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Sequential design of decentralized control systems

M. VISWANADHAMYT and JAMES H. TAYLOR]

Our main result is 2 new sequential method for the design of decentralized control
systems. Controller synthesis is conducted on a loop-by-loop basis, and at cach step
ihe designer obtains an explicit characterization of the elass © of all compensutors
for the loop being closed that resulis in closed-loop system poles being in a specified
closed region D of the s-plane, instead of merely stabilizng the closed-loop system.
Since one of the primary goals of control sysiem desipn is to satisfy busic
performance requirements that are often directly related 1o elosed-loop pole location
|bandwidth, percentage overshoot, rise tme, seitling time), this approach im-
medintely allows the designer to focus on other concerns such as robusiness and
sensitivity. By considering only compensators from class © and seeking the optimem
member of that set with respect o sensitivity or robuesiness, the designer has a
clearly-defined limited optimization problem to solve without concern for loss of
performance. A solution to the decentralized tracking problem is also provided. This
design approach has the atiractive leatures of expandability, the use of only “local
models’ for contraller synthesis, and faull tolerance with respect to certain types of
failure,

l. Introduction

Large-scale systems such as factory automation systems, power systems, large
space structures, complex chemical processes, and data communication and control
networks are generally spatially distributed. Centralized control of such systems is
often uneconomical owing to the cost of information transfer between controllers, and
unreliable because of the complexity of the information network. Therefore, such large
systems are more likely to be controlled by several local controllers, with each
controller measuring certain outputs of the sysiem and generating only certain local
inputs to the system. Thus, decentralization often arises as an important consideration
in the design of strategies for controlling such systems, and the study of the
stabilization and regulation of large systems using decentralized feedback is of
immense practical interest,

The area of decentralized control of large systems has attracted much attention
over the past few years, For instance, Wang and Davison { 1973) introduced the notion
of fixed modes under decentralized feedback conditions (or, more simply, decen-
tralized fixed modes), and established that decentralized stabilization is possible only
if the decentralized fixed modes are stable. Corfmat and Morse (1976) specified the
necessary and sufficient conditions for spectrum assignment under decentralized
feedback. Further, Vidyasagar and Viswanadham [(1982) presented a frequency-
domain characterization of decentralized fixed modes, The decentralized servo
problem has received some treatment (Davison 1976, Viswanadham and Rama-
krishna 1981). Davison and Ferguson (1981) have proposed parametric optimiza-
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tiont methods lor decentralized contraller synthesis, Also, Bennet (1979 peneralized
Rosenbrock’s INA method for block diagonally dominant systems, and Davison and
Orzguner { 1982) have proposed a sequential stabilization scheme based on state—space
models. However, despite these conlribulions, it is fair 1o say thal systemalic pro-
cedures for desipning decentralived controllers are presently unavailable,

We present a new sequential method of designing decentralized compensators,
This approach 15 a generalization of the loop-by-loop design methods suggested by
Rosenbrock ef ol ( 1974). Since this loop-by-loop compensator synthesis is conducted
vsing the coprime factorization approach { Desoer er al. 1980) our procedure is more
algebraic than graphical. Further, for cach loop, we characterize all stabilizing
compensators, and in this way we deal with this critical design issue at the start rather
than at the end of the design process.

The stabilization and regulation preblems for centralized multivariable systems
have been the staple of system theory for several years, and substantial progress
has been made recently. Using the matrix fraction description of transfer function
matrices, a characterization of all compensators that stabilize a given plant is now
available (Desoer ef al. 1980). In addition, a characterization of all tracking com-
pensators has also been provided (Vidyasgar and Viswanadbam 1982). We use these
results in our design procedure.

Organization

In & 2, we review the existing results on decentralized control of large-scale systems
and controller synthesis using coprime factorizations, In § 3, we develop the sequential
method and prove the generalized decomposition theorem. We then present the
sequential design algorithm for decentralized control in § 4, The design procedure
vields o closed-loop system with poles in any desired closed region D of the s-plane,
which in maost practical applications satisfies a major ebjective of the design process.
Additional specifications on sensitivity, disturbance rejection, robustness, ete. can be
miel by approepriate choice within the class of compensators, Section 5 treats the
decentralized tracking problem. Finally, we conclude this paper with a comparison of
our method with other results existing in the literature,

2. Background
In this paper, we consider the l-channel large-scale system described by
¥ils) Grls) Gyafs) .. Gyls) ey 05
Yals) Gz(5) Gaals) oo Gyls) e(5)
] R . ; . : (2.1)
Yuls) Gyls) Gials) ... Gyls) el )
or
Vg & Gls)el ) (2.2)

where Gis) in (2.1) is the transfer function matrix, and yi(s), e(5); i =1, 2, ..., L are the
local output and input to the ith subsystem, of dimension g, and m,, respectively. Our
aim is to design decentralized feedback controllers C,, Ca, ..., C, [5e¢ Fig. 1], ie to
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close the system loops via

C'| {. 1 U ﬂ F] “]
e 0 C, 0 0 || & s
= 7 NI (2.3)
I'."r ﬂ ﬂ U vad (-‘ 'l.;] 4 II-|'|
ar
g2 C(5F+u (24)
where
g=ii-y (25)

and 7 and e are the reference input and disturbance vectors, respectively.
From (2.2), (2.4) and (2.5), we have the final input/output relation as

Wsh=[I+GC)] ' GCa+ [I + GC] ™ Gu {2.6)

The basic design problem is to find all C,, Cs, ..., C; such that the closed-loop sysiem
in(2.6) has its poles in a desired region D of the s-plane. A typical region D is shown in
Fig. 2, based on the classical performance constraints on speed and damping,
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Figure 1. Decentralized control system configuration.
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Figure 2. Closed-loop system pole constraint region D,

A major contribution of the coprime lactorization approach is that no real dis-
tinction need be made between the problem af stabilization in the standard sense (ie.
poles lying in the left-half plane) and in the sense of poles lying in a desired region D. We
shall thus often use the simpler terminology “s.able’, *stabilize’, stabilization’, etc., with
the understanding that it may always be taken in the extended sense with the obvious
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changes in assumptions and conditions. We shall only comment on this generalization
where required for clarity.

