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Abstract— Data reconciliation is a well-known method in  defined by the process static and dynamic constraints. In
on-line process control engineering aimed at estimating the contrast, standard filtering methods (e.g., using a lové-pas

true values of corrupted measurements under constraints. fi ; ; ; ;
° : T . ilter to reduce noise) introduces spurious dynamics.
Early nonlinear dynamic data reconciliation (NDDR) studies ) P y

considered models that were simple and of low order. In such Il. BACKGROUND

cases the ability to run the NDDR algorithm in real time for : P . :
relatively slow processes is not a serious problem, despite the Despite the significant body of literature on DR processing

heavy computational burden imposed by NDDR. In this study Methods showing their multiple advantages, there are few
a much more difficult process was treated and the method applications of these techniques to realistic large-scales-
presented by Laylabadi and Taylor [1], [2] was explored, refined trial processes. There are significant obstacles to ovescom
a”?ne;égﬂ%id cE:lOnl2\(/:\:‘ehasberigﬁl\ll%eDnéyﬁgreetﬁggeiSCO?(])pL(;tSaetl(;)gr?dmg). such as the inavailability of nonlinear mathematical mod-
demonstrative examplg performed to show thg pr%mise of this els and the d|ff|cul_ty of running _Computz_;monally_|nten5|ve
approach in reducing the computational burden and handliing Model-based algorithms in real time. This work is focused
industrial processes for which a realistic dynamic model does On the extension, application and assessment of the NDDR
not exist. This contribution makes NDDR more feasible for a technique applied to a highly realistic, large-scale thpkase
wider variety of applications. gravity separator model [4] representing the first stagéén t
oil production process. In addition to this, a multivarabl
steady-state detector algorithm has been developed to aid
Data from real industrial and chemical processes may bie the NDDR process. These two developments are part
degraded by several effecfdoiseis the random corruption of the multi-agent system for Intelligent Control and Asset
of sensor measurements due to high-frequency pick-up, ldWlanagement (ICAM) [5], [6].
resolution, errors in transmission and conversion (inclgd  Data Reconciliation: Kuehn and Davidson (1961 [7])
A/D and D/A conversion), among other effects. Noise isntroduced static data reconciliation and applied it t@die
often assumed to be randomly distributed with zero mean. Btate chemical engineering processes. Their method iegtolv
addition,gross errorsmay result in large discrepancies, e.g.the solution of an optimization problem that minimizes a
data drop-out or large A/D conversion errors, that may occweighted least-squares objective function of the error be-
at random times. In either case, process dynamic behavioveen measured and estimated values of the process variable
may not be matched, the laws of conservation of energynder static material and energy balance constraints. éflah
and mass may not be fulfilled, and trends may be obscureal, (1976 [8]) treated the general linear data reconciliation
producing errors in process diagnosis, identification angroblem; they demonstrated that data reconciliation ivggo
control. Reliable data is very important in order to achiave data accuracy (compared with standard filtering methods).
high-quality controlled process. We consider two impartan In 1992 Liebmaret al. [3] developed a new approach for
aspects of data processing to improve the performance BDDR, which used simultaneous optimization and solution
the control system: Data Reconciliation (DR), and, as atechniques associated with a finite data window. Subse-
ancillary procedure, Steady-State Detection (SSD). quently, Liebman and Edgar [9] demonstrated the advantage
DR is a technigue used to adjust the measurements ad- using NLP technigques over conventional steady-state
cording to process constraints and conservation laws.r8leveDR methods. They included variable limits and nonlinear
techniqgues have been developed, extending the scopealgebraic constraints, improving the performance of the
deal with concerns such as dynamic and nonlinear behavimconciliation. Laylabadi and Taylor [1] devised an ANDDR
and gross error detection. Thus two categories of DR areethod based on [3] that includes the application to pro-
prominent, steady-state or static DR (SDR) and dynamicesses with unknown statistical models. They also created
DR (DDR). Note that the main difference between DDRand demonstrated a new approach for Gross Error Detection
and other filtering techniques is that DDR explicitly usesind Correction (GEDC).
the process dynamic model as constraints to find estimateswhile dynamic data reconciliation has been widely stud-
of process variables by adjusting the measurements so tled, there are few applications to real industrial systems,
the resulting estimates meet these constraints as closelydue to the difficulty of solving large NLP problems in real
possible. Therefore the reconciled estimates are less ctime. McBrayeret al. (1998 [10]) reported the successful
rupted than the measurements and, more importantly, ampplication of the NDDR algorithm developed by Liebman,
consistent with the relationships between process vasablto reconcile actual plant data from an Exxon Chemicals

