresponding to every value of oc, x
t
(a)

and /?(#) can be determined by solving the simultaneous equations that arise

from setting / = 0 and from the definition of x
t

:

P* cos = ® - 2
) + + 2

)>
(8

_31)
/? 3

(sin jCj — Jtj cos Xj) = 2tt( 1 — a).

The final step is the maximization of P 2
with respect to a. It can be shown

that the only zero of dpjdu occurs for x
x
= 2n/(0 + 2) and corresponds to

a maximum of /? 3 (a). For <£ in the interval (0, oo), x
x
e (0, n). As long as

x
t
e (0, 7c/2), it is possible to show using Eq. (8-31) that a e (0, 1). How-

ever, if x
x
e [tt/2, 7t), a is zero or negative; hence, a must be chosen to be

greater than zero, since a by definition has to lie in the range (0, 1). Thus

there are seen to be two cases, that is, 2 < O < oo and 0 O < 2, which

must be considered separately.

[x
1
e (0,71/2)]:(a) 2 < O < oo
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In this case,

^ =
(O + 2) sin(?7r/($ + 2))' (8'32)

(b) 0<$<2 [x, e [n/2, 7:]]

:

The parameter a must be equal to 0+
; hence may be obtained by solving

the simultaneous equations

$ 3
cos x = (O — 2) < 0

p 3
(sin a: — x cos x) = 2n.

Substituting y — {n — x) yields the solution

tan y = y + 7rO/(2 — O).

In Fig. 8-6, values of y are found for & =0.5, 1.0, and 1.5 by a graphical

method and the corresponding values of fl 3
are calculated. Using Eq. (8-32)

values of fl 3
are also calculated for O e (2, oo). Table 8-3 indicates how /? 3

varies with d>.

TABLE 8-3

$ y h
0 . 0 . 2.0

0.5 1.1425 3.61

1.0 1.352 4.61

1.5 1.479 5.45

2.0 — 6.28

2.5 — 7.09

3.0 — 7.93

4.0 — 9.67

5.0 — 11.50

It must be noted that as n — 0 (or a —* 1), the stability requirements of
Theorem 3 become those of Theorem 2. In particular the integral criterion

(8-28b) becomes
;
— 2<3E> -j- ft cos x} < 0, which is satisfied for all x if

P < P2
A 20.

The values of q/a£, which according to Theorem 2 and Theorem 3 guarantee
absolute stability, are plotted as functions of O in Fig. 8-7. Theorem 3 is

found to give a considerably larger upper bound for q (q = /to£/4) for O
in the neighborhood of 2. The improvement is particularly significant for

0 < O < 2.

The primary goal of the preceding analysis is to demonstrate the various

steps involved in the application of the absolute stability theorems to a speci-

fic nonlinear time-varying system. The analysis indicates that the upper
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Fig. 8-7. The application of

point and time-averaged con-

straints on k(t).

bound on the time-varying part of the gain (that is, on q) can be derived as

a function of O and that the increased complexity of the analysis required by

Theorem 3 as compared to Theorem 1 may be justified by the considerably

less stringent stability condition obtained.



IX

ABSOLUTE STABILITY OF SYSTEMS WITH

MULTIPLE NONLINEAR TIME-VARYING GAINS

1. Introduction

An obvious and significant question that arises in considering the introduc-

tory comments and results of the previous chapters is the possibility of gener-
alizing the stability criteria derived therein to render them applicable to

systems with more than one gain that is nonlinear, time-varying, or both.

The development of stability criteria for such systems has lagged behind the

generation of comparable results for the scalar case considered heretofore;

this is due in part to the difficulty encountered in extending the Kalman-
Yakubovich Lemma. Despite the problem of establishing appropriate matrix

analogs to Lemmas 1-5 of Chapter III, Section 4, however, preliminary efforts

make it seem reasonable to expect that most of the criteria of the previous

chapters may be generalized in a quite straightforward manner.

The developments presented here are necessarily quite skeletal. The basic

definitions and tools are followed by the derivation of stability criteria; the

organization of this material represents an abbreviated version of Chapters
II-VI.

202
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2. Problem Statement

In this section, a precise description of systems to be considered subsequent-

ly is established. The definitions of stability (Chapter II, Section 2) and the

formal problem statement (Chapter II, Section 3) remain essentially un-

changed except for the direct extension involved in the concept of absolute

{GJ stability; these are not repeated here.

A. System Definition

The primary working system description is again given by the state vector

differential equation!

x = Ax + Bp; (A, B) completely controllable, A e {A
t }

r = Cx + Rp; (9-1)

P = ~g(r, t) A. —G(r, t)r;

gj(rj> 0 e {Nj, Tj], G g [Q,Gn],

A, B9 C, and R are real matrices of dimension (n X «), (

n

X m), (

m

X n

)

and (m X m), respectively. The properties of these matrices are further dis-

cussed in Section B, and the gain classes and bounds are defined in Section C
below.

By direct application of the Laplace transform we obtain

L(r) = [R + C(sl - A)-'B]L(p) A W(s)L(p) s

P = -g(r9 1),

which provides an equivalent representation of the system described by

Eq. (9-1). As before, we refer to W(s) as the LTI plant and g(r> t) as the non-

linear time-varying controller for convenience; this nomenclature is depicted

in Fig. 9-1.

A special case of the general form given in Eq. (9-1) is discussed in Lemma
9-1. The input matrix B in this case has rank one. As shown by Gilbert [1],

this implies that there is effectively only one input to the LTI plant, as is

evident in Fig. 9-2, which shows the structure of a system in this class. We

t The underline is used to indicate a change in dimensionality notation from chapters I-

VIII. (ILO) denotes an (

m

x m) matrix of transfer functions ;f(r) or g(r, t ) denotes a vector

function of the vector r, namely g(r, t) = col [#i(ri, t), . .
. , gm{rm , /)]; Qn represents the

diagonal matrix of upperbounds of G(r, t) in the appropriate sense; 0 is the null matrix.)

G(r, t ) g [0, G;v] implies that 0 < G(r, t) < Gn or that G(r
,
t) and (Gn — G(r, t )) are

positive semidefinite matrices. As in the scalar case, this inequality is understood to be more

restrictive for any element gj{rj
,
t ) which is monotonic.
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g,(V«

• Fig. 9-1. A general system in

transfer function form.

henceforth refer to this special form of the system as SF1
;

it is a useful

particular case since many systems can be represented by a single nth order

differential equation with m nonlinear time-varying terms and because the

frequency domain conditions for absolute stability are notably simplified

(Lemma 9-2).

Lemma 9-1. Any system that may be described by the NLTV differential

equation

n m n

[D- + 2 ap-W + 2 gi{PtD
n + 2 duDJ-'}Z, t] = 0 (9-3)

J= 1 »=1 j= 1

may be equivalently represented by the first-order state vector differential

equation (9-1), where C A [c
tj
A du — pt

cij],
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Fig. 9-2. The structure of the LTI plant in SF1.

(A, B) is completely controllable, and W(s) [Eq. (9-2)] has common row

elements (WiX = Wi2 = • • • = Wim A W^s)) in this representation. We
denote all matrices with common row elements by indicating only the first

column:

Proof: This result may be demonstrated by construction; choose C A
[c

tJ
A d

tJ
— and define the variables of x

, p, and r by

/>i£ft + S cmxj

r f i m n

D4 Sii^i . 0 Pi'LPk+'L c
ii
x

j
k-\ 7=1

x A '

) p = — '
i

r A >

_D"- l

£J VgSrm >tU
pm HPk+ 2 c„jXj

L *=i 7=1 J

and the first part of the lemma follows directly. The complete controllability

of (A, B) is an obvious result obtained as in considering the phase variable

canonical form in the scalar case, Chapter II, Section 1.

B. Properties of the Linear Time-Invariant Plant

Given an LTI plant in transfer function form, Eq. (9-2), where elements

Wu{s) of W(s) are rational, having no more zeros than poles, there are infinite-

ly many quadruples {C, A
,
B

,
R

}
such that Eqs. (9-1) and (9-2) are equiva-
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lent. Each of these sets of matrices is called a realization of W (Kalman [3]).

As in the scalar case C(icoI — A)~ lB approaches 0 as co —> oo, so A
lim^^ W(ico) = R; {C, A, B} is thus a realization of W(s) — Wrx . A realiza-

tion of JV(s) that incorporates an A matrix of minimal dimension n 0 is said

to be a minimal realization, and if n > n
0
then the realization is reducible.

We have seen in the scalar case (Chapter II, Section 1 ;
Chapter V, Section 2)

that it is possible to increase the dimensionality of A by introducing poles and

zeros of W(s) that cancel and that if the numerator and denominator of

hT(sI — A)~ x b are relatively prime, complete controllability and observability

are guaranteed and vice versa. In the matrix case the first result holds but the

second does not

:

(i) The triple {C, A, B] is a minimal realization of W(s) — if and only

if the triple is completely controllable and observable (Kalman [3] ;
see below).

