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Abstract— This three-part paper thoroughly addresses the
design and development of multi-agent system for asset man-
agement for the petroleum industry, which is crucial for
profitable oil and gas facilities operations and maintenance.
A research project was initiated to study the feasibility of an
intelligent asset management system. Having proposed a con-
ceptual model, architecture, and implementation plan for such
a system in previous work [1], [2], [3], defined its autonomy,
communications, and artificial intelligence (AI) requirements
[4], [5], and initiated the preliminary design of a simple system
prototype [6], we are extending the build of a system prototype
and simulate it in real-time to validate its logical behavior
in normal and abnormal process situations and analyze its
performance.

I. INTRODUCTION
Asset management and control of modern process plants

involves many tasks of different time-scales and complexity,
which makes the multi-agent system (MAS) approach a
suitable framework to design a system that can manage such
complex problem. Many research studies proposed different
combinations of systems theoretic and artificial intelligence
techniques to tackle the asset management problem, and
delineated the requirements of such system [7], [8], [9].
Several research programs addressed the automation of
asset management in large complex systems, namely the
Pilots Associate (PA) program sponsored by the Defense
Advanced Research Projects Agency (DARPA) [10], [11],
the Rotorcraft Pilots Associate (RPA) program funded by
the US army [12], MAGIC (Multi-Agent-Based Diagnostic
Data Acquisition and Management in Complex Systems)
developed by a joint venture of several European universities
and companies [13], ISHM (Integrated System Health Man-
agement) project developed by NASA for space applications
[14], AEGIS (Abnormal Event Guidance and Information
System) developed by the Honeywell led Abnormal Situa-
tion Management (ASM) Consortium in the United States
[15], and CHEM-CSS (Advanced Decision Support Sys-
tem for Chemical/Petrochemical Manufacturing Processes)
developed by the European Community (EC) Intelligent
Manufacturing Systems (IMS) consortium [16].

Among all projects, AEGIS is the most relevant. It pro-
poses a comprehensive asset management framework from
an industrial view point. AEGIS built on the experience
of military aviation research projects, especially the Pilots
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Associate (PA) and the Rotorcraft Pilots Associate (RPA)
[17]. Although the 12 year old research program has achieved
several goals and developed a well established abnormal situ-
ation management awareness and culture, it did not address
the automation of massive process data interpretation and
process fault diagnosis and accommodation, which would be
aimed to minimize the workload on process operators [18].

A new asset management research project, PAWS
(Petroleum Applications of Wireless Systems), was initiated
by a joint venture of Atlantic Canadian universities and the
National Research Council of Canada (NRC) for oil and gas
applications [1], [19], [2], [20], [21], [3], [22], [23], [24],
[25], [4], [26], [5], [27], [6]. The PAWS project scope is
to develop a control and information management system
which consists of two subsystems. The first subsystem is a
wireless sensor network which will alleviate the need for data
cables in offshore oil rigs and onshore refineries, and improve
flexibility for adding and reconfiguring sensors. Wireless
sensors will be used where permitted by safety. The second
subsystem intelligently manages the massive data flow from
oil rigs and interprets it so as to help operators take more
appropriate decisions during abnormal events and, through
intelligent control, improve process economics. This effort
is building now on the AEGIS project experiences.

As part of the PAWS project, our team is developing
an intelligent control and asset management system (ICAM
system) in which several milestones have been achieved. The
conceptual model of an automated asset management system,
its architecture, and its behavioral model have been defined
[1], [2]. An implementation plan for such system has been
prepared, and the appropriate development platforms have
been chosen [3]. Furthermore, a general ICAM system agent-
based structure and its communication and the artificial in-
telligence requirements were defined [4], [5]. A preliminary
ICAM system prototype, in which few functionalities were
embedded, was designed and validated [6]. This three-part
paper builds on the previous work and extends the design
and development of a real-time ICAM system prototype.
Furthermore, a real time simulation experiment is conducted
to verify the system design and validate its performance
(refer to part 2 of this paper). A thorough performance
analysis is also done in real time to the ICAM system
prototype (refer to part 3 of this paper).

The first-part paper is organized as follows: First, we
describe the ICAM system prototype in section 2. Then we
discuss the design of the middleware layer, the supervisory
agent layer, and the reactive agents layer of the ICAM
system prototype in sections 3, 4, and 5 respectively. Finally
we suggest a deployment scheme for the prototype, which



facilitates its validation in real time in section 6.

