
A Multi-agent System for Integrated Control and Asset
Management of Petroleum Production Facilities - Part 3:

Performance Analysis and System Limitations

Atalla F. Sayda and James H. Taylor

Abstract— This three-part paper thoroughly addresses the
design and development of multi-agent system for asset man-
agement for the petroleum industry, which is crucial for
profitable oil and gas facilities operations and maintenance.
A research project was initiated to study the feasibility of an
intelligent asset management system. Having proposed a con-
ceptual model, architecture, and implementation plan for such
a system in previous work [1], [2], [3], defined its autonomy,
communications, and artificial intelligence (AI) requirements
[4], [5], and initiated the preliminary design of a simple system
prototype [6], we are extending the build of a system prototype
and simulate it in real-time to validate its logical behavior
in normal and abnormal process situations and analyze its
performance. The third-part paper addresses the ICAM system
prototype validation in terms of system performance analysis
and system behavior during unexpected situations.

I. INTRODUCTION

As part of the ICAM system prototype development, the
third-part paper addresses the system prototype validation
and its performance analysis in real time. This would reveal
any computational bottlenecks to be rectified in future work.
Furthermore, this paper also investigates the limitations of
the ICAM system prototype during unexpected situations
[1], [7], [2], [8], [9], [3], [10], [11], [12], [13], [4], [14],
[5], [15], [6]. To accomplish this, a real-time simulation
experiment was designed to analyze the performance of the
ICAM system prototype in terms of its logical behavior
and its response to the external environment dynamics. The
ICAM system prototype is deployed in a Windows 2003
network, which has two nodes (i.e., workstations). The
first node has three running agents, namely the pilot plant
agent, the model ID agent, and the supervisory agent. The
second node has the remaining agents, namely the statistical
preprocessing agent and the FDIA agent. The pilot plant
simulation model corresponds to figure 1; it consists of 10
states, 5 manipulated variables, 5 controlled variables, and
17 auxiliary measured inputs and outputs (e.g., disturbances,
product quality variables, etc.). Ten sensor/actuator faults
are embedded in the pilot plant simulation agent to emulate
faulty instrumentation in real-world oil production plants, as
indicated in table I.

In the real-time simulation experiment, we will apply a
bias fault in the three-phase separator water volume sensor

James H. Taylor is with the Department of Electrical & Computer
Engineering, University of New Brunswick, PO Box 4400, Fredericton, NB
CANADA E3B 5A3 jtaylor@unb.ca

Atalla F. Sayda is a PhD candidate with the Department of Electrical
& Computer Engineering, University of New Brunswick, PO Box 4400,
Fredericton, NB CANADA E3B 5A3 atalla.sayda@unb.ca

Fault number Instrumentation name
F1 Faulty two-phase liquid volume sensor
F2 Faulty two-phase pressure sensor
F3 Faulty three-phase water volume sensor
F4 Faulty three-phase oil volume sensor
F5 Faulty three-phase pressure sensor
F6 Faulty two-phase separator liquid outflow valve
F7 Faulty two-phase separator gas outflow valve
F8 Faulty three-phase separator water outflow valve
F9 Faulty three-phase separator oil outflow valve
F10 Faulty three-phase separator gas outflow valve

TABLE I
OIL PRODUCTION FACILITY INSTRUMENTATION FAULTS

and conduct an average system performance, as described
in section 2. However, A more rigorous system performance
analysis is required to see the big picture, as discussed in
section 3. Furthermore, we will apply two different sim-
ulation scenarios and discuss the ICAM system prototype
behavior during unexpected plant disturbances and situations
in sections 4, 5 and 6. Finally we will discuss the system
prototype design limitations and how they can be rectified
in future work in section 7.

Two phase
oil separator

Three-phase
oil separator

Oil well

Oil & water mix

Water

Oil

P

P

Oil sales

Gas processing

Disposal

Gas

Gas

Pipe line

Signal line

LCL : Level control loop

LCL 1

LCL 2

LCL 3

PCL : Pressure control loop

PCL 1

PCL 2

1

2

3
A

B

Fig. 1. Oil production facility P&ID

II. ICAM SYSTEM PROTOTYPE AVERAGE PERFORMANCE

Having verified the ICAM system prototype functional-
ity in the second-part paper, it is crucial to analyze its
performance to pinpoint any computational bottlenecks and
to verify the correctness of the computation/communication
overlap (i.e., the correct order of communication and compu-
tation tasks in each agent’s code). The performance analysis
is done during the fault accommodation system mode of the
same simulation scenario, which was discussed in the second

part of this paper. We did profiling on the code of every
reactive agent to determine the average execution cycle of
the reactive agent and its tasks. Table II illustrates the profile
of the pilot plant agent, whose execution cycle took 108.543
milliseconds.