(ii) If {C, A, Bj does constitute a minimal realization of some JV(s) where
— 0. it is not implied that the elements Wtj{s) are made up of ratios of

relatively prime polynomials, nor that
|

JV(s)
|

displays all of the eigenvalues

of A (see the example given below).

The necessary and sufficient condition that (A, B) is completely controllable

is that the (

n

X nm) matrix

[An~ l B, An ~ 2B, ...,AB,B] (9-5)

must have rank n (Kalman, Ho, and Narendra [1]).

The necessary and sufficient condition that (C, A) is completely observable

is that the (

n

X nm) matrix

[(CA"-'y, (CAn ~ 2
)
T

, . .
. , ((CA)\ CT

] (9-6)

must have rank n (Kalman [3]). (C, A) is completely observable if and only if

(AT , CT
) is completely controllable.

These concepts are clarified by an elementary example

:

W(s) =

[AB, B] =

[(CAY, CT
]
=

a 1 y —1 -i “0 O' -(s + p)-' (s + /})-'-

J 1- jxfi (s + a - p) _1 1_ _(i + a)
_1

(^ + a) _I
_

1 10 0

— (a + ft) — (a + /?) 1 1

—a/? — aft a p
— /? -all

rank

rank = 2 if a ^ /?.

Thus, if a ^ p, then [C, A, B] is completely controllable, completely observ-

able and thus a minimal realization of IY(s), even though \W\ = 0 and each

element W
ij
(s) has a pole-zero cancellation. If a = /?, the controllability is
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unaffected but observability is lost; A may be reduced to the (1 x 1) matrix

(scalar) — a; W(s) = (s + a)
-1 CB.

If (C, A, B}
and {C, A ,

B] are two minimal realizations of W(s) — W^,
then a nonsingular matrix T exists such that C — CT~ l

,
A = TAT" 1

,
B =

TB\ conversely, if [C, A, B] is a minimal realization of W(s) — and T
is a nonsingular matrix, then {CT~\ TAT 1

, TB] is also minimal.

C. Properties of the Nonlinear Time- Varying Controller

Each output rj of the LTI plant W is the input of a nonlinear device whose

output gfrj, t), j = 1, 2, . . . ,
m, in turn, is used in a negative feedback

configuration as the yth input Pj (Fig. 9-1). The matrix W(s) allows a wide

latitude in the interconnection of subsystems, as demonstrated in Lemma
9-1. To cite another example given by Anderson [1], any single-loop system

with m nonlinear and/or time-varying gains separated by LTI subsystems may
be expressed in this form (Fig. 9-3).

fV5—|9,t-,o|—5—
l

w.t 5 >

I

wz (g)| 2
1

g 2
(.,t)|_5j

(a)

Fig. 9-3. (a) A single-loop

system with multiple non-

linearities; (b) the equivalent for-

mulation.

W(s)

(b)

In extending the results of Chapter VI for separable NLTV gains (insepar-

able gains are not considered due to the difficulty encountered in applying the

resulting criteria), we have

g(r t)
= K(t)f{r)

where K{t) A. diag[A: ,.(?), i= \, 2, ... ,m] and Kit) e [0, K], Since separability
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is always assumed, we simply specify the behavior of gy
(r

y , t) by gj(rj9 1) g

{^, Tj\.

The previous definition of range is directly generalized : we take

GNs A
max
rut

gjifj, t)

max
r j> fj^r }> t

gj(rj 9 t) ~ gj(?j, tj

Nj = F

N t
= Fm

(9-7)

and define the matrix GN A diag[GNl , GN2 ,
. . . ,

GNJ; the lower bound is

invariably 0.

It is also necessary to consider $y
or the index of each nonlinearity in treat-

ing any NLTV situation:

ofjio) )1

$ A diag[O
y]
A diag min

limdtW'
(9-8)

The ranges of
<J)y

that correspond to each class {V
y}
of nonlinear behavior are

unchanged (Table 2-1).

Z). The Origin as the Sole Equilibrium Point

The system differential equation (9-1) is alternatively given by

x = Ax — BG(r, t)r

r = Cx — RG(r
,
t)r.

(9-9)

It is a necessary precondition to the generation of absolute stability criteria

that the differential equation (9-9) must be asymptotically stable for all con-

stant matrices G(r
,
t) = k of the form k A diag[/c

y],
/c

y g [0, GNJ. If this is so,

/ + Rk must be nonsingular for all such matrices k so that r is well defined,

and consequently [/ + RG(r
, /)]

_1 must exist for all r and t. Equation (9-9)

then reduces to

x = [A- BG(r, t)[I + RG(r, t)]~'C]x. (9-10)

Furthermore, the asymptotic stability of

x = [A — Bk(I + Rk)~ 1 C]x A A^x (9-11)

guarantees that \A
V \
^ 0, which in turn ensures that the only equilibrium

(solution to A„x =0) is x = 0. Similarly, the matrix [A — BG(r
, t) {/ +

RG(r, 0}
_1 C] must be nonsingular for all r and t if A

v
is nonsingular for all

k g [0, Gn], so no equilibrium of Eq. (9-10) exists other than x = 0,

provided that A

*

g {A
x } 9 k g [Q,
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3. Mathematical Preliminaries

At the heart of the development of stability criteria for systems with mul-

tiple nonlinearities lie the matrix version of the Kalman-Yakubovich Lemma
and the concept of positive real transfer function matrices. As in the scalar

case, this lemma is found to be crucial in relating the frequency domain cri-

teria to the existence of Lyapunov functions of the quadratic plus integral

type discussed in earlier chapters. While different forms of the matrix analog

of the Kalman-Yakubovich Lemma have been stated in the literature

(Anderson [2], Popov [4], Yakubovich [3]), in this section we follow closely

the results reported in the excellent paper by Anderson. The lemma as stated

by Anderson can be directly applied to the stability problem stated in Section

2 using an approach identical to that for the scalar case.

The stability criteria developed in Chapters V and VI for systems with a

single memoryless nonlinearity are expressed in terms of the positive real-

ness of a function of a complex variable. For the case when the system con-

tains many nonlinearities, the corresponding frequency domain criteria can

be expressed in terms of the positive realness of a matrix H(s) of transfer

functions. Further, since all the systems considered are finite dimensional,

the matrix H(s) is generally a matrix of real rational functions. In view of

this, the properties of positive real matrices of real rational functions are first

discussed prior to considering the details of the matrix version of the Kalman-

Yakubovich Lemma.

Definition PR4. (Newcomb [1]) The (m x m) matrix H(s) is positive

real (H(s) e {PR}) if

:

(
i ) The elements of H(s) are analytic for Re ^ > 0;

(ii) H*(s) = HT
(s*);

(iii) The Hermitian part of H(s),

J(s) A He{H(s)} A + ff*(s)] 9 (9-12)

is positive semidefinite for Re j >0.

In all the cases that we consider conditions (i) and (ii) are automatically

satisfied so that only (iii) has to be checked to establish the positive realness

of H(s).

The Hermitian part J(s) A He {#(.?)} of an (m X m) matrix H(s) of real

rational functions is real only if H(s) is symmetric; for a general matrix H(s),

the real part is symmetric and the imaginary part is antisymmetric. The con-

dition that/C?) 0 means that b*J(s)b ^ 0 for all complex vectors b. If we

define b and J in terms of real vectors and matrices, say b = b
{ + ib2i
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1 =Ji + ih >
then

b*I(s)b = [b? l^

1

1

H ~b~

L1

2

! Jt JX.
A bTJb.

Since b, and b 2 may be specified independently, it follows that b*J(s)b > 0

implies that the (2m x 2m) real symmetric matrix J must be positive semidef-

inite (Chapter III, Section 2). It is not necessary to test a (2m x 2m) matrix,

however, as conditions for positive (semi) definiteness may be stated directly

in terms of the principal minors of J (s).

Definition. A Hermitian matrix J is positive definite (positive semidef-

inite) if and only if all the leading principal minors ofJ are positive (all the

principal minors of J are nonnegative).

As indicated in Chapter III for real symmetric matrices, if all the leading

principal minors of a Hermitian matrix are positive, then all principal minors

are positive. However, this is not true for semidefinite matrices: nonnegative-

ness of the leading principal minors does not imply that all principal minors

are nonnegative.

Lemmas 1-5 of Chapter III, Section 4 are concerned with the necessary

and sufficient conditions for a scalar function of a complex variable to be

positive real. The three lemmas presented in this section are due to Anderson

and are concerned with similar conditions for a matrix of rational functions

H(s) to be positive real. Lemma 9 includes both Lemmas 7 and 8 as special

cases, but following Anderson we present all three lemmas separately for

completeness and clarity. Lemma 7 considers matrices whose elements have

no poles on the imaginary axis and which are zero at s — oo, Lemma 8 deals

with matrices with poles only on the imaginary axis, and Lemma 9 with

general positive real matrices.

