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ABSTRACT 

The GE MEAD Project (Multi-disciplinary Expert-aided 
Analysis and Designs) involves the integration of several 
computer-aided control engineering (CACE) packages 
under a supervisor which coordinates the execution of 
these packages with a data-base manager, an expert 
system, and an advanced user interface. The principal 
components are, in functional terms: 

a supervisor, which integrates the underlying CACE 
packages and coordinates all activity within the GE 
MEAD Computer Program (GMCP), 

an expert system shell and rule bases for “expert 
aiding” specific procedures to relieve the user from 
unnecessary low-level detail, 

a data-base manager to track system models that 
evolve over time along with associated results, and 

a user interface, to facilitate access to the CACE 
package capabilities by permitting the user to work in 
several modalities, i.e., menu/foxms style, using GE 
MEAD commands, using the core packages’ native 
commands, or using the GE MEAD Macro Facility. 

The variety of interaction modes supports both 
inexperienced and expert users most flexibly and 
effectively. The data-base manager and expert system 
relieve the user of much manual “overhead” that is 
required using CACE packages that are unsupported in 
these areas. The operation of the GMCP, including the 
user interface, expert system and data-base manager, will 
be illusbated by examples. 

I. INTRODUCTION 

 the^ is a growing need for improved performance from 
embedded control systems in many technology areas - 
e.g., aerospace and transportation systems, manufactur- 
ing processes, and consumer appliances. These 

t The acronym MEAD originated in the Air Force MEAD 
Project, which is a parallel / synergistic effort to that 
described here. The USAF MEAD effort was sponsorrd in 
part by the Flight Dynamics Laboratory, Wright Research 
and Development Center, Aeronautical Systems Division 
(AFSC), United States Air Force, Wright-Patterson AFB, 
Ohio 45433-6523. under contract F33615-8s-C-3611. The 
USAF MEAD Project is oveniewed in [7]. 
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increasingly stringent demands require the use of 
advanced control technology. Two major trends in this 
regard are integrating the control of subsystems, thereby 
implementing the overall ’systenis approach” to design, 
and the development and application of approaches to 
accommodating dynamic variability, uncertainty, 
component failures, and other effects and phenomena 
that may degrade control system perfomlarice in sonie 
sense. 

Requirements for advanced integrated control of 
technological systems necessitates improvements in CAD 
software, so better designs can be obtained at less cost in 
terms of engineering time and effort. The needed 
improvements include a better user interface, so that 
users of varying degrees of expertise can be supported, 
rigorous data-base management, so better engineering 
practices can be facilitated, and expert aiding, to relieve 
the user of unnecessary tedious or low-level tasks. 
Improved CACE software environments h‘as been the 
thrust of research and developnient at GE Corporate R & 
D since 1981 [I - 91; the specific iniprovei~ients just 
lisred are the primary goals of the GE MEAD Project. 

Our approach to creating the GMCP has been to take 
maximum advantage of existing software modules. 
Implemention thus entails the integration of CACE 
packages under a Supervisor wtucti coordinates the 
execution of these packages with a data-bwe manager 
(DBM), an Expert System Shell (ESS), and an advanced 
User Interface (Uf). The resulting architecture is 
depicted in Fig. 1. The underlying CA tools (“COR 

packages”) include the PRO-MATLAE3 package for 
linear a n w  and design and a choice of the ACSL or 
SIMNON programs for nonlinear simulation, 
equilibrium determination, and linearization. 

The GE MEAD Project and GMCP developnient are 
discussed in [9]. Here, we will present the operatioil of 
three of the central coniponents of the GMCP, nnniely 
the data-base manager (DBM), the expert system (Es), 
and (secondarily) the GMCP user interface (UI). I h e  
illustrations will be presented by showing how the user 
takes advantage of these capabilities using the UI; for 
more detail concerning the user interface, see [8]. 

@ 
FiF: 

@ PRO-MATLAB is a registered tradeninrk of The 
Mathworks, South Natick MA 01760; ACSL is n registered 
trademark of Mitchell and Gauthier Associates. Concord 
MA 01742; and S I M I ”  is a registered tradeninrk of Lund 
University, Lund, Sweden. 

THO270-9/89/0000-0016S01 .OO @ 1989 IEEE. 
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2. CMCP FUNCTIONALITY 

Tbe following list captures the basic CACE functions 
that are directly performed by the present GMCP: 

1. 

2. 

3. 
4. 

5. 

6. 

I. 