II. THE ICAM SYSTEM PROTOTYPE

A prototype has been developed in order to have the
ICAM system requirements deployed in a real-world system.
Figure 1 portrays the simplified ICAM system prototype.
Real-time data from the external plant or a simulation model
are received by the statistical data monitoring agent, which
preprocesses the data by removing undesired discrepancies
such as outliers and missing data. Processed data are stored
in a real-time database for logging and other purposes, and is
then sent to the fault detection, isolation, and accommodation
(FDIA) and model ID agents for further processing. When
the data statistical preprocessor detects a change in the
operating point or an abnormal change in data, it alerts
the model ID and FDIA agents to further identify the
nature of the data change. If the change is in the process
operating point, the FDIA agent asks the model ID agent
to update the process model parameters. If the change is a
process fault (i.e., a sensor or actuator fault), the FDIA agent
detects the nature of the fault and notifies the ICAM system
supervisor for further processing. If the supervisor decides
that a fault can be accommodated, it notifies the FDIA agent
to do so. For every event that occurs, the supervisor is
notified, which in turn monitors and assesses the logical
behavior of the system. Processed data at every agent are
sent to an operator interface, which allows operators make
the appropriate decision depending on the plant situation.
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Fig. 1. ICAM system prototype

The ICAM system prototype design is a complex task, in
which the following system layers are developed:
• the middleware layer which provides data communica-

tion between reactive agents and event communications
with the supervisory agent,

• the artificial intelligence (AI) layer (i.e., the supervisory
agent) which coordinates the behavior of the reactive
agents to achieve robust performance against the exter-
nal environment dynamic changes, and

• the reactive agents layer, which represent the different
system computational and data processing functionali-
ties (e.g., fault detection and isolation, process model-
ing, etc...). Reactive agents are implemented as MATLAB
scripts for ease of development and design.

The design of the different layers and agents of the ICAM
system prototype is discussed in the following sections.

III. THE MIDDLEWARE LAYER DESIGN

The remote memory access (RMA) communication ap-
proach, which is part of the message passing interface (MPI)
communication library, was chosen to address data commu-
nications between the reactive agents [4], [5]. The RMA
protocol separates the communication of data from sender
to receiver from the synchronization of sender with receiver,
divides into two categories. The first one is active target
communication, where data are moved from the memory of
one process to the memory of another, and both are explicitly
involved in the communication. This communication pattern
is similar to message passing, except that all the data transfer
arguments are provided by one process, and the second
process only participates in the synchronization. The second
category is passive target communication, where data are
moved from the memory of one process to the memory of
another, and only the origin process is explicitly involved
in the transfer. This communication paradigm is closest to a
shared memory model, where shared data can be accessed
by all processes, irrespective of location [28].

In active target communication, a target window can
be accessed by RMA operations only within an exposure
epoch. Such an epoch is started and completed by RMA
synchronization calls executed by the target process. Distinct
exposure epochs at a process on the same memory window
must be disjoint, but such an exposure epoch may overlap
with exposure epochs on other windows or with access
epochs for the same or other windows arguments [28]. There
is a one-to-one matching between access epochs at origin
processes and exposure epochs on target processes. RMA
operations issued by an origin process for a target window
will access that target window during the same exposure
epoch if and only if they were issued during the same access
epoch. In passive target communication the target process
does not execute RMA synchronization calls, and there is
no concept of an exposure epoch. We have chosen the active
target communication RMA communication type to achieve
high reliability.

Four RMA data communication channels are designed
to transfer raw data, processed data, fault accommodation
parameters and plant state space model to the corresponding
agents respectively. Figure 2 illustrates the general synchro-
nization pattern for the second MPI data channel. Once
data have been preprocessed by the statistical agent, it is
converted to the MPI type to prepare it for communication
on the second MPI channel. An access epoch is started
at the statistical processing agent to synchronize with the
model ID and FDIA agents. If the model ID and FDIA
agents have started their exposure epochs, then the processed
data message is transferred to their memory windows. Once
the communication on this MPI channel is completed at
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the statistical processing agent, the exposure epochs at the
target agents are finalized, and the processed data message is
converted to the MATLAB type again for further processing.
The other MPI data channels follow the same logic, in which
the data conversion and transfer tasks are the same.

When it comes to the communications between the reac-
tive agents and the supervisory agent, the remote procedure
call (RPC) paradigm is used to achieve looser connection
with supervisory agent. RPC is a client/server infrastructure
that increases the interoperability, portability, and flexibility
of an application by allowing the application to be dis-
tributed over multiple heterogeneous platforms. It reduces
the complexity of developing applications that span multiple
operating systems and network protocols by insulating the
application developer from the details of the various operat-
ing system and network interfaces.