2.1 Fixed modes and decentralized control

The issue of finding necessary and sufficient conditions for decentralized stability
was considered by Wang and Davison (1973), Corfmat and Morse (1976) and
Vidyasagar and Viswanadham (19582). All these results are related to the existence of
fixed modes,

Definition 1
Let the state space representation of G(s) be given by

i
|'~.¢-=.l'1.": + z HJ'E'E
i=]

H=0p =120 ke
and suppose we have constant decentralized output feedback of the form
w=—Ky, i=1,2 .1 (28]
to yield a closed-loop system
fmid - BKC)x 129

where

K =block diag [K; K; .. K, B=[B|B;|..|B] and C=[C}|Ci|...|C]

Then the fixed modes of (2.7) under decentralized feedback are the zeros of the fixed
polynomial =) defined by

w(s) £ ped det [s1 — A 4+ BKC) (2.10)
Ky

where god denotes the greatest common divisor of det [sf — A + BKC] for block
diagonal K, K, taking on all real matrix values,

An alternative characterization of decentralized fixed modes in terms of certain
minors of {(s) is presented elsewhere [ Vidyasagar and Viswanadham 1982). In further
analysis, we assume that ={s) in (2.10) is at lcast a stable polynomial, Tn the more
specific case where D-Mode compensators are required, =i 5) must have its zeros in D.

One possible approach towards constructing decentralized controllers is to use
constant output feedback on { = | channels,

'f'|=i_fr_H|_'|-:|'| i'-=]|:.......|l_|

and to make all of the unfixed modes controllable and observable through channel /.
Theorem 1 below gives the conditions under which this can be done, Then one
could vse standard multivariable feedback design methods to determine the contral
law that stabilizes the entire system using the input/output pair (g, y,) (Corfmat and
Morse 1976, Vidyasagar and Viswanadham 1982 a); this approach is summarized
below.
The above design procedure of using constant output lfeedback on all but one
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channel can be followed only lor strongly connected systems. Let [ be any subset of the
integers L=11,2,....{}, and L =1 be the complement of [ in L. Define

G]‘.L— L & [GEJ]III: I jel—1

Then G, _; is called a complementary subsystem of Gis), and Gis) is strongly
interconnected il and only if all the complementary subsystems ate non-zero, Mon-
strongly connected sysiems could be treated, first, by decomposing the given syslem
it strongly connected subsystems, and then by compensaling each strongly
connected subsystem by the above design procedure, For lurther analysis, we assume
that Gis) satisfies this assumption, Non-strongly connected syslems can easily be
treated {Corfmat and Morse 1976, Vidyasagar and Viswanadham 1982 a), 50 this
assumption 5 made [or convenience only,
Suppose now we apply constant outpul feedback on the first (I— 1) channels

gpem =K, f=123,..0(=1) [2.11)
and let Q,, be the | ! block of the closed-loop transfer function matrix
0=G[I+ KG]™! (2.12)

where K =block diag[K, K., .. K;_, 0]. We are interested in relating the
characteristic polynomial of @, to that of G, The following theorem has been
established (Corfmat and Morse 1976, Vidvasagar and Viswanadham 1982 a),

Theorem |

Let = 5) be the fixed polynomial of Gis) under decentralized feedback, as defined in
(2.10). Define K = block diag [K, K, .. K,—, 0]andlet @, bethel, [ block of
the matrix 0 = G[J + KG] ", Suppose G is strongly connected and has no zero rows
or columns. Then for almost all K,. ... K,_,. the characteristic polynomial of &, is
given by

EI.I = dei [F+ fG_I = ghia

where ¢b is the characteristic polynomial of G, In addition, if 2 = |, then @, is minimal
for almost all K, Ks..... K.

It is clear from Theorem | that if we apply decentraliced output feedback, ¢ =
— Ky +iani=1,2 .. 00=1), then Tor almoest all K, ..., K;_; theentire large system
i5 controllable and observable from control station 1, ie. through the inpui-output
pair (¢ 1) if =1, Theorem 1 remains valid even under dynamic compensiation,
Suppose we apply dynamic output feedback on the first ({ — 1) channels

g =—Cshyn(s)+ mwis), i=1L2,..0=1) (2.13)

and let J,,(5) be the I, I block of the closed-loop transfer function matrix
Qis) =Gl + €G! (2.14)
where C=hlock diag[C;, €, ... €., 0] Suppose fi,(s) is the characteristic

polynomial of Cj(s). Then from previous results { Wang and Davison 1973, Corfmat
and Morse 1976, Vidyasagar and Viswanadham 1982), using Theorem | and the fact
that fixed modes are invariant under dvnamic feedback, we obtain the following.
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Corallary 1

Let 2(s) be the fixed polynomial of G{s) under decentralized feedback as defined in
(2.10) and €, § and {, , be as defined above, Let G{s) be strongly connected. Then for
almost all C, C,, ..., €,— the characteristic polynomial of (J; is given hy

G=det[I4+CGl-¢-f;.. fi_i/2

Il @=1, then (J,, is minimal with this characteristic polynomial for almost all
CiiCavnns Gy

The above theorem and corollary state that it does not matter how O,
€10y €y are chosen. As long as @, ,(s) is stabilizable and detectable, then Gi{s) is
decentrally stabilizible by choice of a suitable €. Here we choose the controllers
€y e Oy sequentially so that @, k=1, 2, .. is stabilized at each step. One benefit of
this design procedure is that if the fth station fails (the sensor or actuator becomes
open), then the failed system will remain stable.

