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Abstract— Data reconciliation is a well-known method in
on-line process control engineering aimed at estimating the
true values of corrupted measurements under constraints.
Early nonlinear dynamic data reconciliation (NDDR) studies
considered models that were simple and of low order. In such
cases the ability to run the NDDR algorithm in real time for
relatively slow processes is not a serious problem, despite the
heavy computational burden imposed by NDDR. In this study
a much more difficult process was treated and the method
presented by Laylabadi and Taylor [1], [2] was explored, refined
and extended to increase efficiency (reduce computation time).

In addition, a new hybrid NDDR method is proposed and a
demonstrative example performed to show the promise of this
approach in reducing the computational burden and handling
industrial processes for which a realistic dynamic model does
not exist. This contribution makes NDDR more feasible for a
wider variety of applications.

I. I NTRODUCTION

Data from real industrial and chemical processes may be
degraded by several effects.Noise is the random corruption
of sensor measurements due to high-frequency pick-up, low
resolution, errors in transmission and conversion (including
A/D and D/A conversion), among other effects. Noise is
often assumed to be randomly distributed with zero mean. In
addition,gross errorsmay result in large discrepancies, e.g.,
data drop-out or large A/D conversion errors, that may occur
at random times. In either case, process dynamic behavior
may not be matched, the laws of conservation of energy
and mass may not be fulfilled, and trends may be obscured,
producing errors in process diagnosis, identification and
control. Reliable data is very important in order to achievea
high-quality controlled process. We consider two important
aspects of data processing to improve the performance of
the control system: Data Reconciliation (DR), and, as an
ancillary procedure, Steady-State Detection (SSD).

DR is a technique used to adjust the measurements ac-
cording to process constraints and conservation laws. Several
techniques have been developed, extending the scope to
deal with concerns such as dynamic and nonlinear behavior
and gross error detection. Thus two categories of DR are
prominent, steady-state or static DR (SDR) and dynamic
DR (DDR). Note that the main difference between DDR
and other filtering techniques is that DDR explicitly uses
the process dynamic model as constraints to find estimates
of process variables by adjusting the measurements so that
the resulting estimates meet these constraints as closely as
possible. Therefore the reconciled estimates are less cor-
rupted than the measurements and, more importantly, are
consistent with the relationships between process variables

defined by the process static and dynamic constraints. In
contrast, standard filtering methods (e.g., using a low-pass
filter to reduce noise) introduces spurious dynamics.

II. BACKGROUND

Despite the significant body of literature on DR processing
methods showing their multiple advantages, there are few
applications of these techniques to realistic large-scaleindus-
trial processes. There are significant obstacles to overcome,
such as the inavailability of nonlinear mathematical mod-
els and the difficulty of running computationally intensive
model-based algorithms in real time. This work is focused
on the extension, application and assessment of the NDDR
technique applied to a highly realistic, large-scale three-phase
gravity separator model [4] representing the first stage in the
oil production process. In addition to this, a multivariable
steady-state detector algorithm has been developed to aid
in the NDDR process. These two developments are part
of the multi-agent system for Intelligent Control and Asset
Management (ICAM) [5], [6].

Data Reconciliation: Kuehn and Davidson (1961 [7])
introduced static data reconciliation and applied it to steady-
state chemical engineering processes. Their method involved
the solution of an optimization problem that minimizes a
weighted least-squares objective function of the error be-
tween measured and estimated values of the process variables
under static material and energy balance constraints. Mahet
al. (1976 [8]) treated the general linear data reconciliation
problem; they demonstrated that data reconciliation improves
data accuracy (compared with standard filtering methods).

In 1992 Liebmanet al. [3] developed a new approach for
NDDR, which used simultaneous optimization and solution
techniques associated with a finite data window. Subse-
quently, Liebman and Edgar [9] demonstrated the advantage
of using NLP techniques over conventional steady-state
DR methods. They included variable limits and nonlinear
algebraic constraints, improving the performance of the
reconciliation. Laylabadi and Taylor [1] devised an ANDDR
method based on [3] that includes the application to pro-
cesses with unknown statistical models. They also created
and demonstrated a new approach for Gross Error Detection
and Correction (GEDC).

While dynamic data reconciliation has been widely stud-
ied, there are few applications to real industrial systems,
due to the difficulty of solving large NLP problems in real
time. McBrayeret al. (1998 [10]) reported the successful
application of the NDDR algorithm developed by Liebman,
to reconcile actual plant data from an Exxon Chemicals



process. The model used in this application was developed
using several simplifications such as constant pressure (to
eliminate fast dynamics) and only one mass balance equa-
tion. The present study applies NDDR to a model with
complete mass balance and very fast pressure dynamics. It
was found, after many attempts, that ANDDR could not run
in real time (as it must). This motivated the development
of a new hybrid algorithm to make the NDDR process more
efficient for application with complex models. The algorithm
implemented here covers nonlinear, dynamic and static DR.

