
A RIGOROUS MODELING AND SIMULATION PACKAGE
FOR HYBRID SYSTEMS

NATIONAL SCIENCE FOUNDATION
PHASE I FINAL REPORT

Prepared for:

Ritchie B. Coryell, Program Official
Division of Design, Manufacture and Industrial Innovation

Small Business Innovation Research Program

Award Date: 12/27/93

Effective Date: 01/01/94 End of Performance: 06/30/94

Prepared by:

Dr. James H. Taylor, PI
Formerly at: Odyssey Research Associates, Inc.

Ithaca, NY 14850-1326

Now at: Department of Electrical Engineering
University of New Brunswick

Fredericton, NB CANADA E3B 5A3
Tel: (506) 453-5101 FAX: (506) 453-3589

Award No. III-9361232

This report is based upon work supported by the National Science Foundation
under award number III-9361232. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the author and do not
necessarily reflect the views of the National Science Foundation. Note that this
is not the official SBIR Final Report; it has been extended in both concept and
length in substantial ways.

NATIONAL SCIENCE FOUNDATION

PHASE I FINAL REPORT

Program Official: Ritchie B. Coryell, DMII
Division of Design, Manufacture and Industrial Innovation

Program Name: SBIR/Division of Design, Manufacture and Industrial Innovation

Award Date: 12/27/93

Effective Date: 01/01/94 End of Performance: 06/30/94

Dr. James H. Taylor, PI
Odyssey Research Associates, Inc.

301 Harris B. Dates Drive
Ithaca, NY 14850-1326

Tel: (607) 277-2020 FAX: (607) 277-3206

Award No. III-9361232

A RIGOROUS MODELING AND SIMULATION PACKAGE
FOR HYBRID SYSTEMS

a.) Technical Summary: Existing commercial modeling and simulation environments do not
adequately predict the behavior of complex computer-controlled systems being developed and
fielded today. These “hybrid” systems involve discontinuous phenomena such as mechani-
cal parts engaging and disengaging (e.g., spacecraft docking), control units switching, and
software components reconfiguring. In many circumstances this deficiency presents a major
barrier to showing that a system will perform as required, or conversely that a newly designed
system may have safety-critical defects.

In Phase I we investigated (i) an appropriate class of hybrid systems to support, (ii) in-
tegration methods that will simulate discontinuous nonlinear hybrid systems with complete
accuracy, and (iii) a modeling language for representing such phenomena. The integration
algorithms will rigorously catch and handle all discontinuous events. The language is based
on modern standards, to facilitate and enforce correct modeling practices.

b.) Commercial Potential: Such a package for modeling and simulation will be of great value
for design and validation of: Flexible manufacturing systems, robots, intelligent vehicles and
highways, spacecraft maneuvers and rendezvous, flight dynamics and control, chemical and
materials processing, and other hybrid systems.

Phase II Intentions: ORA does not intend to submit a Phase II Proposal.

This material is based upon work supported by the National Science Founda-
tion under award number III-9361232. Any opinions, findings, and conclusions
or recommendations expressed in this publication are those of the author and do
not necessarily reflect the views of the National Science Foundation.

Preface

The methods and approaches described in the following report are the product an intensive
six-month study of requirements and the state of the art in hybrid systems modeling and
simulation undertaken in 1994. Since then the author has returned to an academic environ-
ment, and shifted emphasis and direction in this area of research. Primarily, these changes
have involved:

1. adopting matlab as the platform of choice for implementation of a hybrid systems
modeling and simulation environment, and building on their most powerful algorithms
for integrating ordinary differential equations and other needed functionality;

2. focussing on rigorous handling of discontinuous effects, and particularly those involving
multivalued nonlinearities, such as hysteresis; and

3. defining a matlab modeling schema for the interconnection of continuous- and discrete-
time components to create hybrid systems.

The next phase of development would be to develop a “matlab compiler” to accept models in
a language similar to (but probably more modern than) the hybrid system modeling language
construct defined herein.

The research and development outlined above is described, at a high level, in the following:

1. J. H. Taylor, “Rigorous Hybrid Systems Simulation with Continuous-time Discontinu-
ities and Discrete-time Agents”, Proc. 3rd IMACS/IEEE International Multiconference
on Circuits, Systems, Communications and Computers, Athens, Greece, July 1999.

2. J. H. Taylor and D. Kebede, “Rigorous Hybrid Systems Simulation of an Electro-
mechanical Pointing System with Discrete-time Control”, Proc. American Control Con-
ference, Albuquerque, NM, pp. 2786-2789, June 1997.

3. J. H. Taylor and D. Kebede, “Modeling and Simulation of Hybrid Systems in matlab”,
Preprints of the IFAC World Congress, Vol. J, San Francisco, CA, pp. 275-280, July
1996.

4. J. H. Taylor and D. Kebede, “Modeling and Simulation of Hybrid Systems”, Proc. IEEE
Conference on Decision and Control, New Orleans, LA, pp. 2685-2687, December 1995.

5. J. H. Taylor, “Rigorous Handling of State Events in matlab”, Proc. IEEE Conference
on Control Applications, Albany, NY, pp. 156-161, September 1995.

6. J. H. Taylor, “A Modeling Language for Hybrid Systems”, Proc. Joint Symposium of
Computer-Aided Control System Design, Tucson, AZ, pp. 337-344, March 1994.

The above publications represent the thread of r& d starting from the method and approach
described in this report, to the most recent phase in 1998-99. Many of these articles, and
software for rigorous handling of discontinuous / multivalued effects, are available on the
author’s web site, at http://www.ee.unb.ca/jtaylor/.

James H. Taylor 16 May 2004
Department of Electrical & Computer Engineering
University of New Brunswick
PO Box 4400
Fredericton, NB CANADA E3B 5A3
e-mail: jtaylor@unb.ca

Contents

1 Executive Summary 1

1.1 Phase I Research Objectives . 1

1.2 Suggested Phase I Research Changes . 2

1.3 Phase I Research Overview . 2

1.3.1 The Domain . 2

1.3.2 The Problem . 3

1.4 Research Findings and Results . 4

1.4.1 Defining the Class of Hybrid Systems 4

1.4.2 Hybrid SystemModeling Language Specification 4

1.4.3 Methods and Algorithms for Hybrid System Modeling and Simulation . 4

1.4.4 Preliminary Software Development Plan 4

1.5 Potential Applications of the Research . 4

2 Hybrid Systems: The HSML Modeling Domain 6

2.1 Domain Overview . 6

2.2 Pure Components – Mathematical Formulation 7

2.2.1 Pure Continuous-Time Components (CTCs) 7

2.2.2 Pure Discrete-Time Components (DTCs) 9

2.2.3 Pure Logic-Based Components (LBCs) 10

2.3 Hybrid System Building . 11

2.3.1 Building a Composite Component . 11

2.3.2 Building Hybrid Systems . 12

3 Simulation of Hybrid Systems 14

3.1 Protocol for Simulating Hybrid Systems . 14

3.2 Continuous-Time State Evolution - Overview 15

3.3 Evolution of Continuous Class D0 Models . 16

3.3.1 Starting the Evolution of Class D0 Models 16

3.3.2 Equation Sorting for Class D0 Models 16

3.4 Evolution of Continuous Class D1 Models . 18

3.5 Discontinuity (State-Event) Handling . 18

3.5.1 Handling Predictable Discontinuities 18

i

3.5.2 Handling Switch-Type Nonlinearities 19

3.5.3 Handling State-Changing Nonlinearities 21

3.5.4 Handling Structure-Changing Nonlinearities 21

4 Preliminary HSML Language Definition 25

4.1 Describing Components in General . 25

4.2 Describing a Continuous-Time Component (CTC) 26

4.3 Describing a Discrete-Time Component (DTC) 29

4.4 Describing a Logic-Based Component (LBC) 31

4.5 Describing a Composite Component . 32

4.6 Describing a Hybrid System . 33

4.7 Component Encapsulation . 34

5 HSML Modeling Example 36

5.1 A Composite Component Connection Definition 36

5.2 Pure Component Model Definitions . 38

5.2.1 turret – A Continuous-Time Component 39

5.2.2 pid control – A Discrete-Time Component 42

5.2.3 engagement mgr – A Logic-Based Component 44

5.3 Completing a Hybrid System Model . 45

6 Conclusions 48

7 References 49

ii

A Rigorous Modeling and Simulation Package
for Hybrid Systems

James H. Taylor
Department of Electrical Engineering

University of New Brunswick
PO Box 4400

Fredericton, NB CANADA E3B 5A3

1 Executive Summary

The background for the Phase I effort is provided by restating the objectives in the Phase
I Proposal and outlining certain changes in research agenda suggested by the Proposal re-
viewers. Next an overview of the Phase I Research is presented, comprising an outline of the
domain and the problem; then the key finding and results are summarized. This Executive
Summary is concluded by an outline of potential applications.