2.2, Some resufis on feedback stabilization

In this section, we briefly present certain recent results on feedback stabilization
{ Desoer er ol 1980). As mentioned before, the term ‘stabilization’ should be under-
stood in the extended sense (Fig. 2). Consider the feedback sysiem shown in Fig, 3,
Let ((s) be a = m rational transfer lunction matrix and C(s) be an m % q
compensator matrix. Let det [+ GO 20,

Gis)

i)

Figure 3. General feedback system configuration,

From Fig. 3 we can easily write down the following equation:

HEHERE

One can rewrite the above equation as
él [u+6ot -—-Gir+ce)t|[a
= (2.16)
e] LAI+GC)' (d+cqt ||u

or more concisely

¢ & H(G, Chi (.17

We say that (G, C) is a stable pair if H is a stable rational matrix. It is necessary and
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sufficient that all four transfer Tunction submatrices in (2.16) be stable; any three of
them could be stable while the fourth is not ( Desoer and Chan 1973).

We now present a parametrization of all stabilizing compensators of Gis) vsing
coprime factorizations. First we establish some definitions and notation.

Definition 2

Let § denote the set of all rational functions {ratios of polynomials in s with real
cocflicients) that are bounded at infinity and whose poles have negative real parts, ie.
S(s) consists of all proper, stable, rational funcrions. Under the usual definitions of
addition and multiplication in the field of polynomials in s with real coeflicients, the
set S(5) is o commutative ring with identity and is a domain.

Definition 3
Let o function u in § be called a unir if and only il its reciprocal is also in 8, ie. u”
is stable and proper. Units in § are invertible minimum-phase transfer functions.

]

Defintion 4
Let R¥*™(3) denote the set of matrices of rational functions of dimension ¢ = m.

Definition 5

Let M{S) denole the set of matrices with elements in 8 of whatever dimension, 1T
the dimension of the matrix is important, then we will mention this fact explicitly.
Thus, M(5) denotes the set of stable transfer function matrices of any dimension,

Definition 6
Let a matrix L' & WM(S) be called ynimaodular il its inverse is also in Mi8), i.e. det U
is a umnit.

MNow, we shall use these concepts as the basis for defining coprime factorization.
Given any scalar rational function h, we can find two functions f and gin § such that
h = f/gand such that fand g are relatively prime (i.c. 1 is the greatest common divisor
of f and g). Such a pair { /. g) is called a coprime factorization of h. Tt is essential
to recognize that we are doing factorizations in the ring 5, and not in the ring
of polynomials, Similarly, given any Gis) e R*""(s), we can find a g = m malrix
Nis) e M(S) and an m = m matrix D(s) € M(S) such that G{s) = Nis)D~'(s) and the
matrices &, [ are right coprime, This, in turn, means that there exist X(s) € M{S) and
¥is1 & M(S) such that

X{sIN(s) + Y(s)D(s) =1, (218)

In the same way, we can find N, D, X and ¥ such that G(s) = B~ '{5)N(s) and J and N
are left corpime, ie.

N(s)X(s) + Dis) Vi) =1, (2 19)

We refer to (N, D) as the right coprime factorization (r.e.l) of Gis) and (D, N) as the lgft

coprime facierization {Led) of Gis). Mow we state the results that characterize all
compensators that stabilize a given strictly proper plant {Desoer e af, 1980).
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Thearem 2
Let G e R**™ be strictly proper and let (N, D) and (3, N} be any r.cf and Lef. of
i s). Let C(s) € R™ =7 be any proper compensator with (N, B.) as ref and (0., N,) as
L. Then the following conditions are equivalent.
(i) The pair (G, C) is stable,
(i) The matrix O_D + N_N is unimodular.
(i) The matrix OD, + NN, is unimodular.
(iv] (=) = C.

(2.20)

Theorem 3
Let G & RY"™(y) be strictly proper and let (N, D), (0, N) be any rel and Lol of G
Let X, ¥, X, ¥ be such thai

XN+YD=I, NX+D0F=1I, (2.21)
Then
(i) every C such that (G, C) is a stable pair is proper;
(ii) the class C of all Cis) such that (G, €) is a stable pair is given by
C=(Y—RN) "X +RD), ReM(S) (222 4)
or
C=(X+DS)F-NS™', SeM(S) (222 h)
Equation {2.22) comprises two equivalent formulations of the class C© ol all stabilizing

compensaiors.

Using Theorem 3, we can now write down all the closed-loop systems obtainable
from a stable control system wsing C as in (2.22).

Theorem 4
Let Gis) be the plant as in Theorem 3 and let Os) & C be chosen as in (2,22 g} then
the closed-loop system of (2.16) and (2.17) is

I—N(X+RD) —N(Y-RN)
HiG, O = ! 2 [2.23)
X + RD) Y — BN}
The expression Tor H(G, C) with C(s) e C chosen as in (222 b) can be obtained
similarly,
From (2.16), it is clear that the closed-loop characteristic polynomial is
th =det [B,D+ N N1 =det [OD, + NN_] (2.24)
and it is easy to see that
(1+GC) '=D,[DD,+NN.] 'D=D[O.D+ RN 'H. (2.25)
Thus, rom (2.24) and (2.25), we have
det [T+ GC) = (ff + ) {2.26)
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where f and ¢ are the characteristic polynomials of G and C. Tt is possible to derive
the multivariable Myquist eriterion (Callier and Desoer 1982) [rom (2.26).

23, Characterization of all tracking compensators

Considering Fig. 3 once again, suppose that @ is equal to a reference signal r and
t=1{. By definition of the tracking problem, r is a persistent (not asyvmptotically
stable) signal. We denote the Lef of #s) by

Hs) & D7V e (2.27)

where ¢ is an arbitrary constant vector. The objective now is to characterize the class
Cy of all controllers Cfs) such that

(i) HiG, C) is a stable matrix (closed-loop stability);
(ii) the transfer matrix from ¢ to & is stable (for asympiotic tracking of r); and
{iii} both {i) and (ii) continue to hold even if the plant is perturbed {robustness).