Steady-State Detection:Steady-State Detection (SSD)
plays an important role in process control and is critical
for the application of other functionalities such as Fault
Detection Identification and Accommodation (FDIA [15])
and Dynamic Linearized Model Identification (LMId [11]);
these require the system to be in steady state in order to
produce the best results. In addition, SSD can be used to
reduce the computational burden of NDDR, as will be shown.

The majority of methods for SSD are based on calculating
either the mean, variance or regression slope over a data
window, and comparing them with results over the previous
window using statistical tests. Refer to [12] for three typical
solutions to the problem of identifying steady-state condi-
tions automatically which were published inControl for the
Process Industries, 1994.

III. PAPER OUTLINE

A multi-agent system for integrated control and asset man-
agement of petroleum production facilities [5], [6], [13] and
the application (a pilot plant model for crude oil processing
[4]) are overviewed in section IV, to establish the context
for the research described here. Next, in section V, the
theory, methodology and results obtained for the steady-
state detection agent are presented. The NDDR approach is
described in section VI, as well as a number of modifications
and refinements to improve computational efficiency. A new
hybrid solution method to tackle the data reconciliation
problem is presented in section VII. Finally, in section VIII
a summary and conclusions are discussed.

IV. CONTEXT: THE ICAM SYSTEM AND APPLICATION

PAWS, Petroleum Applications of Wireless Systems, was
a major research project pursued by several universities in
Atlantic Canada for oil and gas applications. The overall
project was divided in two major areas: One, led by Cape
Breton University, focused on using wireless sensor networks
to replace wired data cables in refineries and offshore oil
rigs, and the University of New Brunswick (UNB) portion
worked on the intelligent management and control of data
and processes. For more information about the UNB part of
the PAWS project see [14].
A. ICAM System Overview

Extensive supervisory monitoring and control is required
to obtain accurate, reliable and efficient control of a mod-
ern industrial process. A number of actions may have
to be executed, including steady-state detection; linearized
model identification; dynamic data reconciliation; fault de-
tection, isolation and accommodation; and supervisory con-
trol. ICAM [6], [13] is a multi-agent system, capable of inte-
grating, supervising and managing all these tasks efficiently.
Such a system reduces maintenance and production costs,
improves utilization of manufacturing equipment, enhances
safety and improves product quality. The ICAM infrastruc-
ture was interfaced with a pilot plant simulator, described
below.

B. The ICAM System Prototype
Figure 1 depicts the original ICAM prototype [6], [13].

Data are obtained in real time either from an external plant or
from a simulation model. It is stored in the database and also
passed to the SSD Agent, which determines if the plant is
either in steady or transient state, and to the ANDDR Agent,
which reduces the noise and removes outliers. Processed
data are also stored in a real-time database. The Linearized
Model Identification (LMId) Agent is invoked if there is no
model available or if a significant change in the process
operating point occurs. This agent uses generalized binary
noise signals as test inputs to perturb the process and collects
the corresponding output signals to be used for LMId. Once
a new model is obtained, the linearized process model
parameters are updated and loaded into the ANDDR [1],
[2] and FDIA Agents [11], [15].

Database

Manager . .
.

In
fo

rm
a

ti
o
n

 /

co
o
rd

in
a

ti
o
n

Physical

Process

Wireless links

Wired or

O
p

e
ra

to
r 

C
o
m

m
a

n
d

s

(e
.g

.,
 s

e
t−

p
o
in

t 
ch

a
n

g
e
s)

Real−time data

Cleaned up

Supervisor

(G2)
(MATLAB)

Operator
Interface

..

