
An Intelligent Architecture for Integrated Control and Asset

Management for Industrial Processes

James H. Taylor and Atalla F. Sayda

Abstract— Abnormal event management (AEM) in large
manufacturing plants has evolved as a higher and increasingly
vital function of process control. In this paper, an intelligent in-
formation management and control system is introduced. The
different computational agents (i.e., modules) of the system are
embodied in a three-layered cognitive hierarchy, which offers
intelligent behavior at the system level, as well as at the level
of specialized task agents. At the lower level, agents generate
goal-seeking reactive behavior. Three different fault detection
and isolation agents (i.e., three complementary techniques)
are embedded to generate three different assessments and to
enhance the fault isolation process. Other utility agents are
also incorporated to address topics such as process model
identification and optimization. At the middle layer, agents
enable decision making, planning, and deliberative behavior.
Two case-based reasoning agents are incorporated, the first
manages the system in normal operation, while the other
handles faulty process situations. A meta-management agent
at the highest level monitors and coordinates other agents so
as to make the whole system performance more robust and
coherent.

I. INTRODUCTION

Abnormal event management (AEM) in large process

plants has evolved as a higher and increasingly vital func-

tion of process control. When an abnormal event occurs it

may take considerable time to diagnose its causal origin,

and to take the appropriate actions to bring the process

back to a normal, safe operating state. This may have

significant economic, safety, and environmental impact.

Unfortunately, AEM is controlled manually in most process

plants, which complicates the management and control of

such plants. This can be attributed to several factors such

as the size and complexity of modern process plants and

increasingly massive information overload. The automation

of AEM within an information and control infrastructure

will reduce maintenance expenses, improve utilization and

output of manufacturing equipment, enhance safety, and

improve product quality. An integrated control and AEM

system involves several subproblem areas including data

reconciliation and fusion, fault detection, isolation, and

accommodation (FDIA), process model identification and

optimization, and supervisory control. The integration of

these complementary features into an intelligent fault-

tolerant control framework will define a new arena for

research in this area [1], [2], [3], [4].

James H. Taylor is with the Department of Electrical & Computer
Engineering, University of New Brunswick, PO Box 4400, Fredericton,
NB CANADA E3B 5A3 jtaylor@unb.ca

Atalla F. Sayda is a PhD candidate with the Department of Electrical
& Computer Engineering, University of New Brunswick, PO Box 4400,
Fredericton, NB CANADA E3B 5A3 atalla.sayda@unb.ca

Many research studies, which proposed different com-

binations of systems theoretic and artificial intelligence

techniques to tackle the AEM problem, have delineated a

set of required features [1]:

• integrating different problem solving paradigms,

knowledge representation schemes and search tech-

niques,

• maintaining global databases of process data and

knowledge,

• reasoning about process operations without requiring

accurate models,

• coping with data explosion and the need for effective

compression and interpretation, and

• understanding, and hence representing, process behav-

ior at different levels of detail.

These requirements are similar to those proposed for in-

telligent supervisory control systems. For example, a pro-

posed system for producing metal-matrix composite mate-

rials incorporated a central database of process data and

knowledge, process planning via case-based reasoning, on-

line learning, automated process optimization and model

identification, robust control algorithms – all under the

direction of an expert system coordinator [5].

This paper addresses the integration of process automa-

tion and AEM in large process plants by introducing a

design framework for building an intelligent information

management and control system. The paper is organized

as follows: First, we review available conceptual models of

complex intelligent system followed by a detailed structural

description of the proposed system architecture. Then, we

discuss the development process of the system and project

status. Finally, we conclude with future research and devel-

opment steps.

II. CONCEPTUAL MODEL OF THE SYSTEM

We propose to use a combination of top-down and

bottom-up approaches for modeling and developing an

intelligent control and asset management system (ICAM

system). The top-down approach deals with high level

abstractions and conceptual tools, which facilitate capturing

and modeling the structure and the behavior of the system

being developed. Bottom-up modeling refers to developing

scenarios that show in detail how the intelligent system

should interact with users and complex external environ-

ments. Top-down modeling is the primary focus of this

paper, so that the system architecture can be well explained

and motivated.