Modeling: nonlinear and linear syste,ms, 
continuous- and discrete-time systems; building 
arbitrarily smctuxed models from components 

Simulation: initializing system state variables, 
setting system parameters, defining input signals, 
designating simulation variables for storage, 
running a simulation 

Steady-state (equilibrium) determination 

Linearization 

Linear analysis: eigenvalues/eigenvectors, zeros, 
controllability and observability, model reduction, 
model transformations, root locus, frequency 
mpo= 
Linear control system design: frequencydomain 
methods, pole placement, time-domain methods 
(LQG LQR) 
Control system validation: frequencydomain 
analysis of linear models, time-domain analysis 
(simulation of linear and nonlinear models) 

lbis list is not all-inclusive from a control theoretic point 
of view. The objective of the first phase of the GE 
MEAD Project is to define and create a state-of-the-art 
environment that directly supports basic CACE 
functionality. Furthermore, the nature of controls is such 
that creating an exhaustive catalog of functionality would 
be difficult or impossible, and new approaches and 
theories are being added on a continuing basis. The 
GMCP environment has thus been designed to be 
“open”, in the sen= of being extensible either by adding 
built-in functionality or by use of GE MEAD macros or 
the “Package Mode” access to any CACE functionality 
of tbe core software (see Section 5). 

3. CMCP DATA-BASE MANAGER (DBM) 

Requirements for a data-base manager for CACE are 
presented in [SI. The basic data elements are models 
which are comprised of componenfs and a description 
(containing model type, connection definition, key 
variable names, etc.). Associated with each model there 
are results (e.g.. files containing frequency-response or 
time-history data). Models and results are often 
organized in terms of projects (e.g., project = GE654 for 
the analysis and design of a new turbine control systeni 
to be designated the GE654). These observations led to 
the basic data-base (DB) organization portrayed in Fig. 
2. This hierarchy supports control engineers who 
naturally think of projects and models as being of 
paramount importance; all data elements produced 
duriog CACE activity are “children” of these entities. 

While these CACE DB categories are few in number and 
simple, there are several factors that complicate the 
data-base management. Models tend to change over the 
life-time of the project, some results are also models 
(e.g., linearizations of nonlinear models or transformed 
h a t  models), and components arc often used in several 

models yet they should be stored in one location to 
simplify their maintenance. The GMCP DBM 
incorporates mechanisms to handle all of these situations: 

The DBM keeps track of system models that evolve 
over time using a standard “version control” 
approach in the software engineering sense. 
Generally the model changes at the component level, 
e.g., a component is updated whenever better 
modeling information becomes available or as 
preliminary modeling errors are corrected. This 
motivated the use of a tool that tracks each versi(Tri of 
a component (e.g., rotor dynamic model) so that 
version = 1, 2, 3, ... refers to the original a i d  
subsequent refinements of this component, and each 
class of a model (e.g, a complete control system) 
that incorporates the component. Thus t i l e  user is 
always woriring with a specific class of any given 
model, and each analysis or design result is 
associated with the comct model instance. This is 
illustrated in Fig. 3, where we observe that model 
Turbctrl has three classes in the data base (class = 2 
has been purged), and each class has its own set of 
results. 

Maintaining data-base integrity at the component 
level is difficult if several copies of the same 
component must be separately stored and maintained 
for use in various models. The GMCP DBM 
supports non-redundant model management via links. 
These allow the engineer to niai~itain each 
component in one model (the “home” model) and 
use it elsewhere by bringing it out of the home DB 
and incorporating it in any other model (“lirking” to 
the component). Note that different classes of the 
home model may correspond to different versions of 
the linked component; if so, creating a new class of 
other models using links will also use the latest 
version of the linked component. This feature is also 
depicted in Fig. 3. 
Relations between results and models are tracked in 
the GMCP DBM using an association called the 
reference. This is required, for example, when a 
linearization is saved both as a res& obtained using 
a nonlinear model and as a componenr that may be 
used in other models for analysis and design. The 
same need exists with regard to Linear model 
transforms. For example, one niay create a reduced- 
order version of a linear model, ,and save thus as both 
a result and a model for further study; thus is 
illustrated in Fig. 3 where ‘Ltlrotor’ is maintained 
both as a result and a component. The engineer may 
access the reference (‘Ref) to determine where the 
reduced-order model m u 1 1  exists as a coniponent in 
a model; from the other side, the reference of 
component ‘Ltlrotor’ may be checked to determine 
that it was obtained as a result using model 
‘Turbine:7’. Thus, any derived linear component in a 
GMCP DB can be traced back to determine how it 
was obtained (e.g., with what model using what 
method); this protects the value of such models. 