1.1 Phase I Research Objectives

The following is a verbatim restatement of the Phase I Proposal Research Objectives:

Preliminary work has established a set of requirements for a quality hybrid system
simulation environment (QHSSE) and shown that there is a strong need for one.
An outline for such a software package has also been generated and presented
here. At this stage of development, we need to continue research in the following
directions:

1. Complete the definition of the precise class of hybrid systems for which it
is feasible to create a QHSSE (see Section 2); in particular, decide on what
classes of differential-algebraic equations and LBCs can be supported.

2. Complete the definition of a semantics and syntax of the most general pos-
sible hybrid system modeling language (see Section 4).

3. Determine which existing routines are best suited for use as the numerical
integration algorithms of a QHSSE,and which logic is best suited for state-
event handling (see Section 3.5).

4. Create a preliminary Software Development Plan for producing a QHSSE.

5. Determine the technical and commercial viability of (i) joining with an ex-
isting commercial simulation package vendor to upgrade their environment,
or (ii) create a QHSSE from public-domain subroutine packages.

6. Develop a plan for Phase II research and development.

There are many technical details to be investigated and resolved. Nonetheless,
we believe that the technical feasibility of producing a software plan for a QHSSE
for a broad class of hybrid systems is established, by virtue of the detailed plan

1

for handling at least the class outlined in Section 2. Highly precise methods and
algorithms exist for the numerical solution of that class and broader ones, e.g.,
certain types of differential-algebraic equations (Section 2), so there is no doubt
that existing commercial simulation packages could be extended or a new hybrid
system simulation environment could be created that exploit existing resources
to achieve the objectives of accuracy and rigor.

There are many applications and potential users of commercial simulation pack-
ages (Section 1.3.1). Demand for a QHSSE will be driven by the increasing
complexity of hybrid systems and growing awareness that rigorous modeling and
simulation approaches are needed to provide definitive answers to questions like
the existence of oscillations and chaos (Section 1.3.2). Thus, the commercial vi-
ability of this project is also assured. However, many questions remain to be
answered regarding the nature of such a commercial venture; we plan to resolve
them in Phase I.

1.2 Suggested Phase I Research Changes

Reviewers of our Phase I Proposal indicated that issues related to numerical algorithms for
simulation of hybrid systems were not adequately addressed. We agree that, although sound
codes exist for integration of continuous-time dynamics including state-event handling and
interplay with discrete-time components, higher-level methods and algorithms for modeling
and simulation of hybrid systems along the lines envisioned in our Proposal do not exist.
Emphasis on this aspect was substantially increased from our original plan.

The stronger focus on numerical methods and algorithms resulted in a decrease in effort in the
area of business planning (objective 5 above). We believe this change in emphasis has been
highly beneficial in developing a firm foundation for hybrid system modeling and simulation.

1.3 Phase I Research Overview

1.3.1 The Domain

Modeling and simulation of nonlinear, computer-controlled dynamical systems is a well es-
tablished technical discipline. The corresponding activity is widespread throughout the sci-
entific and engineering fields. As an illustration of the ubiquitous nature of this endeavor,
computer-controlled dynamical systems are all about us – in everyday terms, they include
modern automobiles, appliances, automatic teller machines etc.; in higher technology ar-
eas they encompass flexible manufacturing systems, robots, intelligent vehicles and highway
systems, spacecraft, flight dynamics and control, chemical and materials process control, au-
tomated drug administration and health monitoring systems, to name only a few more recent
applications. Along another dimension, modeling and simulation of a dynamical system may
be used to predict behavior of a device that is in the conception and early design stages of
development, or to refine the design of a system that has been prototyped or is targeted
for redesign (upgrade), or to perform experiments that cannot be executed in the real world
(e.g., study failure modes in a flight control system or nuclear reactor control logic).

2

The last decade has seen immense growth in the complexity and sophistication of computer-
controlled dynamical systems being developed and put into service. The physical components
(e.g., airframe, robot, chemical process) may not be much more complicated, but the discrete-
time components and computer control software have taken on more complex and higher-level
functionality, as in the area of automonous vehicles, for example. These developments have
resulted in a large surge of interest in “hybrid systems”, as the modern class of computer-
controlled dynamical systems has come to be called.

The mathematical understanding of the properties and behaviors of computer-controlled dy-
namical systems has also made major strides in recent years. First bifurcation analysis came
to prominence [26]; this involves searching for critical parameter values that give rise to qual-
itative behavioral changes in the system. For example, a parameter α in a model may have
a critical value α� such that for α < α� the system is stable but for α > α� limit cycles
(nonlinear oscillations) exist. The existence of a bifurcation point near the design value of
a parameter may have important implications regarding the safe operating envelope of a
computer-controlled dynamical system. Then the existence of chaotic behavior was estab-
lished [37]; again, for example, a nonlinear system may have a critical range of a parameter
α for which the motion of the system is so sensitive to initial conditions that it appears to be
random (unpredictable) – this is usually highly undesirable. The existence of these phenom-
ena underscores the need for careful modeling and simulation of hybrid systems before they
are built and fielded.

1.3.2 The Problem

Much of the work in modeling and simulation is being done today with outmoded and possi-
bly dangerous tools. The modeling languages and numerical integration algorithms that are
incorporated in most commercial simulation packages are the outgrowth of theoretical devel-
opments that were undertaken decades ago to handle continuous-time and continuous-state
systems, i.e, systems that obey ordinary differential equations where the derivatives of the
variables are continuous functions of time and state. To introduce a specific notation, such
systems are represented by:

ẋ = f(x, u, t) , f ∈ Cm

y = g(x, u, t)

where x is the continuous-time state vector, y is the output vector, u denotes a continuous-time
input signal, and Cm denotes the class of functions with up to m continuous derivatives. As
an example of the limitations of commonplace integration algorithms, all predictor-corrector
methods for numerically integrating such system models assume m = 2 or more in their
derivation and error analysis. Use of methods and software designed for this class of dynamical
systems is clearly inappropriate for hybrid systems.

Over the last few decades these approaches and algorithms have been extended, often in an
ad hoc fashion, to handle discontinuities and discrete-time components (e.g., computer algo-
rithms embedded in a micro-processor). Added features permit interrupting the numerical
integration of continuous-time dynamics for the processing of discrete-time events and other
predictable discontinuities, but this does not answer the need for handling unpredictable state

3

events or digital operations with rigor. For example, integration algorithms with automatic
step-size control do come closer to producing correct simulations of discontinuous behavior
in continuous-time dynamics – however, the point of discontinuity is not captured accurately
(making the prediction of chaos or limit cycles problematic), and there are computational
problems (step-size becoming very small, resulting in an excessively slow “creeping simula-
tion”). More recently, extensions to integration algorithms have been produced by experts
in the field that handle broader classes of hybrid systems with high accuracy; however, these
advances have not been reflected in extensions to modeling languages or in commercial sim-
ulation packages.