I. INTRODUCTION



process. The model used in this application was develop&l The ICAM System Prototype
using several simplifications such as constant pressure (toFigure 1 depicts the original ICAM prototype [6], [13].
eliminate fast dynamics) and only one mass balance equaata are obtained in real time either from an external plant o
tion. The present study applies NDDR to a model witifrom a simulation model. It is stored in the database and also
complete mass balance and very fast pressure dynamicspéissed to the SSD Agent, which determines if the plant is
was found, after many attempts, that ANDDR could not rurither in steady or transient state, and to the ANDDR Agent,
in real time (as it must). This motivated the developmenivhich reduces the noise and removes outliers. Processed
of a new hybrid algorithm to make the NDDR process moréata are also stored in a real-time database. The Linearized
efficient for application with complex models. The algonith Model Identification (LMId) Agent is invoked if there is no
implemented here covers nonlinear, dynamic and static Dihodel available or if a significant change in the process
Steady-State Detection:Steady-State Detection (SSD)operating point occurs. This agent uses generalized binary
plays an important role in process control and is criticahoise signals as test inputs to perturb the process andtolle
for the application of other functionalities such as Faulthe corresponding output signals to be used for LMId. Once
Detection Identification and Accommodation (FDIA [15])a new model is obtained, the linearized process model
and Dynamic Linearized Model Identification (LMId [11]); parameters are updated and loaded into the ANDDR [1],
these require the system to be in steady state in order [@] and FDIA Agents [11], [15].
produce the best results. In addition, SSD can be used to
reduce the computational burden of NDDR, as will be shown. Supervisor Operator
The majority of methods for SSD are based on calculating | ~ gy |<<-===========------ = Interface
either the mean, variance or regression slope over a dat (MATLAB)
window, and comparing them with results over the previous 4\<_ Coso FDI*Agent | !
window using statistical tests. Refer to [12] for three tgbi . (MATLAB)
solutions to the problem of identifying steady-state cendi :
tions automatically which were published @ontrol for the |
Process Industries, 1994. B i 4

Model

(MATLAB)
I1l. PAPEROUTLINE

A multi-agent system for integrated control and asset man- g Model i
agement of petroleum production facilities [5], [6], [13]jda |
the application (a pilot plant model for crude oil procegsin
[4]) are overviewed in section IV, to establish the context
for the research described here. Next, in section V, the
theory, methodology and results obtained for the steady- < - - SSEWATLngfm -
state detection agent are presented. The NDDR approach is :
described in section VI, as well as a number of modifications !

Simulator
and refinements to improve computational efficiency. A new Database k-l (MATLAB)
hybrid solution method to tackle the data reconciliation ~ ~~~7- = Manager || wiredor

1 1!

problem is presented in section VII. Finally, in section IVII
a summary and conclusions are discussed. # Fault detection, isolation and accommodation I;hySical
. #* Linearized model identification Tocess
IV CONTEXT. THE ICAM S'YSTEM AN.D APPLICATION *#*% Adaptive nonlinear dynamic data reconcilation
PAWS, Petroleum Applications of Wireless Systems, was: Steady-state detector
a major research project pursued by several universities in Fig. 1. ICAM system prototype
Atlantic Canada for oil and gas applications. The overall . :
. o : ; The supervisor is alerted about every event that occurs as
project was divided in two major areas: One, led by Capﬁ; P Y

. . , . monitors, observes, and controls the system. An operator
Breton University, focused on using wireless Sensor Neor ;0. ¢ 0 raceives the data and the inf)c/wmation fro?n the
ﬁ) sregr?gethvglrsgivde?tsail C%?Iilsevl\? E:(raljl:sevcﬁzi ?Sﬂléﬁsg?trignoélupervisor relative to the different agents. This allows th
gs, . Sity b gperator to take decisions according to the system statlis an
worked on the intelligent management and control of da

. . guirements. The external plant for this particular pbje
?hned SAr\?\(/:gSSr?osjégoé ergo[rle4informat|on about the UNB part presents an oil production facility, which separatesieru

: oil from the well into petroleum, water, and gas. ICAM
A ICAM System Overview . . was supposed to interface with a pilot plant (three-phase
Extensive supervisory monitoring and control is requirede - 2ior) at the College of North Atlantic (CNA): however,

to obtain accurate, reliable and efficient control of a mody,q tq |ogistical difficulties all PAWS research at UNB used
ern industrial process. A number of actions may havg (aglistic model of this process [4].

to be e_xecu_tgad, .including sﬁeady—state de_tt_act_ion; limedri C. Application: a Pilot Plant Mode!
model identification; dynamic data reconciliation; faui-d production facilities exhibit very complex and chal-

tection, isolation and accommodation; and supervisory Corlknging dynamic behavior. The appiication treated in this

trol. ICAM [6], [13] is a multi-agent system, capable of inte : L :
. - . .~ paper is ahree-phase separator, consisting of two horizontal
grating, supervising and managing all these tasks effigrlentt nks, the first called a “group separator’ in which most

