
THE CE MEAD COMPUTER-AIDED CONTROL ENGINEERING ENVIRONMENT

t t James H. Taylor , Dean K. Frederick*, C. Magnus Rimvallt, and Hunt A. Sutherland

t Control Systems Lab
GE Corporate R & D

PO Box 8

* Dept. of Electrical, Computer, and

Rensselaer Polytechnic Institute
Systems Engineering

Schenectady, NY 12301

ABSTRACT

The GE MEAD Project (Multi-disciplinary Expert-aided
Analysis and Designs) involves the integration of several
computer-aided control engineering (CACE) packages
under a supervisor which coordinates the execution of
these packages with a data-base manager, an expert
system, and an advanced user interface. The principal
components are, in functional terms:

a supervisor, which integrates the underlying CACE
packages and coordinates all activity within the GE
MEAD Computer Program (GMCP),

an expert system shell and rule bases for “expert
aiding” specific procedures to relieve the user from
unnecessary low-level detail,

a data-base manager to track system models that
evolve over time along with associated results, and

a user interface, to facilitate access to the CACE
package capabilities by permitting the user to work in
several modalities, i.e., menu/foxms style, using GE
MEAD commands, using the core packages’ native
commands, or using the GE MEAD Macro Facility.

The variety of interaction modes supports both
inexperienced and expert users most flexibly and
effectively. The data-base manager and expert system
relieve the user of much manual “overhead” that is
required using CACE packages that are unsupported in
these areas. The operation of the GMCP, including the
user interface, expert system and data-base manager, will
be illusbated by examples.

I. INTRODUCTION

 the^ is a growing need for improved performance from
embedded control systems in many technology areas -
e.g., aerospace and transportation systems, manufactur-
ing processes, and consumer appliances. These

t The acronym MEAD originated in the Air Force MEAD
Project, which is a parallel / synergistic effort to that
described here. The USAF MEAD effort was sponsorrd in
part by the Flight Dynamics Laboratory, Wright Research
and Development Center, Aeronautical Systems Division
(AFSC), United States Air Force, Wright-Patterson AFB,
Ohio 45433-6523. under contract F33615-8s-C-3611. The
USAF MEAD Project is oveniewed in [7].

Troy NY 12180

increasingly stringent demands require the use of
advanced control technology. Two major trends in this
regard are integrating the control of subsystems, thereby
implementing the overall ’systenis approach” to design,
and the development and application of approaches to
accommodating dynamic variability, uncertainty,
component failures, and other effects and phenomena
that may degrade control system perfomlarice in sonie
sense.

Requirements for advanced integrated control of
technological systems necessitates improvements in CAD
software, so better designs can be obtained at less cost in
terms of engineering time and effort. The needed
improvements include a better user interface, so that
users of varying degrees of expertise can be supported,
rigorous data-base management, so better engineering
practices can be facilitated, and expert aiding, to relieve
the user of unnecessary tedious or low-level tasks.
Improved CACE software environments h‘as been the
thrust of research and developnient at GE Corporate R &
D since 1981 [I - 91; the specific iniprovei~ients just
lisred are the primary goals of the GE MEAD Project.

Our approach to creating the GMCP has been to take
maximum advantage of existing software modules.
Implemention thus entails the integration of CACE
packages under a Supervisor wtucti coordinates the
execution of these packages with a data-bwe manager
(DBM), an Expert System Shell (ESS), and an advanced
User Interface (Uf). The resulting architecture is
depicted in Fig. 1. The underlying CA tools (“COR

packages”) include the PRO-MATLAE3 package for
linear a n w and design and a choice of the ACSL or
SIMNON programs for nonlinear simulation,
equilibrium determination, and linearization.

The GE MEAD Project and GMCP developnient are
discussed in [9]. Here, we will present the operatioil of
three of the central coniponents of the GMCP, nnniely
the data-base manager (DBM), the expert system (Es),
and (secondarily) the GMCP user interface (UI). I h e
illustrations will be presented by showing how the user
takes advantage of these capabilities using the UI; for
more detail concerning the user interface, see [8].

@
FiF:

@ PRO-MATLAB is a registered tradeninrk of The
Mathworks, South Natick MA 01760; ACSL is n registered
trademark of Mitchell and Gauthier Associates. Concord
MA 01742; and S I M I ” is a registered tradeninrk of Lund
University, Lund, Sweden.