It is evident that the real-time clock functionality took
the biggest execution time slot (i.e., about 70.49%). The
evaluation of the oil separator ordinary differential equation
(ODE) model took 24.12% of the total execution time,
due to the nonlinear problem being solved every sampling
period [16]. Raw data storage consumed around 1.77% of
the agent’s execution cycle. Communicating data to other
agents and messages to the supervisory agent did not have a
significant effect on the agent’s performance, which indicates
a good communication/computation overlap.

While computational functionalities dominated the pilot
plant agent, data communications with other agents took the
largest execution time slot in the statistical preprocessing
agent. That is, the raw data reception task took 69.64% of
the agent’s execution cycle, as demonstrated in table III.
This is due to synchronization with other agents during
data reception, i.e., waiting. However, this is less significant
on the agent performance when sending processed data to
other agents (i.e., about 11.99% of the execution time), as
specified by the system design requirements [3], [4]. The
total execution cycle of this agent was 106.98 milliseconds.
It is evident that there is a performance bottleneck in this
agent due to raw and processed data storage (around 16.8%).
This can be rectified by adding a database agent to the
system which stores the different data types across the ICAM
system. Again, the communication part with the supervisor
had a minimum effect on performance.

Functionality name
Total Time Per
Execution Cycle (ms)

% Time

Real time clock 76.512 70.49%

Separator ODE model evaluation 26.18 24.12%

Accommodation data reception 3.387 3.12%

Raw data storage 1.925 1.77%

Raw data sending 0.336 0.31%

Communication with supervisor 0.203 0.18%

Totals 108.543 100%

TABLE II
THE PILOT PLANT AGENT PERFORMANCE PROFILE

When it comes to the model ID agent, the reception of
processed data from the statistical preprocessing agent had
the biggest effect on performance (i.e., about 99.48% of the
agent’s execution cycle time). While the execution cycle of
this agent took 105.69 milliseconds, communications with
the supervisory agent had the least effect on performance,
as shown in table IV. The FDIA agent had a similar profile
of the model ID agent, in which data communications took
90.89% of the agent’s cycle execution time. We do notice
here that data storage has a fairly undesirable effect of

Functionality name
Total Time Per
Execution Cycle (ms)

% Time

Raw data reception from pilot plant 74.50 69.64%

Processed data sending 12.837 11.99%

Raw data storage 9.451 8.83%

Processed data storage 8.54 7.98%

Outlier removal 1.404 1.31%

Communication with supervisor 0.248 0.23%

Totals 106.98 100%

TABLE III
THE STATISTICAL AGENT PERFORMANCE PROFILE

13.24% on the FDIA agent performance, as illustrated in
table V. Table VI demonstrates the performance of the
supervisory agent during the real-time system simulation.
The G2 supervisory agent was in an idle state for almost
99.18% of the total simulation time, whereas communica-
tions with other agents had almost no impact on the agent’s
performance, as specified in the design requirements.

Functionality name
Total Time Per
Execution Cycle (ms)

% Time

Processed data reception 105.15 99.48%

Communication with supervisor 0.54 0.52%

Totals 105.69 100%

TABLE IV
THE MODEL ID AGENT PERFORMANCE PROFILE

Functionality name
Total Time Per
Execution Cycle (ms)

% Time

Accommodation data sending 68.601 45.67%

Processed data reception 67.916 45.22%

Processed data storage 7.45 4.96%

FDI variables storage 5.763 3.84%

Communication with supervisor 0.464 0.31%

Totals 150.194 100%

TABLE V
THE FDI AGENT PERFORMANCE PROFILE

III. COMPLETE ICAM SYSTEM PROTOTYPE
PERFORMANCE ANALYSIS

Although the ICAM system prototype performance anal-
ysis showed good results, the performance analysis was a
snapshot done during the fault accommodation mode of
the system. It is crucial to conduct a complete system
performance analysis throughout the complete life-time of
the ICAM system. The ICAM system goes through six