Several conceptual frameworks have been suggested for

modeling complex intelligent systems. In the past two



decades, the most popular design framework was the expert

system, which has several advantages, namely, separation of

knowledge and inference, ease of development and trans-

parent reasoning under uncertainty. Moore and Kramer [6]

discussed the issues of expert system design for real-time

process control applications; an intelligent expert system

(PICON) was designed and implemented on several pro-

cess plants to validate expert systems performance in real-

time process environments. Implementation results revealed

several drawbacks, namely, lack of learning mechanisms,

knowledge base validation difficulties, and weak represen-

tation power. There are several expert system survey papers

to which one may refer for further insight [7], [8].

Newell [9] introduced cognitive architectures as a more

general conceptual framework for developing complex in-

telligent systems, based on a human cognition viewpoint.

This approach assumes that human cognition behavior has

two components, architecture and knowledge. The archi-

tecture is composed of cognitive mechanisms that are fixed

across tasks, and basically fixed across individuals. These

mechanisms, which define the properties of this approach,

involve a set of general design considerations, namely,

knowledge representation, knowledge organization, knowl-

edge utilization, and knowledge acquisition. Newell argued

that these considerations represent a theory unification to

model complex intelligent systems. Furthermore, this allows

model (knowledge) reuse and helps create complete agents

opening the way to applications. Soar and ACT-R, which

are two of the most widely used cognitive architectures, rep-

resent Newell’s approach and support most of the cognitive

mechanisms [10]. These architectures are based on different

conceptual origins: Soar arose from an artificial intelligence

(AI) tradition, and ACT-R arose out of a more experimental

psychology tradition. The performance of both architectures

in solving different problems points to a promising future

for modeling complex intelligent systems.

Multi-agent systems (MAS), which can be considered

as an instantiation of distributed artificial intelligence, is

another conceptual framework for modeling complex sys-

tems. A MAS is defined as a loosely coupled network of

problem solvers that work together to solve problems, that

are beyond their individual capabilities [11]. The MAS plat-

form emphasizes distribution, autonomy, interaction (i.e.,

communication), coordination, and organization of individ-

ual agents. Agents in MAS can be defined as conceptual

entities that perceive and act in a proactive or reactive

manner within an environment where other agents exist

and interact with each other based on shared knowledge of

communication and representation [12]. Each agent contains

processes for behavior generation, world modeling, sensory

processing, and value judgment together with a knowledge

database, as shown in figure 1. In the late 1980’s, the Eu-

ropean Commission funded a major research project called

ARCHON, which was focused on the problem of getting a

number of distinct expert systems to pool their expertise in

solving problems and diagnosing faults in several industrial

domains. ARCHON was recognized as one of the first real

industrial applications of MAS [13].

Fig. 1. Agent architecture

Sloman [14] introduced H-Cogaff, a human-like informa-

tion processing architecture, which contains many compo-

nents performing different functions all of which operate

concurrently and asynchronously. The H-Cogaff architec-

ture seems to represent a combination of the cognitive archi-

tecture and the MAS conceptual frameworks. As illustrated

in figure 2, Sloman’s architecture provides a framework

for describing different kinds of architectures and sub-

architectures, and which, to a first approximation, is based

on superimposing two sorts of distinctions between com-

ponents of the architecture: firstly the distinction between

perceptual, central and action components, and secondly

a distinction between types of components which evolved

at different stages and provide increasingly abstract and

flexible processing mechanisms within the virtual machine

[15]. The reactive components generate goal seeking reac-

tive behavior, whereas the middle layer components enable

decision making, planning, and deliberative behavior. The

modules of the third layer support monitoring, evaluation,

and control of the internal process in the lower layers.

Fig. 2. Human cognition and affect H-Cogaff architecture [14]

MAGIC is another example of a multi-agent system

realization of an intelligent fault diagnosis system developed

by a joint venture of several European universities and

companies [16]. The system aims at developing a general

purpose architecture and a set of tools to be used for the

detection and diagnosis of incipient or slowly develop-

ing faults in complex systems. The early identification of

potentially faulty conditions provides the key information

for the application of predictive maintenance regimes. The



Fig. 3. ICAM system architecture

distributed architecture for MAGIC is based on a Multi-

Agents/Multi-Level (MAML) concept. The idea is that

the task of the complex system’s diagnosis and operator

support is distributed over a number of intelligent agents

which perform their individual tasks nearly autonomously

and communicate via the MAGIC architecture. Such an

architecture can easily be distributed on existing monitoring

and control systems of large scale plants.

Having reviewed the different conceptual modeling

frameworks, it is our opinion that Sloman’s H-Cogaff

scheme is the best candidate, which would meet most of

the requirements of an ICAM system for complex process

plants. The architecture of the system and its functional

modules will be discussed in subsequent sections.