.SUCh a system .reduces maintena_lnce anq production COFPthe gas is separated from oil and water, followed by a
improves utilization of manufacturing equipment, enhance. ..o where residual gas, oil and water are all sepdrate
safety and improves product quality. The ICAM infrastruc- the extent possible. Each phase’s dynamics are modeled:

Luerliv\\;vas interfaced with a pilot plant simulator, describe e hydrodynamics of oil-water separation is modeled based
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on the American Petroleum Institute design criteria, which
involves solving an internal optimization problem, and the ‘ ‘ ‘ I
oil and gas phases’ dynamic behaviors are modeled assumir 17t 1
gas-liquid phase equilibrium at the oil surface. The résglt
model has states that are quite slow (liquid levels) and very
fast (gas pressures). This oil production facility modekwa
implemented inMATLAB ®to produce our simulator.
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V. STEADY STATE DETECTION
Steady-state detection is an important functionality in s
process performance assessment, optimization, and tontrc
and plays a significant role in ICAM. In particular, the LMId
and FDIA agents require the system to be at steady stat 50f
before they can start working. This paper presents a metho
for steady state detection based on linear regression over

sep-liq

1551

moving data window. A description of the algorithm is given, % 1 fime (set) 200 20
followed by results obtained when applying this method to

the pilot plant model.

A. SSD Algorithm . _
Several approaches were studied in order to find an a|g@f the tests. The emplrlcal equation for the threshold wecto

Fig. 2. Steady state detection example

rithm that offered good performance using noisy data frort¥:
the pilot plant model. The method finally adopted performs
a least square linear regression over a moving data window,
The purpose of this is to find the equation of the best-ﬁttin&"
line (in a least squares sense) and to analyze the rate-&- SSD Algorithm Results

change of the line reflected in its slope. Given that the mtho peasurements were simulated and noise added. The noise
was to be applied to the pilot plant which is a complex multiyas assumed to be Gaussian with zero mean, and the time
variable process, every output is analyzed separately, aggp used is 0.15 seconds. Figure 3 shows the response of the
when all the variables fulfill the condition for steady statessp algorithm for the volume in the separaidg, ;. In

the overall system is declared to be in steady state. the simulation, the plant is working at its nominal opergtin
A moving data window approach is used for this algonoint for the first100sec. At that time a set-point change of
rithm. Although the concept is similar to the moving windowses of the nominal operating value is applied. The upper plot
used in data reconciliation, VI-B, the size of the window isgisplays the linear regression slope and the lower shows the
different. The criteria for choosing this parameter for SSDygjsy signal and the original signal without noise. In both
depends upon the time constants of the variables, unlike jlots is possible to observe the SSD flag, which informs the
DDR where the size of the window depends upon the amoustipervisor about the state of the plant. If the SSD flag is
of noise reduction desired. The pilot plant model has fivgyy the signal is in unsteady state, and if it is at the high the
output variables; every variable has a different time camtst yariable has reached steady state. The high and low values
some very long (liquid levels) and some very short (gagf the steady state flag sent to the supervisor are unity and
pressures). Therefore, every signal is treated indepéiydenzero; however, in figures those values are modified in order
using a different window size. The advantage of using a da{g make the flag's value comparable with the associated

V\{indO\éV itS that it reduces computation time and the need fgariable. This figure portrays the volume of the liquid in
store data.

Once enough data is obtained to fill the window, linear
regression is performed and the slope is compared with Steady State Detection Algorithm Applied to V, .,
thresholdT'. If the slope is smaller than the threshold for ’ T ‘
several sampled) samples), steady state can be confirmed == S0P 1
Figure 2 illustrates the concept of the method adopted t
detect steady state; it shows the volume on the separat
when a setpoint change of 10% of its nominal operating

T =ay+ a0+ aSP 1)

herea; are the coefficients of the threshold model.
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value is applied at timg = 0 sec. The noise standard T R I
deviation is 1% of each variable’s nominal operating vatue i Time(ee)

all examples herein. When the signal is in the transient state 160

the slope of the line is large (m1). At the maximum point sl

(ft%)

the slope is small (m2), but this condition changes in a fewn
samples. The closer the signal is to steady state, the small

o
T 150
o

the slope (m3) and this condition continues. The thresfiold ~ ~ us itz —ommmmmsmmee o Onianal Sgnal| |
is not a constant; it depends upon the set point chafigg, m\ e s

and the standard deviation of the noise, both of which O ey e
are assumed to be known. The formula for this paramete.

was obtained by doing a series of experiments, running the Fig. 3. Steady state detection fot.,iiq

algorithm for different combinations o6P; and o; and the separatori{..,—;;;) along with the regression slope and
performing a multiple regression to fit the different out@sm SSD flag. Note that this is a slow variable, so it takes a long



time to reach steady state. There are also fast signals sutifference between the measuremehtsver the window and
as the pressure in the separatB.{—.qp) and in the treator integrating the system differential equation over thatdeiw
(Pireat—vap), Which take shorter times to reach steady statés minimized in the mean-square sense.

