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For a quite general class of dynamic systems having a single 
memoryless time-varying nonlinearity in the feedback path some 
frequency domain stability criteria are developed using Lyapunov's 
second method. Four classes of nonlinearities are considered, and it 
is seen that as the behaviour of the nonlinearity is restricted, the 
stability conditions are relaxed. For the first three classes of non- 
linearities, the results for time invariant systems are well known, 
and for two of the classes the result has previously been extended 
to apply to time-varying situations. The result concerning a signifi- 
cant new class of nonlinearities as well as the extension of the third 
previously known time-invariant result to cover time-varying systems 
are original with this paper. 

I. INTRODUCTION 

Recent ly V. M. Popov (1961) developed the first frequency domain 
criterion for nonlinear t ime-invariant  systems of the form considered 
in this paper  utilizing Lyapunov ' s  second method. Basically, if the 
system is characterized by  a forward loop transfer  function G(s) and 
a single first and third quadrant  continuous nonlinearity [zf(z) > 0 
all z ~ 0, f (0 )  = 0] in the feedback path,  then if a > 0 e.xists such tha t  
G(s) .  (s + a) is positive real, 1 the system is absolutely stable. 

Since this classic work was presented, considerable effort has been 
expended to produce stabil i ty criteria with more general frequency 
domain multipliers than  (s + a)  ; both  Lyapunov ' s  second method and 
the passive operator approach have been fruitful. As would be expected, 
it is necessary to add constraints to the nonlinearity in order to relax 
conditions on the linear portion of the system. Brocket t  and Willems 
(1965) first considered monotonic nonlinearities, i.e., d f@) /dz  > 0 
for all z. Fur ther  contributions of this type  were made by  Narendra  and 

1 Henceforth denoted "G(s). (s -I- a) = p.r.". If Re H@o) > 0 strictly, then 
it will be denoted "H(s) ~ s.p.r." (strictly positive real). 
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Neuman (5/1966), Narendra and Cho (1967), and Thathachar,  Srinath 
and Ramapriyan (1967). 

This paper presents a unified approach to this type of problem, which 
yields not only all of the frequency domain multipliers obtained in 
previous works, but  some novel results for t ime-varying nonlinear 
systems [k(t)f(z0) in the feedback path] in the form of upper bounds on 
1/k  dk/dt .  A new class of nonlinearities is also introduced which allows 
significant further relaxations of the constraints on G(s) and/or  higher 
upper bounds on 1/k dk/dt .  A summary of all results is detailed in 
Table I. 

Since the proof of the stability theorem for all nonlinearity classes is 
quite complex, the theorem is first simply stated in Section IV, then seven 
lemmas central to ~he theorem proof are listed in Section VI, and finally 
the proof is carried out for the first two classes and outlined for the 
remainder in Section VII .  

II. SYSTEM REPRESENTATION 

The systems considered in this paper are assumed to be characterized 
by  the n dimensional vector state equation 

= A x  - bk(t) f (zo)  
, (2.1) 

ao = h x; 

TABLE I 

A SYNoPs~s OF R~SULTS 

Multiplier form 
System class 

F/F-TV FM/FM-TV FMO/FMO-TV FMOS/FMOS- TV 

Popov (s + ~0) P/P * * * 
Z ~  N.A. P/P * * 
ZF~o N.A. N.A. P/O */O 
Zs~o~ N.A. N.A. N.A. O/0 

Symbols : 
N.A.-frequency domain multiplier form not applicable to the nonlinearity 

class 
P -previous result 
0 -original result 
* -multiplier for broader class of systems applies with no change 
*/O -as (*) except for a new larger upper bound on 1/k dk/dt. 
TV -time-varying; nonlinearity classes defined in text. 
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for t ime invar iant  nonlinear systems k ( t )  = 1 and for t ime-varying 
linear systems f(zo) = ~0 with no loss of generality. 

This is equivalent to a linear plant  in the forward pa th  with transfer 
function 

G(s)  = h r ( s I  - A ) -~b  (2.2) 

with a single memoryless nonlinearity (which may  or may  not be time- 
varying)  in the feedback portion of the loop. 