III. SYSTEM FUNCTIONAL DESCRIPTION AND

ARCHITECTURE

Figure 3 illustrates the proposed architecture of the sys-

tem, which consists of four information processing layers

and three vertical subsystems, namely, perception, central

processing, and action. The horizontal layers above the

distributed control system (DCS) contain semi-autonomous

agents that represent different levels of data abstraction

and information processing mechanisms of the system.

The middle two layers (i.e., the reactive and deliberative

layers) interact with the external environment via the DCS

and thus the industrial process by acquiring perceptual

inputs and generating actions. The perceptual and action

subsystems are divided into several layers of abstraction to

function effectively. This can be achieved, for example, by

categorizing observed events at several levels of abstraction,

and allowing planning agents to generate behavior (actions)

in a hierarchically organized manner.

The system layers interact with each other by means

of bottom-up activation and top-down execution. Bottom-

up activation occurs when a lower layer passes control to

a higher layer because it is not competent to deal with

the current situation. Top-down execution occurs when a

higher-level agent makes use of the functionalities provided

in a lower layer to achieve one of its goals. The basic

flow of control in the system begins when perceptual input

arrives at the lowest level in the architecture. If the reactive

layer can deal with this input then it will do so, otherwise,

bottom-up activation will occur and control will be passed

to the deliberative layer. If the deliberative layer can handle

the situation then it will do so, typically by making use of

top-down execution. Otherwise, it will pass control to the

meta-management layer to resolve any internal conflicts in

the architecture or notify the operator that it cannot do so.

In the remainder of the this section, the functionalities of



the agents in each layer will be discussed.

A. The Perception Subsystem

In order to tackle the problem of data explosion in

modern complex process plant, the perceptual subsystem

will process data in a hierarchical manner, and categorize

it into different levels of abstraction. The data stream

is processed serially by different agents, where the first

agent function is data acquisition and pre-processing. Gross

discrepancies such as outliers and missing data are detected

and removed by this agent. The data stream is then exposed

to further statistical processing to estimate variances and

detect changes in steady state. Such statistical information

is communicated to the central processing subsystem to

permit it to adapt to new situations. The next agent then

reconciles process data in accordance with steady state

conservation laws (e.g., material balance). The data is then

archived in a database by the database management system.

The last agent in the perceptual subsystem, the data fusion

agent, aggregates the data to optimally determine operation

critical variables. This will help the planning layer assess

the situation of the external environment and to make

appropriate decisions.

B. The Reactive Layer

Agents in this layer provide a direct response to events

that occur in the environment. When an abnormal event

occurs, several fault detection and isolation (FDI) agents

work concurrently and complimentarily to generate different

assessments. The integration of several FDI agents in the

system will result in a better performance, as suggested

by many FDI survey papers [1], [17], [18]. FDI basically

consists of two tasks, as shown in figure 4. The first task

is fault detection, which indicates that something is going

wrong in the plant. The determination of the exact location

of the failure is the fault isolation task. Three different FDI

techniques are being evaluated, namely, a directional parity

vector model-based FDI technique, a fuzzy signed directed

graph (SDG) model-based FDI technique, and a neuro-fuzzy

data history-based FDI technique. These approaches are

complementary in that they are based on entirely different

world views, namely an analytic model, a cause/effect net

and heuristic reasoning.

Fig. 4. Fault detection and isolation (FDI) scheme

The first FDI approach exploits the concept of general-

ized parity space (GPS) to generate a set of directional resid-

uals, from which process faults can be determined. When a

fault occurs, it will result in an activity of the parity vector

along certain directions or in certain subspaces. Therefore

the fault isolation task involves determining which prede-

fined direction the parity vector is most nearly aligned with.