The main resull for robust tracking is as follows,

Theorem 5 (Francis and Vidyasagar [983)

Consider the plant G & R*™ a5 in Theorem 3, and let z, be the largest invariant
factor of the matrix D_. Then the robust tracking problem has a solution if and only if
N and =z, are coprime. When this holds, the class Cr of all selutions to the problem is
given hy

t’.‘=aiif+ﬂwﬂ"" (2.28)

where ¥ and W are matrices in M(S) such that
e V+NW=F (2,29
This theorem completes the results needed for the developments presented here.

3. Preliminaries for the sequential design method

We now present several results useful in developing a sequential design method lor
decentralized control systems. Let us recall the problem definition in § 2, Consider the
I-channel large-scale system described by (2.2), ie

W) = Gls)als)

Our aim is to find the block diaponal feedback controller C{s) so that the closed-loop
control system defined by (2.4) and (2.5),

e=Cla—W+u

has its poles in a desired region D of the s-plane (Fig. 2). Recall that the vectors i and u
are the reference input and disturbance vectors, respectively (Fig. 3).
From (2.2}, (2.4) and (2.5) we have

W)=+ GC) 'GCa+ (I + GC) ™' Gu [3.1)

We require (3.1} to be stable. The necessary and sufficient conditions for stability of
(3.1} in terms of det [T + GC] are well known (Doyle and Stein 1981). Let n, and »,
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denote the number of right half plane poles of G and C, respectively. Then the closed-
loop system is stable if and only if the number of counterclockwise encirclements
of the origin by the locus of det [ + GC] as s travels the standard Nyquist con-
tour equals m, 4+ n.. Our aim is to find conditions under which C(s) exists such that
det [ + GC] satisfies this stability requirement.

il Generalized decompasition thearem

The following is a generalization of Rosenbrock’s decomposition thearem (1974)
wherein the determinant of the return difference matrix is expressed as 2 produet of |
terms, cach term representing the determinant of the subsystem return difference
matrix. This result forms the basis for the sequential design procedure presented in § 4.

To proceed. we need the following notation. For k=1,2, ... 1, let
Iy=block diag[C, C, .. C, 0 0 .. 0] (3.2)
L, =block diag [C, C; .. €] (3.3)
Ct=tblock diag[0 0 ... €, 0 ... 0] (3.4)
T=[+L,G] (3.5)
Pr=Gs[1+ LG '=(I+GL)'G, P'=G {3.6)

P}, ={(i, j)th block matrix of P*,

Mote that T, is the return difference matrix with loop 1 closed. Also P}, is the
transfer function matrix between e, and v, when loop 1 is closed with feedback
compensator ;. Similarly, Fi3" is the transfer function matrix between e, and y,
when loops 1,2,..., (k— 1) are closed with compensators C,, Cs, ..., C,_, and the
other loops are open. We also note that L= = (.

Theorem 6
With the above notation
E

(i) det [{ + Ly G] = [] det (] + C,P{;* (3.7)

() Piyipes=Priilan— PRI+ G 'GP, k=121 (38)

and
I
(i) [f+CG] " '= [] (H+CFPi-)? (1.9
i=1
Proof
Mote that from (3.2) and (3.4) we have C* = L, — L, _, which gives us the identity
COL + Lo G ' [T 4+ Loy Gl = (Ly— Ly, )G (3.10)
Mow using (3.6) in (3.10) we obtain
C*P [T+ Ly Gl =(Ly— Ly, )G (3.11)

Adding an identity matrix to both sides of {3.11) and rearranging we obtain
H+C PV + Ly Gl =+ L, G) (3.12)



Decentralized control systems 267

Mow (i) follows immediately by successive application of (3.12) and noting that
ly=Cand L, =0C,.
Using (3.4), we can casily show that

[I+C P ]
- | : =
0 0
RS S0 £ N Sell P Y-
|
=| o GPLily [+ GPIE'Y [ GPGL  GRGY | (1)
"""""""" e
| |
| |
0 | {} |
I ]
i | ]
Thus
det[1+ C* P~ ]=det [I+ C Pt ] (3.14)

From (3.12) and (3.5), it is clear that
1
det T, =det T,_, - det [1 + C. P31 = [] det [1 + G P;"
r=1

thus proving (i).
To prove (ii) we use (3.15) once again to obtain

[I'+Lu.'?]"=[I+L.\_1U]"[I+I?*P""]" (3.13)

Multiplying both sides of (3.15) by G, we obtain
Pr=Pl[f 4 CH P {3.16)
Now use (3.13) in (3.16) and calculate the (k+ 1, k+ 1) Block of P* and obtain (3.9).
O

3.2, Decentralized stabilization

The decompasition theorem presented above forms the basis for the sequential
design method. Notice that P§, " is the so-called local model | Davison and Ozguner
1982) as seen by the kth controller when loops 1,2, ..., (k = 1} are closed and (k +
1),.... | are open. Equation 3.8 gives a recursive expression for computing the local
model. The determinant of the return difference matrix is expressed as the product of
the subsystem return difference matrices. Thus, the number of encirclements of the
origin by the Nyquist locus of det [ + L, G] eguals the sum of the encirclements of the
arigin by the Nyquist loci of det [I + €, G, ] det [1 + Co Py ], ... det [T + €y e
We have the following result,

Theorem 7

Let m, and n, be the number of open-loop unstable poles of G and C. Let n; denote
the number of clockwise encirclements of the Nyquist locus of det [1 + C,Pi; '],
i=1,2.....1 around the origin. Then the closed-loop system under decentralized

I

feedback is stable if and only if 3 m=mn,+n,.
i=1
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Although this theorem presents neccessary and sufficient conditions for decen-

tralized stabilization, it is unclear what class of systems would satisfy the condition
d

E ;= n, + n.. In other words, we would wish to determine when stabilization of the
=1 ; g i
paits (P71 C), i= L2 . L would imply stability of the closed loop system. For
example, if