Functionality name Total Time % Time

Idle time 1575 s 99.18%

Scheduling time 0.982 s 0.06%

Communication with agents 4.505 s 0.28%

Other functionalities 7.565 s 0.47%

Totals 1588.052 s 100%

TABLE VI
THE SUPERVISORY AGENT PERFORMANCE PROFILE

different modes during its life-cycle, namely, system startup
and steady state detection mode, PRBS signal application
mode, model identification mode, fault diagnosis mode, fault
accommodation mode, and system shutdown mode. A real-
time simulation scenario was set up to measure the execution
cycles of the different reactive agents and compare it against
the ICAM system network activity during the six modes of
the ICAM system. We studied scenario 3 (refer to 3 in
figure 1), i.e., we applied a bias fault in the liquid volume
sensor of the two-phase separator to make the system execute
the fault diagnosis and accommodation modes.

Figure 2 shows the measured execution cycles of the
ICAM system reactive agents, where the overlapped execu-
tion cycles traces show remarkable synchronization among
the reactive agents during the six system modes, since the
agents have nearly the same execution cycle traces. The
ICAM system agents start up with an execution cycle of 94
milliseconds, which increases to 95 milliseconds during the
steady state detection mode (i.e., mode 1). It is interesting
to notice that the execution cycle increases to a level of
110.7 milliseconds during mode 1. The execution cycle of
the model ID agent increases to around 92 milliseconds
because of the time-consuming plant model estimation task.
The processed data MPI channel is closed during this mode
and the FDIA agent enters a waiting state till the end of
mode 2, as shown in figure 2.

The pilot plant and statistical preprocessing agents con-
tinue executing their functionalities at a cycle level of 110.7
milliseconds. The agents’ execution cycle decreases to a
level of 98 milliseconds and then increases to a level of
109 milliseconds during the fault diagnosis mode (i.e, mode
4) and the beginning of the fault accommodation mode (i.e,
mode 5). The execution cycle then increases to a level of
124 milliseconds during the fault accommodation and system
shutdown modes. The gradual increases of the execution
cycles of the agents are accompanied with matching gradual
increases in agents’ memory consumption and matching
gradual decreases in network activity (i.e., less commu-
nications among agents). This interesting phenomenon is
attributed to the fact that some agents store their local
data in large matrices, whose growing size requires more
computational effort and more memory consumption. This
reflects on the communications and network activity of the
ICAM system as demonstrated by figure 4.

Figure 3 shows the individual execution cycles of the

ICAM system reactive agents, which again demonstrates the
agents’ remarkable synchronization in spite of the semi-
autonomous nature of the ICAM system agents. We mea-
sured the network activity of the ICAM system prototype
in this simulation scenario, as illustrated in figure 4. It
is interesting to notice that the communication activity of
the agents is a mirror of the computation activity. The
gradual decreases in network activity match the gradual
increases in computational activity of the agents, as observed
in figures 2 and 4. It is also observed that the processed
data MPI channel is closed during the model ID mode (i.e.,
mode 2) because of the time-consuming task of plant model
estimation (as indicated by the yellow trace in figure 4). This
simulation scenario demonstrated an excellent ICAM system
performance in terms of good computation/communications
activities overlap, as specified by design requirements. It also
highlighted the need to embed a data-base management agent
in the ICAM system to relax the execution cycle of the
reactive agents, and hence, to improve the ICAM system
performance.

09:28:48 09:36:00 09:43:12 09:50:24
0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

Time hh:mm:ss

A
g

en
t

ex
ec

u
ti

o
n

 c
y

cl
e

(s
)

Plant agent
Stat agent
Mod ID agent
FDIA agentMode 1: Steady state check

Mode 2: PRBS signal application

Mode 3: Model Identification

Mode 4: Fault diagnosis

Mode 5: Fault accommodation

Mode 6: ICAM system shutdown

Fig. 2. Execution cycles of ICAM system agents (overlapped)

IV. ICAM SYSTEM PROTOTYPE LIMITATIONS

The ICAM system prototype showed excellent logical
behavior in response to simple faulty sensors/actuator scenar-
ios. However, the system has limitations that must be iden-
tified and analyzed carefully. This will reveal if the system
will respond consistently against unexpected disturbances,
and show a coherent performance and acceptable logical
behavior. Two simulation scenarios have been applied to
study the ICAM system prototype limitations, as discussed
in the following sections.