The RPC communication part of the ICAM system proto-
type was designed so that the G2 supervisory agent acts as
a client for the reactive agents (i.e., servers). Every reactive
agent has an update procedure, which can be called remotely
by the supervisory agent. So when the G2 supervisory agent
wants to update the state of each agent in its knowledge base,
it sends a request to the specified reactive agent and passes
a structure object to the reactive agent. The structure object
represents the reactive agent state, which contains attributes
about the reactive agent’s MPI and G2 communication chan-
nels, and its internal decisions and response to the external
environment.

IV. THE SUPERVISORY AGENT DESIGN

The supervisory agent is implemented based on the G2
real time expert system shell, which codifies the ICAM sys-
tem internal and external behavior in its knowledge base [29].
The supervisory agent contains an ontology that represents
the different agents of the ICAM system prototype. Each
agent in the ontology has its own attributes which repre-

sent the agent technical characteristics and methods which
represent the agent’s behavior. The ICAM system prototype
is represented as a logical connection of the corresponding
reactive agents, as illustrated in figure 4. Each reactive agent
has two connections; the first is the data MPI connection,
and the second is the G2 connection with the supervisory
agent. The META Agent object, which encapsulates the
supervisory knowledge base of the ICAM system prototype,
is a representation of the supervisory agent. The ENV Agent
object represents the pilot plant model agent, the STAT
Agent object represents the statistical preprocessing agent.
Likewise, the M-ID Agent and PSV Agent objects represent
the model identification agent and the FDIA agent, which
exploits the parity space vector (PSV) FDI approach [30],
[19], [23], [31], [26]. The attributes of each reactive agent
represent the MPI and G2 connections characteristics, the
reactive agent internal state, and its response to changes in
the pilot plant (i.e., the external environment).

The attributes are updated by means of four rules which
fire asynchronously every one second, after which a structure
object is sent to the actual reactive agent to update it. The
structure object acts as a two-way vehicle, which has the
decisions from the supervisory agent and the internal state
of the reactive agent. Once the attributes are updated, the
supervisory agent reasons about the newly updated values
and generates new decisions depending on the current inter-
nal state of the reactive agent and its response to the pilot
plant current dynamic situations. The master rule base, which
manages the ICAM system prototype, is embedded in the
META Agent object.
G2 Workspace: ICAM-SYSTEM-SCHEMATIC Wed Nov 07 08:10:34 2007

Fig. 4. ICAM system prototype representation in the G2 supervisory agent

Since the supervisory agent of the ICAM system coor-
dinates its internal and external behavior, it is crucial to
carefully design the rule-base of the supervisory agent to
achieve robust system performance. The rule-base codifies
the desired system behavior in response to external environ-
ment dynamic changes and to process operator interactions.
Figure 3 illustrates the ICAM system prototype event se-
quence diagram, which is embedded in the supervisory agent
rule-base. The rule-base design process is in its preliminary
stage; it will be further developed to address more complex
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Fig. 3. ICAM system prototype event sequence

situations in future work. The ICAM system supervisory
agent starts up the other reactive agents (i.e., event # 1),
which are implemented as MATLAB functions and scripts for
ease of development and debugging [5].

If the FDI agent or the statistical pre-processing agents
do not have any process model (event # 2), they report their
status to the supervisory agent, which, in turn, commands
the statistical pre-processor to check if the external plant
is in steady state (event # 3). If the external plant is in a
steady state, the supervisory agent asks the low level control
system to apply a small pseudo random binary signal (PRBS)
for a specified period of time ∆t = 300s (event # 4). The
model ID agent collects process data during the application
of the PRBS signal. Once the low level control system flags
back the end of PRBS signal application to the supervisory
agent (event # 5), the supervisor flags to the model ID agent
to estimate a new process model (event # 6), and informs
the statistical pre-processing and the FDIA agents that a
new model is being estimated. If the model was estimated
successfully, the supervisory agent informs other agents that

a new model is available to be updated (event # 7).
The estimated model is then sent to the appropriate agents

(event # 8), which, in turn, report the model reception
status back to the supervisory agent. The supervisor then
requests that the FDIA agent design the FDI filter based
on the received process model (event # 9). The FDIA agent
starts monitoring the external process for sensor and actuator
faults (event # 10) [23], [26]. If the FDIA agent detects a
fault in the plant, the fault location, type, time, size and
other information are reported back to the supervisor for
further processing (event # 11). In the case of a sensor
fault, the FDIA agent will also recommend the appropriate
accommodation (correction) (event # 12) [27]. The sensor
accommodation status is reported continuously to the su-
pervisory agent (event # 13), which terminates the sensor
accommodation task if the sensor has been fixed (event #
14).