H

Gls) =
1

5+ 2

1
s+ 1
1
5=1

then 7(s) is not decentrally stabilizable although g, and g,, are stable.
It has been shown (Wang and Davison 1973, Corfmat and Morse 1976,
Vidvasapar and Viswanadham 1982) that the satisfaction of the condition

t
Y m=n 40,
=1

is related 1o the existence of fixed modes. Indeed, we shall show now that our
sequential design procedure vields a stable closed loop system il and only il the fixed
modes under decentralized leedback are stable,

Let i 5) be a strongly connecied system with fixed polyvnomial 2{s) as in (2. 10) and
let fi,is) be the characteristic polvnomial of (). Suppose we apply decentralized
feedback on all channels, e all [ loops are closed via (2.3). Then (Kwakernaak and
Sivan 1972, po 46) the closed-loop characteristic polynomial ¢, 15 given by
o= iy L -det [T 4 GO Suppose we assume that we close the loops 1, 2, .,
(/= 1) via feedback compensators Cy, ..., C; ;3 then, by Corollary 1, the characteristic
polynomial ¢, of P}';' i%

=y o det [T+ L, G/ (3.18)

Let (D, Np,) be the rell of Pi7 " and (0, N;) be the Lel. of C,. Suppose now we
choose C, such that (F{7". C,) is a stable pair, i.c.

DDy + NNy =U, (319
where [V, is a unimodular matrix. Then from (2.25), we have

det L,

det [ +C;Pij 1] = e e
o S e Pry v

(3.20)
Mote that in writing ( 3.20) we used the fact that det Dy, is the characteristic polynomial
of P17 and det 0, is the characteristic polynomial of C;.

Mow wsing (3.7) and {3.17-3.20), we obtain

o=y frde [T+ L, G det [T+ Py ]=udet U, (321)

Thus, we require 1o be stable for decentralized stabilization to be possible. Further,
CChyen Oy wan be chosen arbitrarly. However, in the following section we
choose Cy, Ca, ..., £;—, such that (€, Pi3"') are all stable pairs, k= 1,2, ..., (/- 1).
This will enable us to distribute the complexity of the controller by not requiring that
€, alonc provide overall stability. We summarize the above results as the following
theorem.
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Theorem &

Let G[s) be strongly connected with a stable fixed palynomial under decentralized
feedback. Then a choice of C,, ..., C; such that (C,, P}1') are a1l stable pairs lor
k=12 ... vields a stable decentralized closed-loop control system.

X3 Now-strongly connected sysiems

If the original {-channel system is not strongly connected, then one can carry out a
decompaosition of G into its strongly connected components {Corfmat and Morse
1976, Vidyasagar 1981, § 4.2). This results in ordering the channel indices in such a
way that G becomes block-triangular, Specifically, suppose that p is the number of
strongly connected compenents associated with G(s). Then the index set {1,2, ..., [}
can be permuted and partitioned into p sets

G, 0 0O
5 Bl o 50

(r(5) = : . : : (3.22)
A S

and Gy, i=1, 2,.... p are strongly connected and have T; channels.
Mow the design proceeds as follows. Suppose we apply decentralized Feedback

C=block diag [T, €, ... €,] {3.23)
where
E:' — blﬂ'l:k. di.ﬂ.E. I-_El|j 1:_1 3 e [‘.rI] :3.24}

We choose C; such that (G, C;) is a stable pair for i= 1, 2, ..., p. Since (0, is strongly
connected, the design of C proceeds asin§ 3.2 foreach i = 1, 2, .. p. The stability again
[ollows il the lixed polynomial s} is stable. The results are similar to those presented
elsewhere [Corfmat and Morse 1976, Vidvasapar and Viswanadham 1982 a),

34, Updating formulae

To determine the controllers C, Ca, ... we need to find the transfer function
matrices Py ', k=2, ..., I (recall that P, = G,,). One could usc (3.8) for this purpose.
Furthermore, 1t 15 possible to use (3.8) and obtain expressions for the characteristic
polynomial and the minors of PE,, ., in tcrms of those at the kth stage. We derive
these expressions as follows:
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Lempa |
Consider a two-channe] systom

! i{r #ya ¢
Yz Gy Gaa |l es

where ¥; and e, are vectors of dimension g; and sy, respectively, i = 1, 2. Suppose we
now apply dynamic feedback to close the first loop,

ey(sh= —C,(5)y,15) (3.26)
io obtain

Va= [l — Gyl + FLG]]}-IGIGII]EE 13.27)

Define g, 2 {1,2,....q,}:§: 2 {{g, + 1), ... (g, + 92011 § £ §, v, and @y, /i and m
analegously. If J is a set of intepers, let || denote the number of integers in J. If

I
|f] = ||, then g I:J:| denotes the minor of G consisting of clements from rows in [ and

! i
columns in J. Let ¢ be the characteristic polynomial of & and ,n|:,:| == El:_r:l'

Then for all 1, e §; and J. &, we have

Iz f: mimim ) J,ufl a: J,
Cil= + [ & 328
0.1z [Iz:| HC,) = §, P|:Jz:| ig |,’.'E:|" %,;,:‘ P|:J: UJ2:| i |:;|:| (3.28)

whers

min .1l e | B O
$(C ) =fh¢+ Y ¥ EFL ct[ (3.29)

i=1 Igl=i |Fa]=i
feoay ey 1

ol B B I
and where 7, 15 the characteristic polynomial of C, C, . =fC, j].and C, I:JT:I

is the minor of C, with rows in I and columns in J.