V. SCENARIO A: ICAM SYSTEM BEHAVIOR DURING
FAULTS WITH FAST DYNAMICS

To demonstrate the system behavior during fault with fast
dynamics, a +15% bias fault is applied to the three-phase
separator pressure sensor (F5; refer to control loop PCL2

09:28:48 09:36:00 09:43:12 09:50:24

0.1

0.12

Time (hh:mm:ss)

P
la

n
t

ag
en

t

09:28:48 09:36:00 09:43:12 09:50:24

0.1

0.12

Time (hh:mm:ss)

S
ta

t
ag

en
t

09:28:48 09:36:00 09:43:12 09:50:24

0.1

0.12

Time (hh:mm:ss)

M
o

d
 I

D
 a

g
en

t

09:28:48 09:36:00 09:43:12 09:50:24

0.1

0.12

Time (hh:mm:ss)

F
D

IA
 a

g
en

t

95.82 ms

109.7 ms

98.41 ms 109 ms

125 ms

Fig. 3. Execution cycles of ICAM system agents (non overlapped)

N
et

w
o

rk
 u

ti
li

za
ti

o
n

 %

Time (hh:mm:ss)
09:23:28 09:43:09 09:57:55

0%

0.5%

1%

Blue trace: Processed and
accommodated data MPI channels

Green trace: Raw data MPI channel

Purple trace: Total data throughput

Mode 1 & 2: Steady state check
and PRBS signal application

Mode 3: Model identification

Mode 4: Fault diagnosis

Mode 5: Fault accommodation

Mode 6: ICAM system shutdown

Fig. 4. ICAM system prototype network activity

in figure 1) at time Tfault = 09:09:55. Figure 5 shows the
measured and actual pressure of the three-phase separator
along with its associated gas outflow. The figure obviously
shows that there is a significant mismatch between the
measured and actual pressure. The FDIA agent successfully
detects a fault at time Tfault = 09:09:55 (refer to table VII),
as the GPV magnitude spikes up sharply, as shown in the
top plot of figure 6. The lowest GPV angle compared to
other angles corresponds to fault F10, where it decreases
sharply for a short time period, as shown in the bottom
plot of figure 6. Accordingly the FDIA agent internal logic
declares that a fault F10 has been isolated, as shown in
figure 7. Interestingly enough, the isolation decision lasts
for a very short period of time. Fault F10 corresponds to a
fault in the three-phase separator gas outflow valve (refer to
table I), which is in the same control loop as F5. The pressure

sensor fault is almost immediately masked by a quick spike
in outflow, allowing the pressure to adjust to the erroneous
setpoint so fast that correct isolation is impossible.

09:04:19 09:07:12 09:10:04 09:12:57 09:15:50
170

180

190

200

210

Time (hh:mm:ss)

P
−

va
p

 (
P

S
I)

Vapor pressure & its setpoint

09:04:19 09:07:12 09:10:04 09:12:57 09:15:50
20

25

30

35

Time (hh:mm:ss)

F
o

u
t−

va
p

 (
M

S
C

F
D

)

Vapor outflow

Setpoint
Sensed variable
Actual variable

Actual Variable
PI controller action

Fig. 5. Limitation scenario A: Three-phase separator pressure logged by
the FDIA agent

09:01:26 09:04:19 09:07:12 09:10:04 09:12:57 09:15:50 09:18:43
0

2

4

Time (hh:mm:ss)

 GPV magnitude

09:01:26 09:04:19 09:07:12 09:10:04 09:12:57 09:15:50 09:18:43
0

50

100

Time (hh:mm:ss)

d
eg

re
es

 Sensor failure angles

F1
F2
F3
F4
F5

09:01:26 09:04:19 09:07:12 09:10:04 09:12:57 09:15:50 09:18:43
0

50

100

Time (hh:mm:ss)

d
eg

re
es

 Actuator failure angles

F6
F7
F8
F9
F10

Fig. 6. Limitation scenario A: FDIA agent diagnostic signals

The FDIA agent sends the fault information to the supervi-
sory agent to reason about this abnormal plant situation, as
shown in the FDIA agent supervisory frame in table VII.
The supervisory agent decides not to activate the fault
accommodation task as the fault is identified an actuator fault
(refer to the accommodation attributes in table VII). As a
result, the fault accommodation parameters have a value of
zero and the fault size and sign attributes have no facts, as
the identified actuator fault size can not be estimated by the
FDIA agent. It is very evident that something went wrong
during this simulation scenario, as the system isolated the
wrong fault (i.e., fault F10 instead of fault F5).