When the algorithm is applied to the complete plant there -

are two kinds of flags: an individual flag for every variable, & — Z i Z (Zij — Zij )2, (6)
as illustrated in figure 3, and an overall flag which indicates = = o
the state of the entire system. _ - d;’c

VI. NONLINEAR DYNAMIC DATA RECONCILIATION subject to U= - f(@)=0, (7

Modern chemical plants, petrochemical processes and
refineries work by measuring and controlling several variwheren is a vector of weights, and; andn, are the number
ables such as flow rates, temperatures, pressures, levkls ghinputs and states. The estimation scheme is maximum
compositions. Sensed values of these variables are subjielihood if the weightsy; are all equal. Ifi = f(z) is a
to corruption by random and systematic errors. Due tphysics-based nonlinear model then the material and/or en-
these errors, the relationship between the measured inp@tgy balance conditions are satisfied and equality conssrai
and outputs of a system may not match with the procegg¢e not required. The inequality constraints may include
dynamics or conservation laws (process constraints). As whmits on process variables; for example, the separatastinp
explained in section |, NDDR improves the accuracy ofind output flows cannot be negative.
process data by adjusting the measured values so that theyrinally, the dynamic constraint, equation (7), needs to be
satisfy process constraints. discretized in order to solve the NLP problem defined by
Based on the method used by Laylabadi and Taylor [1}he equations above. To achieve this, the differential #ojia
[2], we implemented, refined, and assessed the ANDDERetZ = f(z) is solved numerically over the window using
technique by applying it to the PAWS pilot plant model.a fixed-step integrator with the step equal to the sampling
The general formulation for the NDDR problem introducedime.
by Liebmanet al. [3] is presented below; the adaptive feature Moving Horizon Window : Liebmanet al. [3] introduced
in the ANDDR algorithm was not the focus here. Rather, w& moving time window approach in order to decrease the size
address the refinements needed to tackle the problem whilethe optimization problem. If. is defined as the present
implementing NDDR for a much more complex model.  time, thehistory horizon is established from, — (H —1)At

A. NDDR Formulation to t., where At is the step size; it is important to choose
The general NDDR formulation can be expressed a@n appropriate horizon lengthl. If H is too small, the
follows [3]: information available may not be enough to perform a good
min ®[Z, 2(t); o], (2) reconciliation, but if it is too large, the NLP problem can
Z(t)dé(t) become excessively large. The steps for NDDR can be
subject to ‘11(7, 2) =0, (3) summarized as:
h[2(t)] = 0, 4) 1) Acquire process measurements at timet.
2) Minimize ®, equation 6, under the constraints in equa-
glz(t)] = 0, (5) tions 7, 4 and 5 over the windog,. — (H — 1)At <
t<t.
where . 3) Savegg at time ¢, as the reconciled signal for online
z true (noise free) measurements, control purposes
Z = corrupted measurements, 4) Repeat at the next stefd,+1
%2 = estimated (reconciled) measurements, The advantages of the moving window approach are that
_ iacti i it reduces the size of the NLP problem and the only tuning
¢ = objective funct|0n., . parameter is the size of the history horizdnif the weights
o = measurement noise standard deviations, n; in equation 6 are equal.
¥ = process dynamic constraints, Adaptive Noise Model Taylor and Laylabodi [2] ad-
h = energy and/or material balance constraints, dressed systems with an unknown noise model. They also
; . used a moving window approach; however the window
g process variable limits.

should be substantially longer than that used for ANDDR.
The lengths of, Z, 2 ando are equal to the total number They estimated the noise modelas the sample standard
of variables (states and inputs), i.e.= [z 1 u]T. deviation over the window; in order for this estimate to be
B. Solution Strategy statistically significant this window should contain atde&0

do 100 points, and the true (noise-free) signalsust vary

We narrowed the definitions of the objective function an owlv over that window. If a sufficiently larae number of
dynamic constraints (equations 2,3) to define the algorithrﬂ WIS : ently large nt
Qints is used then the random variablas approximately

used here. Then there are three important strategies a:blop'? . 't vari . | onal to th b
to facilitate the solution of the general NDDR problem: @gsin gaussian with variance inversely proportional to the numbe

a process of discretization, a moving horizon data windovﬁf p(f)lnts. For Ia more thorough discussion of the statistics o
and an adaptive noise model. d refer to Taylor [16].