** Linearized model identification

(MATLAB)

(MATLAB)

(MATLAB)

SSD**** Agent

ANDDR*** Agent

(MATLAB)

Simulator

Process

FDIA* Agent

(MATLAB)

LMId** Agent

R
e
a

l−
ti

m
e
 d

a
ta

**** Steady−state detector

* Fault detection, isolation and accommodation

*** Adaptive nonlinear dynamic data reconcilation

Model

Model

Fig. 1. ICAM system prototype

The supervisor is alerted about every event that occurs as
it monitors, observes, and controls the system. An operator
interface receives the data and the information from the
supervisor relative to the different agents. This allows the
operator to take decisions according to the system status and
requirements. The external plant for this particular project
represents an oil production facility, which separates crude
oil from the well into petroleum, water, and gas. ICAM
was supposed to interface with a pilot plant (three-phase
separator) at the College of North Atlantic (CNA); however,
due to logistical difficulties all PAWS research at UNB used
a realistic model of this process [4].
C. Application: a Pilot Plant Model

Oil production facilities exhibit very complex and chal-
lenging dynamic behavior. The application treated in this
paper is athree-phase separator, consisting of two horizontal
tanks, the first called a “group separator” in which most
of the gas is separated from oil and water, followed by a
“treater” where residual gas, oil and water are all separated
to the extent possible. Each phase’s dynamics are modeled;
the hydrodynamics of oil-water separation is modeled based



on the American Petroleum Institute design criteria, which
involves solving an internal optimization problem, and the
oil and gas phases’ dynamic behaviors are modeled assuming
gas-liquid phase equilibrium at the oil surface. The resulting
model has states that are quite slow (liquid levels) and very
fast (gas pressures). This oil production facility model was
implemented inMATLAB rto produce our simulator.

V. STEADY STATE DETECTION

Steady-state detection is an important functionality in
process performance assessment, optimization, and control,
and plays a significant role in ICAM. In particular, the LMId
and FDIA agents require the system to be at steady state
before they can start working. This paper presents a method
for steady state detection based on linear regression over a
moving data window. A description of the algorithm is given,
followed by results obtained when applying this method to
the pilot plant model.

A. SSD Algorithm
Several approaches were studied in order to find an algo-

rithm that offered good performance using noisy data from
the pilot plant model. The method finally adopted performs
a least square linear regression over a moving data window.
The purpose of this is to find the equation of the best-fitting
line (in a least squares sense) and to analyze the rate-of-
change of the line reflected in its slope. Given that the method
was to be applied to the pilot plant which is a complex multi-
variable process, every output is analyzed separately, and
when all the variables fulfill the condition for steady state,
the overall system is declared to be in steady state.

A moving data window approach is used for this algo-
rithm. Although the concept is similar to the moving window
used in data reconciliation, VI-B, the size of the window is
different. The criteria for choosing this parameter for SSD
depends upon the time constants of the variables, unlike in
DDR where the size of the window depends upon the amount
of noise reduction desired. The pilot plant model has five
output variables; every variable has a different time constant,
some very long (liquid levels) and some very short (gas
pressures). Therefore, every signal is treated independently
using a different window size. The advantage of using a data
window is that it reduces computation time and the need to
store data.

Once enough data is obtained to fill the window, linear
regression is performed and the slope is compared with a
thresholdT . If the slope is smaller than the threshold for
several samples (D samples), steady state can be confirmed.
Figure 2 illustrates the concept of the method adopted to
detect steady state; it shows the volume on the separator
when a setpoint change of 10% of its nominal operating
value is applied at timet = 0 sec. The noise standard
deviation is 1% of each variable’s nominal operating value in
all examples herein. When the signal is in the transient state,
the slope of the line is large (m1). At the maximum point
the slope is small (m2), but this condition changes in a few
samples. The closer the signal is to steady state, the smaller
the slope (m3) and this condition continues. The thresholdT
is not a constant; it depends upon the set point change,SPi,
and the standard deviation of the noise,σi, both of which
are assumed to be known. The formula for this parameter
was obtained by doing a series of experiments, running the
algorithm for different combinations ofSPi and σi and
performing a multiple regression to fit the different outcomes
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Fig. 2. Steady state detection example

of the tests. The empirical equation for the threshold vector
is:

T = a0 + a1σ + a2SP (1)

whereai are the coefficients of the threshold model.

B. SSD Algorithm Results
Measurements were simulated and noise added. The noise

was assumed to be Gaussian with zero mean, and the time
step used is 0.15 seconds. Figure 3 shows the response of the
SSD algorithm for the volume in the separatorVsep−liq. In
the simulation, the plant is working at its nominal operating
point for the first100sec. At that time a set-point change of
5% of the nominal operating value is applied. The upper plot
displays the linear regression slope and the lower shows the
noisy signal and the original signal without noise. In both
plots is possible to observe the SSD flag, which informs the
supervisor about the state of the plant. If the SSD flag is
low the signal is in unsteady state, and if it is at the high the
variable has reached steady state. The high and low values
of the steady state flag sent to the supervisor are unity and
zero; however, in figures those values are modified in order
to make the flag’s value comparable with the associated
variable. This figure portrays the volume of the liquid in
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the separator (Vsep−liq) along with the regression slope and
SSD flag. Note that this is a slow variable, so it takes a long



time to reach steady state. There are also fast signals such
as the pressure in the separator (Psep−vap) and in the treator
(Ptreat−vap), which take shorter times to reach steady state.
When the algorithm is applied to the complete plant there
are two kinds of flags: an individual flag for every variable,
as illustrated in figure 3, and an overall flag which indicates
the state of the entire system.