09:01:26 09:04:19 09:07:12 09:10:04 09:12:57 09:15:50 09:18:43
−2

0

2

4

6

8

10

Time (hh:mm:ss)

 F
a

u
lt
 #

 FDI Results: Fault # F10 BIAS fault detected at t=08−Nov−2007 09:09:55

Fig. 7. Limitation scenario A: FDIA agent fault display

To analyze this situation, we compare the data record
of the three-phase separator pressure measurement logged
at the FDIA agent (refer to figure 5) and the same data
record logged at the pilot plant agent (refer to figure 8).
The comparison reveals that there is a significant difference
between the two pressure measurement data records at the
fault application instant. The pressure measurement logged
at the FDIA agent shows that the pressure spikes up to
P = 209 PSI compared to a value of P = 230 PSI
logged at the pilot plant agent during fault application. The
same difference can be noticed in the three-phase separator
gas outflow measurement data records. This measurement
mismatch is due to the fast dynamics nature of the three-
phase separator pressure, which caused the outlier removing
task in the statistical preprocessing agent to clip the pressure
and gas outflow measurements before being sent to the
FDIA agent. This led to the wrong fault isolation decision
made by the FDIA agent, and the wrong decisions made
by the supervisory agent accordingly. This highlights the
importance of embedding a safety net in the ICAM system
prototype to compensate for the limitations of the system
agents; for example, if the statistical preprocessing agent
notified the other agents whenever it clipped a measurement
they could be able to make allowances for that fact. Refining
the statistical preprocessing agent so that pressure spikes
were not treated as outliers would also be effective.

VI. SCENARIO B: OIL-WELL PRODUCTION DECREASE

The productivity of offshore oil wells and fields may
decrease with time and demand, which leads to a decrease in
the oil flow to the production facility. In order to analyze the
impact of such change on the logical behavior of the ICAM
system prototype, we introduce a 20% sudden decrease in the
oil component of the oil-well incoming flow at time Tdist =
14:58:00 (refer to the symbol B in figure 1).

Figure 9 shows the two-phase liquid volume measurement
logged at the FDIA agent, where the disturbance effect on the

5 Thu Nov 08 09:17:08 2007

TABLE VII
LIMITATION SCENARIO A: FDIA AGENT SUPERVISORY FRAME

09:04:19 09:07:12 09:10:04 09:12:57 09:15:50
190

200

210

220

230

240

Time (hh:mm:ss)

P
−

va
p

 (
P

S
I)

Vapor pressure & its setpoint

09:04:19 09:07:12 09:10:04 09:12:57 09:15:50
20

25

30

35

40

45

Time (hh:mm:ss)

F
o

u
t−

va
p

 (
M

S
C

F
D

)

Vapor outflow

Setpoint
Measurement

Fig. 8. Limitation scenario A: Three-phase separator pressure logged by
the pilot plant agent

liquid volume is corrected by the PI controller by adjusting
the liquid outflow valve accordingly. The disturbance is
rejected in a time period of about seven minutes, during
which the GPV magnitude increases and stays at value of
0.4, as shown in the top plot of figure 10. Interestingly
enough, none of the GPV angles go to a low level except
for the angle of fault F7 for a very short time period, as
illustrated in the middle and bottom plots of figure 10. The
local decision making logic of the FDIA agent declares that
a fault F7 is isolated for a short time period, as shown
in figure 11. The decision of the FDIA agent then takes a
value of -2, which corresponds to an undefined fault decision

during steady state. The FDIA decision then changes to -1
for a longer time period, which represents an undefined fault
during transient. This strange behavior can also be noticed
in the GPV magnitude (refer to the top plot of figure 10),
where the GPV magnitude seems to reach a steady state of
about 0.2 for a very short time period and then increases
for a longer time period before it is in a true steady state.
Finally, the FDIA fault isolation decision settles down on
a fault F7 (i.e., the last detected fault) till the end of the
simulation scenario, although the lowest GPV angle is the
one associated with fault F1.