THO270-9/89/0000-0016S01 .OO @ 1989 IEEE.
16

2. CMCP FUNCTIONALITY

Tbe following list captures the basic CACE functions
that are directly performed by the present GMCP:

1.

2.

3.
4.

5.

6.

I.

Modeling: nonlinear and linear syste,ms,
continuous- and discrete-time systems; building
arbitrarily smctuxed models from components

Simulation: initializing system state variables,
setting system parameters, defining input signals,
designating simulation variables for storage,
running a simulation

Steady-state (equilibrium) determination

Linearization

Linear analysis: eigenvalues/eigenvectors, zeros,
controllability and observability, model reduction,
model transformations, root locus, frequency
mpo=
Linear control system design: frequencydomain
methods, pole placement, time-domain methods
(LQG LQR)
Control system validation: frequencydomain
analysis of linear models, time-domain analysis
(simulation of linear and nonlinear models)

lbis list is not all-inclusive from a control theoretic point
of view. The objective of the first phase of the GE
MEAD Project is to define and create a state-of-the-art
environment that directly supports basic CACE
functionality. Furthermore, the nature of controls is such
that creating an exhaustive catalog of functionality would
be difficult or impossible, and new approaches and
theories are being added on a continuing basis. The
GMCP environment has thus been designed to be
“open”, in the sen= of being extensible either by adding
built-in functionality or by use of GE MEAD macros or
the “Package Mode” access to any CACE functionality
of tbe core software (see Section 5).

3. CMCP DATA-BASE MANAGER (DBM)

Requirements for a data-base manager for CACE are
presented in [SI. The basic data elements are models
which are comprised of componenfs and a description
(containing model type, connection definition, key
variable names, etc.). Associated with each model there
are results (e.g.. files containing frequency-response or
time-history data). Models and results are often
organized in terms of projects (e.g., project = GE654 for
the analysis and design of a new turbine control systeni
to be designated the GE654). These observations led to
the basic data-base (DB) organization portrayed in Fig.
2. This hierarchy supports control engineers who
naturally think of projects and models as being of
paramount importance; all data elements produced
duriog CACE activity are “children” of these entities.

While these CACE DB categories are few in number and
simple, there are several factors that complicate the
data-base management. Models tend to change over the
life-time of the project, some results are also models
(e.g., linearizations of nonlinear models or transformed
h a t models), and components arc often used in several

models yet they should be stored in one location to
simplify their maintenance. The GMCP DBM
incorporates mechanisms to handle all of these situations:

The DBM keeps track of system models that evolve
over time using a standard “version control”
approach in the software engineering sense.
Generally the model changes at the component level,
e.g., a component is updated whenever better
modeling information becomes available or as
preliminary modeling errors are corrected. This
motivated the use of a tool that tracks each versi(Tri of
a component (e.g., rotor dynamic model) so that
version = 1, 2, 3, ... refers to the original a i d
subsequent refinements of this component, and each
class of a model (e.g, a complete control system)
that incorporates the component. Thus t i l e user is
always woriring with a specific class of any given
model, and each analysis or design result is
associated with the comct model instance. This is
illustrated in Fig. 3, where we observe that model
Turbctrl has three classes in the data base (class = 2
has been purged), and each class has its own set of
results.

Maintaining data-base integrity at the component
level is difficult if several copies of the same
component must be separately stored and maintained
for use in various models. The GMCP DBM
supports non-redundant model management via links.
These allow the engineer to niai~itain each
component in one model (the “home” model) and
use it elsewhere by bringing it out of the home DB
and incorporating it in any other model (“lirking” to
the component). Note that different classes of the
home model may correspond to different versions of
the linked component; if so, creating a new class of
other models using links will also use the latest
version of the linked component. This feature is also
depicted in Fig. 3.
Relations between results and models are tracked in
the GMCP DBM using an association called the
reference. This is required, for example, when a
linearization is saved both as a res& obtained using
a nonlinear model and as a componenr that may be
used in other models for analysis and design. The
same need exists with regard to Linear model
transforms. For example, one niay create a reduced-
order version of a linear model, ,and save thus as both
a result and a model for further study; thus is
illustrated in Fig. 3 where ‘Ltlrotor’ is maintained
both as a result and a component. The engineer may
access the reference (‘Ref) to determine where the
reduced-order model m u 1 1 exists as a coniponent in
a model; from the other side, the reference of
component ‘Ltlrotor’ may be checked to determine
that it was obtained as a result using model
‘Turbine:7’. Thus, any derived linear component in a
GMCP DB can be traced back to determine how it
was obtained (e.g., with what model using what
method); this protects the value of such models.