The GPS concept was developed using the stable coprime

factorization framework [19], where any n × m proper

rational transfer function matrix P (s) can be expressed in

terms of stable left coprime factors Ñ(s), D̃(s), desired

control inputs ud, and the sensor outputs y as follows:

P (s) = D̃−1(s)Ñ(s) =
y(s)

ud(s)
(1)

which implies that

D̃(s)y(s)− Ñ(s)ud(s) = 0 (2)

Under ideal conditions, when the plant is linear, noise

and fault free, equation 2 holds. However, when a fault

happens, this equation is violated showing inconsistency

between actuator inputs and sensor outputs with respect to

the fault-free model. Hence a generalized parity vector p(s)
can be defined as

p(s) = J(s)[D̃(s)y(s)− Ñ(s)ud(s)] (3)

where J(s) is a transformation matrix that adds another

degree of freedom to achieve the desired FDI response

specifications. A systematic approach to calculate an op-

timal transformation matrix has been effectively developed,

enhancing the FDI properties and the scope in terms of the

number of faults that can be isolated [20]. Once the gen-

eralized parity vector is generated then its magnitude and

direction are compared to a threshold and direction respec-

tively to isolate process faults. New adaptive thresholding

schemes are under development, to make the approach more

robust to model inaccuracy and nonlinear effects. The fault

isolation assessment is then sent as a text message to the

deliberative layer for further processing.

A new fuzzy signed digraph (SDG) model-based FDI

technique is another approach being evaluated. Signed

digraphs, which has been widely used to model the

cause/effect behavior of process plants, consist of nodes rep-

resenting the process variables (and parameters) and signed

directed arcs representing the cause/effect relationship be-

tween these variables. Nodes assume values of (0), (+), (−)
representing nominal, above nominal, and below nominal

values respectively, whereas arc signs of (+1), (−1) in-

dicate the values of the cause/effect change in the same

or opposite direction. If a fault happens, process variables

deviate resulting in a set of symptoms, which constitutes

the pattern of this fault. In order to decrease the execution

time of a conventional SDG based FDI algorithm, an offline

fault diagnosis rule base will be developed from the SDG

process model, as suggested by Kramer [21]. The use of

a fuzzy representation of real-valued functions in the rule

base will reduce the granularity of the qualitative process



model, and will thus improve discrimination and decrease

the generation of spurious alarms [22]. Further investigation

is required to decide which inference technique will be

used (e.g., backward chaining, forward chaining, fuzzy

inference). This agent will send its fault isolation assessment

to the higher layer in case of process failure.

The third FDI project involves extending the adaptive

neuro-fuzzy inference system (ANFIS) methodology. AN-

FIS is a data driven modeling approach that combines the

reasoning capability of fuzzy logic and the learning capa-

bility of neural networks. System knowledge is represented

by rules and the membership of each of the input signals

are estimated using training data and a neural network

model. This step introduces nonlinearity in the estimated

weights for all the postulated rules. For each fuzzy rule,

the output is computed using a linear model of the input

signals. The strength of this approach lies in its ability to use

prior knowledge, and to update membership functions that

provide a better model for the desired output. This makes

the approach suitable for dealing with nonlinear processes

[23]. In order to evaluate this approach for fault detection

and isolation, we are considering with two possibilities: The

first is to use a two-stage FDI scheme, where the nonlinear

process is modeled using ANFIS and then a fuzzy inference

system isolates process faults. The other possibility would

be a single ANFIS stage, which is trained to isolate faults

directly by means of different faulty process training data

sets.

A model identification agent is incorporated in the re-

active layer, in order to improve the knowledge available

to the FDI agents about the external environment (i.e.,

the plant), This agent will exploit an off-the-shelf model

identification package to produce a multi-variable model,

which will predict changes in process variables to estimate

new process parameters (learning task), enhance the fault

isolation task, and compensate for faulty sensor signals

(estimation task). The different agent tasks will be decided

by the deliberative layer, depending on the situation. For

instance, if the operating point of the plant changes to meet

new required product quality, the deliberative layer will

use the modeling agent to estimate the new process model

parameters for further processing.

An optimization agent will be embedded in the reactive

layer to make the best use of available equipment and raw

materials. The agent will receive product quality plans and

process operation constraints from the deliberative layer,

then the agent will formulate a new optimization problem

to solve and come up with the optimal raw material recipe

to meet the new product quality. The new recipe is then sent

to the DCS system in the form of set-points and parameters

for further execution. The Optimizer may play the same role

for faulty process situations, whenever possible.

The integration of different FDI agent assessments in a

collaborative problem-solving framework, and the interac-

tion between the different agents in the architecture, neces-

sitates the use of a mechanism to achieve such goals. One

approach would be a direct interaction between the system

agents according to their data flow requirements. Direct

interaction promotes the use of private communication pro-

tocols. However, this approach is inflexible because it does

not address the dynamic scalability of the system in terms

of adding new agents or changing the internal architecture

of any of the system agents. Another approach is to use an

indirect and anonymous communication among agents via

an an intermediary such as a blackboard repository [24].