All of the trends outlined above establish a need for rigorous hybrid system modeling and
simulation environments. Unfortunately, aside from research codes which are unsuitable
for commercial use, these do not exist at the present time.

1.4 Research Findings and Results

Research accomplishments have been achieved in the following areas:

• Defining the class of hybrid systems that can be supported in a general-purpose mod-
eling and simulation environment,

• Completing the semantics and nearly settling on the syntax of the corresponding hybrid
system modeling language,

• Determining the methods and algorithms needed for modeling and simulation of hybrid
systems, and deciding on utilization of existing codes and creation of new algorithms,
and

• Developing a preliminary software development plan for QHSSE.

These areas are discussed in the following subsections which need to be written!

1.4.1 Defining the Class of Hybrid Systems

1.4.2 Hybrid SystemModeling Language Specification

1.4.3 Methods and Algorithms for Hybrid System Modeling and Simulation

1.4.4 Preliminary Software Development Plan

1.5 Potential Applications of the Research

The research performed under this grant will have wide-spread applicability in every domain
involving modeling and simulation of computer-controlled dynamical systems. The following
incomplete list serves as an illustrative catalog of this broad scope:

• Aerospace systems: flight control, propulsion control, integrated systems control, air
traffic control, satellite guidance and control, deep-space mission control, landers and
autonomous vehicles, remote sensing systems, ...

4

• Land vehicle systems: mass transit, people-moving systems, high-speed rail systems,
intelligent vehicles and highways, ...

• Maritime systems: shipping vessels and fleets, fishing, military surface and submarine
fleets, underwater autonomous vehicles for exploration and recovery, ...

• Electric power systems: fossil-fuel and nuclear power plants, wind and solar energy
systems, power grids, ...

• Manufacturing systems: robotics, parts handling equipment, assembly systems, pro-
duction control systems, numerically-controlled machine tools, ...

• Process control systems: chemical processes, materials processing, metallurgical, mining
and mineral processing, ...

• Biotechnology: bioremediation systems, processing of bio-engineered materials, ...

• Biomedical systems: intensive care systems, prosthetics, automatic feedback control of
drug administration, ...

• Information systems: CAD, CAM, CIM, CIME, CAE systems; integration of simulation
and artificial intelligence, object oriented analysis and design, visualization technology,
...

• Virtual reality systems: multimedia, hypermedia, education and training, entertain-
ment and gaming, ...

In addition, quality simulators of hybrid systems may be used for preliminary design, final de-
sign and verification, system maintenance and upgrade, documentation, education, training,
and entertainment.

5

2 Hybrid Systems: The HSML Modeling Domain

This section summarizes our research in defining an appropriate class of hybrid systems to
support in a new modeling and simulation environment. The resulting class is substantially
broader than that handled by existing environments, and eliminates several long-standing
problems.

2.1 Domain Overview

A precise definition of the term “hybrid system” must be provided before one sets out to de-
fine and implement a modeling and simulation environment for such systems. In basic terms,
we assume that hybrid systems are composed by interconnecting continuous-time com-
ponents (CTCs), discrete-time components (DTCs), and logic-based components
(LBCs) in some arbitrary configuration. At the lowest level, every system “block” represents
a component of one of these three types. At higher levels, these “pure” components may
be aggregated to create a fourth category, the composite component (CC); CCs, in turn,
serve as building blocks for still larger subsystems and systems. Thus, this hybrid systems
representation approach supports hierarchical model building with complete generality.

A fifth “block” type, the system driver component (SDC), is introduced purely for the
purposes of analysis and simulation. In almost every case, the behavior of a hybrid system
model is studied by providing input signals to “drive” the system in various ways over a
number of different scenarios. The addition of the SDC supports this functionality; in essence,
the SDC provides all required inputs for one or more CCs and thus provides a closed system
that is ready to simulate. As a technical matter, then, the definition of a hybrid system is
not considered to be complete until there are no undefined inputs.

Note that the following “building-block model” of hybrid systems represents a limiting as-
sumption. In particular, a component is assumed to have “inputs” which, when excited,
cause a block to “respond” to produce “outputs” that vary in some fashion. This amounts
to a causality assumption (wiggling an input causes a wiggle in the output) which does not
lead to any loss in generality, but which in some contexts may be inconvenient; for example
Dymola [19] and Omola [29] allow one to have a noncausal model of a resistor that may be
used in a system model with either the causality v = Ri or i = v/R, i.e., there is no need
to specify which variable (v or i) is the input. At a higher level, a noncausal model of a
rotating machine could be used either as a generator (applied torque produces voltage) or
as a motor (applied voltage produces torque). This approach is called “object-oriented mod-
eling” by its developers; in certain contexts (e.g., circuits and domains that can be treated
by circuit-theoretic approaches such as bond graphs [28]) it is of obvious utility. In many
domains object-oriented modeling is not needed, practical, or even possible, however, so we
are using a block-oriented modeling paradigm to achieve more generality in other aspects,
i.e., it permits the modeling and simulation of more general classes of hybrid systems given
the state of the art in object-oriented modeling.

The remainder of this chapter deals with the “pure” components itemized above and their
interconnection to create hybrid systems. In each case, we specify the most general class
of component that can be supported, along with a discussion of limitations and technical
rationale.

6

2.2 Pure Components – Mathematical Formulation

Each “pure” block of a hybrid system has inputs, outputs, and internal variables of corre-
spondingly suitable form. Their distinguishing features involve the class of internal variables
and the method of describing their evolution with time.

2.2.1 Pure Continuous-Time Components (CTCs)

Each CTC may have numeric, Boolean, and/or symbolic inputs; continuous-time numeric
outputs; and continuous-time numeric internal variables called “states”. The generic form of
such a block is given by a set of differential-algebraic equations (DAEs) and output equations
expressed as:

0 = Fc(xc, ẋc, uc, uk, bi, mj , t) (1)

yc(t) = Hc(xc, ẋc, uc, uk, bi, mj, t) (2)

where xc is the state vector, yc is the output vector, uc and uk are the numeric input sig-
nals (continuous- and discrete-time, respectively), bi is a Boolean input, mj is comprised of
symbolic input variables, and t is the time; in general uc, uk, bi and mj are vectors. Note
that there are implicit “zero-order holds” operating on the elements of uk, bi, and mj , i.e.,
these inputs remain constant between those times when they change instantaneously. We

also observe that the Jacobian Fẋc

∆
= ∂Fc/∂ẋc is usually identically singular or the system in

(1) may be treated as an ordinary differential equation set [6].

Example: A CTC may represent the continuous-time dynamics of an aircraft or land vehicle;
an input uc might represent wind-gust forces, uk could be a controller actuation (with implicit
digital-to-analog conversion), bi might govern whether or not an actuator has failed, and mj

might define a higher-level condition such as ‘engine-has-stalled’.

With respect to conditions that guarantee existence and uniqueness of solutions, the usual
mathematical assumptions of smoothness, Lipschitz conditions, etc., are not imposed; in
fact, the states themselves may change discontinuously (e.g., when two mechanical parts
engage and their velocities change instantaneously to conserve momentum). In terms of well-
posedness, it is up to the modeler to ensure that meaningful solutions exist, and up to the
simulation environment to ensure that discontinuities are handled correctly. Also, we observe
that the inputs bi and mj are included here primarily to allow for external means of controlling
the model, and not as an actual input to the continuous-time dynamics themselves.