I t  is assumed tha t  the plant  is completely controllable, completely 
observable and asymptot ical ly stable [i.e., all eigenvalues of A have 
negative real parts]. Due to its controllability, the phase-variable canoni- 
cal form can be used with no loss of generality; c.f. Johnson and Wonham 

1964) : 

h r = [hi , h2 , [ ° , I : 1  [!l A = - - - I  -- b = (2.3) 

By inspection, 

G ( s )  = 
h .  s n-1 -~- hn_l s n-2 -~ . . .  -J[- h2 8 -~ hi (2.4) 

s'~ + a,  sn-l + . . .  + a2 s + al 

This transfer function is assumed to have both real zeros at  s = - - ~ ,  
i = 1, 2, . .  • ml and complex zeros at s = -)~i -4- j t~ ,  i = 1, 2, . . .  , m2 
where (ml  + 2m2) <= (n  --  1). The complex zeros are the roots of 
s 2 + ~ris -t- m,  so 

~ri = 2k~ 
(2.5) 

and 

( P l  1 2 - -  ~ )  ->__ 0 ( 2 . 6 )  

A sector Sn of the s-plane is defined by  X => ( l /n )# ;  thus a zero is said 
to lie in $2 if its real par t  is greater than  one half its imaginary part.  
In  the polar coordinate 0 the condition is 

S n ~  {Ü:(~r - t a n - i n )  < 0 <  (Tr -~- t a n - i n ) }  (2.7) 

Whenever the real zeros are ordered in one or more groups, it will be 
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assumed that  their magnitudes increase with increasing index in each 
group, e.g., 

~i  < ~;2 < " ' "  < ~/-i 
( 2 . s )  

~n1+1 < ~n1+2 " ' "  <: "~ml 

No relationship between ~i's of different groups are assumed. As can be 
demonstrated, when the real or complex zeros are divided into two 
groups (as in some multipliers; see ZrMO and Z~Mos to follow) there is no 
loss of generality in assuming that  no zero appears in both groups. 

The time-varying gain k(t) is always assumed to be nonnegative and 
bounded, i.e., 0 < k(t) < / ~  < ~ .  I t  is also absolutely continuous, thus 
ensuring the existence of dk/dt. 

In this paper, four classes N of nonlinearities f(a)  will be considered 
(and referred to by abbreviation): 

(i) First, and third quadrant nonlinearities (F) ;  any continuous 
function is allowed as long as f(0)  = 0 and 0 < f(~)/a =< f < ~ for 
all finite nonzero values of a. 

(if) Monotonic nonlinearities (FM) ;  this is a subclass of (i) in 
which it is assumed that  df(a) /~  >= 0 for all a. 

(iii) Monotonic odd nonlinearities (FMO);  this is a subclass of 
(if) in which it is further assumed that  f ( - ~ )  = - f (a)  for all ~. 

(iv) Monotonic odd saturating nonlinearities (FMOS);  this is a 
subclass of (iii) in which ~ d~f/cla ~ <= 0 all ~, i.e., the slope df/da is never 
increasing as [a I increases. 

As a measure of nonlinearity, it is useful to introduce the parameter 
Fmi, : 

f 1 
Fmio - {@n - -  (2.9) 

By studying the form of each class, it can be seen that  the following 
ranges for F.~.  are permitted: 

(i) F: 0 < Fmin < o¢ 
(if) FM and FMO: 1 < Fml, < 

(if) FMOS: 1 < F,~i, =< 2 

By inspection, for linear systems F~,~ = 2. 
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III. FORM OF LYAPIJ-NOV FUNCTION 

The form of the Lyapunov function used in this report is an extension 
of that  used by Popov, viz.: 

1 f 0 '  V(x, t) = ~ xrPx -t- ~ [J~ l~(t) ~" f(z) dz (3.1) 

where P is an n X n symmetric positive definite matrix [P = p r  ~ 0], 
all fl~ > 0 and the signals used in the upper limits of the integral terms 
are der ived from the state vector by the relations 

T a~ = r~ x ;  r0 - -  h .  ( 3 . 2 )  

I t  is obvious that  V(x, t) is a positive definite decrescent form since 
k(t) and f(a)/¢ are nonnegative and bounded. In fact 

1 T 0 < ~x Px =< V(x, t) =< ½xT[P -~- KF ~ fl~x~r~T]x. 

I t  can be seen that  in the  case of linear time-varying systems this 
form reduces to 