Lemma 7. Let a matrix H(s) of rational functions be such that H^ = 0

and H has poles only in Re s < 0. If [C
, , A , , B,} is a minimal realization of

H(s), then H(s) is positive real if and only if there exist a positive definite

matrix P and a matrix Q such that

PA, + A*P = -QQT; PB, = C,\ (9-13)

Lemma 8. Let a positive real matrix H(s) have all imaginary poles with

H0o = 0 and let [C
, , A j , B,} be a minimal realization for H. Then there exists

a positive definite matrix P such that

PA,+ A, TP = 0; PB, = Cj T . (9-14)

Lemma 9 (Anderson [2]). Let H(s) be a matrix of rational transfer func-

tions such that Hoo is finite, H(s) has poles which lie in Re s < 0 or are sim-

ple for Re s = 0. If {C1? A v B„ H^} is a minimal realization ofH,
then H(s)

is positive real if and only if a positive definite matrix P and matrices D and
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Q exist such that

PA, + AJP = -QQT
;

PB

,

- C, T - QD; DTD = H„ + HJ.
(9-15)

While proofs of these lemmas are presented in Appendix I, we briefly

consider here some of the significant features of the lemmas, in particular

the assumption of minimality of the realization of H(s).

The proofs of Lemmas 7-9 depend on an important lemma on spectral

factorization due to Youla [1]. If Y(s) A H{s) + HT{— s), Y(s) is termed

para-hermitian and Y(ico) (for all real co) is nonnegative definite if H(ico)

is positive real. According to Youla, if H(s) is positive real and Y(s) has

rank r almost everywhere, then there exists an (r x m) matrix G(s) such that

Y(s) = H(s) + = GT(-s)G(s). (9-16)

IfH(s) has a minimal realization {C,,A,,B,,H00} it was shown by Anderson

that G(s) has a realization {Q
T

,
A,, B

t ,
D}. The matrix Q determines the

positive definite matrix P by the relation

A'P + PA, = - QQT
; (9-17)

P, Q ,
and D satisfy the relations of Eq. (9-15) when H(s) is positive real.

In Lemma 9 the case of simple imaginary axis poles is included; in that

eventuality, the complete observability of (2
T

,
A) is clearly not obtained;

If (Q
T

,
A) is completely observable, then P = P T > 0 if and only if A E {A,}

(refer to Corollary F2, Chapter III, Section 6). Since this property of Q is

required in our developments, we use the following result, also due to

Anderson [2].

Corollary to Lemma 9. If A e {A
{ } in Lemma 9, then (g

T
,
A,) in Eq.

(9-15) is completely observable.

In the stability criteria discussed in this chapter, the matrix P occurs in

the Lyapunov function candidate, while A
t
— A and B

x
= B are specified

by the LTI part of the system. The frequency domain criteria are expressed

in terms of the matrix H(s) which is generally the product of Z{s), a diagonal

matrix of multiplier functions, and [W(s) + G^ 1

] or the transfer matrix of

the LTI plant plus the inverse of the NLTV gain upper bound matrix [Eq.

(9-7)].

When H(s) is positive real, H(s) and G(s) are related by Eq. (9-16); since

G(s) has been shown to have a minimal realization {QT
,
A,, B 19 D} when H(s)

has a minimal realization {C 15 A„ B„ HJ], then Q and P satisfying relation

(9-15) can be directly determined. This result provides the needed link

between H(s) and the matrices P and Q and hence the Lyapunov function.

This result is more restrictive than the corresponding lemma used in the

scalar case (Lemma 3, Meyer) in requiring that {C19 A t , B t ] be a minimal
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realization of H(s) — H However, there has been no rigorously derived

analog to the Meyer lemma, so this constraint must be retained. To simplify

the statement of the absolute stability criteria, we incorporate this restriction

and the positive real condition into one definition. Actually, with the Popov
multiplier Z(s) = (@ 0s + j 0) the final matrix H(s) may have more zeros than

poles, that is, H(s) = Cfsl — A
l
)~ lB

l + + H x
s, so this case is included

also.

Definition PR 5. The matrix H(s) is minimal positive real (H(s) e
{MPR}) if H{s) e {PR} and if the realization {Cl9

A u B x ] of [H(s) — —
H

{
s] is minimal.

The significance of the condition of minimality on H(s) is clear when the

system is given as a state vector differential equation. If, however, the system

is specified by W(s), the procedure to be followed is to inspect H(s) A
Z(s)[W(s) + G^ 1

] e {PR}, and then to determine whether a minimal realiza-

tion of H(s) of the form {C15 A, B,
H«*, H x ] exists such that W(s) can be

realized using the same matrices A and B
;
the realization of W(s) need not

be minimal. These points are demonstrated in the discussion following MSC
2, Section 5B.

The matrix H(s) arising from the use of the special form SF1 (Lemma 9-1)

is often found to have the structure

H2(s)m = (9-18)

LHm(s)

In this case, the following lemma provides a direct means of testing for the

condition H(s) e {
MPR}.

Lemma 9-2. The matrix H(s) of Eq. (9-18) satisfies H(s) e {MPR} if and

only ifH
x
(s) = H2(s) •

• • = Hm(s) A H0 (s) and H0 (s) is a positive real transfer

function which is the ratio of relatively prime polynominals.

Proof: Sufficiency follows by inspection. For necessity we assume that

for some value of Hfs) A r
} + ip.; then

mm) =
i

{(''i + r2)
- i(Pi - p 2)}

{('•i + r2) + i(p
t - p2 )}

2rz

A necessary condition for semidefiniteness is that the m one-element prin-

cipal minors be nonnegative, that is, r. ^ 0. Considering the m(m — l)/2
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four-element principal minors leads to the requirements — [(r
f
— r

y
.)
2 +

(pt - Pj)
2
} ^ 0. These conditions together demonstrate that J (y) cannot be

positive definite, and that positive semidefiniteness requires r
{
= rj and p t

— Pj. Thus H(s) must reduce to

n
i

m = h0(s) (9-19)

1

which completes the proof: all higher order principal minors are zero.

For minimality, we see from the structure of SF1 that a reduced matrix A
can be used to realize H(s) if and only if there are one or more pole-zero

cancellations in H
0
(s).

In treating time-varying systems, it is necessary to show that v is negative

definite rather than negative semidefinite as provided by the application of

this lemma (refer to Section 6). In the scalar case this condition is guaranteed

by use of Lemma 2 (Lefschetz) which again has no direct analog in the

matrix case. We can obtain the desired result by use of the frequency domain

shift technique given in Lemma 4.

Lemma 10. Let H(s) be a matrix of real rational transfer functions such

that //« is finite and H(s) has poles which lie in Re s < —p. H(s — p) e

{MPR} if and only if a matrix P, P = PT > 0, and matrices D and Q exist

such that

P^
1 + ^

1

TP=-22T -2^; PB^CT-QD; D*D = Hn + HJ.

Definition PR6. The matrix //(j) is minimal strictly positive real (H{s)

G
{
MSPR

})
if for some s > 0 H{s - s) G {MPR}.

Point constraints on d/dt K(t) are obtained using the direct method of

Lyapunov (specifically, if H(s) g {MSPR}, then v < —sxTPx, P = PT > 0,

by Lemma 10 and Definition PR6), while time-averaged conditions for

absolute stability are derived utilizing Lemma 10 in the usual manner

(Chapter VI, Section 6) in conjunction with the theorem of Corduneanu.

4. Linear Time-Invariant Systems and Absolute Stability

The general LTI case of the differential equation (9-1) is given by specify-

ing

p = —nr\ yA diag[/c.] e [0, K), (9-20)

which may be reduced to the form indicated in Eq. (9-11), since /+ Rk
must be nonsingular for all values of k under consideration.
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A. The Existence ofxTPx and the Hurwitz Conditions

In Chapter IV, it is demonstrated that it is possible to prove the equivalence

of the Hurwitz conditions for asymptotic stability of LTI systems and the

result that the existence of v(x) = xTPx as a Lyapunov function for x = A 0x
[Eq. (4-32)] is a necessary and sufficient condition for asymptotic stability.

Only the differential equation x = A 0x is considered; hence, the result of

Chapter IV, Section 2 is equally valid in the case involving multiple LTI
feedback gains.

m
B. The Existence of xTPx + X K / x

TM
t
x and the Nyquist Criterion

1=1

It is reasonable to make the conjecture that the indicated /c-dependent

Lyapunov function must exist if the LTI system defined by Eq. (9-11) with

R = Q is asymptotically stable for_all diagonal feedback gain matrices k in

the range [0, K) where KA diag[XJ has been obtained by an application of

the extended Nyquist criterion.f In contrast to the scalar gain case, the fre-

quency domain multiplier conditions for the absolute stability of systems

with LTI gains (Section 5) do not presently appear to be sufficiently general to

prove this result. A discussion of what is currently known that is pertinent

to this question is provided.

(1) The Extension of the Nyquist Criterion

Many efforts have been made in seeking a generalization of the criterion

of Nyquist that is applicable to the stability analysis of LTI systems with mul-

tiple feedback gains Kr As in the scalar case, the most general work has been

done by Desoer and Wu [2]. For our purposes, however, the research reported

by Chen [1] and Hsu and Chen [1] is of sufficient sophistication.