A blackboard agent will be embedded in the reactive layer

to manage the interaction and communication among its

agents and the higher layers in the architecture to achieve

the utmost flexibility. The agent consists of the blackboard

itself, which is a global data repository containing input

data, partial and complete solutions, plans, and other data

organized in a hierarchy to address the different levels

of information abstractions in the architecture. A control

mechanism, will make runtime decisions about accessing

the data in the blackboard. The blackboard agent allows

other agents to deposit their assessments, and notify them

if some useful information are available or not. This would

meet the requirements of concurrency and autonomy for

high system performance.

C. The Deliberative Layer

Proactive behavior is achieved in the system in its deliber-

ative layer, which is responsible for governing the system’s

actions in normal and faulty circumstances. Planning in

this layer will not attempt to work in a vacuum. Rather, it

will employ a library of pre-specified plans and a problem

solving mechanism. There are several problem solving and

inference paradigms that may be embedded in this layer

of the architecture, such as rule-based reasoning, model-

based reasoning, and case-based reasoning (CBR). Case-

based reasoning provides a wide range of advantages over

other paradigms. For instance, CBR can quickly propose

solutions to problems that are not well defined, avoiding the

time necessary to derive those answers from scratch, thus

more easily meeting real-time requirements. CBR also helps

process operators to focus their reasoning on important parts

of a problem by pointing out what features of a problem are

the crucial ones. In fact, CBR may warn of the potential for

problems that have occurred in the past, alerting the operator

to take actions to avoid repeating past mistakes [25].

CBR suggests a model of reasoning that incorporates

problem solving, understanding, and learning, and integrates

it all with episodic memory processes. It actually solves

new problems by adapting previously successful solutions to

similar problems. To employ all these capabilities efficiently

in problem solving, a CBR system typically consists of the

following reasoning modules, as depicted in figure 5:

1) Indexing: The case indices are crucial features for

characterizing an event and determining how cases are

stored in the case memory. The purpose of indexing

is to allow a cased-based reasoner to retrieve one or

more cases that are similar to a new problem.

2) Retrieval: The indices of a new problem are used to

retrieve similar cases from the case memory. Efficient



Fig. 5. Scheme of case-based reasoning systems

case retrieval is especially crucial in time-critical

situations and when the case memory is large.

3) Adaptation: Since the retrieved cases may not exactly

solve the new problem, the solutions from these cases

need to be modified and adapted to the new problem.

4) Test: The proposed solution will be tried out to see if

it really solves the problem. In the process industry,

there are two ways of trying out a solution: in-plant

implementation and simulation. For safety reasons,

simulation is usually preferred if simulation models

are available.

5) Storage: If the new problem is considered to be

conceptually different from the existing cases, a new

case needs to be created. The new case needs to

be properly indexed with the proven explanation and

solution as its content.

The deliberative layer supervises the system through two

CBR agents. The first agent is the main supervisor, which

manages the system during normal operation circumstances.

The agent’s case library contains product quality profiles,

their pre-specified raw material recipes, and the associated

process operating conditions. When a certain product spec-

ification is required, the main supervisory agent retrieves

a set of cases that best match the required attributes and

quality specifications. If the matching process is successful,

the plan is sent to the action subsystem for execution. If

not, the closest matching case is chosen and adapted by

using the model-based optimization, in which the main

supervisory agent collaborates with modeling, simulation

and optimization agents to generate the optimal recipe

and operating conditions (e.g., pressure and temperature).

The plan is sent to the user interface layer for further

modifications by process operators if needed. Once the plan

has been approved then it is sent to the action subsystem for

execution. The actual quality specifications are monitored

by the main supervisory agent, which will add the plan

to its “good” case library should the actual and desired

specifications match, or to the “bad” repository if they do

not. This behavioral paradigm was central to the intelligent

processing architecture proposed in [5].

The other CBR agent acts as a backup supervisory

agent to manage the system in case of faulty situations.

