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Fig. 2. Estimate of the region of acceptable motions for evample problem. 

These  constrained minimization problems 
may be solved, in  general, by replacing the 
Lagrange multipliers by penalty coefficients 
and solving the resulting unconstrained 
minimization problems via a search tech- 
nique such as the one described by Fletcher 
and Powell [ 6 ] .  This search technique is 
particularly well suited for the  type of func- 
tion discussed in this correspondence. 

For a Liapunov  function given by 
V(x) =x12++222, the preceding minimi7ation 
problems were solved and, using the preced- 
ing procedure, an  estimate of the region of 
acceptable  motions  was  determined to be 
np= ( x ]  V(x)<pj ,  where @=l.OO=min 
[J1, J2, Ja,  J&].  Fig. 2 shows the  estimate of 
the region of asymptotically stable accept- 
able motions. 

CONCLUSIONS 
The problem of determining or estimating 

the region of asymptotic  stability has been 
studied  by numerous investigators.  For 
practical  applications, however, engineers 
are frequently  interested  in  determining or 
estimating the set of initial  conditions for 
which the system is not only stable in the 
sense of Liapunov (Problem A), but also 
such that  the  trajectory of the system does 
not  violate a set of constraints (Problem B). 
The concept of acceptable motions has been 
introduced to  facilitate the  study of this 
problem. The idea of acceptable  motions is 

related to  that of practical stabilib in that 
a set of acceptable states is specified for the 
mathematical model. A similar idea was 
proposed by  Hahn [ ' i ]  to  estimate  the re- 
gion of asymptotic  stability using linear 
equations. 
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Stability of the Damped 
Mathieu Equation 

In two recent correspondence items [l 1 ,  
[ 2 ] ,  the  stability of the damped Mathieu 
equation 

fi  + 2ri + (a  - 2q cos 2 t ) s  = 0 

has been treated  for small damping k<<l). 
In a  recent study [ 3 ]  of this equation, the 
authors  have been able to improve  on the 
stability boundary as follows. 

a) Michael [l] requires [ q [  <;a and 
p-<q<q+ where 

which for r<<l becomes 

b) Parks [ 2 ]  (using the circle criterion 
[ 4 ] )  requires 

c) The  authors [3] (using a theorem  of 
Brockett and Forys [ S I )  require 

d)  The  authors [ 3 ]  (using a new theo- 
rem [6]) require 
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Fig. 1. Dashed  lines:  exact  boundaries. r=o.o; 
.solid lines:  boundaries  by  (a) to (a). r=O.l;  
dotted  line  (at a - 1 ) :  exact  boundary, r=O.1. 

The four stability boundaries are shown 
for  5=0.1 on Fig. 1. The exact boundary a t  
a = 1 (as found in [ S I )  is also shown, for the 
sake of comparison. 
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Remarks by P. C. Parks1 
The  further improvements  in explicit 

criteria by  Narendra  and Taylor are inter- 
esting, but  must be applied with caution. 
Using the recently published res~l t s  of 
Smirnov [ T I ,  which greatly extend those by 
McLachlan [SI, i t  is possible to compare 
these  various  criteria with the exact stability 
boundaries. Smirnov gives in his Fig. 1 plots 
of the iso-g curves  for the undamped 
Mathieu  equation 

5 + (a’ - 2q‘ cos 2t)y = 0 (1) 

covering 0 5 ~ 5 1 6  and 0-5q.520. 
The damped  Mathieu  equation 

.Y + 2T-i. + (a - 2q cos 2t )x  = 0 (2) 

may  be transformed by  the  substitutiun 

= e-r?y (3) 

into 
f + (a - 6 2  - 2q cos 2t))I = 0 (4) 

which is the same form as (1) with a’=a-r2 
and q’=q. IVe are  then interested in the 
iso-6 curves of (4) corresponding to  B=r.  
For o<T, the solutions of (2) are damped, 
since the e-rt term in (3) overcomes the 
eBt term appearing in the solution of (4), 
which is of the form Alerff,(t)+Aze-p.Pffz(t) 
wherefl  and f z  are periodic functions of t. 

Using Smirnov’s  diagram, i t  is  possible 
to  construct counter examples to Narendra 
and Taylor’s  results in q a  and q 4 ,  unless 
really is small compared with unity. 

It should be pointed out  that  the result 
of (2) does not depend on r being small. 
Using a recent  result of Infante [g, eq. (311, 
a further criterion  is 

I PSI < d w i r  
which is an improvement of 4 on the circle 
criterion for large a. This holds also for all 
T>O. 