VI. N ONLINEAR DYNAMIC DATA RECONCILIATION

Modern chemical plants, petrochemical processes and
refineries work by measuring and controlling several vari-
ables such as flow rates, temperatures, pressures, levels and
compositions. Sensed values of these variables are subject
to corruption by random and systematic errors. Due to
these errors, the relationship between the measured inputs
and outputs of a system may not match with the process
dynamics or conservation laws (process constraints). As was
explained in section I, NDDR improves the accuracy of
process data by adjusting the measured values so that they
satisfy process constraints.

Based on the method used by Laylabadi and Taylor [1],
[2], we implemented, refined, and assessed the ANDDR
technique by applying it to the PAWS pilot plant model.
The general formulation for the NDDR problem introduced
by Liebmanet al. [3] is presented below; the adaptive feature
in the ANDDR algorithm was not the focus here. Rather, we
address the refinements needed to tackle the problem while
implementing NDDR for a much more complex model.
A. NDDR Formulation

The general NDDR formulation can be expressed as
follows [3]:

min
ẑ(t)

Φ[z̃, ẑ(t);σ], (2)

subject to Ψ(
dẑ(t)

dt
, ẑ) = 0, (3)

h[ẑ(t)] = 0, (4)

g[ẑ(t)] ≥ 0, (5)

where
z = true (noise free) measurements,
z̃ = corrupted measurements,
ẑ = estimated (reconciled) measurements,
Φ = objective function,
σ = measurement noise standard deviations,
Ψ = process dynamic constraints,
h = energy and/or material balance constraints,
g = process variable limits.

The lengths ofz, z̃, ẑ andσ are equal to the total number
of variables (states and inputs), i.e.,z = [x p u]T .
B. Solution Strategy

We narrowed the definitions of the objective function and
dynamic constraints (equations 2,3) to define the algorithm
used here. Then there are three important strategies adopted
to facilitate the solution of the general NDDR problem: using
a process of discretization, a moving horizon data window,
and an adaptive noise model.

Objective function, dynamic constraints and discretiza-
tion: Most applications use weighted least-squares as the
objective function in equation (2), and the dynamic con-
straint in equation (3) is usually that the process differential
equation must be satisfied. Then̂z is adjusted until the

difference between the measurementsz̃ over the window and
integrating the system differential equation over that window
is minimized in the mean-square sense.

Φ =

ni+ns∑

i=0

ηi

c∑

j=c−H

(
z̃ij − ẑij

σi

)2, (6)

subject to Ψ =
dẑ

dt
− f(x̂) = 0, (7)

whereη is a vector of weights, andni andns are the number
of inputs and states. The estimation scheme is maximum
likelihood if the weightsηi are all equal. Ifẋ = f(z) is a
physics-based nonlinear model then the material and/or en-
ergy balance conditions are satisfied and equality constraints
are not required. The inequality constraints may include
limits on process variables; for example, the separator input
and output flows cannot be negative.

Finally, the dynamic constraint, equation (7), needs to be
discretized in order to solve the NLP problem defined by
the equations above. To achieve this, the differential equation
set ẋ = f(z) is solved numerically over the window using
a fixed-step integrator with the step equal to the sampling
time.

Moving Horizon Window : Liebmanet al. [3] introduced
a moving time window approach in order to decrease the size
of the optimization problem. Iftc is defined as the present
time, thehistory horizon is established fromtc− (H−1)∆t
to tc, where∆t is the step size; it is important to choose
an appropriate horizon lengthH. If H is too small, the
information available may not be enough to perform a good
reconciliation, but if it is too large, the NLP problem can
become excessively large. The steps for NDDR can be
summarized as:

1) Acquire process measurements at timet = tc
2) MinimizeΦ, equation 6, under the constraints in equa-

tions 7, 4 and 5 over the window(tc − (H − 1)∆t ≤
t ≤ tc)

3) Saveŷ at time tc as the reconciled signal for online
control purposes

4) Repeat at the next step,tc+1

The advantages of the moving window approach are that
it reduces the size of the NLP problem and the only tuning
parameter is the size of the history horizonH, if the weights
ηi in equation 6 are equal.