Finally, there is a secondary data element stored in the 
data base called the condition specification. This 
element contains infomation regarding operations 
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performed on a model before a result is obtained. These 
operations include changing a parameter value, 
specifying an initial condition and/or input signal before 
performing a simulation, defining a frequency list before 
obtaining Bode plot data, etc. The condition 
specification also records numerical conditions, such as 
setting a tolerance for determining controllability or 
observability, selecting an integration algorithm for 
simulation, etc. Capturing this data is critical, since it is 
the combination of model instance and Condition 
specification that determines the result and thereby 
allows the engineer to document or repeat the result. 
Condition specifications are stored in the GMCP data 
base and may be recovered for any result that has been 
saved. 

In summary, the GMCP supports a simple hierarchical 
organization of Projects, Models, Components, and 
Results/Condition-Specification pairs in the database. 
Models are tracked over time via class number and 
version control. In addition, Link and Reference 
relations completely maintain the integrity of the 
database. All of these lower-level data-base relations are 
portrayed in Fig. 3. 

The DBM functionality outlined above is provided by the 
GMCP with little or no extra work by the user, as the 
example below illustrates. The supervisor and DBM 
manage DB organization and version control with no 
effort from the user beyond supplying personally 
meaningful names for new elements. In fact, accessing 
the database via the GMCP Browsing Facility and having 
the ability to make direct use of data elements fkom that 
facility makes the DBM an asset rather than a liability in 
terms of overhead. as will be demonstrated in Section 5 .  

4. CMCP EXPERT SYSTEM 

The expert system shell (ESS) provides the basis for 
"expert aiding" clear-cut but complicated procedures 
that would otherwise involve the user in unnecessary 
low-level detail. A concept for expert-aided CACE was 
originally defined in [2]; the primary difference in GE 
MEAD involves adopting a less ambitious model for 
expert aiding that makes the expert system the user's 
assislanr [6] rather than putting it in charge of the CACE 
effort being performed. This change in perspective was 
motivated by the specific goal of providing support 
without forcing the control engineer to do things the 
Expert's way; this approach is called the "control 
engineer's assistant" paradigm. 

The GMCP expert system shell interfaces with the 
supervisor in exactly the same fashion as the user 
working through the user interface. The ESS outputs GE 
MEAD commands and/or package commands to the 
supervisor, and gets the same return as the U, i.e., a 
result (if little data is involved), a file name (for larger 
results), or messages (errors or information). This 
simplifies "knowledge capture", since this is exactly the 
output and input of the supervisor when the expert user 
performs the task at hand. 

The first CACE rule base to be built in the GMCP was a 
simple "eigenvalue assessor", created to define and test 
the ESS-to-Supervisor interface. A more substantial rule 

base presently under test is a reimplementation of the 
lead/lag compensator design expert system described in 
[4]. The function of the latter rule-based system is to 
accept specifications for steady-state error coefficient, 
bandwidth, and gain margin, and design a lead 1 lag 
compensator to meet these specifications if possible 
within constraints (e.g., order of the compensator). At 
the end of this task, the expert system performs a 
simulation of the step response of the designed control 
system; the user may inspect the result and accept tlx 
design if the response is satisfactory or iterate on the 
input specifications for another design trial. The 
invocation of a rule base to perfomi an expert-aided task 
is identical to executing a conventional task. 

5. CMCP USER INTERFACE 

The GMCP user interface (UI) is designed to facilitate 
access to the CACE package capabilities by users with 
widely different levels of faniiliarity with the 
environment, to unify access to the core packages despite 
very different package interfaces, and to simplify the use 
of the data-base manager. A more detailed discussion of 
the GMCP user interface may be found elsewhere [8]; a 
brief overview is provided here so the context is clear for 
the example in Section 6. 

The goal of creating an environment that is accessible to 
users of widely different levels of expertise was achieved 
by permitting the user to work in a number of modes: 

rn IDE Mode ( D E  = Integrated Design Environment), 
from a menu/fomis style U1 for basic CACE 
functionality, 

M-Command Mode, i.e., using GE MEAD 
commands when this expedites CACE work 
compared with the menu/forms interactive mode, 

Package Mode. i.e., using an interactive core 
packages' native commands when the exact desired 
functionality is not available via M-Commands, and 

GE MEAD Macro Mode, wluch includes both a 
macro-execute mode and a flexible macro-edit mode 
and is based on M-Commands, Package Mode 
commands, or a combination of these. 

The availability of various interaction modes and the 
extensibility afforded by the GMCP Macro Facility 
supports the inexperienced user as conveniently as 
possible (primarily via IDE), while providing the more 
experienced GMCP user with a niost effective 
environment for CACE. Note that the GMCP DBM 
functionality is available in all modes, even Package 
Mode where the user appears to be using a COR package 
without interacting with the GMCP (see the results 
catalogued at the end of the example). 