Objective function, dynamic constraints and discretiza- C- ANDDR Results
tion: Most applications use weighted least-squares as theThe ANDDR algorithm was applied to the pilot plant
objective function in equation (2), and the dynamic conmodel to assess the performance of this method in a large
straint in equation (3) is usually that the process difféetn scale, realistic model with fast dynamics (gas pressuaes),
equation must be satisfied. Thehis adjusted until the as a first step to develop an agent capable of working within



the ICAM system. For this test, five inputs and five output: _2.06 2072
were estimated. True values were obtained by simulating tI & I
nonlinear model with a time step @kt = 0.15 sec., and $2.04 2071}
measurements were created by adding Gaussian noise to 3 u?_>
true values; they were assumed to be gross error free. The: 292 s 07
were no setpoint changes, all variables are at their nomin 3 2
operating point value, and the window siFewas set to 10. “g 3 % L‘Wﬂvﬂdﬂﬂﬂw
The approach here mimics that developed by Laylabaiz ; ¢ S 068
and Taylor [1], [2]; only the simulator was different and g
much more challenging. Optimization was executed using 1.9 S oe7f
the unconstrained nonlinear methbdi nsear ch; thisisa 3
direct search method that does not use numerical or analy  1.94 F 086
. .. . . . o] 10 20 0 10 20
gradients. Initial guesses fdg in the optimization problem Time Time
Werelset to the previous estimatgs; and all the weights Fig. 4. Sample ANDDR results usirfgri nunc
n = L.
Applying this approach to the pilot plant model consumed % Noise reduction% RMSE reducfion
a huge amount of computation time. The optimization routine Variable search| unc_[search] unc |
often could not find a minimum; it kept iterating until the Foutsep—154 | 80.68 | 65.62 [ 64.88 [ 60.21

maximum number of iterations or maximum number of Foutsep—vap | 74.69 | 57.49 | 56.88 | 55.60
Foutenr—wni| 8540 | 59.01 | 64.17 | 61.59

evaluations were reached. ANDDR execution in this case

consumed 1,049 times real time (simulated), which is etire 5553::;:;;; %:Si gg:gg gi% 23;&2
unacceptable. This is due to the fact that the pilot plantehod Veep—liq 76.15 | 72.35 | 60.47 | 62.75
is extremely complex, with an internal optimization prahle Piep—vap 69.24 | 69.49 | 60.93 | 61.72
needing to be solved to balance oil, water and gas separation Vireat—war | 69.03 | 80.24 | 6597 | 70.33
at each time step. The small sampling time is also a factor; 1‘3/""'“—"“ gg'g; Eg'gg %'gé gg'gg
PR H H H treat—vap . . . .

it is based on the rapid gas pressure dynamics. Finally, Average 7448 T 6672 1 5854 T 5821
f m nsear ch converges very slowly for searches of three
or more dimensions [17]. The pilot plant model includes a
total of ten parameters to be estimatedf @ nsear ch is
unsuitable for the problem addressed here.

We tried several strategies to reduce run time: using executed for a shorter time (= 10 sec. in every case), to
different minimization routine, varying the window length shorten run times. The results and conclusions for these tes
adjusting the weights in the objective function and modifyi are presented in the following sections.
the initial guesses; here we can only summarize the results.Modifying the Window Size: One of the advantages of

Data Reconciliation Results Using fminunc Although using a moving window as part of the solution strategy
the results of the original ANDDR algorithm [2] exhibit for ANDDR is that the length of the window acts as a
good noise and RMSE reduction, the computation time is aronvenient tuning parameter. Increasikg provides more
important issue. The first attempt at reducing the compnati information for the optimization algorithm and yields more
time was to use a different minimization routifeyi nunc  noise reduction, although the optimization will take longe
[17], which is an efficient large-scale algorithm. Therefore it is necessary to find a balance between time

Using f mi nunc was the only change from the previousconsumed and noise reduction achieved.
case. The results are shown in figure 4. Table | shows theTable Il shows the percentage of noise reduction when
quantitative results for this test, and a comparison batwed¢he ANDDR algorithm is executed using different values of
these results and those obtained withi nsearch. An  H. Note that the time consumed in executing the algorithm
important reduction in the computation time was observedincreases with the value ¢, as does the noise and RMSE
using f mi nsear ch the computation time was$.,,, = reduction. The level of noise reduction and RMSE reduction
21,094 sec. (1,049 times real time) and usingm nunc  increase substantially witH, but only up to a certain value
the computation time was reduced #g,,,, = 1,368 sec.  (in this case approximatelid= 16); for larger values oH,