The generic form in (1) is often called a fully implicit DAE [6]; without imposing additional
conditions, it generally cannot be solved by any existing numerical code. In fact, determining
if such a model is solvable [6, 7, 10, 11, 36, 38] and arriving at consistent initial conditions
[6, 12, 33, 35] is a complicated matter. To achieve a practical definition of the class of CTCs
to be treated, we need to specialize the form in (1) in some manner:

• Most simply, we may replace the DAE form in Eqns. (1,2) with the following ordinary
differential equation set:

ẋc(t) = fc(xc, uc, uk, bi, mj , t) (3)

yc(t) = hc(xc, uc, uk, bi, mj , t) (4)

7

Models of this form are called ordinary differential equation (ODE) components
and for simplicity designated D0 models; these have been the focus of most commercial
modeling and simulation environments up to the current time [1, 18, 32, 40, 42, 50].

• Next most simply, we may replace the form in (1) with the following constrained ordi-
nary differential equation set:

ẋc(t) = fc(xc, zc, uc, uk, bi, mj , t) (5)

0 = gc(xc, zc, uc, uk, bi, mj, t) (6)

yc(t) = hc(xc, zc, uc, uk, bi, mj , t) (7)

where constraint variables zc have been added along with constraint equations (6).
Models of this form are called semi-explicit DAE components. For technical reasons
(e.g., solvability [6, 11] and initializability [6, 33]) we impose the condition that the
Jacobian of the constraint equations gc with respect to the constraint variables zc must
be nonsingular:

|Gz| ∆
=

∣∣∣∣∣∂gc

∂zc

∣∣∣∣∣ �= 0 (8)

Again, for simplicity we denote such models by D1; while these cannot be solved by most
commercial modeling and simulation environments, there are codes such as DASSL and
DASSLRT [34, 6] and COLDAE [3] that can supply the underlying numerical machinery.
Semi-explicit DAEs that satisfy Eqn. (8) are said to be of index 1 [6]; by differentiating
the constraint equation once one may reduce an index 1 semi-explicit DAE to an ODE
(i.e., solve for żc).

The question of generality versus availability of theory and algorithms is an important one,
given the overall goal of this research. While ODE components are the staple of much
modeling and simulation work today, there are many instances where a purely ODE approach
is inadequate or frustratingly cumbersome. A well motivated discussion of this issue may be
found in [6]; here we only mention that models of the semi-explicit DAE form arise in treating
variational problems such as nonlinear optimal control, in eliminating parasitic effects from
models via singular perturbations, and in solving systems of partial differential equations via
discretization approaches such as the method of lines. In specific physical domains, DAEs
arise naturally in the dynamics of mechanical systems such as robots and in realistic models
of jet engines which include ODEs for slower states and “instantaneous” constraints based
on energy and mass balance considerations that would be prohibitively difficult to model and
simulate as ODEs. Thus the ability to handle semi-explicit DAEs represents a significant
broadening over ODEs that is of substantial practical utility.

As a final comment regarding the class of CTC evolution equations that can be supported,
we observe that there is substantial research currently being focussed on solving higher-index
DAEs [8, 9, 12, 13, 24, 30, 31]. Much of this work is based on differential geometry and/or
graph-theoretic approaches that lead to index-reduction methods which can be implemented
using symbolic manipulation. For an overview, refer to [16]. We take the position that a
preprocessor may be used to reduce a higher-index DAE into a model of form D0 or D1 and
thus do not consider them further. Note, however, that it is often not a good practice to reduce
a model of form D1 into class D0 [16], since the result may be numerically ill-conditioned
(e.g., stiff) and/or the constraints may “drift” if not transformed properly.

8

The other area of generality to be addressed in this research concerns the existence of discon-
tinuity in CTC component models and corresponding theory and algorithms for discontinuity
handling. Here, too, there are a number of cases to consider:

1. Predictable discontinuities: In the simplest case, the CTC model may be continuous
with respect to the continuous-time variables, but there are predictable discrete-time
events that instantaneously change the right-hand sides of Eqns. (3) or (5). The only
cases in which this behavior may be precluded involve CTCs that have only continuous-
time input signals. We denote this case N 0, i.e., fc ∈ N 0.

2. Switching nonlinearities: There may exist simple discontinuities with respect to the
continuous-time variables, e.g., the CTC model may have switches or relays that abruptly
change their output value in response to a smooth change in input through a threshhold
value (e.g., a zero crossing). We denote this case N 1.

3. State-changing nonlinearities: More complex situations exist when the dimension of
the state space changes. A well known example is backlash; the modes here are “en-
gaged moving clockwise”, “disengaged” and “engaged moving counter-clockwise”, and
the number of states changes by two when the element changes mode. We denote this
case N 2.

4. Structure-changing nonlinearities: The most extreme case we consider involves discon-
tinuities where the nature of the state space changes. Such a situation might involve a
physical effect that causes motion in the usual spatial coordinates (x, y, z) to become
constrained to some sub-manifold that is not a simple subspace (e.g., not a plane) and
where the equations of motion are completely different. We denote this case N 3.

We consider features in our proposed modeling and simulation environment that handle all
these cases, with complete rigor.

2.2.2 Pure Discrete-Time Components (DTCs)

Each DTC may have numeric, Boolean, and/or symbolic inputs; discrete-time numeric out-
puts; and discrete-time numeric internal variables called “discrete states”. The generic form
of such a block is given by a set of difference equations expressed as

xk+1(tk) = fk(xk, uc, uk, bi, mj , k) (9)

yk+1(tk + δk) = hk(xk+1, uc, uk, bi, mj , k) (10)

where xk is the discrete state vector, k is the index corresponding to the discrete time point
tk at which the state takes on the new value xk+1, yk+1 is the output vector, and uc, uk, bi, mj

are as above. Note that there are implicit “sampling” operators on uc, i.e., the input value
uc(tk) is used in updating xk. The times tk are usually – but not necessarily – uniformly
spaced (tk = t0 + k ∗ Ts where Ts is the “sampling period”); in any case, we assume that the
update times can be anticipated. There may be a computational delay δk between the sample
time and the output change; this may be modeled with varying degrees of realism, from a
fixed delay time to an actual emulation of the computational burden required in handling
the computations.

Example: A DTC may represent the discrete-time algorithm of a Kalman filter or LQR

9

controller; an input bi might govern whether or not the algorithm has to accommodate a
sensor failure, and a symbolic input may provide information for modifying the algorithm
(‘target-is-accelerating’ might necessitate switching to a 9-state Kalman filter).

Concern for existence and uniqueness of solutions is unwarrented, since the DTC equations
represent a given numerical algorithm rather than a DAE. We exclude component descriptions
that include algebraic constraint equations; while in the CTC case these occur naturally
(Eqn. 6, Section 2.2.1), in the context of DTCs it is not clear they are of any meaning.
For example, if the states xk in Eqn. (9) are to be constrained in some way, then these
constraints should be expressed algorithmically within the framework provided above and
not as an abstract “constraint equation” to be solved by the simulator. Note again that the
inclusion of Boolean and symbolic inputs bi and mj is primarily for model control, as in the
CTC case.

2.2.3 Pure Logic-Based Components (LBCs)

Each LBC may have numeric, symbolic, and/or Boolean inputs; Boolean and/or symbolic
outputs; and symbolic internal variables called “modes”. At this point, it is not clear that
these components have a “generic form” in mathematical terms as above except in terms of
the categorization of input and output variables. Thus we formally write

mj+1 = Φj(mj , uc, uk, bi, j) (11)

bi+1 = Ψi(mj , uc, uk, bi, i) (12)

where in Eqn. (11) mj is the mode vector, j is the index corresponding to the discrete event
triggering the LBC action, Φj denotes a completely undefined relationship, and uc, uk and
bi are as above. The Boolean variables and relations in Eqn. (12) are similar. Tentatively,
the output of each LBC is the mode mj or Boolean bi, which changes instantaneously at a
discrete event (e.g., triggered by an event in a CTC such as a sensor failure); in contrast to
the situation in DTCs, we assume that the update times (mode changes) cannot necessarily
be anticipated. An LBC may be a model of a software component, or it may represent a
high-level continuous-time artifact incorporated in the hybrid system model to handle com-
plicated state-event situations. If the LBC is a software component, then there may be a
computational delay between the trigger event and the mode change; this may be modeled
with varying degrees of realism, from a fixed delay time to an actual emulation of the com-
putational burden required in handling the event.