V(x, t ) =  1 T ~[x Px -}- k(t)xrMx] (3.3) 

where 

M = M ~ = ~ ¢ , ~ J  ->_ 0 (3.4) 
~=o 

M can be positive definite ( >  0) only if the vectors r~ satisfy 

otherwise M is only semidefinite ( > 0 ) .  
The existence of this class (3.3) of quadratic Lyapunov function as 

a necessary and sufficient condition for the asymptotic stability of a 
linear time-invariant feedback system for all values of the feedback 
gain parameter 0 < k < /~ was conjectured by Narendra and Neuman 
(1966) and subsequently proven by Thathachar and Srinath (1967). 

Making no further assumptions about the signals r~rx other than 
r0 = h, one sees tha t  

= ½ xr(PA + ArP)x - k(t)f((ro)xr[Pb -- ~o(Xo h -t- Arh)] 

-- flo hrb [k(t)f(~o)] 2 -- flo h0 k(t)~o f(~o) (3.5) 

+ ~ ~, k(t)f(~,)r,r[Ax - bk(t)f(~o)] + ~ ~, dk ,=1 ,=o -~ .o f(z) dz 
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To obtain this expression, f~0~0k(t)~0f(~0) is added to and subtracted 
from the formal time derivative of (3.1). This term is positive semi- 
definite for all classes of nonlinearities considered here. 

The strategy of Lyapunov's second method is to show that  for a given 
set. of conditions, ~- is negative definite. Establishing that  the total time 
derivative of a generalized norm V is always negative except at the 
null state x --- 0 where ~- = 0 is sufficient to ensure the absolute stability 
of the system under consideration. For a more detailed and rigorous 
discussion of this method, c.f. Lefsehetz (1965). 

IV. STABILITY THEOREM 

In the theorem that  follows, it will be seen that  the stability conditions 
for a nonlinear time-varying system of the type considered in this paper 
are dependent upon the existence of a frequency domain multiplier Z(s). 

THEOREM. If in the system described by Eq. (2.1), G(s), f(~) and 
k(t) satisfy the properties of Section II,  and in addition a multiplier 
Z(s) C ZN(s) exists such that 

(i) G(s)Z(s) = s.p.r. (4.1) 

(~) z ( s  - A,~) ~ zN(s)  (4.2) 

(iii) f(~) ~ N and 1/k dk/dt < ANFmin, (4.3) 

~he system is absolutely stable. The four classes N of nonlinearities are 
¢efined in Section I I ;  the corresponding multiplier classes are defined sub- 
sequently. 

A discussion of this theorem is deferred until these definitions are 
m~de: 

(1) f(~) C F: for this general class of nonlinearities, one is re- 
stricted to the use of the Popov multiplier; 

Z~(s)  = s + x0 (4.4) 

where ~o >___ 0. Clearly Av = ~0. 
(2) f(~) ~ FM:  by constraining f(¢) to be monotonic, it is possible 

to use a more general RL multiplier; 

~1 s + ~0 
Z ~ ( s )  = ~o(S + ~0) + Z ~, - -  (4.5) 

where 0 _= ~o < n~. I t  can be shown that  any general RL impedance 
with poles at s = - ~  may be expanded into this form, even though it 
might seem restrictive to have the numerator of each term be (s -[- ~0). 
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The phase of this multiplier, as that  of the Popov multiplier, must be 
in the range (0, 90°), but  it no longer needs to increase monotonically 
with frequency as in the case of (s + ~0). Again it is evident that  
A~M = ;~0. 

(3) f (a)  6 FMO:  the additional condition that  f (a)  be odd allows 
the use of a much more generM RLC multiplier: 

n l  ml  

z ~ , o ( s )  = ~o(s + ~o) + ~ ~ , - -  + Z ~, 

"~ ~ s 2 + ¢~ s + ¢~ 
i=1  8 2 -~- 71"i 8 "3t- Pl i=n2+l  8 2 "-~ 7rl 8 "~- Pi 

(4.6) 