Adaptive Noise Model: Taylor and Laylabodi [2] ad-
dressed systems with an unknown noise model. They also
used a moving window approach; however the window
should be substantially longer than that used for ANDDR.
They estimated the noise modelσ̂ as the sample standard
deviation over the window; in order for this estimate to be
statistically significant this window should contain at least 50
to 100 points, and the true (noise-free) signalsz must vary
slowly over that window. If a sufficiently large number of
points is used then the random variableσ̂ is approximately
gaussian with variance inversely proportional to the number
of points. For a more thorough discussion of the statistics of
σ̂ refer to Taylor [16].
C. ANDDR Results

The ANDDR algorithm was applied to the pilot plant
model to assess the performance of this method in a large
scale, realistic model with fast dynamics (gas pressures),and
as a first step to develop an agent capable of working within



the ICAM system. For this test, five inputs and five outputs
were estimated. True values were obtained by simulating the
nonlinear model with a time step of∆t = 0.15 sec., and
measurements were created by adding Gaussian noise to the
true values; they were assumed to be gross error free. There
were no setpoint changes, all variables are at their nominal
operating point value, and the window sizeH was set to 10.

The approach here mimics that developed by Laylabadi
and Taylor [1], [2]; only the simulator was different and
much more challenging. Optimization was executed using
the unconstrained nonlinear methodfminsearch; this is a
direct search method that does not use numerical or analytic
gradients. Initial guesses for̂zi in the optimization problem
were set to the previous estimatesẑi−1 and all the weights
ηi = 1.

Applying this approach to the pilot plant model consumed
a huge amount of computation time. The optimization routine
often could not find a minimum; it kept iterating until the
maximum number of iterations or maximum number of
evaluations were reached. ANDDR execution in this case
consumed 1,049 times real time (simulated), which is entirely
unacceptable. This is due to the fact that the pilot plant model
is extremely complex, with an internal optimization problem
needing to be solved to balance oil, water and gas separation
at each time step. The small sampling time is also a factor;
it is based on the rapid gas pressure dynamics. Finally,
fminsearch converges very slowly for searches of three
or more dimensions [17]. The pilot plant model includes a
total of ten parameters to be estimated, sofminsearch is
unsuitable for the problem addressed here.

We tried several strategies to reduce run time: using a
different minimization routine, varying the window length,
adjusting the weights in the objective function and modifying
the initial guesses; here we can only summarize the results.

Data Reconciliation Results Using fminunc: Although
the results of the original ANDDR algorithm [2] exhibit
good noise and RMSE reduction, the computation time is an
important issue. The first attempt at reducing the computation
time was to use a different minimization routine,fminunc
[17], which is an efficient large-scale algorithm.

Using fminunc was the only change from the previous
case. The results are shown in figure 4. Table I shows the
quantitative results for this test, and a comparison between
these results and those obtained withfminsearch. An
important reduction in the computation time was observed:
using fminsearch the computation time wastcomp =
21, 094 sec. (1,049 times real time) and usingfminunc
the computation time was reduced totcomp = 1, 368 sec.
(68 times the running time). This is a big improvement, but
this run time is still too large,

The noise reduction achieved usingfminunc is smaller
that the reduction obtained usingfminsearch, but still
it is significant. The amounts of RMSE reduction are very
similar between the two approaches. The reason for the lower
noise reduction would require in-depth analysis of these two
minimization methods, which was beyond the scope of this
research. Perhaps the default tolerances in these algorithms
are makingfminunc less demanding.

Several more options were tested to speed up the ANDDR
algorithm. These included modifying the size of the moving
window, using scaling in the cost function, and varying the
optimization tolerances. Data used for the different testsare
the same as described previously, but the algorithms were

Fig. 4. Sample ANDDR results usingfminunc

% Noise reduction% RMSE reduction
Variable search unc search unc

In
pu

ts

Foutsep−liq 80.68 65.62 64.88 60.21
Foutsep−vap 74.69 57.49 56.88 55.60
Fouttreat−wat 85.40 59.01 64.17 61.59
Fouttreat−oil 81.25 74.63 53.57 54.10
Fouttreat−vap 73.94 63.60 51.78 50.14

O
ut

pu
ts Vsep−liq 76.15 72.35 60.47 62.75

Psep−vap 69.24 69.49 60.93 61.72
Vtreat−wat 69.03 80.24 65.97 70.33
Vtreat−oil 69.87 70.52 57.21 60.39
Ptreat−vap 64.52 54.59 49.59 45.25
Average 74.48 66.72 58.54 58.21

TABLE I
ANDDR PERFORMANCE USINGfminsearch AND fminunc

executed for a shorter time (tf = 10 sec. in every case), to
shorten run times. The results and conclusions for these tests
are presented in the following sections.