6. EXAMPLE 

The GMCP environment has been used to create an 
illustration of the capabilities and features described 
above. The demonstration scenario involves creating the 
following dataelements: 

a new project named Tampa; 
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a model called Twoloop which is comprised of 
components that are either original or linked 6om 
other sources (the user’s Library DB and a model in 
project Orlando); then class 2 is created by editing 
one component; 

results using class 2 of Twoloop, including a derived 
model (a discrete-time transformed version); and 

a monolithic (one-block) version of Twoloop (which 
can be used as a component for hierarchical model 
building). 

Figures 4 through 10 illustrate this activity; these are 
discussed in detail in the paragraphs below. 

Figure 4 depicts the model Twoloop, which is the first 
model to be created in project Tampa. The user begins 
by browsing projects and creating project Tampa as 
shown in Fig. 5 .  The button ‘Create Proj’ was clicked 
previously, the user was prompted for a new project 
name, and the data base for Tampa was set up and now 
appears on the Browse Projects Screen, ready for model 
building. 

Creating a model using the GMCP involves defining the 
model in terms of name, type, and configuration, then 
defining the components, and finally connecting the 
components. Figure 6 shows the first step: the user 
names the new model Twoloop, specifies type = ABCD 
(state-space continuous-time), and declares it to be a 
general configuration (‘General Config’) because the 
t w c h o p  structure in Fig. 4 does not fit any of the 
standard forms. Then the user is prompted to define 
components as portrayed in Fig. 7 for the fmt component 
(‘Blockl’). This may be accomplished in one of four 
ways: the user may - 

create a new component, as shown in this case, by 
clicking ‘NEW’, then declaring the format to be 
ABCD (i.e., the state-space form indicated in Fig. 4 
for the component ‘process’), and then clicking 
‘New’: this will bring a template in ABCD form into 
the editor for the user to insert the desired anays 
A , B . C , D ;  the other alternatives under ‘NEW’ 
(‘Edit file’, ‘Use file’ in the bottom row of buttons) 
allow the user to install a component file that is not 
presently in the data base; 

Link to a component of a different model by clicking 
‘LINK’ (the second option of Fig. 7); 

copy a component from a different model by clicking 
‘COPY’; or 

link to a component from the user’s Library (a 
specid-purpose project) by clicking ‘LIBRARY’ 
(this is a streamlined way to access components 6oni 
one central location). 

Finally, the user clicks on the button ‘CONNECT’ (also 
shown in Fig. 7) which causes a connection template to 
be written and brought up in tbe editor for completion. 
“he completed template is as follows (user inputs in 
CAPITAL LETTERS): 
system twoloop(process,first,mylaq,innerfbk) is 
%I Please enter the connection for the component 
8% blocks just entered, in terms of **block inputs** 
5% and **system outputs**. 

$ 0  
%% Component outputs available for connection: 
0 %  _________--__-_-____----------------------- 
% %  pracess.out (1) 
%% first.out (1) 
% %  mylaq.out (1) 
2% innerfbk.out (1) 
aliases (optional) 

system. in (1) : RET; 
system. in (2) : DIST; 
system.out (1) : OUTP; 

end aliases; 
connections 

process. in (1) - FIRST.OUT (1) -1NNERFBK.OUT (1) tDIST; 
first.in(1) - REF-MYLAG.OUT(1); 
mylaq.in(1) - PROCESS.OUT(1); 
innerfbk.in(1) = PROCESS.OUT(1); 
system.out (1) - PROCESS.OUT(1); 

end connections: 
end twoloop; 

The details of building the system model from these 
component and connection definitions using PRO- 
MATLAB is completely managed by the supervisor. 

Once the model Twoloop i s  in the DB, the user can click 
on ‘Description’ to see its composition. As shown in 
Fig. 8, the four blocks are listed along with the GMCP- 
generated pseudo-component ‘vardef’ that contains all of 
the information required to use the niodel through the 
point-and-click UI (e.g., the list of input names in vardef 
is used to prompt the user when it  becoiiies necessary to 
define the signals to be applied to the model for a 
simulation). The existence of links is indicated under 
‘Association’; a linked component CNI be selected and 
‘Disp Link’ clicked to leam the name of the “home” 
model of that component, as shown for the component 
‘mylag’ which is linked froin the Library. 