All parameters must be nonnegative. As above, the first two terms 
represent an lZL impedance and 0 _-_ X0 < vl is required. The third 
term is the expansion of a special RC function, since it is required that  
1 -<_ r~ -<_ 2. In the fourth term, ~¢ < vl ,  and in the fifth, ~i < vi 
and ¢~ < m are required. In addition, it is necessary to define the fol- 
lowing parameters for the last two terms: 

t 
L ~ \ \  ~2 ] + 1  i 1, 

1-~ -t-1 
(4.7) 

i =  ( n 2 +  1), . - .  m~ 

-- = 2, . - .  n2 J -~ ] 1 i 1, 

#i2 

i =  ( n 2 +  1) " . - m 2  

These parameters must satisfy 

(~ 1 ~2 )gl - -  ~-~ ~i (1)i "3[- ~i) ~ ¢1 > 0 (4.9) 
0 + ~ ,=.~+, ,=1 Y0 = 
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and 

(Xl -- g~) -- vl -- ~') > 0; i = 1, 2, . . - ,  ms (4.10) 

In this case, it is not as readily apparent what the maximum value of 
A such that  Z*(s) =- Z(s  -- A) C ZrMo is. Z*(s) may be expressed in 
the same form as (4.6), except tha t  some parameters are changed. 
Denoting the parameters of Z*(s) by stars, it is evident that  the fol- 
lowing are invariant: flo*, "Yi*, ~i*, #i*, and Ki*, i.e. flo* = 80 etc. Also 
it may be seen that  X0* = X0 -- A, and similarly for hi*, n~* and (z~ni)*. 
Hence for Z* ~ ZFMO one requires 

(i) Term 1: A ~ h0, by inspection. 
(ii) Term 2: h =< h0, also by inspection. 

(iii) Term 3: h < (2 - rl)~i which can be seen from the 
requirement that  ri* -<_ 2. 

(iv) Terms 4 and 5: A =< min {el, e~i)l which is evident since 
by inspection vl and ~i are invariant. 

Hence the maximum value of A is the smallest of these maxima, or 

ArMo = min {Xo, (2 -- ri)~i, el, e~O} (4.11) 

Since s 2 -k ~r~s -4- pi = (s -t- Xi q- jg~) (s -k X~ - Jgd, it is important 
to note that  (4.10) requires that  any pole of Zs_~o lie in the sector 
$1 (2.7). 

(4) ](e)  E FMOS: the form of the multiplier Zr~os is exactly that  
of ZSMO (4.6); the difference lies chiefly in relaxed parameter constraints 
(or, for the same parameters, a larger value of A). Again, all parameters 
are nonnegative. The first two terms (RL) are unchanged. In the third 
(RC) term, 1 < ¢~ < o0 is allowed. This now permits any RC impedance 
with poles at s = - ~  to be represented by this expansion. 

In the fourth and fifth terms, ~'~ < ~r~, and 61 < m,  ¢~i < pl are still 
required, and the parameters vi and }i must be defined as before (4.7), 
(4.8). However, the inequalities of (4.9) and (4.10) are relaxed, viz. 

1 E - = 
~0 {=n2-bl i=1 ~0 {=n2q-1 ~-0 Pi ~ ~1 > 0 (Z~.12) 

(X~--½#i)  -- ( 1 -  a ~ ) v i ~  e~ ~) > 0, i =  1 , 2 , . . . , n 2  
(4.13) 

_ ~ (0 (Xl ~ i ) - ~ = E 2  > O, i =  ( n 2 +  1 ) , - . - , m ~  

where ai are arbitrary real numbers in the range O =< al =< (1 - ~/v~) =< 1 
which may be adjusted to maximize rain {e~, e~o}. 
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Using the arguments of section (3), one can see that 
(~)~ 

AFMOS = mill {),0, Vnl+l, el, e2 ~. (4.14) 

It  is noteworthy that the poles of the fourth and fifth terms now may 
lie in $2 rather than $1, which is an important relaxation of constraints. 

V. COMMENTS 

The theorem for f(¢) ~ F is simply a generalization of Popov's result 
to extend its application to nonlinear time-varying systems; this well- 
known result was obtained for the linear case [Fmi~ = 2] by Brockett and 
Forys (1964), and in its final form by Narendra and Cho (1967). 

For f(z) C FM, the theorem is an extension of a result of Narendra 
and Neuman (5/1966) to cover nonlinear time-varying systems. This 
result was originally obtained by Narendra and Cho (1967) using the 
passive operator technique. 