Modifying the Window Size: One of the advantages of
using a moving window as part of the solution strategy
for ANDDR is that the length of the window acts as a
convenient tuning parameter. IncreasingH provides more
information for the optimization algorithm and yields more
noise reduction, although the optimization will take longer.
Therefore it is necessary to find a balance between time
consumed and noise reduction achieved.

Table II shows the percentage of noise reduction when
the ANDDR algorithm is executed using different values of
H. Note that the time consumed in executing the algorithm
increases with the value ofH, as does the noise and RMSE
reduction. The level of noise reduction and RMSE reduction
increase substantially withH, but only up to a certain value
(in this case approximatelyH= 16); for larger values ofH,
the improvement in the estimates is less significant.
The window size chosen isH = 8, to obtain percentages of

noise reduction and RMSE reduction above50%. Using this
value the computation time is reduced from 68 times real
time to 48 times. An improvement in time is achieved while
obtaining a decent reduction in noise; however, the computer
time is still too large.

Using Unequal Weights: A second attempt was made
with H = 8, by changing the scaling (weightsηi). Ini-
tially all the values of the weights were unity, to preserve
the maximum-likelihood nature of the estimation scheme.
However, it was conjectured that the optimization could be
affected by the different ranges of the variables involved in
the pilot plant model. To normalize the optimization function,
the value ofηi in equation (6) was set to the inverse of the
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H Comp.
(sec.)

20 1011 89.8 91.3 95.4 95.0 93.5
16 839 90.3 94.0 94.0 95.8 93.1
12 673.9 75.2 80.1 67.8 83.1 67.3
10 618.9 67.2 77.2 59.0 80.0 62.7
8 481.4 69.8 74.8 61.7 74.4 55.0
6 375.4 60.6 56.8 53.9 71.4 47.9
4 267.1 48.3 46.3 42.1 62.1 37.9

TABLE II
PERCENTAGE OF NOISE REDUCTIONvs. H

nominal operating point value of every variable.

NO Scaling Scaling
Variable % σ % RMSE % σ % RMSE

Reduct. Reduct. Reduct. Reduct.

In
pu

ts Foutsep−liq 69.84 51.96 81.08 74.08
Foutsep−vap 74.82 70.69 67.08 63.61
Fouttreat−wat 61.68 60.30 88.03 75.71
Fouttreat−oil 74.43 74.38 79.72 77.66
Fouttreat−vap 54.95 52.00 58.97 59.88

O
ut

pu
ts Vsep−liq 66.49 64.45 73.68 72.42

Psep−vap 63.22 61.68 63.42 56.35
Vtreat−wat 74.06 67.77 51.91 44.50
Vtreat−oil 79.98 70.91 81.72 75.40
Ptreat−vap 62.12 48.34 66.73 31.21

Average 68.16 62.25 71.23 63.08

TABLE III
ANDDR RESULTS USING SCALING

Table III shows the outcome of the scaling test. The re-
sults show that using scaling provides, in general, more
effective reconciliation. The computation time wastcomp =
425.4 sec., which is lower than in the previous test per-
formed using H = 8 and without scaling (tcomp =
481.36 sec.). In general the majority of the variables exhibit
a greater reduction in noise and RMSE as well.

Change in Optimization Tolerances:The next attempt in
trying to reduce computation time for ANDDR was to mod-
ify some parameters that govern the behavior offminunc.
These changes included modifying the termination tolerances
on the objective function value (default forTolΦ = 1e− 3)
and on the estimates (default forTolŷ = 1e − 3). Several
tests were performed in order to establish the effect of these
parameters on the performance of the algorithm. Table IV
shows the results for some of the tests executed. Performance
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Parameters Time Reduct.

(sec.)

Tolŷ = 1e− 4 819 Noise 69.1 73.4 62.6 75.6 57.5
TolΦ = 1e− 4 RMSE 53.3 70.9 61.9 75.3 53.3
Tolŷ = 1e− 3 481 Noise 69.84 74.82 61.68 74.43 54.95
TolΦ = 1e− 3 RMSE 51.96 70.71 60.35 74.38 52.01
Tolŷ = 1e− 2 360 Noise 71.18 72.37 59.73 75.77 57.21
TolΦ = 1e− 2 RMSE 50.58 68.26 58.56 74.23 55.32

TABLE IV
ANDDR RESULTS USING DIFFERENT OPTIMIZATION TOLERANCES

in terms of percent reduction appears to be rather flat, but

computation time is substantially reduced when using1e−2
for the tolerances.
D. ANDDR Results for a Set Point Change

The best compromise in performance was obtained for
H = 8, using the previous estimates as initial guesses,
applying scaling in the optimization routine, and using the
default values for the optimization algorithm parameters.
These conditions were selected in specifying the definitive
ANDDR algorithm. The following scenario is presented in
order to show its effectiveness.