Example: An LBC may represent a fuzzy-logic-based system that implements a failure
detection, isolation and accommodation scheme, or serve as a means of managing the com-
plicated sequence of continuous-time state events involved in the complete reconfiguration of
a hybrid system when a vehicle engine stalls.

Note that the DTC defined previously might be considered to be a special case of an LBC in
some sense (e.g., both are realized in software); however, we use DTCs for well-defined and
commonplace discrete-time numerical algorithms as in Eqns. (9, 10) and LBC for components
that are primarily logical or symbolic in nature. The particular and specific format of the
DTC so defined allows a very succinct formulation of such components, as in the case of
CTCs, so it is worthwhile treating them separately. This also allows very detailed syntactic
and semantic checking of each DTC, an extremely valuable support feature in a modeling

10

and simulation environment. In addition, certain operations (e.g., linearization) might be
performed on a DTC that would make no sense in the context of an LBC.

2.3 Hybrid System Building

Given the taxonomy of components outlined in Section 2.1, a hierarchical hybrid system is
defined by first developing models of its pure components and then specifying how they are
connected. First we consider building a composite component (CC) using a set of “pure”
components; next we outline how CCs can be embedded in a multi-level hybrid system and
then interfaced with a signal generator to form a complete hybrid system.

2.3.1 Building a Composite Component

An illustrative composite component is portrayed in Fig. 1. It is composed of five pure
components: turret, which represents the nonlinear continuous-time dynamics and electric
drive system of the turret of a battle tank, pid control, which applies a voltage to the turret
electric drive to cause it to slew in a commanded direction, az filter, which filters noisy
measurements of the selected target azimuth position, track mgr, which tells the controller
which target to follow, and engagement mgr, which processes threat priorities and track data
to guide the track mgr and pid control modules.

There are five types of “pure” connections in this formalism, denoted as follows:

• Continuous-time signal: �−→� Example: CC input disturbance connected to
turret input load dist.

• Real number, transmitted at discrete time(s): •−→• Example: track mgr output
theta com connected to pid control input ref.

• Integer, transmitted at discrete time(s): �−→� Example: engagement mgr output
which one connected to track mgr input threat num.

• Boolean variable, transmitted at discrete time(s): ⊕−→⊕ Example: CC input engage
connected to engagement mgr input aim it.

• Character-string (message), transmitted at discrete time(s): �−→� Example:
engagement mgr output stat connected to CC output track status.

In addition, there are two allowed types of “mixed” connections, denoted as follows:

• Continuous-time signal to real number, sensed and transmitted at discrete sampling
time(s): �−→• Example: turret output theta connected (through a summing
point) to az filter input theta.

• Real number (transmitted at discrete time(s) and held constant until the next sample)
to continuous-time signal: •−→� Example: pid control output command connected
to turret input volts.

11

These mixed connections are permitted to eliminate the need for explicit modeling of analog-
to-digital and digital-to-analog converters. If there are reasons to model these transformations
more rigorously, then one may define a component for each such conversion.

As a final significant architectural point, observe that there are two ports on the CTC com-
ponent turret that are not connected to other components or the outside world: the input
Ksat, which is a “knob” (notation: k) or gain that can be set in defining a simulation ex-
periment, and the output volt lim, which is a “view” variable (notation: v) which can be
displayed but not connected to another port. The significance of such “secondary inputs
and outputs” is that they cannot be used for connection purposes. The distinction between
first- and second-class inputs and outputs is important when analyzing the topology of the
system and performing operations such as linearization where unwanted inputs and outputs
(artificially incorporated to serve the purposes of knob and view variables) would generally
be bothersome.

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

pid_control

ref command

trk_speed

y_sensor
�
�
�
�

�
�
�
�

track_mgr

theta_com

threat_num

az(k)

��
��
��
��

prio(k)

precision

engagement_mgr

which_one

aim_it az_trk

status

turret

volts theta

K_sat volt_lim

load_dist
��
��
��
��

�
�
�
�theta_trktheta

az_filter

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
� azimuth

k_noisethreat_az(k)

k

threat_priority(k)

engage

v

track_status

noisy_theta

disturbance

noise

Figure 1: Illustrative Composite Component Model

2.3.2 Building Hybrid Systems

The CC above may be regarded as a part of a multi-level hybrid system. This involves a
direct repetition of the component connection presented above, that is, the external inputs
and outputs in Fig. 1 are treated as component inputs and outputs that are available for
connection to other external components in the same manner. Each CC input and output
inherits the type of the corresponding internal pure component variable (engage in Fig. 1
must be a Boolean, azimuth must be a real number transmitted at discrete times, etc.).

12

Consistency must be enforced at the time a composite component is assembled and again
when it is incorporated into a larger hierarchical framework.

A composite component or collection of CCs may be “closed” to create a complete hybrid
system by defining a system driver component (SDC) that generates the desired input signals;
once this is done, the user may proceed to simulation and / or analysis. The SDC required
for the CC in Fig. 1 must deliver the vector signals threat priority(k) (a vector of string
variables that may change values as a simulation proceeds) and threat az(k) (a vector of
reals defining the sensed azimuth angles of the threats), the scalar continuous-time signal
disturbance and discrete-time signal noise, and the Boolean variable engage.

13

3 Simulation of Hybrid Systems

Section 2 defines the class of hybrid systems to be modeled and simulated in the context
of this research. Here we define a rigorous protocol that governs the timing of events and
the coordination of components that must be handled automatically in the modeling and
simulation environment for this class and with methods and algorithms to be used for the
evolution of continuous-time states.

3.1 Protocol for Simulating Hybrid Systems

The following rules for timing and coordination underlie the definition of the modeling and
simulation environment for hybrid systems and the modeling language defined in Section 4:

• Every hybrid system component is invoked at the beginning of a simulation run (at
t = t0) to initialize it. All code in the component model is exercised during this process,
including statements in an initial section that are executed only during initialization.
The initial section provides a means for setting initial conditions on component state
variables, evaluating constants or initial values of variables to be used in a component
at the beginning of the run, etc., and arbitrary data processing within the DTCs and
LBCs. It should also include a determination of the existence of time events or state
events at t = t0 that may cause a DTC or LBC to be executed immediately when the
run is commenced; more specifically, the first time of invocation for each DTC should
be established and the corresponding time event placed on the simulator’s time-event
stack1. Time does not advance during initialization.

• The first step after initialization is CTC state propagation (unless a DTC has specified
that its first sample-time is t = t0 or an LBC is triggered by an event at t = t0; see first
point above).

• CTC state propagation continues (by numerically integrating Eqns. (3, 4) or Eqns. (5, 7)
subject to Eqn. (6) by suitable means) and time advances (by small increments deter-
mined by the integration algorithm) until a state event is encountered (in a CTC or
LBC) or a time event (in a DTC or LBC) is triggered.

• The handling of state events internal to a CTC is described in Section 3.5.2; this does
not require coordination among the components.

• Time stops when a DTC is triggered, and the inputs to the DTC are sampled for internal
use. The DTC algorithm is executed to produce the updated state (Eqn. 9). The
resulting updated output is made available to the other components instantaneously
or with a specified time delay; if the time delay is not zero then the CTCs and / or
LBCs and / or other DTCs are run until the delay time has elapsed at which point
the simulation is stopped again and the DTC output is changed to its updated value
(Eqn. 10).

1We use the term “time-event stack” informally; somehow, the simulation environment must keep track
of time events that are scheduled to happen in the course of a simulation run.