(68 times the running time). This is a big improvement, buthe improvement in the estimates is less significant.
this run time is still too large, The window size chosen id = 8, to obtain percentages of

The noise reduction achieved usihgi nunc is smaller noise reduction and RMSE reduction ab@@%. Using this
that the reduction obtained usirfgri nsear ch, but still value the computation time is reduced from 68 times real
it is significant. The amounts of RMSE reduction are veryime to 48 times. An improvement in time is achieved while
similar between the two approaches. The reason for the lowebtaining a decent reduction in noise; however, the compute
noise reduction would require in-depth analysis of these twtime is still too large.
minimization methods, which was beyond the scope of this Using Unequal Weights: A second attempt was made
research. Perhaps the default tolerances in these algasrithwith H = 8, by changing the scaling (weightg). Ini-
are makingf m nunc less demanding. tially all the values of the weights were unity, to preserve

Several more options were tested to speed up the ANDDiRe maximum-likelihood nature of the estimation scheme.
algorithm. These included modifying the size of the movindiowever, it was conjectured that the optimization could be
window, using scaling in the cost function, and varying thaffected by the different ranges of the variables involved i
optimization tolerances. Data used for the different tastés the pilot plant model. To normalize the optimization fuocti
the same as described previously, but the algorithms wetiee value ofn; in equation (6) was set to the inverse of the

Inputs

Outputs

TABLE |
ANDDR PERFORMANCE USINGF m nsear ch AND f mi nunc
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TABLE Il

PERCENTAGE OF NOISE REDUCTIONS. H

nominal operating point value of every variable.

NO Scaling Scaling
Variable % o % RMSE| %o % RMSE
Reduct.| Reduct. | Reduct.| Reduct.
n Foutsep—1iq 69.84 51.96 81.08 74.08
é_ Foutsep—vap 74.82 70.69 67.08 63.61
c [ Foulireat—wat 61.68 60.30 88.03 75.71
T [ Foulireat—oil 74.43 74.38 79.72 77.66
Foulireat—vap | 94.95 52.00 58.97 59.88
% Veep—tiq 66.49 64.45 73.68 72.42
a sep—vap 63.22 61.68 63.42 56.35
=} treat—wat 74.06 67.77 51.91 4450
o Vireat—oil 79.98 70.91 81.72 75.40
treat—vap 62.12 48.34 66.73 31.21
Average 68.16 62.25 71.23 63.08
TABLE Il

sults show that using scaling provides, in general, more

ANDDR RESULTS USING SCALING
Table Il shows the outcome of the scaling test. The re-

effective reconciliation. The computation time was,,, =

425.4 sec., which is lower than in the previous test per-
H =
481.36 sec.). In general the majority of the variables exhibit

formed using

8 and without scaling tomp

a greater reduction in noise and RMSE as well.

Change in Optimization Tolerances:The next attempt in

computation time is substantially reduced when udiag 2
for the tolerances.

D. ANDDR Results for a Set Point Change

The best compromise in performance was obtained for
H = 8, using the previous estimates as initial guesses,
applying scaling in the optimization routine, and using the
default values for the optimization algorithm parameters.
These conditions were selected in specifying the definitive
ANDDR algorithm. The following scenario is presented in
order to show its effectiveness.

This scenario runs for a real time of = 100 sec. The
plant starts working at the nominal operating point, and a
positive setpoint change of 2% is applied at the tithe:

50 sec. Table V and figure 5 present a sampling of the results
obtained. This study required a computation timegf,, =
4828 sec. or 48 times real time to complete reconciliation.
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Fig. 5. ANDDR results for a positive setpoint change
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o

Percent
reduct.

FoutsepAZiq
FOUtsepA'uap
JFOUtt'reat—wat
FOUttrﬁatAznl
FOUttreat—vap

Noise | 73.52] 7557 73.13] 70.49] 68.52
RMSE | 73.30] 75.06 | 73.85| 64.89| 70.10

trying to reduce computation time for ANDDR was to mod- TABLE V
ify some parameters that govern the behaviof of nunc.
These changes included modifying the termination tolexanc
on the objective function value (default f@tole = 1e — 3)

and on the estimates (default f@iol; = le — 3). Several

ANDDR RESULTS FOR A POSITIVE SETPOINT CHANGE

VII. AHYBRID DDR APPROACH
The results presented in section VI show that the estimates

tests were performed in order to establish the effect ofetheghtained with ANDDR are significantly smoother than the
parameters on the performance of the algorithm. Table IVorresponding measurements. However, the time consumed
shows the results for some of the tests executed. Perfoenang, the algorithm is too large. Another drawback to this