Pre-computed fault accommodation plans are stored in

this agent’s case library. These plans consist of schemes

for sensor/actuator reconfiguration and controller tun-

ing/restructuring, as well as fault propagation scenarios and

recommended predictive maintenance procedures. When

a process fault happens, the backup agent receives fault

assessments for the different FDI agents in the reactive

layer. Based on such assessments, the agent retrieves the

most closely matching case from its library. Consequently,

it alarms the user interface agent about the fault, its possible

causes, and recommended mitigating actions for operator

feedback and approval. The backup supervisory agent may

interfere directly in critical situations to prevent the system

performance from deteriorating excessively and to keep

it in an acceptable state. Collaboration with the main

supervisor may also occur to preserve the product quality

at an acceptable level, if possible. This collaboration takes

place through a blackboard agent, which also manages the

interaction between the deliberative layer and the others.

D. The Meta-management Layer

This self reflective layer provides the ability to monitor,

evaluate, and control other agents in the architecture. For

example, the deliberative layer is partly driven by decisions

made by the reactive layer and perception subsystem, so it

may unexpectedly acquire inconsistent information or goals.

The same situation may occur in the action subsystem,

which may not be able to meet the plan time frames

sent by the deliberative layer. The meta-management agent

can notice and categorize such situations, and perhaps

through deliberation or observation over an extended time

period develop a strategy to deal with these situations.

Furthermore, the meta-management agent coordinates other

agents so as to make the whole system performance more

robust and coherent. It determines when other agents have

completed their work, what agent to invoke next, and

assesses credibility of each agent’s behavior by monitoring

their internal states.

E. The User Interface Layer

Process operators can interact with the system through

its user interface layer, which works concurrently at the

top of the architecture. The user interface layer receives

different types of information from the different layers and

subsystems, namely:

1) faulty components and their possible causes based on

the different FDI agents’ assessments,



2) fault propagation scenarios based on the reasoning of

the SDG based FDI agent,

3) system recommendations in faulty situations such

as instructions for control loop restructuring/tuning,

predictive maintenance plans, and other mitigating

measures,

4) product quality specifications and associated optimal

raw material recipes, and

5) internal system diagnostics and other utility tasks

such as process modeling and intelligent data trend

monitoring facilities.

Its most important obligations are to present process-critical

information in a timely manner, and prevent data- and work-

overload for the operator.

F. The Action Subsystem

Plans which are sent by the deliberative layer are ex-

ecuted by the action subsystem. The action subsystem

consists of hierarchically organized scheduling and execu-

tion agents. The main scheduling agent decomposes main

plans into sub-plans that have shorter time frames. This

results in better execution performance by alleviating the

excessive computational burden on the main scheduling

agent. The sub-plans are further decomposed by a secondary

scheduling agent to simpler tasks in accord with the sub-

processes in the plant. Finally, the subtasks are performed

by their corresponding agents and the task outcomes are

communicated to the DCS for final execution.

IV. SYSTEM BEHAVIORAL FORMALISM

Rigorous coordination of the behavior of the ICAM

system layers and agents is crucial to success. A sound

coordination scheme will allow us to assess its performance,

and to evaluate how the internal agents of the system

interact when a certain internal/external event occurs. Fur-

thermore, it permits system behavior modeling to simulate

the most critical design characteristics such as concurrency,

autonomy, task distribution and parallelism, in order to

guarantee robust and coherent performance. To address this

issue, A coherent coordination scheme has been developed

based on the concept of behavioral hierarchy [26]. Petri

nets constitute a graphical and mathematical modeling tool

for describing and studying systems with such critical

characteristics [27].

A Petri net is a particular kind of directed graph, to-

gether with an initial state called the initial marking. The

underlying graph of a Petri net is a directed, weighted,

bipartite graph consisting of two kinds of nodes, called

places and transitions, where arcs are either from a place to

a transition or from a transition to a place. In a graphical

representation, places are drawn as circles, transitions as

bars or boxes. Arcs are labeled with their weights (positive

integers), where a k-weighted arc can be represented by

the set of k parallel arcs. A marking (state) assigns to each

place a nonnegative integer, which represents the number of

tokens in that place. Tokens in a certain place may indicate

that a number of data items or resources are available.

A transition without any input place is called a source

transition, and one without any output place is called a

sink transition. Figure 6 illustrates the different parts of a

Petri net for an arbitrary concurrent system. The parallel or

concurrent activities, which are represented by transitions

t2 and t3, begin at the firing of transition t1 and end with

the firing of transition t4. Each place in the net has one

incoming arc and one outgoing arc. Tokens in places P1

and P2 represent the initial state of the net, and indicate

that there is one available resource for each place. If this

is sufficient the concurrent activities can proceed after t1
fires.