The development of the result for f(z) C FMO is as follows: Narendra 
and Neuman (5/1966) obtained a multiplier corresponding to the first 
three terms ( Z ~  + ZRc) for a time-invariant system. Both Thathachar, 
Srinath and Ramapriyan (1967) [using a Lyapunov function approach 
similar to that of this paper] and Narendra and Cho (1967) [using the 
passive operator technique] obtained the more complex RLC terms, 
again only for time-invariant situations. The upper bound on dlc/dt is 
original with this study. 

In the case that f(z) C FMOS, the result is completely new. The im- 
portance of this new class of nonlinearity is two4old: 

(1) If Z E ZF~o exists such that G(s)ZFMo(S) = s.p.r, and AFro is 
found, then if one can say that f(z) is a saturating function, this same 
Z(s )  will yield AFMos _-_ AFMO, where the increase is generally signifi- 
cant. 

(2) If only a multiplier with poles in $2 (not $I) may be used to 
satisfy G(s)Z(s) -- s.p.r., then only a saturating nonlinearity may be 
included in the system. 

It is important to note that the expansions are not unique, so since A 
is determined by the parameters of Z, one must obtain the best expan- 
sion. TbSs is clear from the following example: say 

2 

f@) E F M O a n d Z ( s )  - s + 4 s +  5 _ ( s +  2 + j )  ( s + 2 - - j )  
s + 2  s + 2  

The best expansion i sZ(s )  = (s + 1) + (s + 3)/@ + 2) in which 



N O N L I N E A R  T I M E - V A R Y I N G  S Y S T E M  S T A B I L I T Y  387 

case by (4.11), A = rain l l ,  [2 -- (3/2)]2 / = 1. However, it can be seen 
that  Z(s) = (s + 1½) + ½(s + 4)/(s  + 2) also, in which case A = 0. 

I t  may seem that  the parameter constraints and the computation of A 
for the most general RLC multiplier (4.6) are quite complex, and in the 
general form, this is so. I t  is well to recall however that  in a practical 
problem n is in general not large, so there are in reality few terms in 
Z(s) (no more than n), and the computation involved is not too 
formidable. 

In a more general case than that  presented here, it may not be possible 
to say tha t  f(z, t) = f(z)k(t) ,  in which case (4.3) of the theorem need 
only be modified to read 

{ fo  ~°Of(z't) dz}  (4.15) 
max Ot < AN. 

~,t z f ( z ,  t)  = 

In this paper, it is assumed that  F and/C,  while bounded, are arbi- 
trarily large. If this is not the case, then it is relatively simple to extend 
the theorem by the standard transformation G*(s) ---- [G(s) + 1//~/~]; 
condition (iii) of the theorem becomes 

dtd/c < hNFmin/~(  1 -  = -- ~-) (4.15) 

In conclusion, Table I is included as a synopsis of the results presented 
in this paper. 

VI. BASIC LEMMAS 

First consider the inequalities satisfied for each class of nonlinearities: 
LEMMA 1. For all FM nonlinearities, 

(~1 - -  ~ 2 ) [ f ( z l )  - -  f ( a 2 ) ]  >= 0 al l  ~1, ~2 

LEMMA 2. For all FMO nonlinearities, 

~f(ol)  + ~ f ( ~ )  ± [~ f (~ )  ± ~ f ( ~ ) ]  >__ 0 a~t ~ ,  ~ 

LEMMA 3. For all FMOS nonlinearities, 

c~0¢j((~1) -~- [1 - c~o]¢2f(~2) 4- [¢2f(~1) -- alf(¢~)] ~ 0 

for all ~1 and ~2 , and 0 <= ao <= 1. 
Next we consider various lemmas concerning G(s) : 
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LEMMA 4. I f  

G(s)  I . . . .  = O, then the vector2c, 

has the properties 
(i) cr ( s I  - A ) - l b  = G ( s ) / ( s  q- 7) 
(ii) crb = 0 
(iii) crAx  = hTx -- ~c~x 

LE~MA 5. I f  

G(s)  I~=_x+~. = O, then the vectored, 

has the properties 
(i) 

d r ( s I  - A ) - l b  - 

c r - hr (~I  + A )  -1 

d r =- h r (p I  -ff 7rA -q- A A )  -1 

¢(s) G(s) 
s ~" q- r s  q- p (s  --~ X + j g ) ( s  + k - j g )  