PATRICK C. PARKS 
Institute of Engrg. Control 

University of Warwick 
Coventry CV4 TAL, England 

Reply  by J .  H. Taylor2 
In  the absence of Professor Narendra, I 

would like to stress several points: i) the use 
of iso-p curves (McLachlan,  Smirnov) can 
only be made where they exist (e.g., O s a  
5 1 6 )  and interpolations  must be made be- 
tween curves for values of g other  than those 
given, whereas the above  results are valid 
for all a 20(1) and require no interpolation; 
ii) the boundaries in c) and  d)  are propor- 
tional to a rather  than d a ,  which is quite 
significant for larger values of a as is evident 
in the figure; and iii) the theorems used  in 
c) and  d)  are valid for larger r but  the results 
are not so simply stated.  It is  felt that by 
placing so much emphasis on the clearly 

1 Manuscript received June 7, 1968. 
2 Manuscript received December 20, 1968. 

stated invalidity for large r, Parks obscures 
the main point:  that under the  constraint 
r<<l, the theorems of sections c)  and  d) 
yield far less conservative stability boundary 
estimates. [One might add  that  they  are 
considerably less conservative than  the re- 
slilt cited by  Parks using a  theorem due  to 
Infante.] 
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Positive Real Function and 
Lyapunov Function Generation 

Abstract-The invariance of the Lya- 
punov property for functions under  the 
basic  operations of addition, multiplication 
and, in some  cases, division is shown. The 
results  are compared with those known for 
positive real functions. 

INTRODUCTTON 
Lyapunov  functions in the  study of the 

stability of control  systems [SI are  as impor- 
tant as are  the positive real functions in the 
study of network realizahility  theory. Posi- 
tive real functions have been the subject of 
intensive research by network theorists, and 
a considerable amount of literature is avail- 
able on the generation [1]-[SI of such func- 
tions and matrices by elementary operations. 
The purpose of this correspondence is to  
show that some of the basic operations are 
common to  the generation of both  Lyapunov 
functions (LFs) and positive real functions 
(PRFs), while some others  can be used to 
generate  either LFs or PRFs,  but not both. 

Definition: I t  is well known [ 6 ]  that a 
scalar  function V(r1, x2, . . . , x,,) is a 
Lyapunov function if and only if 

Manuscript received June  4, 1968. 

1) V(x1, r2, . , x,,) is continuous tc- 
gether  with its first partial derivatives 
in a certain open region A about  the 
origin; 

2) V(0, 0, . , 0) =o; 
3) outside the region (and  always in A ) ,  

4) dV/dt<O in A .  
Vis positive; and 

These  four  conditions will be referred to 
as  the  LF requirements, for brevity. 

LYAPUKOV FUNCTION GENERATION 
I t  is known that if 21 and ZZ are  PRFs, 

then &+Zz is also a PRF [l]. A similar re- 
sul t  valid for Lyapunov functions is written 
below in the form of a theorem. 

Theorem I :  If VI and Vz are two LFs, 
then VI+ V2 is also a LF. 

The validity of the preceding theorem 
follows from the  fact  that all the  LF require- 
ments are  met  by VI+ Vz. 

I t  is known that  the product ZIZZ of two 
PRFs Z1 and 2 2  is not necessarily a PRF 
[4]. However, the Lyapunov  property is 
invariant  under multiplication, as seen in 
the next theorem. 

Tltewem 2: If VI and V2 are two LFs,  then 
VI VZ is also an  LF 

Proof :  That VI  VZ satisfies the first three 
of the four LF requirements  is obvious. 

Also, 

d 
- (VIVz) = V I  - + vz - < 0. 
at dt dt  - 

d V z  dV1 

Therefore, the theorem is proved. 
I t  is known that  the  quotient of two 

PRFs Z1 and 21 is a PRF only in certain 
cases (for example, when 21 and ZZ are both 
RC realizable ) [7]. An analogous result is 
stated below for LFs. 

Tlaeorem 3:  If VI and V2 are  two  LFs, 
then V =  V,/(V,+a), (a>O) is an  LF if 

at 

throughout  the open region A under con- 
sideration. 

P r o o f :  LF requirement 1) is satisfied 
by V. LF requirements 2) and 3) are  satis- 
fied by V because a > 0. 

Finally, 

provided 
a v 1 

v1 at 
V z  + a d V z  

- 

2- 
__ 
dt 

Therefore, the theorem is proved. 
I t  is true  that  the reciprocal of a P R F  is 

a PRF [l 1. However, the reciprocal 1/V of 
an  LF, V,  cannot  be  an  LF since 1/V vio- 
lates LF requirements 2)  and 4). 

CONCLUSION 
Possible generation of Lyapunov func- 

tions  by elementary  operations is proved. 