14:52:48 15:00:00
140

142

144

146

148

Time (hh:mm:ss)

V
−

liq
 (

ft
3)

Liquid volume & its setpoint

14:52:48 15:00:00
1.7

1.71

1.72

1.73

1.74

1.75
x 10

5

Time (hh:mm:ss)

F
o

u
t−

liq
 (

B
P

D
)

Liquid outflow

Setpoint
Sensed variable
Actual variable

Actual variable
PI controller action

Fig. 9. Limitation scenario B: Two-phase separator liquid volume logged
by the FDIA agent

14:49:55 14:52:48 14:55:40 14:58:33 15:01:26 15:04:19 15:07:12
0

0.5

Time (hh:mm:ss)

 GPV magnitude

14:49:55 14:52:48 14:55:40 14:58:33 15:01:26 15:04:19 15:07:12
0

50

100

Time (hh:mm:ss)

d
eg

re
es

 Sensor failure angles

F1
F2
F3
F4
F5

14:49:55 14:52:48 14:55:40 14:58:33 15:01:26 15:04:19 15:07:12
0

50

100

Time (hh:mm:ss)

d
eg

re
es

 Actuator failure angles

F6
F7
F8
F9
F10

Fig. 10. Limitation scenario B: FDIA agent diagnostic signals

In order to verify the FDIA fault isolation decision, we
examine the FDIA agent supervisory frame, depicted in
table VIII. It is evident that the FDIA agent isolates a fault F7
of type ramp at time Tfault = 14:58:04. Fault F7 corresponds

14:49:55 14:52:48 14:55:40 14:58:33 15:01:26 15:04:19 15:07:12
−2

−1

0

1

2

3

4

5

6

7

Time (hh:mm:ss)

 F
a

u
lt
 #

 FDI Results: Fault # F7 RAMP fault detected at t=07−Nov−2007 14:58:04

Fig. 11. Limitation scenario B: FDIA agent fault display

to a faulty two-phase gas outflow valve (refer to table I). The
supervisory agent reasons about this situation and decides
that no fault accommodation action should be taken, as
indicated by the accommodation attributes in table VIII.
The fault sign and size attributes provide no new facts, as
the identified fault is an actuator fault, whose size can not
estimated by the FDIA agent. The FDIA agent can only
estimate sensor faults by design.

To further analyze the results, we plot the two-phase
separator pressure measurement and its associated gas out-
flow data records logged at the FDIA agent, as shown by
figure 12. The gas pressure and outflow measurements show
the effect of the oil-well incoming flow disturbance, which
is rejected by the PI control loop PCL1 (refer to figure 1).
Furthermore, there is no mismatch between the measured
and actual data records for both process variables. To add to
the situation complexity, the FDIA agent was not designed
to isolate ramp actuator faults. Yet, it did declare that a
ramp actuator (i.e., gas outflow valve) fault has occurred.
This complex simulation situation, in which the FDIA agent
generated confusing decisions, is attributed to the fact that
the FDIA agent was not designed to decouple disturbances
from sensor/actuator faults. This limitation is due to a lack
of an analytic model that includes disturbance inputs; studies
have demonstrated that known disturbances can be decoupled
so they do not interfere with FDI [11]. Again, the necessity of
embedding limitations of the ICAM system reactive agents in
the knowledge base of the supervisory agent becomes crucial
to guarantee robust and logically coherent system behavior.

VII. SYSTEM LIMITATIONS, DESIGN CHALLENGES, AND
FUTURE WORK

Designing an intelligent multi-agent system is a very
challenging task, as all agents are distributed and semi-
autonomous. We faced several design challenges which re-
sulted in limited system capabilities. Some of these design
challenges and the future recommendations for solving them

0 Wed Nov 07 15:00:33 2007

TABLE VIII
LIMITATION SCENARIO B: FDIA AGENT SUPERVISORY FRAME

14:52:48 15:00:00
623

624

625

626

Time (hh:mm:ss)

P
−

va
p

 (
P

S
I)

Vapor pressure & its setpoint

14:52:48 15:00:00

163.8

164

164.2

164.4

164.6

Time (hh:mm:ss)

F
o

u
t−

va
p

 (
M

S
C

F
D

)

Vapor outflow

Setpoint
Sensed variable
Actual variable

Actual variable
PI controller action

Fig. 12. Limitation scenario B: Two-phase separator pressure logged by
the FDIA agent

are suggested in the following points:
• Although we proposed the hierarchical colored petri

nets approach to design the internal logic of the ICAM
system reactive agents in our development plan [3], we
did design the agents’ internal logic in an ad hoc man-
ner. We faced some difficulties during the design stage
of the ICAM system prototype, as more functionalities
were added. For example, the ICAM system crashed
during early simulation runs due to communication
deadlocks, in which two agents were trying to send
messages to each other simultaneously. The problem
was solved by imposing conditions on communicating
agents to prevent such deadlocks. Future designs should

use the colored petri net approach to verify the logical
behavior of the ICAM system and its agents in different
scenarios.