(ii) drb = 0 
(fii) d~Ax = e~x [see Lemma 6 below] 

LEMMA 6. Under the conditions of Lemma 5 

T 
e =-d~A 

sG(s) 
s 2 -~- ~rs q- p 

has the properties 

(i) er ( s I  - A ) - l b  - 

(ii) eZb = 0 
(fii) f l A x  = hZx - p drx -- rerx  

],EMMA 7. [Lefschetz form of the Kalman-Yakubovich lemma]. Given 
the stable matrix A ,  a symmetric matrix D > O, vectors b # O, and k, and 
scalars r >= O, ~ e > O, then a necessary and su~cient  condition for the 

2 Zeros of the  numera to r  of G(s) must  no t  be eigenvalues of A in order for 
(~/I q- A) -1 and  (pI q- ~rA q- A A )  -1 to exist. This  is ensured by  the obse rvab i l i ty  
of the  system. 

a The  reviewer has  pointed  out  a recent  correct ion to this  lemma (Lemma 7) 
by  Lefschetz,  Meyer  and  Wonham (1967) viz. 

" I f  ~ = 0 then  kTAb # 0" 

The significance of th is  is as follows: if r = 0 then  the  K a l m a n  re la t ion  requires 
t h a t  H(3"o~) ==-- kr ( jod  - A)- lb  be s t r i c t ly  posi t ive real.  This  t ransfe r  funct ion  is of 
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existence of a solution as a matrix P (necessarily > 0 )  and a vector q of the 
system 

(a) A T P  + P A  = --qqr -- ED 
(b) Pb - k = (r)11~q 

is that e be small enough and that the Ka lman  relation 
(c) ~ 9- 2Re[kr(j~0I -- A)-lb] > 0 

be satisfied for all ¢o. 
The proofs of lemmas one through six are given in Narendra and 

Taylor (1967), and Lemma 7 is proved in Lefschetz (1965). 

VII. OUTLINE OF THE THEOREM PROOF 

In the proof of the theorem there are five basic steps: 
(i) Choose the signals (r~ = r~*x to be used in the integrals of V 

corresponding to each multiplier term. 
(if) Insert the correct form of r~rb and r ( A x  in l? [Eq. (3.5)] ac- 

cording to Lemmas 4 through 6. 
(iii) Lemmas 1 through 3 define positive semidefinite forms for 

each class of nonlinearities. These forms are added to and subtracted 
from I?. 

(iv) Lefschetz' lemma (Lemma 7) is applied to the first three terms 
of 17 in order to render them negative definite. This requires that  the 
Kalman relation be satisfied, and from this the frequency domain cri- 
terion is derived. 

(v) Group all remaining terms of l ? into negative semidefinite 
forms. Any restrictions required to ensure this become stability con- 
ditions in the theorem. 

These steps will be illustrated in the proof of the theorem for FSl  non- 
linearities that  follows. (f(a) C F is actually a special case of this proof; 
the nonlinearity class is broader than FM because no FS~[ positive semi- 
definite forms are needed in l? to yield the Popov multiplier.) 

the same form as (2.4) with each h~ replaced by k~. As ~ becomes arbitrarily large, 

and 

Re H(j~) - 
a~. k~ -- k~-i -kTAb 

so if k~Ab < 0, H(jco) -- s.p.r, is ensured for large ~. 
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7i r ~i hr(~i I -~ A ) - l x  ( i )  ~ ,  = r ~  = N c~ x = 

(ii) T r 1 = r~ A x  r~ b 0, = [3'~ ~o --  fli nl ~ ]  

(iii) add  and  sub t r ac t  ~ik(t)(~ro - ai)[f(a0) - f (a i ) ]  
At  this po in t  one has  

~V = l x r ( P A  + A r P ) x  - k ( t ) f ( a o ) x r [ P b  -- flo(Xoh -]- Arh)  

- ~ ~,~(h - r~) - 8o h~b[k(t) f(ao)] 2 
i= l  

~ (6.1) 

- ~ ,  k ( t ) ( ~ o  - ~ , ) [ f ( ~ 0 )  - f ( ~ , ) ]  
i = 1  

f ~o F _ dl¢ 1 
- jo f ( z ) d z  LXo k( t )F(zo)  