14

• Triggering and execution of an LBC is similar to the DTC, except that an LBC may be
invoked in response to state events as well as time events. Note that the definition of an
LBC contains a number of mechanisms for emulating a digital module (computational
delay, etc.); if an LBC is used as a continuous-time artifact (e.g., to manage state
events) then these would not be utilized.

• In cases where more than one digital component is to be executed at the same instant,
the simulator should check the priority of each operation and sequence them accordingly.
If priority conflicts still exist (e.g., two modules of priority 1 are invoked simultaneously),
then both will be executed with “old data” (i.e., if there are any data-dependencies
among modules of equal priority, then data from the prior execution will be used).

Most of this coordination can and should be borne by the simulation environment; however,
the modeling language must include mechanisms for the appropriate interplay to be specified,
as outlined above. Existing commercial modeling and simulation environments incorporate
many of these features [1, 18, 21, 32, 40, 42, 50]. In fact, it is generally fair to state that
they can all handle these protocol elements with the exception of catching and handling state
events properly (only ACSL [1] can do so) and rigorous prioritization of discrete-time events.
In many cases where some of the remaining protocol elements are supported, the methods
and language elements used to support them are cumbersome and/or unsupportive. The
language defined in Section 4 rectifies these deficiencies.

3.2 Continuous-Time State Evolution - Overview

To reiterate the classes of CTCs that are under consideration, we have:

• Class D0 models:

ẋc(t) = fc(xc, uc, uk, bi, mj , t) (13)

yc(t) = hc(xc, uc, uk, bi, mj , t) (14)

which are called ordinary differential equation (ODE) components, and

• Class D1 models:

ẋc(t) = fc(xc, zc, uc, uk, bi, mj , t) (15)

0 = gc(xc, zc, uc, uk, bi, mj, t) (16)

yc(t) = hc(xc, zc, uc, uk, bi, mj , t) (17)

subject to the constraint

|Gz| ∆
=

∣∣∣∣∣∂gc

∂zc

∣∣∣∣∣ �= 0 (18)

which guarantees that these semi-explicit DAE components are of Index 1.

First, in Sections 3.3 and 3.4 we will consider the evolution of continuous-time states when
the model is continuous (fc ∈ C0 and gc ∈ C0 at least, where in general Cm denotes the class
of functions with up to m continuous derivatives and we ignore for the time being inputs

15

from discrete-time components if any) and when predictable discontinuities are present (e.g.,
fc and/or gc change abruptly at discrete times due to exercise of a DTC or LBC); then we
will treat the handling of various types of discontinuous behavior, fc ∈ N 0 · · · fc ∈ N 3 as
categorized in Section 2.2.1.

3.3 Evolution of Continuous Class D0 Models

Reliable and robust methods and software for integrating Class D0 models with fc ∈ Cm and
fc ∈ N 0 (refer to Section 2.2.1) have been available for several decades, and serve as the
core for the commercial modeling and simulation environments cited in this report. These
are well established, and do not require extensive discussion or citation. The main issues in
this area (aside from obvious considerations of quality algorithms, etc.) include “starting”,
“automatic step-size control”, “stiffness” (see Gear [22] for a classical reference) and equation
sorting (elimination of algebraic loops). In the present context, automatic step-size control
and handling stiff ODEs are well known and do not need to be discussed; however, starting
and equation sorting are worthy of consideration, as these will enter into other issues, such
as restarting after discrete or state events and handling of Class D1 models.

3.3.1 Starting the Evolution of Class D0 Models

Starting the solution of a Class D0 CTC model requires an initial condition xc(t0) and is
often an iterative or exploratory process. First of all, the integration algorithm used for the
first step(s) is often not that which will be most effective once a solution has been evolved
for a few steps; for example, a predictor/corrector method may be the best algorithm for
evolution, but it cannot be used for starting as it requires past points (points before t = t0)
for taking the first step, which is clearly infeasible. Therefore, an algorithm that does not
involve prior points is used at first, e.g., one from the Runge-Kutta family.

Secondly, if the user has not specified an integration step the modeling and simulation en-
vironment must make some trials and perform error analysis to settle on an acceptable first
step. This is a subtle process, especially if the model is stiff; however, it is well established
and good approaches and algorithms are readily available in almost any reputable simulator.

Note that starting (restarting) is required every time a discrete or state event is handled.
This is again due to the fact that past points (points before the event) have no bearing on
the evolution of xc after such a discontinuity.

3.3.2 Equation Sorting for Class D0 Models

Equation sorting is an important part of preparing a hybrid system model containing Class
D0 CTC components for use in simulation. This step is significant for several reasons:

• The evaluation of Class D0 model expressions requires that all variables appearing on
the right side of Eqn. (13) be already computed for the present value of time and state.
If this is not so, then “stale” data is being used; use of old data corresponds to a one-
step time delay and leads to erroneous results (perhaps even numerical instability). The

16

ability to create arbitrary interconnections of CTCs that may be developed indepen-
dently makes it impossible to assume that the equation order provided by the model
builder(s) is correct, so equation sorting is essential.

• The evaluation problem is solved, if possible, by equation sorting. To achieve this
sorting, the complete set of hybrid system equations must be assembled and processed
to see if it is possible to order them so that every variable on the right side of each
expression has already been computed. This procedure is well-known and standard (see
below for a brief overview).

• Equation sorting permits the detection of algebraic loops, that is, situations where it
is impossible to order the model expressions so that all variables on the right side are
already computed. A classic example of an algebraic loop is direct feedback around a
standard nonlinear component model:

ẋ = f(x, u)

y = h(x, u) (19)

u = K · (r(t) − y)

Trouble arises because one must evaluate y before u is evaluated which requires that y
be evaluated, and so on, so the equations cannot be sorted.

• Restricting the topology of the system model to eliminate problems such as algebraic
loops is much too stringent; instead, equation sorting pinpoints the problem exactly,
making it easy to implement a solution. For example, it would be overly restrictive to
forbid direct feedback in the above case; instead, the problem can be resolved either
by using a DAE solver (see next section) or by eliminating the direct feed-through of
u into y (make y = h(x)) by implementing a low-pass dynamic system model (“sensor
dynamics”) or a delay operator in the loop. The latter is standard and usually physically
justified by the fact that a sensor for y cannot have infinite bandwidth; however such
“fixes” may present their own problems (e.g., they may produce stiff system models).

The fact that a DAE solver is the most exact solution to the problem in Eqn. (19) can be
appreciated by a trivial manipulation that reduces it to Class D1:

ẋ = f(x, u)

0 = u + K · (y − r(t)) (20)

y = h(x, u)

For a succinct discussion of equation sorting, see [16]. Even more briefly, an effective pro-
cedure is based on graph-theoretic methods that begins by parsing the model relations to
create a structural incidence matrix S defined by Si,j = 1 if variable j appears in equation i,
otherwise Si,j = 0, and then finding (attempting to find) permutation matrices P and Q such
that PSQ is lower triangular. A graph-theoretic algorithm of Tarjan [43] is very efficient for
this part of the procedure. The result of this processing is:

• if PSQ can be rendered lower triangular, then the equations can immediately be sorted
(by permutations based on P and Q) and the Class D0 model is ready to use;

17

• otherwise PSQ will be rendered lower block triangular, where each m × m block with
m > 1 corresponds to a set of algebraic equations to be separated and included in the
constraints, Eqn. (16).

We see from this discussion that including Class D1 models in the scope of the modeling
and simulation environment eliminates any need to “fix” algebraic loops in ODE models. In
essence, using equation sorting as outlined above makes it unnecessary to distinguish between
them - the model may be processed and treated as one or the other, as appropriate.

3.4 Evolution of Continuous Class D1 Models

Discuss DASSL [6, 34] and COLDAE [3] as the most respected packages for handling Class
D0 and D1 models when there are no discontinuous effects. Discuss initial conditions and
starting. Expand!