As in the scalar case, the condition that the characteristic equation of the

system (9-11), namely,

p(X) A
|

XI- A A- Bk(I + RkY'C
|

= 0

is Hurwitz is a necessary and sufficient condition for the asymptotic stability

of the differential equation. The characteristic polynomial may be recast as

p{X) =
|

XI - A
1 1

/ + (XI - A)~'Bk{I + Rk)~ xC\
\

then the result of Sandberg [1] that for any two matrices F(p x q) and G(q X

p), we have \I + FG\ = \I + GF\ where / is of appropriate dimension

(p or q) yields

p(X) = \XI-A\\I + (I + Rk)~ 1 C(XI - AY 1Bk
I,

f If R ^ 0, then v(x) must have a term that is quadratic in p as in the single gain case;

see Eq. (9-27).
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which in turn may be reduced to

P«-|fe^|/ + sTO|.

The determinant
1

1 + kW(X)
I

is rational, so the denominator of this factor of

p{X) must cancel some or all of the zeros of
|

IX — A
|

= 0, as p(X) is a poly-

nomial in X. The denominator of \I + kW\ does not necessarily cancel all

of the zeros of
|

XI — A
|,
so the necessary and sufficient conditions for asymp-

totic stability must take into account not only the zeros of
1

1 + IfW I

but the

uncancelled zeros of
|

XI — A
|

as well. If we assume that A e {z^}, then any

right half plane zeros of
|

XI — A
|

are precluded.

Theorem 9-1 (Hsu and Chen [1]). If A e {A x } in the system represented by

Eq. (9-11), then a necessary and sufficient condition for the asymptotic stabil-

ity of this system is that the critical point (UT = —1, VT = 0) does not lie

in V7r(6i) where ^((R) is the mapping of the s-plane region (R (Chapter VII,

Section 1) given by WT(s e (R) and

WT(s) A |
/ + kW(s)

|

- 1
.

(9-21)

By using SF1 as introduced in Lemma 9-1, this result may be significantly

simplified. By direct expansion,

^ m
WT{s) = S *,W (9-22)

1 = 1

If all of the gains Kt
are permitted to take on values in the range [0, <^), then

clearly the necessary and sufficient condition for asymptotic stability is that

|

^JVi(ico)
|
< i = 1

, 2, . . . ,
m.

(2) Stability Results from Lyapunov's Direct Method

From the developments outlined in Section 5, the condition that is suffi-

cient to guarantee the absolute stability of an LTI system with k e [0, K)
is that there must exist some multiplier Z(s) — diag[Z

((^) g [ZJ(s)}] where

(Za(y)} is the class of shifted LC functions [Eq. (5-44)] such that H(s) A Z(s)

[W(s) + is positive real and Z(s)JV(s) is proper.t It does not appear to

be possible to relate this condition to the necessary and sufficient condition

for asymptotic stability as it was in the scalar case.

(3) Necessary and Sufficient Conditions for Stability

For the LTI case it has been assumed so far that the system is stable for all

k g [0, K) which defines a hyperparallelopiped in the m dimensional parame-

ter space. In general the region of stability defined by the Hurwitz conditions

t Elements of Z(s)W(s) must have no more zeros than poles.
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can have any arbitrary form, and hence k e [0, K) would represent only suffi-

cient conditions for stability. It is only in special cases such as systems

described by Eq. (9-22) with k e [0, oo
) that such a condition may also be

necessary.

5. Stability of Nonlinear Systems

A. The Matrix Popov Stability Criterion

The system whose stability is to be investigated is defined by Eq. (9-1) with

f--/« A -fWr;

/X>,)e(F), F(r) € [0,/)

As a consequence of F(r) e [0, F) we have that fi

2
(r

l
)/F

i < r, /)(/*,), or, for

any A diag[y
0 .] > 0, that

f
TF~ 1

y 0f<rT
y 0f, /A 0. (9-24)

We assume initially that the differential equation specified by Eq. (9-23)

with /(/*) = jcr where k = diagDc
.]
and k e [0, F) is asymptotically stable,

that is, A
v
[Eq. (9-11)] satisfies A

g e {A
t }, k e [Q, F).

In order to express the Lyapunov function candidate concisely in matrix

notation, we define

01 A [{/,(£) di,..., (f) dV\ A (fo
/(z) dzj (9-25)

and

/
T A[1, 1 1]. (9-26)

Using these vectors, the generalized Lur’e-Postnikov form is

v(x) = xTPx + 0T
£ O / + /

T
£ o0 + ip

T
(§ 0R + R%)p (9-27)

where P = P T > 0 is unspecified, and we assume, at least for preliminary

analysis, that j3 0 — diag[y?
0/ ] ^ 0 and (J3 0

R + RT
j3 0 ) ^ Q to assure the valid-

ity of v(x) according to Lemma V2 (Chapter III, Section 2).

The total time derivative of this candidate along the trajectories of the

system is

v = x\ATP + PA):c - xT[PB - ATCT
J3 0 - CT

y 0]f -fT[BTP - §0CA

- 2*C]x -rtfoCB + B^§ 0 + y 0R +>y 0 + 2yjpf
~ [r

T
Xof -PF-'Xof] - [f

T
I</ -PlJ-'fl (9-28)

As in the scalar case the last term of v(x) is chosen so that the terms in dpldt

cancel. Since the nonlinearities lie in the finite sector [0, F) and y 0 > 0 is
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assumed, the last two terms (which are equal) are negative semidefinite by

Eq. (9-24). To make the first four terms into a perfect square we identify

A,=A; B, = B- C, A § 0CA + %0C;

DJD A @0
CB + BTCT

j3 0 + 2
-

0R + RT
1 o + _1 A + #~T

,

and by Lemma 9 obtain

* = -[0T* + DfYlQ'x + Df] - 2 [r
T
j 0/ -f TF~^ Qf] < 0 (9-30)

if and only if

H(s) A j 0 [C(,s/
- ^)~ *£ + R + f

"

!

] + ^ 0C(^ - A)~ lB e {MPR},

(9-31)

where the relation CB + CA(sI — A)~ lB — sC(sI — A)~ lB has been used.

Some of the final arguments of Chapter V, Section 1 carry through by

inspection. First, v = 0 only iff(r) = 0 (or x = Ax) and xTQQTx = 0. By

the Corollary to Lemma 9, (Q
T

, A) is completely observable, so xTQ = 0

where x satisfies x = Ax only for x = 0, and thus absolute stability is guar-

anteed. The initial requirements that ^? 0 ^ 0 and (^? 0 7? + i?
T
/? 0 ) ^ 0 may be

removed since the sign of v is unaffected ;
as in Chapter V, Section 1 ,

asymptotic

stability for p = — Kr, k g [0, F) and the condition that v< 0 where v = 0

only if x = 0 ensures that v(x) is positive definite.

Thus, without dwelling on these aspects of the development in great detail,

we state a preliminary generalization of the theorem of Popov:

Multiple-gain Stability Criterion la (MSC la). The system defined

by Eqs. (9-1) and (9-23) with A K e {AX k g [0, F) is absolutely {F} stable

if matrices

§ Q A diag[jff 0j., i
= 1,2 m], f}0! e (— <=*=>, <*>)

Jo =4 diag[y 0/ , i = 1, 2, . . .

,

m\ > 0

exist such that H(s) in Eq. (9-31) satisfies H(s) e {MPR }.

This result, while of broad generality, is not in a satisfactory final form

when compared with the results obtained in the scalar case. One difficulty

arises in the assumption that = R A Q; if we consider the Hermitian part

of H{i(o), then we can add ico§ 0F~
l and \ico(@ 0

R + RT
^? 0 ),

which are imagi-

nary and symmetric and thus do not contribute to He{//(/a>)}, to show that

He{H(ico)} = He{fl
r

1
(/cu)} A He{(^

0
/co + j 0)[IF(/co) + F~ 1

]

- \ico{§,R - RT
§ o)}.

Thus, we note that taking a general matrix R prevents us from obtaining a

result that is completely analogous to that of Chapter V, Section 1. Hence to
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complete this derivation we assume that j} 0R = 0,f so the frequency domain
condition may be expressed as

H2(s) A (@ 0s + Y 0)[W(s) + f- 1

] e {MPR }

provided ji0i > 0. Rather than permitting some of the parameters ftQ ,
to be

negative, we use the alternative multiplier

Z(s) A diag[ZP'(s) e {ZF(s)}] e {SPR} (9-32)

[where
{ZF(s)} is defined in Eq. (5-11)] and require the condition

H(s) A Z(s)[W(s) + F-'] e {MPR} . (9-33)

Multiple-gain Stability Criterion lb (MSC lb). The system defined

by Eq. (9-1) with

P = ~f(r)
= -F(r)r,

/W G [F], Fir) e [0, £], (9-34)

^ £ {^i}> rip G {A
t }

is absolutely {f} stable if Z{s) [Eq. (9-32)] exists such that
(j0
R = Ot and

H(s) [Eq. (9-33)] satisfies ff(s) e {MPR}.