~ f0 ~ [( ~)k(t)F(~5 &] 
( iv)  T h e  first three  t e rms  of the  above  are nega t ive  definite as long 

as for  all real ~o, 

~ohrb -~ R e  [[flo(X0h -t- A rh) 
ml 

-F ~ ~ ( h  -- r~)]r(jeI -- A)-~b} > 0. (6.2) 
i= l  

I n  order  to recast  this  r equ i rement  in to  the  fo rm Z ( s ) G ( s )  = s.p.r. 
no te  t h a t  

hrb -~ h~A(jo~I - A )-ib = hr[(jo~I -- A )  ~c A]( jwI  - A )-~b = jo~G(j¢o) 

b y  inspection,  and  

j~o+@ -~'~) 
(h T ~ G(j~) 

by L e m m a  4. Since each ~ is an arbitrary posit ive constant  (the ~,~ 
determine the magnitude of the multiplier terms it m a y  be chosen so 
that  fh = "Y~/(n~ -- X0), or 

w -- = Xo; (6.3) 
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this is always possible since X0 is by  definition smaller than any pole of 
Z~L andhence X0 < nl for each i. Using these relations, (6.2) becomes 

i=1 3~ -F 

so defining Z~.~ as in T2, this is tantamount  to requiring that  
G ( s ) Z ~  = s.p.r. 

(v) By substituting Eq. (6.3) in ~-, the remaining terms are seen 
to be negative semidefinite as long as 

- -  ~ < dk__ < 2~0 k ( t ) F m i n  
- ~ d t  ~ 

which completes the proof of the theorem for f (a )  C FM. 
In the proof of the theorem for the other classes, precisely the same 

procedure is followed. The algebra involved, while considerably more 
tedious, is equally straightforward. The crux of each proof lies in the 
choice of the signals used in the integral upper limits and the positive 
semidefinite forms (psf's) added to and subtracted from 17. For the sake 
of completeness, this information is included in tabular form below. The 
vectors c, d, and e are as defined in Lemmas 4 through 6, and the scalars 
vi and ~i are as defined in Eqs. (4.7) and (4.8). Subseripting is omitted 
for simplicity. 
f (a )  C FMO;  see (4.6) for multiplier expansion:  

(i) Terms 1 and 2 (Z~r~) : signals and psf's as above. 
(ii) Term 3 (ZRc) : 

(7" -~- rTx "~-- ~ CT37 

psf = aof(ao) -t- ~f@) q- af(~o) -- ~of(~) 

( s + ~ ) :  
(iii) T e r m 4  ~s~q_Trsq_p  

~ = (X~ + ~)  d~ + ~e~x 

~2 = ( X ~  - ~ , ~ ) d ~ x  + ~e~'x 

psf  (~) = ~of(~o) + ~ ( ~ )  + ~ ( ~ o )  - ~ o f ( ~ )  

ps f  (~) = (~o - ~ ) [ f ( ~ o )  - / ( ~ ) ]  : : 

psf (3) = a~(a~) -t- ear(a2) -t- aft(a2) -- aJ(a~) 

" ' ( ~ + ~ s + ~ )  ..... 
(iv) Term 5 s 2 -t- r s  q- : 
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as te rm 4 except 

psf (r) = (~o -- al)[f(ao) --  f(~l)]  

psf(2) = zof(ao) + ~g(a~) + a~f(ao) -- nor(z2) 

f ( z )  E F M O S ;  see (4.6) for multiplier expansion:  
(i) Terms  1 and 2: as above 
(ii) T e r m  3: as above  except 

psf = a0f(a0) -~ af(a0) -- ~0f(a) 

(iii) T e r m  4: as above except 

psf (1) = a~of(~o) + (1 --a)(r lf((r l)  + a~f(ao) --aof(a~) 

psf(~) = i [ ~ j ( ~ )  + .~f (~)]  + . g ( ~ )  _ ~g(~l) 

(iv) T e r m  5: as above except 

psf (2) = a~f(a2) + a~f(ao) --  aof(*~) 

psf (3) = ½[zJ(a,)  + a~f(a2)] -t- ¢~(a2) --  ag (a l )  

RECEIVED: October  27, 1967; revised: April  22, 1968 
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