3.5 Discontinuity (State-Event) Handling

Four types of discontinuous behavior are categorized in Section 2.2.1. These are: predictable
discrete-time events, fc ∈ N 0; switch-type nonlinearities, fc ∈ N 1; state-changing nonlin-
earities, fc ∈ N 2; and structure-changing nonlinearities, fc ∈ N 3. All but the first case
involve unpredictable occurrences (e.g., gears engaging and disengaging), which are called
state events.

3.5.1 Handling Predictable Discontinuities

This most elementary type of discontinuity is handled by most commercial modeling and
simulation environments, using a scheme roughly as follows:

• identify the times of upcoming discrete-time events, as outlined in Section 3.1;

• evolve CTC states using an appropriate numerical integration algorithm;

• at each integration step, determine if the earliest future discrete-time event will fall
within the step or at its very end; if it will fall within the step, then reduce the step so
integration stops precisely at that event; then execute the numerical integration step;

• process the discrete-time event(s);

• restart the evolution of the CTC states.

The only capability that is often weak or lacking in existing modeling and simulation envi-
ronments is support for prioritizing discrete-time events; this is often done by adding small
“epsilons” to the timing relations for lower-priority discrete-time components or other patch-
work logic. In cases where components are taken from libraries designed for multiple use,
this is a crude and inadvisable practice.

18

3.5.2 Handling Switch-Type Nonlinearities

Common examples of switch-type nonlinearities include Coulomb friction and an ideal relay,
which are modeled by a change in sign of a friction term when (angular) velocity passes
through zero or making or breaking a connection when a voltage crosses a threshhold value,
respectively. Substantial errors in simulation may occur if such events are not “captured”
correctly [14, 17], producing results that may be quite misleading when stability is marginal
and which might even be confused with chaotic behavior in some cases.

Switching events can, of course, be substantially more complicated than illustrated in the
examples mentioned above:

• In general, a switching event can be formulated in terms of an arbitrary boundary
function or zero-crossing condition:

S(xc, bi, mj) = 0 (21)

where S is a general expression involving the state and perhaps Boolean variables and
modes of the CTC model. For convenience below we will associate a model variable
sgn with the boundary relation, i.e., sgn = 1 if S > 0, sgn = −1 if S < 0.

• The result of a state event can also be more generally formulated; for example, a switch-
ing variable (such as sgn) may be set to ±1 depending on the sign of S in the boundary
function of Eqn. (21) and used in the evolution equations in arbitrarily complicated
expressions of the form if sgn > 0.0 then do ... else do ... endif;.

To handle such an event, the simulation software must “watch” for sign changes in any S
variable and, whenever they occur, adjust the integration step that resulted in the sign change
until the event has “just happened” using a Newton-type “root-finding” algorithm to locate
the zero-crossing. The event itself is not executed (e.g., sgn changed from –1.0 to +1.0) until
this process is complete and we have an “accepted” next point on the trajectory; therefore,
the event iteration can be done reliably because there can be no erratic points or integration
steps taken with the discontinuous term switching back and forth in some arbitrary fashion.

The most straightforward and “safe” way to implement any unpredictable discontinuity is
to insist that unswitched dynamics must be smooth over the boundary. In such cases, it is
sufficient to define “just happened” to signify that S (Eqn. 21) is in the range (-ε, ε) where
ε is an internal tolerance, and the iterative approach to finding such a point can involve
using solution points on both sides of the boundary (e.g., using a Newton-type algorithm,
as mentioned). When such a point is obtained numerical integration is halted, and sgn is
changed from –1.0 to +1.0 or vice versa which mechanizes the required discontinuous change
in the model; the evolution of the trajectory continues with sgn fixed until the next crossing
is detected and handled. This behavior is directly implementable, as illustrated in Fig. 2.

We emphasize that the state event cannot be allowed to occur during an integration step;
rather, each step must always be taken with the value of sgn fixed. In other words, the CTC
model must be formulated so that it has a continuously-varying derivative during each step;
an event handler is used to instantiate any discontinuity.

The above restriction eliminates a number of complications: If the model dynamics are
undefined or unsmooth over the boundary without switching, then finding the switching point

19

-
.

S(x) = theta_dot = 0

theta_dot

theta

= captured state event

o

x = f (x) +x = f (x)
.

theta

theta_dot

+x = f (x)
.

= integration points

x = f (x)-
.

Figure 2: State-Event Simulation with Capture

cannot involve using solution points on both sides of the boundary, and “just happened” must
be defined to mean that the boundary is strictly crossed (e.g., that S is in the range (0, ε)
in the positive-going crossing case). The iterative approach to finding such a point cannot
involve using solution points on both sides of the boundary; in fact, the point “on the other
side” would have to be obtained by artificial means such as reflection across the boundary.

There is one additional feature that may be incorporated in state event handling: change of
CTC state. Under normal circumstances, the state of the CTC should evolve only according
to the dynamics or differential equations (3). The simulator should not allow expressions in
the dynamical model to interfere with this evolution (e.g., an expression xc = . . . would not
be permitted). However, a state event may require a change of state as well as a change in
the dynamics. For example, if two bodies collide and bounce apart there is an instantaneous
change in the velocity of each body. Such changes should be allowed in an event handler.

The numerical algorithms for handling this class of discontinuity are readily available. First,
ACSL [1] has the required zero-crossing detectors, although the modeling language support is
weak; also, DASSLRT [6] has the root-finding algorithms that work in concert with the DAE
solver to achieve the desired result for a broader class of models (including D1); however, there
is no modeling language support since this software is only a subroutine library. Therefore,
the primary need in this area is providing good modeling language for describing such events,
as outlined in Section 4.

Warning: In handling this class of nonlinearity it is assumed above and in the software
cited that the dynamics are such that a trajectory can always cross the boundary; in conflict
situations (Section 3.5.4) this may not be so. However, the simulator can include a monitor
to determine if this assumption is violated and warn the user accordingly (see Section 3.5.4)

20

so that the model can be corrected or reformulated with the offending nonlinearity treated
as a structural one. No commercial modeling and simulation environment that we know of
includes this vital feature.

3.5.3 Handling State-Changing Nonlinearities

This class of CTC includes elements fc ∈ N 3, i.e., involves nonlinear effects wherein the
dimension of the state-space changes in a simple fashion. To outline a typical case (see [49]),
assume a motor is coupled to a load through a gear train with backlash. Then there are three
modes of operation: ‘disengaged’, ‘engaged-turning-CW’, ‘engaged-turning-CCW’. When the
mode is ‘disengaged’ there are two uncoupled second-order ODE sets describing the unrelated
motions of the motor and load; when they are engaged we have θl = θm±δ where δ is one-half
the backlash gap, and θ̇l = ˙θm. The most direct way to handle such a model is to prepare
separate models for the two mechanical parts, including all torques acting on the motor and
load, and add the constraint equations

0 = Ke · (θl − θm ∓ δ)

0 = Ke · (θ̇l − ˙θm)

where Ke takes the values 0 if mode = ‘disengaged’ and 1 if the gears are engaged.

This approach handles a wide variety of common nonlinear effects, especially in systems with
mechanical components. Another example is stiction (a friction effect wherein two objects
stop sliding with respect to each other and become “stuck” together until a sufficient force or
torque is applied to break them loose); a very elegant presentation of such a variable-order
model may be found in [19].

3.5.4 Handling Structure-Changing Nonlinearities

The example below shows how to cope with nonlinear components where vector-field conflict
situations arise, by which we mean the continuous-time dynamic equations produce derivative
vector fields that are directed into a boundary on both sides. This condition indicates that
the trajectory being evolved cannot simply cross the boundary, as assumed in discussing
switching discontinuities (Section 3.5.2). Such situations most generally require changing to
another dynamic model that governs motion on the boundary, in addition to the discontinuous
model for motion on either side. This situation represents a structural change (reducing the
order of the model for motion along the boundary) that may be fundamentally more difficult
to handle than the state-changing case.