• Computation/communication coordination was another
design problem, in which computation and communica-
tion code blocks were not ordered correctly in the agent
code. For example, we combined the process model
estimation (computation task) and sending the estimated
model to other agents (communication task) into one
task in the model ID agent, which proved to be a design
flaw. Model estimation took a long time (i.e., over one
minute), during which other agents were locked waiting
for the estimated model due to synchronization failure.
The problem was solved by separating the one function-
ality into two separate computation and communication
functionalities (i.e., separate agent states) and modifying
other agents accordingly. Although some design flaws
had to be corrected, the ICAM system prototype acted
as a set of distributed stochastic colored petri nets during
real-time simulation. This implies that a careful agent
design should be done along with a thorough system
logical behavior analysis. Future design plans would
take the stochastic nature of the system and time into
account to guarantee robust performance.

• The plant data characteristics also had a major impact
on the ICAM system performance. For example, the
ICAM system prototype is not robust against noisy data
due to the design of the data differentiation-based steady
state detection algorithm. Likewise, the general parity
vector (GPV) based FDIA algorithm is not robust to
noise, which significantly affects the fault isolation task
in moderate to high noisy data situation. We suggest
embedding algorithms that are more robust to noise to
cope with real-world industrial plants and their noisy
measurements.

• Detection and isolation of fast dynamics faults (e.g.,
faulty gas pressure sensor) is another limitation of the
ICAM system prototype. The outlier removal algorithm
in the statistical processing agent treats fast dynamics
faults as outliers, which changes the nature of processed
data sent to the FDIA agent. Data filtering also may
change the data characteristic, which may have an im-
pact on the system performance. In addition, the system
logical behavior was unpredictable and inconsistent in
response to disturbances in process variables. So we
suggest developing a better safety net, in which the
knowledge of agents’ limitations is embedded in the rule
base of the supervisory agent. This allows the system to
have a better reasoning ability and robust performance
during undefined and unpredictable plant situations.

• In order to address the complete asset management
solution in process plants, several agents have to be
embedded in the ICAM system prototype to manage
the process plants during normal situations. An opti-
mization agent is essential to generate optimal material
recipes and process variable set-points to guarantee
higher product quality. Planning and scheduling agents
are also essential to schedule operation plans in accor-

dance with long term production plans. Furthermore,
the addition of a real-time database management agent
is vital for both high system performance and future
scalability. Finally, a graphical user interface (GUI)
agent must be added to the ICAM system to meet
process operator interaction requirements.

• The incorporation of domain knowledge would defi-
nitely improve the performance of the system. Such
knowledge is represented by the topology of the indus-
trial plant and its operation procedure in different situ-
ations such as startup, normal operation, and shutdown.
This knowledge would be better utilized if a learning
agent were embedded to deal with new situations in
the plant and the internal behavior of the ICAM system
itself.

• During abnormal situations hundreds of alarms are initi-
ated, leading to alarm flooding. This results in the opera-
tor missing important alarms. Proper asset management
requires proper alarm and event management techniques
in addition to good operator decision support. The
incorporation of alarm management techniques that can
dynamically prioritize important alarms and suppress
unnecessary alarms would definitely enhance the ICAM
system performance. The alarm management agent
would interact with the FDIA agent to better identify
the most important alarms that have to be dealt with.

As can be appreciated, those enhancements will require years
of additional research and development.

VIII. CONCLUSIONS

A real-time simulation experiment was conducted to vali-
date the ICAM system prototype in terms of its performance
and logical behavior in real time. The code of the four
reactive agents was profiled to detect any computational
bottlenecks. To investigate the ICAM system prototype per-
formance during the different system modes, a rigorous
system performance analysis was conducted. Furthermore,
two different simulation scenarios were tested to investigate
the ICAM system prototype behavior during unexpected
plant disturbances and situations. As a result, the designed
ICAM system prototype showed some performance degrada-
tion and some limitations, which were discussed in details.
We have demonstrated good progress in the design and
development of the ICAM system prototype in this three-part
paper. Although the ICAM system design, verification, and
validation tasks proved to be complex, we believe that the
ICAM system prototype will pave the way to real intelligent
multi-agent systems for many applications.