V. DESIGN OF REACTIVE AGENTS

The simplified ICAM system prototype consists of four
reactive agents, namely, the pilot plant simulation agent, the



data statistical preprocessing agent, the model identification
agent, and the FDIA agent, whose design is discussed in the
following sections. The interaction of the supervisory agent
with the reactive agents are indicated on their flow charts by
the event numbers, which have been discussed in the previous
section (refer to figure 3).

A. The pilot plant agent design
The pilot plant model represents an oil production facility,

which separates oil well fluids into crude oil, sales gas,
and water. The simulation model basically consists of two
processes, as illustrated in figure 5. The first is a two-phase
separator in which hydrocarbon fluids from oil wells are sep-
arated into two phases to remove as much light hydrocarbon
gases as possible. The produced liquid is then pumped to the
three-phase separator (i.e., the second process), where water
and solids are separated from oil. The produced oil is then
pumped out and sold to refineries and petrochemical plants if
it meets the required specifications. Gas is processed further
and sent as sales gas.
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The two separation processes of the simulation model are
controlled to maintain the operating point at its nominal
value, and to minimize the effect of disturbances on the
produced oil quality. As shown in figure 5, the first separation
process is controlled by two PI controller loops. In the first
loop, LCL1, the liquid level is maintained by manipulating
the liquid outflow valve. The second loop, PCL1, controls
the pressure inside the two-phase separator by manipulating
the amount of the gas discharge. The second separation
process has three PI controller loops. An interface level
PI controller, LCL2, maintains the height of the oil/water
interface by manipulating the water dump valve. The oil level
is controlled by the second PI controller, LCL3, through the
oil discharge valve, and the vessel pressure is maintained
constant by the third PI loop, PCL2 [32].

The plant ordinary differential equation (ODE) model was
simulated in real time every δt = 100 milliseconds using
the fixed-step first-order Euler ODE solver. Ten sensor and
actuator faults were embedded in the plant model to validate
the ICAM system performance and logical behavior during
faulty situations. Figure 6 illustrates the flow chart of the
pilot plant simulation model agent. After the supervisory
agent starts up the plant agent, the plant agent initializes
its MPI and G2 communication links, and it enters in a wait

loop till it receives a valid scenario to run. Four scenarios
are embedded in the plant agent: the first is the default
scenario which runs the plant at its nominal operating point;
the second scenario allows the set points of the plant to be
changed from the nominal operating point; the third scenario
applies a disturbance to the plant; and the final scenario
simulates the plant during sensor and actuator faults.

The four scenarios add richness to the plant agent and
facilitate demonstrating the performance and logical behavior
analysis of the ICAM system prototype during different
situations. Once the specified scenario is chosen to run, the
agent starts the simulation and sends raw data messages
to the statistical pre-processing agent. The capability of
applying a small PRBS signal is incorporated in the plant
agent for model identification purpose. If the plant agent
receives a request from the supervisory agent to apply PRBS
signals (event # 4), then the plant agent applies a PRBS
signal to each plant input for a time period of TID = 300
second, and flags back to the supervisory agent the end of
PRBS signal application flag (event # 5).
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Fig. 6. The pilot plant simulation agent flow chart

B. The statistical pre-processing agent design
Figure 7 illustrates the flow chart of the data statistical

pre-processing agent flow chart, where the agent is started
up by the supervisory agent (event # 1), and its G2 and
MPI communication links are initialized. Once the statistical
preprocessor agent receives raw data from the plant agent,



it stores it in a data window for further processing. If
the agent receives a request from the supervisory agent to
check the steady state status of the plant agent (event #
3), it checks the steady state and report the result back to
the supervisory agent. The statistical pre-processing agent
informs the supervisory agent that it does not have any plant
model after its startup (event # 2).