This scenario runs for a real time oftf = 100 sec. The
plant starts working at the nominal operating point, and a
positive setpoint change of 2% is applied at the timet =
50 sec. Table V and figure 5 present a sampling of the results
obtained. This study required a computation time oftcomp =
4828 sec. or 48 times real time to complete reconciliation.

Fig. 5. ANDDR results for a positive setpoint change
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Percent
reduct.

Noise 73.52 75.57 73.13 70.49 68.52
RMSE 73.30 75.06 73.85 64.89 70.10

TABLE V
ANDDR RESULTS FOR A POSITIVE SETPOINT CHANGE

VII. A H YBRID DDR APPROACH

The results presented in section VI show that the estimates
obtained with ANDDR are significantly smoother than the
corresponding measurements. However, the time consumed
by the algorithm is too large. Another drawback to this
approach is the need for a nonlinear process dynamic model,
which is often not available or not practical to develop.
In order to reduce the computation time and to address
the dynamic process model availability issue, a new Hybrid
DDR approach (HDDR) was developed and tested. The
main idea is to use two different methods to perform the
data reconciliation according to the condition of the system
variables: transient or steady state.

It is possible to determine the state of the system, using
the SSD algorithm explained in section V. During transient
periods, data reconciliation is executed using the linearized
model of the plant provided by the LMId Agent [11] op-
erating on perturbation variables,i.e., δz = z − z0 where
z0 is the steady state operating point. This approach is
valid for moderate changes in the set-points and maintains
the goal of DDR, namely energy and material balance is



retained inz0. In steady-state intervals, data reconciliation
is performed using an equilibrium finding approach instead
of solving the system differential equations numerically over
the window. It is faster to obtain the equilibrium point than
to run the model for eight or ten samples every iteration of
the optimization loop. However, using a dynamic model for
equilibrium finding is still substantially less efficient than
using a static process model directly. Thus the real promise
of HDDR will be realized in applications for which a static
model exists, which is not true for the pilot plant. The
following is a feasibility study, to demonstrate that HDDR
works effectively.

The nonlinear pilot plant model is defined in terms of the
differential equation aṡx = f(x, u). For an input valueu0

and its corresponding equilibriumx0, the output value is
y0 = h(x0, u0). The perturbation variables can be defined
as δx = x − x0, δu = u − u0, and δy = y − y0. If the
perturbations are small and if continuous partial derivatives
exist at (x0, u0), the behavior of the original nonlinear
system nearx0 is similar to that of:

δẋ = Aδx+Bδu (8)

δy = Cδx+Dδu (9)

whereA = [ δf
δx
]x0,u0

, B = [ δf
δu
]x0,u0

, C = [ δh
δx
]x0,u0

, and

D = [ δh
δu
]x0,u0

[18]. A, B, C andD are obtained by the LMId

Agent [11], which is convenient.
In transient state, for small changes in the setpoint, the

linearized model can be used as the constraints in equation
(3). However, in steady state it is not accurate to use a
linear approximation, given that the equilibrium point for
the linearized model is different from that for the nonlinear
model. Furthermore, the concept of data reconciliation is
to adjust the measurements according to conservation law
constraints. This requirement would not be satisfied by using
the linearized model, because although the transient behavior
of the original nonlinear system is similar to that of the
linear model, the linear model does not provide the physical
relationship between inputs and outputs.

A. HDDR Results
The scenario used to test HDDR starts at the nominal

operating point and at the timet = 50 sec. a positive
set point change of2% is applied tou; the final time is
tf = 300 sec. Figure 6 shows the results for the test. The
computation time istcomp = 7494 sec. which corresponds
to 24 times the final time. This is much shorter than the
time consumed in the examples presented in section VI
(approximately49 times real time).