Finally, there is a secondary data element stored in the
data base called the condition specification. This
element contains infomation regarding operations

17

performed on a model before a result is obtained. These
operations include changing a parameter value,
specifying an initial condition and/or input signal before
performing a simulation, defining a frequency list before
obtaining Bode plot data, etc. The condition
specification also records numerical conditions, such as
setting a tolerance for determining controllability or
observability, selecting an integration algorithm for
simulation, etc. Capturing this data is critical, since it is
the combination of model instance and Condition
specification that determines the result and thereby
allows the engineer to document or repeat the result.
Condition specifications are stored in the GMCP data
base and may be recovered for any result that has been
saved.

In summary, the GMCP supports a simple hierarchical
organization of Projects, Models, Components, and
Results/Condition-Specification pairs in the database.
Models are tracked over time via class number and
version control. In addition, Link and Reference
relations completely maintain the integrity of the
database. All of these lower-level data-base relations are
portrayed in Fig. 3.

The DBM functionality outlined above is provided by the
GMCP with little or no extra work by the user, as the
example below illustrates. The supervisor and DBM
manage DB organization and version control with no
effort from the user beyond supplying personally
meaningful names for new elements. In fact, accessing
the database via the GMCP Browsing Facility and having
the ability to make direct use of data elements fkom that
facility makes the DBM an asset rather than a liability in
terms of overhead. as will be demonstrated in Section 5 .

4. CMCP EXPERT SYSTEM

The expert system shell (ESS) provides the basis for
"expert aiding" clear-cut but complicated procedures
that would otherwise involve the user in unnecessary
low-level detail. A concept for expert-aided CACE was
originally defined in [2]; the primary difference in GE
MEAD involves adopting a less ambitious model for
expert aiding that makes the expert system the user's
assislanr [6] rather than putting it in charge of the CACE
effort being performed. This change in perspective was
motivated by the specific goal of providing support
without forcing the control engineer to do things the
Expert's way; this approach is called the "control
engineer's assistant" paradigm.

The GMCP expert system shell interfaces with the
supervisor in exactly the same fashion as the user
working through the user interface. The ESS outputs GE
MEAD commands and/or package commands to the
supervisor, and gets the same return as the U, i.e., a
result (if little data is involved), a file name (for larger
results), or messages (errors or information). This
simplifies "knowledge capture", since this is exactly the
output and input of the supervisor when the expert user
performs the task at hand.

The first CACE rule base to be built in the GMCP was a
simple "eigenvalue assessor", created to define and test
the ESS-to-Supervisor interface. A more substantial rule

base presently under test is a reimplementation of the
lead/lag compensator design expert system described in
[4]. The function of the latter rule-based system is to
accept specifications for steady-state error coefficient,
bandwidth, and gain margin, and design a lead 1 lag
compensator to meet these specifications if possible
within constraints (e.g., order of the compensator). At
the end of this task, the expert system performs a
simulation of the step response of the designed control
system; the user may inspect the result and accept tlx
design if the response is satisfactory or iterate on the
input specifications for another design trial. The
invocation of a rule base to perfomi an expert-aided task
is identical to executing a conventional task.

5. CMCP USER INTERFACE

The GMCP user interface (UI) is designed to facilitate
access to the CACE package capabilities by users with
widely different levels of faniiliarity with the
environment, to unify access to the core packages despite
very different package interfaces, and to simplify the use
of the data-base manager. A more detailed discussion of
the GMCP user interface may be found elsewhere [8]; a
brief overview is provided here so the context is clear for
the example in Section 6.

The goal of creating an environment that is accessible to
users of widely different levels of expertise was achieved
by permitting the user to work in a number of modes:

rn IDE Mode (D E = Integrated Design Environment),
from a menu/fomis style U1 for basic CACE
functionality,

M-Command Mode, i.e., using GE MEAD
commands when this expedites CACE work
compared with the menu/forms interactive mode,

Package Mode. i.e., using an interactive core
packages' native commands when the exact desired
functionality is not available via M-Commands, and

GE MEAD Macro Mode, wluch includes both a
macro-execute mode and a flexible macro-edit mode
and is based on M-Commands, Package Mode
commands, or a combination of these.