g g E 3 &

o O A

Optimization |Comp,| % 5 g g 3 E

Parameters | Time | Reduct § < [ RS e

(sec.) = ) S g s

il I B
Toly =1e—4 819 Noise | 69.1] 73.4] 62.6] 75.6] 57.5
Tolg = 1le — 4 RMSE| 53.3] 70.9] 61.9] 75.3| 53.3
Toly =1e—3 481 Noise [69.84]74.82/61.68| 74.43/54.95
Tole = le — 3 RMSE [51.96| 70.71]60.35| 74.38/52.01
Toly; = Te — 2 360 Noise [71.18]72.37[59.73[75.77/57.21
Tolg = 1le — 2 RMSE [50.58]68.26]58.56| 74.23 55.32

TABLE IV

ANDDR RESULTS USING DIFFERENT OPTIMIZATION TOLERANCES

approach is the need for a nonlinear process dynamic model,
which is often not available or not practical to develop.
In order to reduce the computation time and to address
the dynamic process model availability issue, a new Hybrid
DDR approach (HDDR) was developed and tested. The
main idea is to use two different methods to perform the
data reconciliation according to the condition of the syste
variables: transient or steady state.

It is possible to determine the state of the system, using
the SSD algorithm explained in section V. During transient
periods, data reconciliation is executed using the lizeali
model of the plant provided by the LMId Agent [11] op-
erating on perturbation variablege., 2 = z — z; where
zo is the steady state operating point. This approach is
valid for moderate changes in the set-points and maintains

in terms of percent reduction appears to be rather flat, btlie goal of DDR, namely energy and material balance is



retained inzy. In steady-state intervals, data reconciliation 50 20

treat—vap

is performed using an equilibrium finding approach insteac 3 ais
of solving the system differential equations numericaliio g4
the window. It is faster to obtain the equilibrium point than z 210

to run the model for eight or ten samples every iteration ol E *8
the optimization loop. However, using a dynamic model for'g
equilibrium finding is still substantially less efficientah
using a static process model directly. Thus the real promis
of HDDR will be realized in applications for which a static
model exists, which is not true for the pilot plant. The
following is a feasibility study, to demonstrate that HDDR 0 100 200 300 50 100 150 200 250
works effectively. Time Time

The nonlinear pilot plant model is defined in terms of the Fig. 6. Hybrid DDR results
differential equation as: = f(x,u). For an input value
and its corresponding equilibriumg, the output value is ) o )
yo = h(zo,up). The perturbation variables can be definedalance were available, the equilibrium algorithm would be
asdr = x — xo, du = u — ug, anddy = y — yo. If the much more efficient an_d it could be used' in HDDR to obtain
perturbations are small and if continuous partial denesti 2 faste_r and more rellable_data recqncmatlon routine. _The
exist at (xo,ug), the behavior of the original nonlinear derivation of the new nonlinear static model for the pilot
system neatr, is similar to that of: plant is not part of the scope of this project; it is suggested

as future work.
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0z = Adx + Bou (8)
3 ) = 3 )
Sy = Cdx + Déu 9) TS 8]0 ¢
s PercentComp, ¢ | §| 3 S| 3
5 ® s 3
where A = [%]xo,uoa B = [%]zo,uo, = [%]xg,uon and reduct.| Time § < § S| =
D = [%2],, 4, [18]. A B, C andD are obtained by the LMId (sec)l | 2 | 3 5 3
Agent [11], which is convenient. _ , Noise | 7494 [70.2]67.1]68.963.050.8
In transient state, for small changes in the setpoint, the RMSE| 7494 [69.9/67.1/68.9/63.1/50.9
linearized model can be used as the constraints in equation TABLE VI

(3). However, in steady state it is not accurate to use a
linear approximation, given that the equilibrium point for
the linearized model is different from that for the nonlinea
model. Furthermore, the concept of data reconciliation iB. Solving the Steady-state/Transient Transition Problem

to adjust the measurements according to conservation IawA routine was designed to detect changes in the steady
constraints. This requirement would not be satisfied bygising 1o fjaq and analyze the values of the estimates during
the linearized model, because although the transient BBNaVip ooy “\window. The objective of this routine is to solve
I(i);etgfni)(;gé?atlhg(?irrllltlanaerar:]sggredngesn?)ltm"r?)rvitjoe ttrr]f: %f g:c he problem of transitioning from transient state to steady
relationship between inputs and outputsp phy @ltate, eliminating outliers produced by switching between
: the models, as shown in figure 6. When the steady state flag
A. HDDR Results changes from unity to zero efce versa, the algorithm starts
The scenario used to test HDDR starts at the nomin&p compare the current estimate.X with the previous one
operating point and at the time = 50 sec. a positive (2c—1). If the difference between them is larger than five
set point change 0% is applied towu; the final time is times the standard deviation of the previous data window,