Letov [1] and Sultanov [1] investigated the extension of the resolving

equations of Lur’e to the absolute stability problem with multiple nonlinear

gains. As in the scalar case the main contribution in deriving a frequency

domain criterion was made by Popov [1]; there the result for R = 0 is given

as He{f/(i'oo)} > 0 [Eq. (9-31)]. A certain amount of duplication in the re-

search effort in this area was caused by the inaccessibility of this original work
of Popov.

Narendra and Goldwyn [2] gave the criterion for absolute stability as He
{H(ico)} ^ 0, but failed to state all the conditions required for its validity.

Ibrahim and Rekasius [1] obtained the less general result

F 1 + He{(/a^0 + I)C{icoI - A)~'B } > He{§ 0CB} > 0. (9-35)

Results similar to those of Popov were presented by Tokumaru and Saito

[1] and Jury and Lee [1].

Anderson [1] initially presented a restrictive form of the above result

using a scalar (fi0s + y0 ) as the frequency domain multiplier; the more general

result was given in a subsequent paper (Moore and Anderson [2]). As already

indicated, it is his development relating the network theory concept of positive

real functions to the control theory concept of minimal realizations that has

been followed in this section.

t The significance of this condition is that the elements of (0 os + yo)W(s) also must satisfy

the condition that they have no more zeros than poles, that is, this matrix is proper. It could
also be assumed that R is symmetric, but this is somewhat artificial except when R is a

diagonal matrix.
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Example 1. Jury and Lee [1] considered a general system with two non-

linearities. If we take @ 0R = 0, the matrix H(s) has the form

( = [G?..* + (fins + r^'w^s) “

~
L (P<nS + y0 i)

±l W2l(s) (P01s + y02y-'[W12{s) + (F2y']_

for the finite sector problem, F(r ) e [0, F). The condition J(ico) A He
{H(ico)} > 0 is satisfied if

(i) Ju A ^WttQco) + (F^]} >0, i = 1, 2,

00 JuJzt. + yoiy'W^Vco) (9-36)

+ (-Pozio) + y01)
±iW2l(-ico)\

2
.

Condition (i) indicates that the scalar finite sector Popov criterion (Chapter

V, Section 1) must be satisfied by the diagonal terms. The second constraint

takes into account the interaction between the two loops of this system.

Example 2. A specific case in which a qualified verification of the Aizer-

man conjecture (Chapter IV, Section 1) may be obtained was first considered

by Krasovskii [1] using the direct method of Lyapunov. The same result was

subsequently rederived by Narendra and Neuman [3] using the frequency

domain condition of MSC 1. Consider the following differential equation

and corresponding transfer function matrix:

r-a o "1

!n on [/,(*,)" r o is + py i
~

X =
1

1o1
X — 1

1oj lUxX
, W(,S) =

Lis + a)'
1 0

(9-37)

By taking (£ 0s + y 0) = diag[(j + C? + a,

H^) = (§oS + yo)m5) + F- l

]
=

)].

s +A
Fx

? +
j + a

Writing H(s) in the form

5 + P\

s + /?

s ~h

F

2

.

H(s) = sF~ l +
?i/^i 1

i *JF2 .

+
0 (fi t

- py

.(«! — a) 0
(si- A)- 1 B,

we see that {C 1? A ,
B] is a minimal realization of [7/0?) — H — H^] if

oc
1
^ a and P x ^ /?. Further analysis reveals that choosing a

1
< a and

< ft ensures that H(s

)

e {MPR} if F
l
F2 = Hence by MSC lb, the

system is absolutely stable if

0< /i(* 2) . fj2Li) < a/?.
x

(9-38)



220 IX Stability of Systems with Multiple NLTV Gains

If/ife) = k
i
x2 &ndfi(x i)

= k 2x { ,
then the differential equation reduces

to

—a —k
x

with the characteristic polynomial
|

U — A
5 |

= X2 + (a + P)jl + (a/? —
k

1
k 2), which demonstrates that k

1
k 2 < a/? is the necessary and sufficient

condition to guarantee asymptotic stability. Thus, the result obtained from
MSC lb is equivalent to the Hurwitz condition if it is stipulated that k

x
and

k 2 are nonnegative.

Example 3. A case in which it is possible to treat a system with two non-
linearities as two scalar systems is provided by the symmetric system con-

sidered by Lindgren and Pinkos [1], namely

W(s) = 0 < JM
r.

<F, i=l,2.
~W

x
(s) W2(s)

Lw2(s) W
x
(s)J

We define two auxiliary functions for subsequent analysis:

V^co 2
) A RefOJ0to + r0Wi(to) + ^_1

]}

Vzico
2
) A M(p0 ico + y0)W2(ico)}.

[The use of the scalar multiplier results in no loss in generality in this case.]

For stability it is required that y/ x
(co

2
) > 0 and \j/

x

2 — y/ 2
2 > 0; this in turn

is equivalent to y/ 1 + y/ 2 0 and y/ x
— y/ 2 ^ 0. Thus, the symmetric system

is absolutely stable if

(P Qs + y0Wi(s) + W2(s) + F~ 1

] e {PR}

(Po* + VoWiW “ W2(s) + F" 1

] e {PR};

the graphical methods given in Chapter VII, Section 3 can then be used to

check these conditions.

For completeness, it must be possible to obtain realizations {C, A, B
,
R}

of W(s) and [Cl9
A

,
B, H

x ] of H(s) [Eq. (9-33)] such that [C 19 A, B] is

minimal in both Examples 1 and 3.

Examples for m > 2 are not presented. There is no difficulty encountered
in generating higher order examples in SF1 that are easily treated using

Lemma 9-2, while the direct application of MSC 1 becomes tedious.

B. Stability Criteria for Other Nonlinearity Classes

By following the developments presented in Section 5A, it is only an
algebraic exercise to duplicate the extension of the stability criteria for all

classes considered in Chapter V. The operations that have to be carried out

in deriving these stability criteria are considerably more involved than in



5. Stability of Nonlinear Systems 221

the scalar case. Further, since the positive realness of a matrix has to be

established in all cases, the criteria are also significantly more complex to

apply. With the possible exception of the generalized Popov criterion derived

in Section 5A, it may thus safely be said that the criteria presented here are

generally of little practical utility except for the case of systems in SF1.

In Chapter V it is shown that for all systems with a single nonlinearity in

the feedback path the form of the frequency domain criterion remains essen-

tially the same, that is, Z(s)[W(s) + l/FN\ e {PR}. Different multiplier classes

{Zjv(j)} are shown to exist so that, given a function /(•) e {N} in the feed-

back path, a multiplier Z(s) such that Z ±l (s ) e {ZN($)} satisfying this con-

dition must be selected to guarantee absolute stability. Virtually identical

ideas carry over to the case when the system has multiple nonlinearities in

the feedback path. In all cases the central condition in establishing the

absolute stability of the system is the existence of a diagonal matrix Z(s) such

that

H{s) A Z(s)[W(s) + iV] e {MPR}. (9-39)

When all the nonlinearities in the feedback path /,(•) belong to the same

class {N }, the corresponding elements of the multiplier matrix Z(s) in Eq.

(9-39) are also found to belong to the same class {ZN(s)} or its inverse:

Zn{s) e {ZN}> / = 1, 2, . . . ,
m or Zfis) e [ZN],

i = 1, 2, . . . ,
m.

Without presenting a detailed derivation of all the frequency domain

criteria we merely state below the stability criterion for a system with multiple

monotonic nonlinearities in the feedback path,

The overall system is defined by Eq. (9-1) with

P = -/W =

fir) e {fJ, F(r) e [Q, Ml (9-40)

A £ "4# ^

For multiple monotonic nonlinear time-invariant gains, f{r) G {Fm},
we have

for any vectors r and q and any matrix y x
A diag[y l£ ]

> 0 that

(r — qYMjfr — q) > [fir) — fiq)Yyfr - q) > 0.

The multiplier class [ZFm ] obtained using this relation is defined by

[ZFmis)} A {Zis) = diag[ZRLM) (9-41)

where ZRU(s) are RL multipliers defined in Eq. (5-34). The problem of

obtaining the inverse multiplier Z(s) = diag[ZRO(s)] is not as straightforward

as in the previous case but it can still be proved quite directly by using the

range shifting transformation and inversion as in the scalar case [Eqs. (5-39)

and (5-40)]; system inversion is guaranteed to be possible since e {A
x }

guarantees that / + RM is nonsingular. We note that this procedure only
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permits the use of Z(s) = diag[ZRC/(y)] ;
it is not possible to obtain a diagonal

multiplier composed of mixed RL and RC functions by this technique, in

contrast with the extension of the Popov criterion (MSC lb).