The availability of various interaction modes and the
extensibility afforded by the GMCP Macro Facility
supports the inexperienced user as conveniently as
possible (primarily via IDE), while providing the more
experienced GMCP user with a niost effective
environment for CACE. Note that the GMCP DBM
functionality is available in all modes, even Package
Mode where the user appears to be using a COR package
without interacting with the GMCP (see the results
catalogued at the end of the example).

6. EXAMPLE

The GMCP environment has been used to create an
illustration of the capabilities and features described
above. The demonstration scenario involves creating the
following dataelements:

a new project named Tampa;

18

a model called Twoloop which is comprised of
components that are either original or linked 6om
other sources (the user’s Library DB and a model in
project Orlando); then class 2 is created by editing
one component;

results using class 2 of Twoloop, including a derived
model (a discrete-time transformed version); and

a monolithic (one-block) version of Twoloop (which
can be used as a component for hierarchical model
building).

Figures 4 through 10 illustrate this activity; these are
discussed in detail in the paragraphs below.

Figure 4 depicts the model Twoloop, which is the first
model to be created in project Tampa. The user begins
by browsing projects and creating project Tampa as
shown in Fig. 5 . The button ‘Create Proj’ was clicked
previously, the user was prompted for a new project
name, and the data base for Tampa was set up and now
appears on the Browse Projects Screen, ready for model
building.

Creating a model using the GMCP involves defining the
model in terms of name, type, and configuration, then
defining the components, and finally connecting the
components. Figure 6 shows the first step: the user
names the new model Twoloop, specifies type = ABCD
(state-space continuous-time), and declares it to be a
general configuration (‘General Config’) because the
t w c h o p structure in Fig. 4 does not fit any of the
standard forms. Then the user is prompted to define
components as portrayed in Fig. 7 for the fmt component
(‘Blockl’). This may be accomplished in one of four
ways: the user may -

create a new component, as shown in this case, by
clicking ‘NEW’, then declaring the format to be
ABCD (i.e., the state-space form indicated in Fig. 4
for the component ‘process’), and then clicking
‘New’: this will bring a template in ABCD form into
the editor for the user to insert the desired anays
A , B . C , D ; the other alternatives under ‘NEW’
(‘Edit file’, ‘Use file’ in the bottom row of buttons)
allow the user to install a component file that is not
presently in the data base;

Link to a component of a different model by clicking
‘LINK’ (the second option of Fig. 7);

copy a component from a different model by clicking
‘COPY’; or

link to a component from the user’s Library (a
specid-purpose project) by clicking ‘LIBRARY’
(this is a streamlined way to access components 6oni
one central location).

Finally, the user clicks on the button ‘CONNECT’ (also
shown in Fig. 7) which causes a connection template to
be written and brought up in tbe editor for completion.
“he completed template is as follows (user inputs in
CAPITAL LETTERS):
system twoloop(process,first,mylaq,innerfbk) is
%I Please enter the connection for the component
8% blocks just entered, in terms of **block inputs**
5% and **system outputs**.

$ 0
%% Component outputs available for connection:
0 % _________--__-_-____-----------------------
% % pracess.out (1)
%% first.out (1)
% % mylaq.out (1)
2% innerfbk.out (1)
aliases (optional)

system. in (1) : RET;
system. in (2) : DIST;
system.out (1) : OUTP;

end aliases;
connections

process. in (1) - FIRST.OUT (1) -1NNERFBK.OUT (1) tDIST;
first.in(1) - REF-MYLAG.OUT(1);
mylaq.in(1) - PROCESS.OUT(1);
innerfbk.in(1) = PROCESS.OUT(1);
system.out (1) - PROCESS.OUT(1);

end connections:
end twoloop;

The details of building the system model from these
component and connection definitions using PRO-
MATLAB is completely managed by the supervisor.

Once the model Twoloop i s in the DB, the user can click
on ‘Description’ to see its composition. As shown in
Fig. 8, the four blocks are listed along with the GMCP-
generated pseudo-component ‘vardef’ that contains all of
the information required to use the niodel through the
point-and-click UI (e.g., the list of input names in vardef
is used to prompt the user when it becoiiies necessary to
define the signals to be applied to the model for a
simulation). The existence of links is indicated under
‘Association’; a linked component CNI be selected and
‘Disp Link’ clicked to leam the name of the “home”
model of that component, as shown for the component
‘mylag’ which is linked froin the Library.