Proaf
See Vidyvasagar and Yiswanadham (1982 a),

This lemma may be used to obtain the characteristic polynomial and P§, " at each
stage of the sequential design procedure,

4. Sequential design procedure

In this section, we present a design procedure based on the results of § 3. This
method consists of choosing Cy(s) such that (P{}', C,) is a stable pair (in the
extended sense, Fig. 2) for k=1,2,...,1 using the coprime factorization method
described in § 2.2, We assume that G{s) is as suggested in § 3.3,
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From Fig. | and (2.1), {2.6) we can write down the fellowing equations:

€y "?l [ ln GIL 1] G]g 0 G” —"—E| ]
£'| r'|'| _Cl U I:I 'n A u ﬂ F.Ij
€3 iz 0 Gy 0 Gi 0 Gy &
0 0 ||e (4.1)

gy |=|ty |—]| 0 0 C, 0

£ iy 0 Gy 0 G .. 0 Cry £
el Lul B e =0 Dellie

From (4.1} we obiain

[ EL{S}_ |_ 1 Gy 0 Gz oo 0 GLT]JV fiy () |
E]ts;l n Cl r D [' ava U n "|{5]
2[5 0 Gy I Gy . O Gy || als)
e.(5) | = 0 R w0 0 T {4.2)
-E]l:n'!-:l {:I G” n G!l A .Ir G" EFJ:.'FJ
| &5 | _ 0 ] 0 0 .. =G I AL wis) |
ar
é2 H(G,C)d (4.3)

From the results of § 2.2, it is clear that C(s) defined in (2.3) stabilizes G s), ie,
(G, €) is a stable pair if H(G, C) is a stable proper transfer function matrix. We note
that, in terms of Fig. 3, one can write a re-arranged version of (4.2) as follows:

= = a Hi {4.4)
F -C f i

Although (4.4) is more compact, we shall use (4.2) in our further analysis. Our
objective is to choose €y, ..., C; sequentially such that H(G, C) is stable: actually we
shall characterize all such compensator classes as C,, ..., C,.

d.1. Sequential design algorithm

Now we present an algorithm for the sequential design of decentralized control
systems. We close the channels one by one starting with | and at cach stage conduct
the design using the coprime factorization approach.

Srep 1
Calculate the fixed polynomial »(s) defined by (2.100 under decentralized feedback.
If the fixed modes are unstable the algorithm terminates; no selution is possible.
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Step 2
_ Let Py, =Gy, Also, let (N, Dy} be the right coprime factorization (r.c.f) and
{Dy;.Ny;) be the lelt coprime factorization (Lef) of P, . Also let X,,, Yi,. X,,. Fiy
be stable proper matrices such that
KN +¥Y,0, =1
and (4.3])

N X, +D,0,=1
Then from Theorem 3 we have that the class G, ol all stabilizing compensators of P,
15 given by
Cy=(Yiy =Ry Ni) (X + R, By, Ry eM(S) (4.6)
or
C, =X, + Dy 8 Y = NS, ™Y 8, e M(S) (4.7)

Lt
I il I+ P PYLT4 e, PR
.I'III[G,C’= LE = Bl I:I II.{ 1 Il:I [43}
-, | C,lfI+P'C,)? (4 C, Pt
Choose C,{s) as in (4.6), so that (4.8) yields

I=Ny (X, +R, Dyy) =Ny (Y, =R, N
H“[G.Ch=|: Ny 11 |-l_ 11 11T :11 L:]'—l (4.9)
DXy, + Ry, D) Dyl Yy = Ry Ny

An alternative expression can be obtained for H, (G, ©) using (4.7). We are now
guaranieed that (PY,, C,) is a stable pair. The free parameter matrix R, in (4.6)
or 8, in (4.7) can then be chosen so that sensitivity is minimized, robustness is
maximized, or the dynamic response of H (G, C) is satisfactory in any sense.

Erep 3

Repeat the controller synthesis procedure of Step 2 Tor each control channcl
k=2, ..., cach time choosing C, such that (P} ", C,) is a stable pair, as follows; Use
(3.8) to determine

PIE‘.II =PT:.II = {'i;;f:[jq-c‘_lpf'_'flt_ J 'C*._]PE ?.t

Mote that Pi3 " is the transfer function matrix between My and y, when loops 1,2, ...,
(k—1) are :.Iasr:d Let (N, D) be the rel. and (0, N,,) be the Lef. of PE;!. Let
Aps s X“ ‘JfH be stable proper matrices such that

XNy + YDy =1 (< 100)
NuXu + DuFa=1 (d.11)

Then (Theorem 3) the class C, of all stabilizing compensators of £, is given by
Cﬁ=[ﬂi_ RRR'QEEJ_I‘XEE+REHEEE]" HJAJAE M[S}
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or

Cp= X+ DuSull Fu— NuSu) ™' SueMIS)

The closed-loop response matrix M, (G, C) can be written in a form analogous to
{4.8), The resultant system now has the property that the overall decentralized closed-
loop system is asymptotically stable.

Remark |
If in the procedure it turns out that Py; ' =0 for some k, then it is essential that a
stabilizing compensator €y still be applied in order for the algorithm to proceed.

Remark 2

In the above alporithm, the local model Py;' at the kth station incorporates the
compensator dynamics of the preceding control system loop closures. We emphasize
that the open loop transfer lunction matrices Gy, cannot in general be used to construct
stabilizing controllers. The following example illustrates this point. Let

[."'L] |: (LI ST | Y
Ya g O Ha
be a two-slation large system where ¥y, ¥y, iy, by are all scalars. Suppose

o N LAY
g2 Ty BT LG+ )

Then & has no decentralized fixed modes. It has a blocking zero at 5= 1, an unstable
pale at s = 2, and is strictly proper. Thus, it is not strongly stabilizable (stabilizable by
a stable compensator) (Vidyasagar and Viswanadham 1982 b), 1T we were to design
the compensators C, and C, based on g, = g, = 0, then €, and C; would turn out
to be stable compensators, and the elosed-loop system would not be stable. It is
indeed possible to stabilize this system using our sequential algorithm, In fact, C; = 1
and €, such that (g, * £3;, C3) is a stable pair stabilizes the overall system; C; would
necessanly be unstable.