Multiple-gain Stability Criterion 2 (MSC 2). The system defined by
Eqs. (9-1) and (9-40) is absolutely

{Fm} stable if Z(y) exists such that Z 1

1

(y)

g [ZFJs)} and

H(s) = Z(s)[W(s) + M~ l

]
e {MPR}

where ZW is proper if Z g \ZFJ or ZW~ l
is proper if Z 1 e [ZFJ.

The fact that H(s) must be achieved as a minimal realization using the
given original system matrices (A, B) is in some cases a quite stringent condi-
tion. It may well preclude canceling poles of W(s) by zeros of Z(y), for

example, although pole-zero cancellation is useful in that it simplifies check-
ing the positive realness of H(s).

Many of the questions arising from the minimality condition may be
clarified by considering an example in SF1 : take

W(s) = R + C(sl - A)-'B =
(y + 2)(y + 3) rr

(s + l)(y + 2)°

(y + l)(y + 4) rj

L(y + l)(y + 2)°
where H

0
(s) has no poles or zeros at y = —1, —2, —3 or —4, and it is the

proper ratio of relatively prime polynomials.

(i) It is tempting to take Z^s) = diag[(y + l)/(y + 3), (y + 2)/(y + 4)]

e {ZFJ to obtain

#,(y) = zjsWis) = H0(A] Jl.

which would seem to imply absolute \Fm \ stability ifH0(s) g {PR}. However,
by Lemmas 9-1 and 9-2 it is clear that the pair (A,, B,) in SF1 which provides

a minimal realization of f/,(y) cannot be used to realize fV(s).

(ii) We can, however, take Z 2(y) defined by Z2 ‘(y) = diag[(y + 2)/(y + 4),

(y + l)/(y + 3)] g {ZFJ to obtain

H
1(s) = Z 2(s)W(s)

(y + 3)(y + 4)

(y + l)(y + 2)
^o(^)

r
i_

which by Lemma 9-2 guarantees absolute {Fm} stability if H
a(s) g {PR},

since from the given conditions H0(s) is the ratio of relatively prime
polynomials.

(iii) One important point to be stressed is that the condition H(s) e
{MPR

} does not preclude system augmentation to allow the use of more
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complicated multiplier matrices : take

Wa(s) AR + Ca(sl
- A ay iBa

(

S

+ 2)(y + 3)(s + A) rr / \

(y + IX? + 2Xs + Tr°W
(s + 1 )(s + 4)(s + 2)

L-0 + 1 )(S + 2)(s + A)
H0(s)

then if

Z
3(s) = diag Q + 4)Q + n) . 0 + 3)Q + rj)

_(s + 2)(y + X) (s + l)(y + A)_

we have

H
3
(s) = Z

2(s)Wa(s)
(s + 3)0 + 4)0 + r\)

(s + l)(y + 2)(y + X)
A H0(s)

1

l1

1

1

the scalars rj and A may be any real positive numbers chosen such that Zn{s)

are both either RL or RC functions and H0
(s) is the ratio of relatively prime

polynomials; absolute {
Fm }

stability is guaranteed if H
0
(s) e {PR}.

C. Systems with Mixed Nonlinearities

The criterion MSC 2 deals with systems with many nonlinearities, all of

which belong to the same class {Fm}. The question naturally arises as to how

the stability criterion may have to be modified when the nonlinearities in the

feedback path belong to different classes, that is, ft
{r) e {N/}. The same

approach used in earlier cases yields the result that elements of the diagonal

matrix Z(s) in Eq. (9-39) may belong to different classes, depending upon the

particular nonlinearity in the feedback path. If ft
(r

t) e {jVJ, the element

Zu{s) of Z{s) would belong to the corresponding class [ZNt(s)}. The following

example represents an interesting application of the criterion,

Example 4. Consider the differential equation

—p a
X —

“0 0“
/.(*,)

_ 0 0_ _1 1 _

The transfer function is

ct > 0, > 0.

W(s) = (s(s + /?))-
« — 2l

-{* + pr
Is + P)

~
s a

'
1

_

By an extension of MSC 1 to the particular case, it could be proven that the

system is absolutely [F] stable in the infinite sector (0, oo). However, the

corresponding linear system

x =
_-*i

x

has the characteristic polynomial p(X) = A 2 + {p + + (aK
l + pK 2),
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so the Hurwitz conditions are

(1) k2 > -0 ,

(ii) ouc
i + 0k2 > 0,

which do not correspond to the condition jc e (0, oo). Krasovskii [1] showed
that the corresponding conditions f2(x2)/x2 > -0 and [a(f^x^/x^ +
P(fi(x2)lx2)] > 0 do not guarantee equiasymptotic stability in the whole,
even with a single nonlinearity. To see that this is so, refer to the differential

equation (4-14).

If, however, we strengthen these constraints by imposing the conditions

(!) for all x2 and x2 =£ x
2 , e > 0,X 2 X2

(2) a/,(x,)/x, > 0
2
,

we can guarantee absolute {F, Fm } stability: Defining

^i(*i) Afi(.x ,) - (0
2
/a,)x

,
e {F},

h2(x2) Af2(x2) + (0 - s)x2 e {Fm},

the original differential equation transforms into the standard form with

W(s) = (s 2 + es + 80)~
a a

Ls + 0 s + 0\

Using Z(s) A diag[(^ + e)/a, (j + e)/(s + 0)] yields

Z(s)W(s) = s + s

es + e0

1
1'

1 1

A H0(s)

i r

i i

Given 0 > e > 0, H0
(s) is the positive real ratio of relatively prime poly-

nomials. Since ((s + e)/a) e \Zr \
and ((s + e)/(s + 0)) e {ZFJ, this condi-

tion suffices to guarantee absolute {F, Fm ] stability under constraints (1) and

(2). To relate these restrictions to the Hurwitz conditions, we note that

Af 2/Ax2 ^ — (/? — e) directly corresponds in a strict sense to k 2 > — and
that this ensures that f 2 (x2)lx2 ^ —(ft — s). This latter condition in conjunc-

tion with constraint (2) then guarantees that

3/ i(*i) i pf_2(^2)
X

1

” X 2

> 0
,

which corresponds to (ii).

The stability criterion applied in Example 4 represents the most general

criterion that may be derived for a system with multiple time-invariant non-

linearities using the technique discussed in this book. A formal statement of

this criterion may be given as follows:



6. Stability of Nonlinear Time-Varying Systems 225

General Multiple-gain Stability Criterion 1 (GMSC 1). The system

described by Eq. (9-1) with

P = -fir) = —F(r)r;

me{N,}, F(r) e [Q, Fn] ;
(9-42)

A e {A
t }, AFn e {A,}

is absolutely {N} stable if there exists a multiplier of the form Z(s) =
diag[Z,(j) e (Z^)}] such that

H(s) = Z(s)[W(s) + fV] G fMPR], (9-43)

and Z(s)W(s) is proper.

The only major problem that arises in obtaining a general result with

mixed NLTI gains is found in obtaining inverse multipliers. At the present

stage of development, Z"'(i) may be used only if all nonlinearities are at least

monotonic.

As in all previous cases, this result is greatly simplified if the system is in

SF1, and if the gains lie in the infinite sector. Then the function H(s) is in the

form indicated in Lemma 9-2, and thus the condition for absolute stability

is that

~zr'

zj 1

W(s) = lT0(s)

Z- 1

m

where fL
0 (y) is a scalar transfer function that is the proper ratio of relatively

prime polynominals and positive real, and Zt
(s) e {Zw,(s)}, / = 1,2 ,

,m.

Both of these results were obtained by Narendra and Neuman [3].

6. Stability of Nonlinear Time-Varying Systems

While all the criteria discussed in Section 5 can clearly be extended to the

time-varying case, most of them have little practical utility. We consider

briefly two generalizations of MSC 1 to NLTV systems primarily to indicate

the form of the criteria in time-varying situations and the complexity involved

in applying them. The frequency domain criteria (as in the scalar case) are

identical to those derived in Section 5 with constraints imposed on the time

variation of the feedback gains determined by the multipliers chosen. Both
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Lyapunov’s theorem and the theorem of Corduneanu are applied to obtain
instantaneous and time-averaged constraints on the rate of time variation of
the gains.

A. Instantaneous or Point Constraints on (d/dt)K(t )

The system model represented by Eqs. (9-1) and (9-23) is generalized by
replacing/(r) with K(t)f(r).

p = -K(t)f(r) = —K(t)F(r)r;

ft e (n Fir) e [0, f],

k,e{K
t ], K(t) e [0, K],

(9_44)

A G {A,}, A0 e {A,}, G = KF,

where F, may be infinite but K, may not be (Chapter II, Section 3).

The Lyapunov function candidate v(x, t) for the system (9-44) has the same
form as that used for the time-invariant case [Eq. (9-27)] with /(/) being
replaced by the time-varying nonlinearities K(t)f(r). The time derivative of
v(x, t) is consequently similar to the expression in Eq. (9-28) but contains
additional terms involving K(t). Using Lemma 10, it is then shown that if

Q(s) e {MSPR} ,
the first four terms of v are negative definite. The remaining

terms of v are then shown to be nonpositive if

®,.fc,.(0[l - (miK,)} > (fijyj (dkjdt), i = 1, 2, . .
.