If there is a new plant model available, the supervisory
agent informs the statistical pre-processing agent to update
the plant model (event # 7). The agent then removes missing
data and outliers by exploiting the median absolute deviation
algorithm [33]. The data are then reconciled according to
a pre-specified material balance for quality control (this
functionality may be implemented in future work), and is
sent to other agents for further processing. The processed
data are also sent to a graphic user interface (GUI) agent to
allow plant operators to interact with processed data (e.g.,
zoom, store, and plot the data) in a friendly manner. Should
the statistical pre-processing agent fail internally, it reports
its failure mode status to the supervisory agent for further
actions. Internal failure could happen during sensor/actuator
faults, which leads to an ill-posed optimization problem to
solve in the data reconciliation task (to be implemented in
future work).
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C. The model identification agent design

The model ID agent estimates the multivariable plant
model by using the subspace method, which uses the canon-
ical variable algorithm (CVA) in its singular value decompo-
sition stage [34], [35], [36]. Figure 8 illustrates the flow chart
of the model identification agent, where the agent is started
up by the supervisory agent (event # 1). The model ID agent
then initializes its own MPI and G2 communication links.
The agent stays in an idle state, unless the supervisory agent
informs it that a PRBS signal is being applied by the pilot
plant simulation agent (event # 4). Consequently, the agent
starts receiving processed data from the statistical processing
agent.

After the end of the PRBS signal application (event #
5), the supervisory agent informs that model ID agent to
estimate a new model (event # 6). If the plant model
estimation is successful, the model is sent to the statistical
processing and the FDIA agents for further processing (event
# 8). If not, the estimated model diagnostics are updated and
sent to the supervisory agent to take the appropriate decision.
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D. The fault detection, isolation, and accommodation agent
design

The FDI agent exploits the generalized parity space (GPS)
to generate a set of directional residuals, from which process
faults can be determined [30], [19], [23], [31], [26], [27].



After the supervisory agent starts up the FDIA agent (event
# 1), it initializes it G2 and MPI communication links [27],
as shown in figure 9. If the FDIA agent has no plant model, it
reports that back to the supervisory agent for further actions
(event # 2). When a new plant model is available (event # 7),
the FDIA agent updates its knowledge about the plant. The
supervisory agent then instructs the FDIA agent to design its
FDI filter based on the newly updated plant model (event #
9). When that task is completed, the FDIA agent then starts
to monitor the plant data to detect any sensor/actuator faults
(event # 10).

If the decision maker of the FDIA agent detects a fault
(event # 11), it alerts the supervisory agent and sends the
detected fault location, type, time, size, and other information
to the supervisory agent for further processing. If the fault
is a sensor fault (event # 12), the supervisory agent alerts
the FDIA agent to accommodate the sensor fault (event
# 13). If the sensor the fault type is bias, the fault size
is estimated and used to accommodate the fault without
estimating the fault size recursively. If the sensor fault type is
a ramp type, this starts the recursive fault size estimation, and
the fault is accommodated accordingly. The accommodation
process terminates if the accommodation stopping criterion
is reached, or if the supervisory agent informs the FDIA
agent that the faulty sensor is fixed (event # 14).

VI. ICAM SYSTEM PROTOTYPE DEPLOYMENT SCHEME

Having discussed the ICAM system prototype design with
respect to the artificial intelligence, the middleware, and
its reactive agents’ requirements, it is crucial to design the
prototype deployment scheme to verify its performance and
logical behavior. Figure 10 illustrates the ICAM system
prototype deployment scheme. The ICAM system prototype
contains two Windows 2003 servers, which provide the
local network infrastructure of the system. The prototype
also consists of two PC nodes, in which the five agents of
the ICAM system prototype are deployed. The first node
runs three agents, namely, the pilot plant simulation agent,
the model ID agent, and the G2 supervisory agent. The
second node runs the data statistical processing agent and
the FDIA agent. Each reactive agent consists of its m-script,
its middleware task, and its associated MATLAB session.
This deployment scheme was set up to conduct a real-
time simulation experiment so as to validate the logical
behavior of the designed system prototype during plant
abnormal situations. The real-time experiment and its results
are discussed in the second part of this paper.

VII. CONCLUSIONS

We have demonstrated good progress the design and devel-
opment of the ICAM system. A system prototype design was
extended by adding more agents and functionalities to cope
with the complex problem of control of large and complex
industrial plants. The ICAM system prototype design was
discussed in details in terms of the middleware layer, the
supervisory agent layer, and the reactive agents layer. A
system deployment scheme was also suggested to conduct
a real-time system simulation experiment, which will be
discussed in the second part of this paper. Our system design
approach can be exploited to develop and rapidly prototype
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real-time distributed multi-agent systems. We believe that the
ICAM system will pave the way to real intelligent multi-
agent systems for many applications.
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