The user proceeds to use class 2 of model Twoloop to 
create results which may be saved in the DB if desired. 
This model is made active by ‘corfiguring’ it from the 
data base. The outcome of a sequence of analyses is 
shown in Fig. 9. The list of results iricludes one 
frequency-response analysis (‘bodeplt ’ = BODE-PLOT), 
an eigen analysis (‘cloopeig’ = EIGEN-RESULTS), a 
discretized version of Twoloop (‘discr2lp’ = 
DABCD-MODEL), two time-histories or simulation 
results (‘mnp2at’ and ‘rampdblt’ = TIME-HIST), and 
one “Package Result” (‘svd’ = PKGE-RESULT, a 
singular-value decomposition). Observe that the result 
‘discr2lp’ has a reference; clicking on the ‘Disp Ref‘ 
button reveals that the result is also instantiated as the 
component Twoloopd in the DABCD model Twoloopd 
in project Tampa. Finally, the condition specification for 
the result ‘rampdblt’ may be revealed by clicking ‘Disp 
Cspec’; the outcome is: 

input Ref ramp 2.00Et00 5.00E-01 2.50Et00 1 . 0 0 ~ + 0 0  
input Dist doublet 5.00E-01 2.00Et00 2 . 0 0 ~ t 0 0  0.00 
simu 8.00Et00 5.00E-02 

which shows the input definitions Ref = ramp input, Dist 
= doublet, followed by the simulate command. 

The status of models in project Tarnpa at the end of the 
scenario is depicted in Fig. 10. In addition to Twoloop, 
there are its discrete-time version just inentiorled, as weU 
as the one-block version of Twoloop called Mono2Ip. 
Observe that there is a Note attached to Mono2lp; 
selecting Mono2lp and clicking on ‘D/A/E Notes’ 
(display/add/edit notes) reveals the contents: 



-----_--_____________________________ 
-- Model Notes 

-- Project: tampa 
-- Model: mono2lp 

-- Date: Sat Sep 16 12:12:04 1989 
This is a one-block version of twoloop:2 

---_--_______________________________ 

_____________________________________ 

All lines in the note file were generated automatically by 
the GMCP except for the last (“This is a one-block 
version of Twoloop:2”); these were inserted in the note 
file as an aid to documentation. 

7. CONCLUSION 

The first phase of the GE MEAD Project is nearly 
completed Version 1 of the GMCP (GMCP-1.0) is 
based on the user interface, data-base manager, and 
expert system shell from the USAF MEAD Project [7], a 
new data-driven supervisor, and PRO-MATLAB and 
ACSL or SIMNON. This software is now in final 
integration, test, and evaluation. 

GMCP-1.0 represents a new, more supportive 
environment for computer-aided control engineering 
(CACE). The most important novel features are an 
integrated engineering data-base manager, a built-in 
expert system shell, and a flexible user-friendly user 
interface including a “point-and-click’ interactive mode, 
two command modes (GE MEAD and Package), and a 
Macro Facility. Another notable attribute of the GMCP 
is the ability to use the core packages directly without 
sacrificing the benefits of data-base management. 

In terms of CACE functionality, GMCP-1.0 is a basic 
CACE package for control system analysis and design, 
and much functionality is not particularly “fancy”. The 
higher-level functionality of PRO-MATLAB is available 
through the most user-friendly access mode; all lower- 
level primitives may be used via Package Mode or by 
writing GMCP Macros in package command mode. 

In terms of ‘value added”, we believe that the GMCP 
data-base manager with version control and integrity 
maintenance will provide the largest benefits in 
comparison with CACE packages lacking such support. 
The user interface with its widely different interaction 
modes should extend the user group from the set of 
expert users that now enjoy the power of modern linear 
analysis and design packages and nonlinear siniulation 
environments to the many control engineers that find the 
learning curve to be too steep to be worth the effort. We 
have med to satisfy expert users as well, by the inclusion 
of Command Modes and the Macro Facility to allow the 
flexibility and extensibility demanded by the more 
advanced user. It is our hope that every GMCP user will 
graduate to that exalted status! Finally, the use of expert 
aiding is still in the experimental stage of development. 
We anticipate that the ability to deliver nie‘aningful rule 
bases under the GMCP will move this technology from 
research to real use in practical applications. 

A number of extensions and refinements are planned, 
including the incorporation of a more flexible general- 
purpose model-building environment, improved user 
interface features, and additional expert aiding. In 
addition, we are presently porting the GMCP to a 
window-based workstation, to further improve the 

flexibility of the user interface. In ttie longer tenn, we 
plan to broaden the scope of the GMCP by adding 
packages that support other aspects of CACE, such as 
automatic code generation for the controller, arid 
modeling, simulation, and analysis of structures. 
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