,

m.

These conditions correspond exactly to those obtained in the scalar case;

Poi/Vot is determined by the scalar Popov multiplier chosen as the /th element
of Z(s). The arguments presented previously allow

fi0i < 0 if desired. The
frequency domain condition for those multiplier elements with j]ot < 0
can be converted into the standard form by taking + y0i)

_1 A
(PoA + ToiY

1 e {SPRj^ and constraining dkjdt to satisfy dkjdt >
~-(Pot/yod®iktV — kJK] for those gains which correspond to the use of the

inverse multiplier element in Z(s). A general stability criterion for systems
described by Eqs. (9-1 ) and (9-44) may thus be stated as follows

:

Multiple-gain Stability Criterion 3 (MSC 3). The system described
by Eqs. (9-1) and (9-44) is absolutely {F, AT,] stable if

(1) MSC lb is strengthened by demanding that H(s) [Eq. (9-33) with F
replaced by G] satisfy H(s) e [MSPR ],

(2) (d/dt)K(t) is restricted by

AK< A$K(I- Kg-') (9-45)
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where A and A are defined as follows

:

A A diag[+ 1 if Z
t
(s) e [Zs

t
(s)} 9

-1 if Zr l
(s) e [ZNi(s)}\ (9-46)

A A max{A: Z
h
(s) A diagfZf^J — A,)] e {ZN(y)}, Q < A < A}. (9-47)

The interpretation of the time domain constraint on K(t) as given in Eq.

(9-45) remains unchanged from the scalar case.

If the frequency domain condition of MSC 3 is satisfied for f} 0i = 0, then

we obtain a constraint on k
t
(t) which may be viewed as the extension of the

circle criterion for [0, GJ. Usually no geometrical interpretation can be

attempted. An exception is again provided by the symmetric system (see

Example 3): For the system described by

W(s) = ; 0 < ikiiH < G, i = 1,2,
F t

~W
x
(s) W2{sT

_W2(s) W^s)]’

then C,(j) A [W
t
(s) + W2(s)] and G2(s) A [W

x
(s) - W2

(sj] must each

satisfy the scalar circle criterion (Chapter VII, Section 2).

Example 6. An interesting general example has been provided by Moore

and Anderson [1]. While the time invariant case is considered in this

paper, we treat the corresponding NLTV case. In the classical optimal control

problem dealing with a linear system x = Ax + Bp an input function p(t)

which minimizes the quadratic index of performance

V(x 0 , p) = [ [p
T
p + xTQx] dt; Q = QT > 0

J to

is to be determined. This is found to be provided by state variable feedback,

that is,

p = —Mx,

where M satisfies MT = PB and P is the unique real positive definite sym-

metric matrix satisfying

ATP + PA + Q = PBBTP - MTM. (9-48)

Assuming that certain nonlinearity and time variation is unavoidable in

implementing the optimal control law, we are interested in determining how

much this relation can deviate from linear control while still guaranteeing

absolute stability. If we define r A Mx as the nominal plant output and

p = —g(r, t) = — G(r, t)r, this scheme corresponds to W(s) = M(sl— A)~ lB
in Fig. 9-1 where the nominal optimal feedback control law is given by p =
— r, or G(r, t) = I.

It can be shown in a straightforward manner that the conditions gi
(r

i ,
t)/r

i
e

[^, oo) and {M,A,B} minimal where A A. A — \BM guarantee absolute
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stability. Transforming the problem to the standard infinite sector case, we
obtain

g(r, t) = [g(r, t) - jr] A G(r, t)r

W(s) A W(I + \\Vy 1 = M[sl - A + ^BMY'B;
absolute stability for G c [0, oo) is guaranteed if W 1-0 e {MSPRj by the

extended circle criterion.

Since Q = QT > 0, we can always find some e > 0 and some real matrix

Qi such that Q = 2eP + Q X Q?\ thus Eq. (9-48) may be put in the form

(A - %BMfP + P(A - $BM) = -QtQJ - 2eP,

which together with PB = MT
, demonstrates that W(s) g {MSPR} as

required (refer to Lemma 10 and Definition PR6).

Another example of the application of the extended circle criterion may
be found in Sandberg [4], where the stability of networks with time-varying

capacitors is considered. For other classes of nonlinear gains and for LTV
systems, similar results can be obtained for the finite sector case essentially

by inspection. The ability to mix classes of NLTV gains is again permitted,

as in the NLTI case. These comments motivate the following generalization

of General Stability Criterion 2 (Chapter VI, Section 4).

General Multiple-gain Stability Criterion 2 (GMSC 2). The system

described by Eq. (9-1) with

p = ~K(t)f(r) = K(t)F(r)r

m e {N
t}, F(r) e [0, Fn] 9

m e m e [o, Eri

A E {A
x }, Aqn e {^4 1 },

is absolutely {Nn K.} stable if

(1) GMSC 1 is strengthened by demanding that H(s) [Eq. (9-43) where
Fn is replaced by satisfy H(s) e (MSPRj,

(2) condition (2) of MSC 3 is satisfied with A = I.

It is more difficult to give meaningful examples for the application of

stability criteria to systems with multiple NLTV gains since well-known
problems (for instance, the Mathieu equation) do not exist.

B. Time-Averaged or Integral Constraints on (d/dt)K(t

)

Based on the previous derivations for systems with multiple NLTI and
NLTV gains, the stability conditions resulting from an application of the

t Kt = K\ unless the frequency domain multiplier element is Z* = y 0/ ,
which cor-

responds to the circle criterion, in which case kt(t) e {A^0 } is allowed.

K < oo

Qn — Fi

(9-49)
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theorem of Corduneanu (Chapter III, Section 3) and Lemma 10 (Section 3)

may be stated directly.

General Multiple-gain Stability Criterion 3 (GMSC 3). The system

described by Eq. (9-1) with

p = —K(t)f(r) = —K(t)F(r)v\

Ur,) e {N,}, F(r) e [Q, oo),

kff) e K(t) e (Q, K < oo),

(A + /ll) E {^i) ? // > 0

is absolutely [Af., ATJ stable if

(1) Z(s) exists such that

(i) Zi(s) A diag[ZX^ — A,)] satisfies Z^(s) e (ZN(y)}, 0 < X < A;

(ii) Hm(s) A Z(y — //) JF(.s — //) E {MPR} is proper.

(2) /?(/) A sup{— 2//; —[0,A
t

. — i=l,2,

.

.

.

,m] satisfies

lim f p(r) dx — — oo (6-37a)
f-»oo J f0

uniformly with respect to t
Q

if p(t) is aperiodic, or

f ^(0 dt < 0 (6-37b)
^ o

if ^(0 = ^(/ + T) for all Q
The complex interrelations implicit in condition (2) make the criterion

primarily of academic interest.

It is indicated throughout this chapter that the absolute stability problem

for multivariable systems becomes quite unwieldy when compared with the

analogous problems arising in scalar situations. This is particularly evident

in the difficulty encountered in applying the resulting criteria, as well as in

the number of details that must be considered before any derivation can be

carried out rigorously.

While the results presented are tentative and incomplete in many respects,

Lemmas 7-10 are interesting in their own right, relating as they do the con-

cept of positive realness in network theory to the canonical representation of

dynamical systems and in turn to the stability of such systems in the sense of

Lyapunov. We can anticipate further modifications and extensions of these

lemmas in the future which will lead to a better understanding of the close

interrelationships in the three areas.

t Kt = Kz unless the frequency domain multiplier element is Zj = yoj, in which case

kj(t ) e [A^o] is permitted since v(x, t) and p(t

)

are independent of kj{t) for that particular

gain.



APPENDIX

MATRIX VERSION OF

THE KALMAN-YAKUBOVICH LEMMA

The proofs of Lemmas 7-9, which are extensions of the Kalman-Yakubo-
vich Lemma to the matrix case, depend on the important result that if H(s)
is a positive real matrix with a minimal realization {C,, A

t , 5,} then there

exist two minimal realizations of the matrix 2%y) defined by Y(s) A H(s)

+ HT(—s) given by

:

frc- T 0
'

“j8,"

|

and
|

~ PB T rA
t

0
_

r-.ii
IL-jJ

5

0
> >

l

>

_c, T_ _o L^JJ'iJJ

(A-l)

where P is a positive definite matrix. This result in turn depends on a lemma
on spectral factorization due to Youla [1] and the properties of minimal
realizations for dynamical systems. We first briefly present the preliminary
result given in Eq. (A-l) before proceeding to prove Lemmas 7-9.

If {C
, , A,, B ,} is a minimal realization of a positive real matrix H(s), by

direct calculation we have one realization of Y(s) = H(s) + 7/T( s )

:

{c2 , A 2 , B2}
ir
c

>

T_ T
Ol

lL-*j
y

i IO
—

1

Hi (A-2)

where A 2 is a (2n x In) matrix. If H(s) has only poles in Re j < 0 and thus

t The proofs presented here follow closely those presented in Anderson [2].