The user proceeds to use class 2 of model Twoloop to
create results which may be saved in the DB if desired.
This model is made active by ‘corfiguring’ it from the
data base. The outcome of a sequence of analyses is
shown in Fig. 9. The list of results iricludes one
frequency-response analysis (‘bodeplt ’ = BODE-PLOT),
an eigen analysis (‘cloopeig’ = EIGEN-RESULTS), a
discretized version of Twoloop (‘discr2lp’ =
DABCD-MODEL), two time-histories or simulation
results (‘mnp2at’ and ‘rampdblt’ = TIME-HIST), and
one “Package Result” (‘svd’ = PKGE-RESULT, a
singular-value decomposition). Observe that the result
‘discr2lp’ has a reference; clicking on the ‘Disp Ref‘
button reveals that the result is also instantiated as the
component Twoloopd in the DABCD model Twoloopd
in project Tampa. Finally, the condition specification for
the result ‘rampdblt’ may be revealed by clicking ‘Disp
Cspec’; the outcome is:

input Ref ramp 2.00Et00 5.00E-01 2.50Et00 1 . 0 0 ~ + 0 0
input Dist doublet 5.00E-01 2.00Et00 2 . 0 0 ~ t 0 0 0.00
simu 8.00Et00 5.00E-02

which shows the input definitions Ref = ramp input, Dist
= doublet, followed by the simulate command.

The status of models in project Tarnpa at the end of the
scenario is depicted in Fig. 10. In addition to Twoloop,
there are its discrete-time version just inentiorled, as weU
as the one-block version of Twoloop called Mono2Ip.
Observe that there is a Note attached to Mono2lp;
selecting Mono2lp and clicking on ‘D/A/E Notes’
(display/add/edit notes) reveals the contents:

-----_--_____________________________
-- Model Notes

-- Project: tampa
-- Model: mono2lp

-- Date: Sat Sep 16 12:12:04 1989
This is a one-block version of twoloop:2

---_--_______________________________

All lines in the note file were generated automatically by
the GMCP except for the last (“This is a one-block
version of Twoloop:2”); these were inserted in the note
file as an aid to documentation.

7. CONCLUSION

The first phase of the GE MEAD Project is nearly
completed Version 1 of the GMCP (GMCP-1.0) is
based on the user interface, data-base manager, and
expert system shell from the USAF MEAD Project [7], a
new data-driven supervisor, and PRO-MATLAB and
ACSL or SIMNON. This software is now in final
integration, test, and evaluation.

GMCP-1.0 represents a new, more supportive
environment for computer-aided control engineering
(CACE). The most important novel features are an
integrated engineering data-base manager, a built-in
expert system shell, and a flexible user-friendly user
interface including a “point-and-click’ interactive mode,
two command modes (GE MEAD and Package), and a
Macro Facility. Another notable attribute of the GMCP
is the ability to use the core packages directly without
sacrificing the benefits of data-base management.

In terms of CACE functionality, GMCP-1.0 is a basic
CACE package for control system analysis and design,
and much functionality is not particularly “fancy”. The
higher-level functionality of PRO-MATLAB is available
through the most user-friendly access mode; all lower-
level primitives may be used via Package Mode or by
writing GMCP Macros in package command mode.

In terms of ‘value added”, we believe that the GMCP
data-base manager with version control and integrity
maintenance will provide the largest benefits in
comparison with CACE packages lacking such support.
The user interface with its widely different interaction
modes should extend the user group from the set of
expert users that now enjoy the power of modern linear
analysis and design packages and nonlinear siniulation
environments to the many control engineers that find the
learning curve to be too steep to be worth the effort. We
have med to satisfy expert users as well, by the inclusion
of Command Modes and the Macro Facility to allow the
flexibility and extensibility demanded by the more
advanced user. It is our hope that every GMCP user will
graduate to that exalted status! Finally, the use of expert
aiding is still in the experimental stage of development.
We anticipate that the ability to deliver nie‘aningful rule
bases under the GMCP will move this technology from
research to real use in practical applications.

A number of extensions and refinements are planned,
including the incorporation of a more flexible general-
purpose model-building environment, improved user
interface features, and additional expert aiding. In
addition, we are presently porting the GMCP to a
window-based workstation, to further improve the

flexibility of the user interface. In ttie longer tenn, we
plan to broaden the scope of the GMCP by adding
packages that support other aspects of CACE, such as
automatic code generation for the controller, arid
modeling, simulation, and analysis of structures.