Fig. 6. Scheme of an arbitrary Petri net

A major strength of Petri nets is their support for analysis

of critical properties and problems associated with con-

current systems. Two types of properties can be studied

with a Petri net model; those which depend on the initial

marking, and those which are independent of the initial

marking. The former type of properties is referred to as

marking-dependant or behavioral properties such as teach-

ability, liveness, fairness, and others. The second type is

called structural properties, which depend on the topological

structure of the Petri net, namely, controllability, conserva-

tiveness, consistency, and others. Since we are designing

a real-time dynamic system, the concept of time becomes

crucial for performance evaluation and scheduling when

modeling such systems. The timed Petri net introduces time

delays associated with transitions and/or places in their net

models to address real-time performance. The timed Petri

net concept will be used to model the behavior of the

architecture of the intelligent AEM system.

V. PROJECT STATUS AND FUTURE WORK

A joint venture between several Atlantic Canadian univer-

sities, the National Research Council of Canada, and local

and national companies was established in order to advance

wireless sensor technology in the oil and gas industries and

to assess the feasibility of an intelligent control and asset

management system built on a wireless sensor network. As

part of this joint venture, and as the leader in developing

the ICAM system, we have formed a task force of five

graduate students at the University of New Brunswick to

address the integration of control and asset management for

a large process industry application. Three team members

were assigned the task of developing, testing and evaluating



the different proposed FDI techniques. The FDI agents

development task has successfully met several major goals,

such as quick detection and isolation, isolability, robustness

and disturbance decoupling. The task of evaluating the

different data processing techniques which will be incor-

porated in the perception subsystem is assigned to another

of the team members, who is presently focussing on data

preconditioning and reconciliation. A rigorous review of

the available system architectures and their characteristics

has been done so as to match them with proposed system

requirements. Starting in January 2004, the project has

progressed well. Further steps are planned to implement

a successful ICAM system prototype, namely:

1) refinement of the FDI agents to address topics such

as adaptability, explanation and reasoning capability,

and to meet real-time requirements,

2) development of appropriate data pre-processing, rec-

onciliation, and aggregation techniques associated

with the perception subsystem,

3) consultation with industrial and automation partner

companies to produce final specifications and doc-

umentation for the architectural level and execution

platform in order to meet industry standards,

4) design and modeling of the internal system coordina-

tor using the Petri net approach,

5) designing the two CBR agents and the pre-computed

fault accommodation plans, and

6) modeling the pilot plant which will be used to validate

the system performance.

We believe that the successful design and development of

the proposed system will lay a corner stone in the area of

complex intelligent system development, and will open the

doors for other applications such as distributed power plant

management.

VI. ACKNOWLEDGEMENT

This project is supported by Atlantic Canada Opportuni-

ties Agency (ACOA) under the Atlantic Innovation Fund

(AIF) program. The authors gratefully acknowledge that

support and the collaboration of the University College

of Cape Breton (UCCB), the National Research Council

(NRC) of Canada, and the College of the North Atlantic

(CNA). The authors also acknowledge the support of Natu-

ral Sciences and Engineering Research Council of Canada

(NSERC) for funding the second author’s research.

REFERENCES

[1] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, and K. Yin,
“A review of process fault detection and diagnosis part 1, 2, 3,”
Computer & Chemical Engineering, vol. 27, no. 3, pp. 293–346,
2003.

[2] R. J. Patton, “Fault-tolerant control systems: The 1997 situation,”
in IFAC Symposium on Fault Detection Supervision and Safety for
Technical Processes, R. J. Patton and J. Chen, Eds., vol. 3. Kingston
Upon Hull, UK: IFAC, August 1997, pp. 1033–1054.

[3] P. M. Frank and B. Köppen-Seliger, “New developments using AI in
fault diagnosis,” Engineering Applications of Artificial Intelligence,
vol. 10, no. 1, pp. 3–14, 1997.

[4] H. E. Rauch, “Fault diagnosis and control reconfiguation,” IEEE
Control Systems Magazine, June 1994.

[5] J. H. Taylor, L. P. Harris, P. K. Houpt, H.-P. Wang, and E. S. Russell,
“Intelligent processing of materials: Control of induction-coupled
plasma deposition,” in Advanced Sensing, Modelling, and Control
of Materials Processing. Warrendale, PA: Ed. by E. F. Matthys and
B. Kushner, TMS Publications, 1991.

[6] R. L. Moore and M. Kramer, “Expert systems in online process
control,” in Proceedings of the 3rd international conference on
chemical process control, Asilomar, California, 1986.