IX. ACKNOWLEDGEMENT

This project is supported by Atlantic Canada Opportunities
Agency (ACOA) under the Atlantic Innovation Fund (AIF)
program. The authors gratefully acknowledge that support
and the collaboration of Cape Breton University (CBU), and
the College of the North Atlantic (CNA). The authors also
acknowledge the support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) for funding
the second author’s research.

REFERENCES

[1] J. H. Taylor and A. F. Sayda, “Intelligent information, monitoring,
and control technology for industrial process applications,” in The
15th International Conference on Flexible Automation and Intelligent
Manufacturing (FAIM), Bilbao, Spain, July 2005.

[2] ——, “An intelligent architecture for integrated control and asset
management for industrial processes,” in Proc. IEEE International
Symposium on Intelligent Control (ISIC05), Limassol, Cyprus, June
2005, pp. 1397–1404.

[3] A. F. Sayda and J. H. Taylor, “An implementation plan for integrated
control and asset management of petroleum production facilities,”
in IEEE International Symposium on Intelligent Control ISIC06.
Munich, Germany: IEEE, October 4-6 2006, pp. 1212–1219.

[4] ——, “An intelligent multi agent system for integrated control and
asset management of petroleum production facilities,” in In Proc.
of The 17th International Conference on Flexible Automation and
Intelligent Manufacturing (FAIM), Philadelphia, USA, 18-20 June
2007, pp. 851–858.

[5] ——, “Toward a practical multi-agent system for integrated control
and asset management of petroleum production facilities,” in IEEE
International Symposium on Intelligent Control (ISIC), Singapore, 1–
3 October 2007.

[6] J. H. Taylor and A. F. Sayda, “Prototype design of a multi-agent system
for integrated control and asset management of petroleum production
facilities,” in submitted to the American Control Conference (ACC),
Seattle, Washington, June 11–13 2008.

[7] M. Omana and J. H. Taylor, “Robust fault detection and isolation
using a parity equation implementation of directional residuals,” in
IEEE Advanced Process Control Applications for Industry Workshop
(APC2005), Vancouver, Canada, May 2005.

[8] W. Larimore, in Multivariable System Identification Workshop. Fred-
ericton, New Brunswick: University of New Brunswick, 31 October
– 2 November 2005.

[9] C. Smith, C. Gauthier, and J. H. Taylor, in Petroluem Applications
of Wireless Sensors (PAWS) Workshop. Sydney, Nova Scotia: Cape
Breton University, 22–23 August 2005.

[10] E. Durfee, V. R. Lesser, and D. D. Corkill, “Trends in cooperative
distributed problem solving,” IEEE Transactions on Knowledge and
Data Engineering, vol. 1, no. 1, pp. 63–83, 1989.

[11] M. Omana and J. H. Taylor, “Enhanced sensor/actuator resolution
and robustness analysis for FDI using the extended generalized
parity vector technique,” in Proc. of American Control Conference.
Minneapolis, Minn.: IEEE, 14-16 June 2006, pp. 2560–2566.

[12] J. H. Taylor and M. Laylabadi, “A novel adaptive nonlinear dynamic
data reconciliation and gross error detection method,” in Proc. of
IEEE Conference on Control Applications. Munich, Germany: IEEE,
October 4-6 2006, pp. 1783–1788.

[13] M. Laylabadi and J. H. Taylor, “ANDDR with novel gross error
detection and smart tracking system,” in 12th IFAC Symposium on
Information Control Problems in Manufacturing. Saint-Etienne,
France: IFAC, May 17-19 2006.

[14] M. Omana and J. H. Taylor, “Fault detection and isolation using the
generalized parity vector technique in the absence of a mathematical
model,” in IEEE Conference on Control Applications (CCA), Singa-
pore, 1-3 October 2007.

[15] J. H. Taylor and M. Omana, “Fault detection, isolation and accommo-
dation using the generalized parity vector technique,” in submitted to
the IFAC World Congress, Seoul, Korea, July 6–11 2008.

[16] A. F. Sayda and J. H. Taylor, “Modeling and control of three-phase
gravity separators in oil production facilities,” in the American Control
Conference (ACC), New York, NY, 11-13 July 2007.