Remark 3

In the case when G{s) is stable {in particular, when the interaction matrices Gl s)
are stable), one can show algebraically that H{G, C) is stable whenever (Pi, ', C,),
k=1,2,...1 are all stable pairs. In this instance, we do not have to appeal to the
generalized decomposition theorem for proving the stability of H( G, C). To see this, let
{ =2 Then from (4.2) we oblain

! iy, 0 Gy |7

=g &' 06 N A B
HIG, C) = e al (4.12)
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ATV A-IpE~ gy~ _ - 1pg-1
{4.13)

—§tca™ o

where 5= B — €A™' D is the Schur complement of 4. Using (4.12) and { 3.8) we obtain

I Py
8= & ! (4.14)

Itis clear from (4.12) to (4.14) that 4%, 57°, G, and G, are all stable, so H{G, C) is
stable. Extension of this result to the case when [ = 2 follows similarly,

4.2 Example
Let us consider a system with two inputs and two outputs

=
W
l I

'.
I
e | =

Gls) = l ; (4.15)

]

5

It is easy to check that the system in (4.15) has no fixed modes under decentralized
feedback. Alse Gy, = P, = 0. As suggested in Remark 1, we choose C, = 1. Obvi-
ously (0, 1) &5 a stable pair. Then we have

5=1

 s(s —2)

FL = {4.16)

Il is easy to see that ny, = —(s—1)/(s+ 1)* and d., = s(s— 2)/(s + 1) is a coprime
factorization of (4.16). Furthermore,

(4s—1) (s—1)  (s—9)sls—2)
(s+1) (s+1)F  (s+1)(s+1)F

I45—1 §—4
¥aas o) 0 =i

The class of all stabilizing compensators for (4.16) is then given hy

o a=d) (s—1) T 'T(14s—1) s(s 2]
El_[iw ﬁ_r”{ﬂll’] [{s+]] +r”[.«-+_l]"'] (443

where ry,(s) is any member of M{S). We again point out that we chose C, = 1in this
example; we could have chosen any stable transfer function instead, It may also he
noted that this example is one which is strongly centrally stabilizable (ie. stabilizable

(4.17)

Thus




¥}
—
LA
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by a stable compensator having ofl-diagonal terms), but this is not true for the de-
centralized case. Finally, we should like to recognize that this example 15 somewhat
contrived; it is presented primarily for illustrative purposes.

5. Deceniralized tracking problem

Let us consider the plant in Fig. 1 and assume that the disturbances are zero, i.c.
=0, and that the output at local station y; has asymptotically to track the reference
input #,. We assume as in § 2.3 that

i & B N (s, 1=1,2,..,1 {5.1)

where r, is a constant vector. We are now required to find decentralized compensators
€. Cay .y O such that stability and asymptotic tracking occur in a rebust way, This
problem has been studied in the decentralized control context by Davison [ 1976) and
Viswanadham and Ramakrishna (1981). The following method is more design-
oriented and uses the sequential algorithm developed in §4.1.

5.1, Sequential algorithm for tracking
For asymptotic tracking at the ith local station, i.e. G(t) — y(t) =0 as = o, we
require the transfer function between & and v;(5.1) to be stable. From {5.1) and Fig. 3,
F=[+GCl; 'O N, (5.2)

where [ + GC]; ! denotes the appropriate block of [1+ GC]™'. We must choose
Cyy Cay oy Cpsuch that the (Cy, P ) (Co, Pla), oo () 7' are all stable pairs and
[I+GC]; ' D' N, is stable. We do this in the following manner.

Step |

]_II:[ Gll = F‘]’I-l. J*IS i:lfl §4.L l:!l‘:[tﬁ‘l‘l.il'lﬂ N1 {3 .DJ L j.:“ll."'n_'l.l-'“-|!‘ 1-"'”.. fll" ?ll Lﬂ hﬂ
the usual stable proper matrices. Lei =, be the largest invariant factor of D, and
assume that «,/ and N, are coprime. Now choose

L
C'L=x—{fu"|'ﬂnwt:|1’r1 i} (5.3)

where V, e M8}, W, e M(S) and they satisfly

a ¥, + N, W =T, (5.4)
With the choice of €, as in 5.3, from Theorem 4 it follows that (PY,, C;) is a stable
pair.
Continue Steps 2, 3, ..., k as follows; terminate when &= [

Step k

Assume that Ny, and =, I are coprime pairs. Determine Py as in Step 4 of the
design algorithm of § 4.1 wsing (3.8). Now choose C, as

|
o=~ (Ru+ Du W™ (5.5)
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where ¥, & M(S), W, e M(5) and they satisfy
a, ¥+ Ny W =T, {5.6)
At each step, Theorem 4 ensures that (', C) isstable for k=2,3,.., 1.

Mow we establish the following result.

Lemima 2
The compensator C, specified in (5.5) satisfies

D"'F:.I]Ek]_]:“rr’i“&-lﬁu (5.7)

where U, ' is a unimodular matrix,

Praaof
This follows by direct substitution.

The significance of (5.7) is that a, is a factor of each entry of [ + P{1'C,170
Mow we prove the main result of this section.

Theoren 9

Consider the plant G(s) as in §4.1. Let {Ny,, = J) be coprime pairs, k= 1. 2, ...,
where a, is the largest invariant factor of , in (5.1). Let a(s), the fixed polynomial of
the closed-loop system with decentralized feedback, be stable. Then a sequential
choice of C,, k=1,2,..., 1, as (5.5) and (5.6) yiclds a closed-loop sysiem that is stable
and each of its local outputs asymptotically tracks the given reference inputs.