230
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HT(—s) in Re s > 0, the dimension of the minimal realization of IXs) is

2n, so {C2 ,
A 29 B 2 } is minimal.

By the spectral factorization lemma of Youla, if H(s) is positive real and

H(s) + HT(— s) has rank r almost everywhere, then there exists an (r x m)

matrix G(s

)

such that

Y(s) = ff(s) + H?(-s) = G\-s)G(s), (A-3)

and Q(s) is analytic in Re $ > 0. If {g 1

T
,
R

, , S,} is a minimal realization of

G(s), by direct calculation it is seen that

{C3 , A 3 , B 3 ]

“ R,

jS i2i
t

o

—R
(A-4)

is also a minimal realization of J(Y). Using a nonsingular transformation

T =
I Q"

P I
where PR, + RfP = ~Q

1Q 1

T
9

an alternative minimal realization of 1%?) is obtained:

ffRV T
r*.

i
Ol

r ^ ii

IL-Sl i IO -*, T
J i

js

Since
{
C

2
,A

2
,B

2 }
and {C4 ,.4 4

,R
4 }

are minimal realizations of the same

matrix Y(s) and A, and R, have strictly negative eigenvalues, then A

,

and R,

are similar. This in turn is found to imply that a minimal realization of the

form {g
T

,
A^B,} exists for G(s). Using this minimal realization we obtain

relation (A-l) (substituting S, = B i9 R, = A, in Eq. (A-5)) where

AfP + PA, = -QQL (A-6)

Proof ofLemma 7:

Sufficiency. Of the three conditions for positive realness in Definition

PR4, we need to verify only (iii): consider J(s) Al He{i/(.y)}:

2J(s) = H*(s) + ff(s) = Bf(s*I- AfY'Cf + CfsI-AJ-'B,.

Substituting Cf = PB
X ,

2J(s) = Bf{(s*I — Aff'P + P{sl — AJ-'jB,

= Bfis^I - A
l

T)~ 1 P(sI - A
1

)~ 1B
l
(s + s*)

+ BJ(s*I - AfY'QQ\sI - A,Y l B,. (A-7)

The right-hand side is clearly nonnegative for Re s > 0.

Necessity. Since the two minimal realizations given in Eq. (A-l) are for

the same matrix T(*s), a nonsingular matrix T must exist such that
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and

by
Cf_ J>B

i _

and (T-'Y
[cf-
1
1

L

II

i
1 r

Such a matrix T must have the form

(A- 8)

0~

Tj
where T

x
and Tf commute with A,. Hence, from Eq. (A-8) we have

T
l
B

l
= 2?i and (7V)t

Ci
t = P5,. Since r,5,= B

t , we use the commuta-
tive property T,A

t
= A

t
T, to write the controllability matrix:

,A
i
B

1 ,...] = [r.5, , A t
T,B

X
,...] = T

l
[B

l
,A

l
B

l , . . .]. (A-9)

Since {C,, A
t , B,} is a minimal realization of ff(s), (A,, B

t ) is completely

controllable and thus the controllability matrix must have rank n. Equation

(A-9) can then only be satisfied if 7', = I. Thus completes the proof by
showing that PB

X
= Cf.

ProofofLemma 8: We first consider a matrix If
,
(.?) defined by

Hfs) {aafY _

s + ico0
’

(A- 10)

where a is an ^-dimensional complex vector. If & + a*T)/A/T and
c A. i(a — a*T)j^/~2, such a matrix can be expressed as

Hence

Hfs) = [b, c](s
2 + co 0

2
)

1 (A- 11)

{C, A, B}

\\bT
~ T "0 -COo

!

"
6T 11

lU
T
_ JOo

0
y

_C
T
J)

(A- 12)

is a minimal realization of Hfs). IfP is the unit matrix, P satisfies the equa-

tions

PA + A JP = 0 ; PB = CT
. (A-l 3)

If H(s) is a positive real matrix with poles only on the imaginary axis, it

has been shown [Newcomb (1)] that H(s) may be expressed as

Fj,m = x¥- (A-14)

where Ej and Fj satisfy certain requirements and the frequencies coj are

distinct. Each term in the summation can in turn be expressed as

Es

S 2 + CO

F = t
s — ico

MT
s + ico

(A- 15)
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if H(s) is of degree 2k. Since the minimal realization ofH
x
(s) is given by Eq.

(A-12), the minimal realization of each term of Eq. (A-14) can be directly

computed as

{C„ AJt Bj] =
[JOo j

(A- 16)

The minimal realization {C,, A,, B
t ] of H(s) in Eq. (A-14) and the corre-

sponding P satisfying Eq. (A-13) are obtained as

/4, = @ A, (where © denotes direct sum),

~
[^i

T
> Bf> • •

•]> (A- 17)

c, = [6 1
,c 2 ,...],

p = ®p>-

The above developments indicate that for one minimal realization of a

positive real matrix with poles on the imaginary axis a matrix P can be found

satisfying Eq. (A-13). For any other realization [C
{
T~\ TA

X
T~ X

,
TB\) the

matrix P = [TT]

lPT~' is seen to satisfy relations (A-13). Hence it follows

that a positive definite matrix P exists for every minimal realization.

Proof of Lemma 9:

Sufficiency. Again it is only necessary to verify the positive realness of

H*(s) + H(s) in Re j > 0; consider

2J(s) — + HJ + Bf(s*I - Aff'Cf
+ Ci(sl — A\Y'B X

- D^D + 5,T((i*7- Aff'P + P{sl-

+ Bf{s*I - A ff'QD + DTQT(sI- A f'Bt

= {T»T + Bf(s*I- Af)-'Q}{D + Qf{sl — A ,)~'5
1 }

+ Bf(s*I- Af)~'P{sI- A.Y'BAs + (A- 18)

which is positive semidefinite for Re s > 0.

Necessity. The proof of necessity for the case when H{s) has poles only

in Re s < 0 follows exactly along the lines indicated for Lemma 7, with PB l

replaced by PB
t + QD in Eq. (A-l). For the case when H(s) has poles on the

imaginary axis also, H(s) is expressed as

B(s) = Ufs) + Hb
(s)

where Hfs) has poles only on the imaginary axis and Hb{s) has poles only in

Re s < 0.

If the minimal realization ofHa(s) is {Ca ,
A a , Ba], a positive definite matrix

Pa exists by Lemma 8 such that PaA a + AfPa = 0, PaBa = Cf. Similarly,
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if ffb(s) has a minimal realization {Cb ,
A b , Bb , Hb4, matrices Pb > 0, Qb , and

D exist so that PbA b + AJPb = -Q
bQb\ PBb = C„T - Q„D and D'D =

~ taking direct sums P = Pa @ Pb ; A t
= Aa @ Ab , and defining

®i
T = t^T’ ^*

T
]> Ci = [C„, CJ, and gT = [0, Qb

7
], the lemma is established.

Note that these matrices clearly show that {Q
T

,
A

t ,
B,j is not a minimal

realization (that is, (Q
T

,
A,) is not completely observable) unless H(s) has

poles only in Re s < 0, in accord with the Corollary to Lemma 9. Q
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uniform, 34

uniform in the whole, 36

Augmentation, 101 ff

Augmented system, stability of, 105
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Canonical decomposition, 23

Canonical form

phase-variable, 19

Schwarz, 83

Characteristic equation, 67, 81

Characteristic polynomial, 67, 81

Hurwitz, 67, 81

conditions for, 81
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Common quadratic Lyapunov function,
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Comparison functions of Hahn, 8, 35ff
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condition for, 24, 206
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Existence of solutions, 2ff
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Finite sector, 28ff

Finite sector-infinite sector transformation,

108, 132

First and third quadrant function, 14, 27
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Functional analysis, 9, 99, 118
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Hill’s equation, 185

Hurwitz polynomial, 67

conditions for, 81, 214
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Impulse response, 154

Index of nonlinearity O, 29, 127, 136, 208

Indirect control, equation of, 30
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Integral condition for absolute stability,

138ff,228ff

Inverse multiplier, 109ff, 133, 221
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Kalman conjecture, 13, 72
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Laplace transform, 19

LC function, 86
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Lipschitz condition
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Lur’e and Postnikov, problem of. 14

Lyapunov function of, 14, 80, 92
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Lyapunov function, 9
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candidate, 39
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global, 42
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existence of, 10, 42, 6 Iff

global, 42
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M
Mathieu’s equation, 185ff
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Monotonic gain function, 28, lOOff
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Monotonic odd gain function, 28, 116ff

Motion, 2

stability of, 6
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N

NLTI system, 4

NLTV system, 5
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nonlinear behavior of, 27ff

separability of, 26, 207

time behavior of, 26

Nonlinearity, index of $, 29, 127, 208
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214ff
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condition for, 24, 206
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failure of, 175
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Parabola criterion, 163
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Perturbation analysis, 187ff
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Popov
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conditions for, 59
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theorems
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