Acknowledgements: The work described above has
taken advantage of many of ttie results of the USAF
MEAD Project [7]. Invaluable prograninling support is
being provided by Aule-Tek Inc. persoruiel; the
contributions of the following individuals are most
gratefully recognized: David Kassover, Jim Trojan, Mike
Charbonneau, and Al Antoniotti.

REFERENCES

[91

Spang, H. A., III, “The Federated Coniputer-
Aided Control Design System ”, Proc. Second
IFAC Symp. CAD of Multivar-inhle Teclinological
Systems, West Lafayette, Indiana, September
1982; also IEEE Proceedings, Vol. 72 , 1724-
1731, December 1984.
Taylor, J. €1. and Frederick, D. K., “An Expert
System Architecture for Computer-hided Control
Engineering”, IEEE Proceedings, Vol. 72, 1795-
1805, December 1984.
Taylor, I. H., “Computer-Aided Coiitrol
Engineering Environment for Nonlinear
Systems”, Proc. 3rd IFAC Spriiposii tm or1 CAD in
Control and Engineering Sys(erns, Lyngby.
Denmark, August 1985.
James, J. R., Frederick, D. K., a i d Taylor, J . i i . ,
“On the Application of Expert Systems
Programming Techniques to the Design of
Lead/Lag Precompensators“, Proc. Control ’85.
Cambridge, UK; also in IEE Proceedings D:
Control Theory and Applications, May, 1987.
Taylor, J. H., Nieh, K-H, and Mroz, P. A., “A
Data-Base Management Scheme for Conipriter-
Aided Control Engineering”, Proc. Atitericon
Control Conference, Atlanta, CIA, June 1988.
Taylor, J. €1. “Expert-Aided Environnients for
CAE of Control Systems“, Proc. 4‘h IFAC
Symposium on CAD in Control Systenis (CAUCS
‘88), Beijing, PR China, August 1988.
Taylor, J. H., and McKeehen, P. D., “A
Computer-Aided Control Erigineeririg
Environment for Multi-Disciplinary Expert-Aided
Analysis and Design (MEAD)”, Proceedings of
the National Aerospace and Electronics
Conference (NAECON), Dayton, OH, May 1989.
Rimvall, M., Sutherland, Ii. , Taylor, J . H., and
Lohr, P. J., “GE’s MEAD User Interlace - a
Flexible Menu- ‘and Forms-Driven Interface for
Engineering Applications”, Proc. C.4CSD ’89,
Tampa FL, December 1989.
Taylor, J. H., Frederick, D. K. , Rinivnll , C. M. ,
and Sutherland, H. A., “A Coniputer-Aided
Control Engineering Environment witti Expert
Aiding and Data-Base Management”, submitted
to Proc. 10Ih IFAC World Congress, Tallinn,
USSR, August 1990.

20

USER
INTERFACE

SUPERVISOR
ENGINEERING

DATA BASE
MANAGER

projects
models
components
resutts
notes

Figure 1. GMCP Architecture

Calv in i'i user

M ark5 00 pro jects Q
models

Figure 2. Basic GMCP Data-Base Hierarchy

Figure 3. Detailed Data-Base Element Relations
21

D l S t process

-----+I I

f i r s t

R e f 2 (s+O 5)
s+2 5

y = [O S 0 J x + 0 5 u

I I I I

Innerfbk

0 2 s + 1

--m

Figure 4. Example ‘Twoloop’ Block Diagram

1 Created &dated Models Nates

0 feb3 I 1 3-FEB-19B9 12.82 13-FEB-I989 20 45 Y N

O l i b r a r y 1 I 16-9p-1933 09 51 16-SEI-I989 I0 18 Y N

0 Orlando 16-5Ep-19B9 10 14 16-SF-1989 10 29 Y N

I t
E4 t q a 16-9p-1939 10 31 16-SF-1989 12 16 Y N

k o u s e h d Brow Rtr D/f l /E b t e s IDe1d.e tiate Select Pro Create Pro Delete Pro h i t

E Data Bate

Figure 5. GMCP Project Browsing Screen

t lue]Connand]Package 1% DCL lllocro /Help I E x l t

:reate M u Model

In te r Name t w o l o o p

OACSL I
FIBCD 1

0 DtlBCD I

I OOne Block I

mGenaol tonfig I

m IWIT 1 I

Figure 6. GMCP Screen for D e h n g Models
22

L L 2 2

N 4 -4 N -4

"
n

m
W

m m
m

m

a a

W

- a W

2 4

H t: c

B
N

-4 E 13
= -

] E ,.

5 5
P 4

23