Proaf

At each step in the algorithm we arc guaranteed that (Py', G k=12, Lis
stable. Since the fixed polynomial is stable, it follows that from Theorem § that the
closed-loop system is stable,

To prove that asymptotic tracking occurs, we need only show that (1 + GC) ' D,
iz @ stable matrix, Then from (5.2) it immediately follows that =0 as 1= oo, To
prove this, we show that z,, the largest invariant factor of B, is a factor of every
element of [I + GC]™Y, e, we show that

[+ GC)™ = Ts)x(s) (5.8)

where Is) is a stable mateix. From (5.7) and the observation that 07 Y (sha,(5) 15
a stable matrix, it follows that [[ +GC] "D is a stable matrix. To prove the
Thearem, we thus need only establish {5.8). Following the same lines as in Theorem 6
{see (3.12)). it is casy to see that Tor k= 1,2, ..., [

[T+ GL] '=[J+P 'O " [I+GL,_,]" (3.9

where
P =0+6GL_,]17'C (5100

Also notice that for k=1

I+G,C,)"* 0
{ uti) ] (5.11)

[!+GLl]"=|:
X I
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where X is an arbitrary matrix, Using Lemma 2, it is clear that z, is a factor of the first
block row of (f + GL,) ™', We proceed by induction. Assume that =, is a factor of the
first (& — 1) block rows of (f + GL,_ )" we then show that o, is a Tactor of the first &
block rows of (I + GL,) ™. Suppose we partition G and L as follows:

Gt G Gl
G= |Gyt Gix' Ghy! (5.12)
Gyt Gyt Gy

whers
GI.: Gl.l—[
Gy ’G:.n—L oL
tl.;l' = ; . < Glill = GJ.'J.- {j.]]:'
'L'-Jc—],l GJ.—],L—[

and the other Block components of ¢ are obviously defined from (5.12) and (5.11).
Partition L, _, in the corresponding fashion,

Ly 4 D
L,,=| 0 0 0 (5.14)
o 0 o
where
L, =hiock diag[C; C3 .. Ci-y] (5.15)
With this partition, we obtain
I+ 'Ly 0 0
F+GL ] '=| -G L ((I+G L) 1D (5.16)

---G,,|’L,,_|H+ ||’Lk_|:l_ o f
Using (5.14) and (5.9) we obtain
I U+ L) GG PG 0
[I+ P11t 1= |0 (F+Pic) ! 0| (51T
0 X !

where X again denoles an arbitrary matrix. From {3.%), {3.15) and (5.16). one
can uhmi:n [f + GL Y Motice that since o, is a factor of cach element of (I +
T L) band (F 4+ PECECL) L it Tellows Lhﬂ.l]t iz a factor of the first (& + 1) block
rows of [+ GL, ] " Hence the [hL-urEm 0

Theorem 9 requires that o, [ and Ny k=1, 2, ..., |, be coprime [or a solution to the
tracking problem to cxist; it would be interesting Lo establish a connection between
this condition and previous results { Davison 1976, Viswanadham and Ramakrishna
1981). The robustness of the control system follows as in Doyle and Stein (1981). The
disturbance rejection problem can be similarly formulated and solved.
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6. Conelusions

We have presented a sequential design method for solving the decentralized
stabilization and tracking problems. At each stage we characterize the class of all the
stabilizing/tracking compensators, C and C; respectively. We have also established a
generalized decomposition theorem (Theorem 6) that provides the proof of stability
for our design method and presented a characterization of all possible closed-loop
transfer functions H{G, C). This design procedure has the following advantages.

6.1, Automatic design to hasic performance specifications. At cach step, the designer
oblains an explicit characterization of the class C of all compensators for the loop
heing closed that resulis in closed-loop system poles being in a specified closed region
D of the s-plane, instead of merely stabilizing the closed-loop system. Since one of the
primary goals of control system design is to satisly performance requirements that are
often dircetly related to closed-loop pole location (bandwidth, percentage avershoot,
rise time, settling time, etc.), this approach immediately allows the designer to focus on
other concerns such as robustness, sensitivity and reliability, Thus, the designer has a
clearly-defined, limited optimization problem to solve without concern for loss of
basic performance,

6.2, Simplicity of design, Other decentralized control schemes (Wang and Davison
1973, Corfmat and Morse 1976, Vidyasagar and Viswanadham 1982, Davison 1976,
Viswanadham and Ramakrishna 1981) use constant output feedback on all channels
except one and an observer-based dynamic controller on the remaining channel. This
dynamic controller is supposed to estimate the entire state of the large system for
the purpose of implementing the state feedback law that stabilizes i, Although
this control structure is decentralized, it has the disadvantage that all complexity
is concentrated in one channel. The sequential approach suggesied herce tends to
distribute the complexity among all the channcls. Furthermore, it also clearly
indicates the degrees of freedom available in each controller after the overall system
stability constraint is met. This freedom could be exploited for rabustness improve-
ment, sensitivity minimization, etc.

6.3. Expandability. Suppose we expand the system by adding a new subsystem. Then
our design procedure will have one more step which involves the characterization of
the class €, of all compensators such that (P}, ,,,,.C.,) is stable. Note that
Cy, Cay iy O need not be altered or retuned, OF course, it is necessary that the
expanded system has no unstable fixed modes under decentralized feedback.

64, Use of local models. The design of C,, C,. ..., C, is based on the local models
Piit k=12, ..., 1 respectively. Although we assumed above that each controller is
based on explicit knowledge about G, one could obtain these local transfer functions
using on-line identification techniques on a loop-by-loop basis,

6.3, Limired jault tolerance. A common Failure mode in multivariable control syslems
i5 the *opening” of 4 loop, in the sense that a sensor, controller, or actuator may fail to
transmit the appropriate signal. This condition may be represented by setting the
appropriate transfer function to zero. This topic is the main thrust of the work by
Viswanadham (1984). In the present case, the degree of fault tolerance is quite modest.
If the designer has a concern for reliability in the sense of a particular loop becoming
open, then reliability with respect to that one failure may be ensured by designing the
compensator for that loop at the last step. This procedure results in a control system
in which all of the poles that can be influenced by the remaining live controllers will
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remain in the region D {the only poles that may not lic in D are those that correspond
1o fixed modes with respect to the operating control loops). It is even possible to order
the loop closures so that the loop that is second most likely to il may be designed
next-to-last, ete. thus extending this class of fault telerance to handle failures that may
be causally inter-related.
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