t; = 300 sec. Figure 6 shows the results for the test. Théhen theZ, is replaced byz._,. Table VII shows the noise
computation time it .o, = 7494 sec. which corresponds and RMSE reduction for this refined HDDR approach, and

to 24 times the final time. This is much shorter than théigure 7 shows the results faf;.cq¢—vap Using HDDR with
time consumed in the examp|es presented in section \UTIlS routine. Note that the transition is conducted withiet
(approximately49 times real time). negative effects in the estimates that are apparent in figure

Note that the estimates present less noise than the meas@ed noise reduction is comparable for the separator outputs
ments, in both the transient and the steady state. Howevapd superior for the treater outputs.
outliers are introduced in some of the variables at the mémen
of the transition from transient to steady state=(250 sec.).
The fastest variable¢p—vap aNd Pireqt—vap) are the most
affected by the transition. It takes a window ldf samples
for the system to adapt again using the nonlinear dynami¢ Percent| Comp.
model. Table VI shows the quantitative results for this,test reduct. (Ts'(r;f)
confirming the results mentioned above. The reduced run '
time is due to the long transient period, where the linedrize —Noise | 7490 | 60.24 | 68.36 | 70.34 | 68.65 | 69.36
model is used for DDR. Using the steady-state approach withhf RMSE | 7490 | 68903 | 67.38 | 67.68 | 61.31 | 52.42
the current pilot plant model does not substantially improv TABLE VI
the time consumed for the data reconciliation algorithna If HDDR RESULTS AFTER SOLVING TRANSITION PROBLEM
simpler nonlinear static model based on material and energy

HYBRID DDR APPROACH RESULTS
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to realistic nonlinear and dynamic processes. Imple-

menting the ANDDR technique [1], [2] on real industrial
processes requires facing new challenges that are notrprese
in research using ideal models; this necessitates findilg so
tions and tools to overcome the difficulties inherent NDDR.
The new hybrid method is an important and promising
contribution to performing DR efficiently in systems with
complex models. Modifying the algorithms in order to make
them compatible with a multi-agent supervisory system [6]
is another contribution that will facilitate future apmitons

to industrial processes.
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VIIl. SUMMARY AND CONCLUSIONS the

A. Summary

The ANDDR algorithm was tested extensively on the
simulated pilot plant model of Sayda and Taylor [4]. First
we tried the ANDDR algorithm exactly as implemented by
Laylabadi and Taylor [1], [2] and we found that it was [2]
extremely slow (run time = 1049 times real time) and thus
totally unsuitable for this application. We performed an|3]
extensive case study in which we varied the optimization
algorithm, changed the data window size, used scaling in
the performance index, and varied the optimization rolgine [4]
stopping tolerances. The best we could achieve was 18 times
real time. We did not try converting the pilot plant model |5
from an M-file to a MEX-file, which might have substantially
improved the run time, because we decided to pursue anoth%r]
idea: HDDR.

We proposed and tested an alternative approach to reduce
the ANDDR run time, called HDDR. This involves using []
static DR when the process is in steady state and dynamig,
DR using a linearized model during transient conditions. We
did reduce the computational burden, even though we wer
handicapped by not having a static model of the proces 7]
Instead we had to perform equilibrium finding, i.e., using &10]
nonlinear equation solver to find the solutionite= 0 which
also imposes a large computational burden. We believe thai;
a true static model would speed up the HDDR algorithm
substantially. The hybrid method has the added benefit (ffz
eliminating the need for a nonlinear dynamic process mod iL ]
which in most practical applications is not available.

Finally, we believe that the discovery or development oft3l
a more suitable optimization algorithm is key to making
ANDDR and HDDR practical for large scale, realistic pro-
cesses. Also, converting the process dynamic model to [’
MEX file or otherwise speeding up the numerical integration
process in ANDDR or HDDR will be quite beneficial. [15]

B. Contributions

The requirements demanded by control and automatigts]
techniques are continuously increasing due to the need for
faster and more reliable results. The best control syste
performance can only be achieved by using accurate mea-
surements. As a result, data reconciliation and gross erridfl
and steady-state detection have become crucial tools for
data quality improvement in integrated control and asset
management systems.

These methods have been widely studied, but there are few
applications to real industrial models or processes, éalbec

(1]

Cape Breton University (CBU) and the College of the

North Atlantic (CNA).
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