[7] J. Liebowitz, The Handbook Of Applied Expert Systems. Boca
Raton, FL: CRC Press, 1998.

[8] S. H. Liao, “Expert systems: Methodologies and applications, a
decade review from 1995 to 2004,” Expert systems with applications,
pp. 1–11, 2004.

[9] A. Newell, Unified theories of cognition. Cambridge, MA: Harvard
University Press, 1990.

[10] F. E. Ritter, N. R. Shadbolt, D. Elliman, R. Young, F. Gobet,
and G. D. Baxter, “Techniques for modeling human performance
in synthetic environ-ments: A supplementary review,” Human Sys-
tems Information Analysis Center (HSIAC), formerly known as the
Crew System Ergonomics Information Analysis Center (CSERIAC),
Wright-Patterson Air Force Base, OH, Tech. Rep., 2003.

[11] E. Durfee and T. Montgomery, “MICE: A flexible test bed for
intelligent coordination experiments,” in Proceedings of the 9th
workshop on distributed AI, Rosario, Washington, September 1989.

[12] M. J. Wooldridge, An introduction to multiagent systems. Chichester,
England: Wiley, 2002.

[13] N. R. Jennings and E. M. Mamdani, “Using ARCHON to develop
real–world DAI applications parts 1, 2, 3,” IEEE Expert, vol. 11,
no. 6, pp. 64–86, 1996.

[14] A. Sloman and M. Scheutz, “Framework for comparing agent ar-
chitectures,” in Proceedings of the UK Workshop on Computational
Intelligence, Birmingham, UK, September 2002.

[15] A. Sloman, “Varieties of affect and the COGAFF architecture
schema,” in proceedings of symposium on Emotions, Cognition, and
Affective Computing at the AISB’01 convention, York, UK, 2001.

[16] B. Köppen-Seliger, T. Marcu, M. Capobianco, S. Gentil, M. Albert,
and S. Latzel, “MAGIC: An integrated approach for diagnostic data
management and operator support,” in Proceedings of the 5th IFAC
Symposium Fault Detection, Supervision and Safety of Technical
Processes - SAFEPROCESS05, Washington D.C., 2003.

[17] J. Gertler, “Survey of model based failure detction and isolation in
complex plants,” IEEE Conteol Systems Magazine, December 1988.

[18] R. Isermann and P. Balle, “Trends in applications of model based
fault detection and isolation and diagnosis of technical processes,”
Control Engineering Practice, vol. 5, no. 5, pp. 709–719, 1997.

[19] N. Viswanadham, J. H. Taylor, and E. C. Luce, “A frequency
domain approach to failure detection and isolation with application to
GE21 turbine engine control system,” Control Theory and Advanced
Technology, vol. 3, no. 1, pp. 45–72, 1987.

[20] M. Omana and J. H. Taylor, “Robust fault detection and isolation
using a parity equation implementation of directional residuals,” in
IEEE Advanced Process Control Applications for Industry Workshop
(APC2005), Vancouver, Canada, May 2005.

[21] M. Kramer and B. Palowitch, “Rule based approach to fault diagnosis
using the signed directed graph,” AIChE Journal, vol. 33, no. 7, pp.
1067–1078, 1987.

[22] E. Tarifa and N. Scenna, “Fault diagnosis, directed graphs, and fuzzy
logic,” Computer and Chemical Engineering, vol. 21, pp. S649–S654,
1977.

[23] S. R. Jang, “ANFIS adaptive network based fuzzy inference system,”
IEEE transaction on systems, man, and cybernetics, vol. 23, no. 3,
pp. 665–685, 1993.

[24] D. D. Corkill, “Collaborating Software: Blackboard and Multi-
Agent Systems & the Future,” in Proceedings of the International
Lisp Conference, New York, New York, October 2003. [Online].
Available: http://mas.cs.umass.edu/paper/265

[25] D. B. Leake, Case-based reasoning: experiences, lessons and future
directions. Menlo Park, California: AAAI Press/MIT Press, 1996.

[26] J. H. Taylor and A. F. Sayda, “Intelligent information, monitoring,
and control technology for industrial process applications,” in The
15th International Conference on Flexible Automation and Intelligent
Manufacturing (FAIM), Bilbao, Spain, July 2005.

[27] T. Murata, “Petri nets: properties, analysis, and applications,” Pro-
ceedings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.