Note that the estimates present less noise than the measure-
ments, in both the transient and the steady state. However,
outliers are introduced in some of the variables at the moment
of the transition from transient to steady state (t = 250 sec.).
The fastest variables (Psep−vap andPtreat−vap) are the most
affected by the transition. It takes a window ofH samples
for the system to adapt again using the nonlinear dynamic
model. Table VI shows the quantitative results for this test,
confirming the results mentioned above. The reduced run
time is due to the long transient period, where the linearized
model is used for DDR. Using the steady-state approach with
the current pilot plant model does not substantially improve
the time consumed for the data reconciliation algorithm: Ifa
simpler nonlinear static model based on material and energy

Fig. 6. Hybrid DDR results

balance were available, the equilibrium algorithm would be
much more efficient and it could be used in HDDR to obtain
a faster and more reliable data reconciliation routine. The
derivation of the new nonlinear static model for the pilot
plant is not part of the scope of this project; it is suggested
as future work.
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PercentComp.
reduct. Time

(sec.)

Noise 7494 70.2 67.1 68.9 63.0 50.8
RMSE 7494 69.9 67.1 68.9 63.1 50.9

TABLE VI
HYBRID DDR APPROACH RESULTS

B. Solving the Steady-state/Transient Transition Problem

A routine was designed to detect changes in the steady
state flag and analyze the values of the estimates during
the next window. The objective of this routine is to solve
the problem of transitioning from transient state to steady
state, eliminating outliers produced by switching between
the models, as shown in figure 6. When the steady state flag
changes from unity to zero orvice versa, the algorithm starts
to compare the current estimate (ẑc) with the previous one
(ẑc−1). If the difference between them is larger than five
times the standard deviation of the previous data window,
then theẑc is replaced bŷzc−1. Table VII shows the noise
and RMSE reduction for this refined HDDR approach, and
figure 7 shows the results forPtreat−vap using HDDR with
this routine. Note that the transition is conducted withoutthe
negative effects in the estimates that are apparent in figure6,
and noise reduction is comparable for the separator outputs
and superior for the treater outputs.
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Noise 7490 69.24 68.36 70.34 68.65 69.36
RMSE 7490 68.93 67.38 67.68 61.31 52.42

TABLE VII
HDDR RESULTS AFTER SOLVING TRANSITION PROBLEM



Fig. 7. Hybrid DDR results solving transition problem forPtreat−vap

VIII. S UMMARY AND CONCLUSIONS

A. Summary

The ANDDR algorithm was tested extensively on the
simulated pilot plant model of Sayda and Taylor [4]. First
we tried the ANDDR algorithm exactly as implemented by
Laylabadi and Taylor [1], [2] and we found that it was
extremely slow (run time = 1049 times real time) and thus
totally unsuitable for this application. We performed an
extensive case study in which we varied the optimization
algorithm, changed the data window size, used scaling in
the performance index, and varied the optimization routine’s
stopping tolerances. The best we could achieve was 18 times
real time. We did not try converting the pilot plant model
from an M-file to a MEX-file, which might have substantially
improved the run time, because we decided to pursue another
idea: HDDR.

We proposed and tested an alternative approach to reduce
the ANDDR run time, called HDDR. This involves using
static DR when the process is in steady state and dynamic
DR using a linearized model during transient conditions. We
did reduce the computational burden, even though we were
handicapped by not having a static model of the process.
Instead we had to perform equilibrium finding, i.e., using a
nonlinear equation solver to find the solution toẋ = 0 which
also imposes a large computational burden. We believe that
a true static model would speed up the HDDR algorithm
substantially. The hybrid method has the added benefit of
eliminating the need for a nonlinear dynamic process model,
which in most practical applications is not available.

Finally, we believe that the discovery or development of
a more suitable optimization algorithm is key to making
ANDDR and HDDR practical for large scale, realistic pro-
cesses. Also, converting the process dynamic model to a
MEX file or otherwise speeding up the numerical integration
process in ANDDR or HDDR will be quite beneficial.
B. Contributions

The requirements demanded by control and automation
techniques are continuously increasing due to the need for
faster and more reliable results. The best control system
performance can only be achieved by using accurate mea-
surements. As a result, data reconciliation and gross error
and steady-state detection have become crucial tools for
data quality improvement in integrated control and asset
management systems.

These methods have been widely studied, but there are few
applications to real industrial models or processes, especially

not to realistic nonlinear and dynamic processes. Imple-
menting the ANDDR technique [1], [2] on real industrial
processes requires facing new challenges that are not present
in research using ideal models; this necessitates finding solu-
tions and tools to overcome the difficulties inherent NDDR.
The new hybrid method is an important and promising
contribution to performing DR efficiently in systems with
complex models. Modifying the algorithms in order to make
them compatible with a multi-agent supervisory system [6]
is another contribution that will facilitate future applications
to industrial processes.
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