There are two possible approaches to resolving such situations:

• Ad hoc: Develop an approach to handle these situations with a “standard” method,
based on mathematical principles or some other rationale.

• Physics-based: Require the modeler to develop a differential equation set describing the
motion of the system along the boundary.

21

In either case, one must specify explicitly or implicitly conditions for moving off the boundary
when the conflict disappears, and incorporate a handler to detect and execute this process.

An example of the first or ad hoc approach would be to declare that the trajectory in a
conflict situation must evolve according to a specific rule such as the following: evaluate the
vector field on each side of the boundary, denoted f+ and f−; project these vectors onto the
boundary to obtain the tangential components denoted f+,tan and f−,tan; let s denote motion
along the boundary and evolve s according to

ṡ = f+,tan + f−,tan (22)

This informal “recipe” produces a smoothed version of the solution obtained using first-
order Euler integration with a fixed step h and allowing the solution to “chatter” along
the boundary; a simple geometrical analysis shows this to be true in the limit as h → 0
(Appendix A of [47]). A method due to Filipov recasts the vector conflict problem as a DAE
where the boundary function becomes a constraint equation [20]. Filipov’s method seems to
be equivalent to the first recipe above; at least it has been shown to yield the same result in
a simple test problem (also, see Appendix A of [47]).

The second or model-based approach is more general and satisfying from a physical or en-
gineering point of view and is outlined here. Note that an automatic method for detecting
conflicts and resolving them is proposed below, we believe for the first time; it is not assumed
that the modeler knows that there is a potential for vector field conflict in the problem as
specified and that it is handled appropriately.

The following simple example illustrates the issues and a proposed approach to handling
such circumstances: Consider a second-order system with states x and y, with a boundary
comprising the unit circle

B : S = x2 + y2 − 1 = 0 (23)

and state differential equations

ẋ =

{
1 if (x, y) ⊂ B
0 otherwise

(24)

ẏ =

{
0 if (x, y) ⊂ B
1 otherwise

(25)

In words, all trajectories evolve “to the right” inside B and “up” outside B when viewed in
the usual (x, y) plane, as depicted in Fig. 3. Vector-field conflicts arise in quadrant 4, that
is, trajectories are “into” B on both sides when x > 0, y < 0, (x, y) ∈ B. In general, such a
conflict situation requires a dynamical model that governs the motion of x, y for (x, y) ∈ B;
therefore, we arbitrarily characterize motion along B in polar coordinates as θ̇ = 1 (a point on
B moves counter-clockwise until the vector field conflict is resolved). A sketch of this system’s
phase portrait reveals that the only situation in which conflicts arise is when trajectories start
from (x0, y0) such that y0 < 0 and −1 < x0 < +1 (cases a and b in Fig. 3). We observe that
the resolution of the conflict according to Eqn. (22) would yield θ̇ = cos(θ) − sin(θ), so the
model θ̇ = 1 does not correspond to the “chattering” or Filipov solution.

We propose to handle situations such as that illustrated in Fig. 3 as follows:

1. Along trajectory a up to point 	 we have no discontinuities except possibly predictable
discrete-time events, and we integrate the states x, y as in Section 3.5.1.

22

nBnB

y

x

B

a b

d

c

a, bc

Figure 3: Vector Field Conflict Example

2. At point 	 the state event is located as described in Section 3.5.2. The local normal nB

of the boundary B is evaluated by numerical differentiation of Eqn. (23)2. The model
is switched to conform with (x, y) ⊂ B, the state derivatives are calculated, and it is
determined that the dot product of ẋc and nB is negative which permits the trajectory
to cross the boundary, as shown.

3. From point 	 to point � we again have a continuous case which we integrate as in
Section 3.3, up to the second state event at point � which is handled as outlined in
Item 2. The outcome is different, however: the dot product of ẋc and nB is positive,
indicating a conflict that forces the dynamics to switch to the manifold S = x2+y2−1 =
0, with reduced state description θ̇ = 1.

4. We assume that the submodel for motion along B includes calculation of the position in
the full state space x, y. As θ is integrated the conflict handler continually evaluates nB,
ẋc for (x, y) ⊂ B, and ẋc for (x, y) outside B at each step. Both dot product conditions
are checked; as long as they both indicate conflict integration along B continues, but
as soon as the conflict disappears on one side or the other (at point �) the model is
switched (in this case, to that for S > 0).

The conditions for vector-field conflict are rigorously stated above in terms of gradients and
dot products. Simpler tests (that would have to be carefully implemented in terms of numeri-
cal/algorithmic procedures) would involve evaluating ẋc on both sides of the boundary, taking
small integration steps based on each derivative evaluation, and seeing if either solution is
consistent (moves into the corresponding region of the state space, e.g., does the numerical

2This can be done robustly using the method of [48] even when S does not possess continuous derivatives
with respect to all variables.

23

integration using the model for S > 0 result in a trajectory that moves into the subspace
S > 0?).

An automatic conflict handler such as that proposed above can alert the user if conflict
situations are unanticipated, as well as handle them if they are expected (and a suitable
submanifold model is provided). This feature, if enabled, would eliminate the possibility of
obtaining meaningless solutions that arise from allowing the numerical integrator to chatter
along the boundary; on the other hand, if the user accepts such solutions the handler can be
disabled to restore integration efficiency. To the best of our knowledge, this is a novel feature.

24

4 Preliminary HSML Language Definition

Based on the class of hybrid systems defined in Section 2 and the simulation requirements
outlined in Section 3 the following tentative definition is offered as a preliminary modeling
language framework for hybrid systems.

We use the following partial BNF notation in all specifications:

Symbolism Meaning

< > delimits an arbitrary syntactic entity
::= “denotes” or “is defined as”
| exclusive OR (choose only one elements in list)

[] delimits an optional element
{ } delimits a compulsory element
* repeat the marked element the appropriate

number of times
% the text that follows is a comment

The designation <simple variable> refers strictly to the name of an arbitrary scalar en-
tity (e.g., circle = x*x + y*y - 1.0;) and the element <variable> encompasses both
<simple variable>s as well as vectors of <simple variable>s. It is generally assumed that
<variable> names an element that changes as time evolves during a simulation run; the
entity <parameter> is used to denote the name of an element that does not change with
time but may be changed from one simulation run to another in the course of performing
simulation experiments. An entity may be more specifically designated where useful to do so
for convenient reference, for example, <component identifier>, <time name>, etc.

4.1 Describing Components in General

As mentioned in Section 2.1, at the lowest level HSML components are “pure” CTCs, DTCs
and LBCs. These are assembled into composite components (CCs), and then systems. Every
component has an interface and a body:

• its interface defines the entities that are accessible from and to the outside, as follows:

– Primary input/output variables: input and output signals may be connected to
other components’ outputs and inputs, respectively.

– Secondary input/output variables: scope and knob entities can not be connected
to other components’ inputs and outputs; rather scope variables may be stored
and displayed, and knob parameters (constants) may be set/changed arbitrarily
using a supporting simulation environment during the definition of simulation
experiments.

• its body contains an arbitrary number of sections, a few of which are universal in
occurrence (declarations for characterizing key elements of the component model
and assignments for assigning values to parameters) and others which are particular

25

to the type of component being described (e.g., a CTC will have a dynamics section
for encoding the state equations).

These basic properties are captured in the following general template for defining any type
of component:
<Component_type> <Component_name> is

%

interface

[input(<name>,<type>,<range>);]*

[output(<name>,<type>,<range>);]*

[knob(<name>);]*

[view(<name>);]*

end interface;

%

body

declarations

. . . ;

end declarations;

section_one

. . . ;

end section_one;

. . . ;

assignments

[<parameter_name> : <value>;]*

end assignments;

end body;

%

end <Component_name>;

This general construct is particularized below for each hybrid system component under con-
sideration.

4.2 Describing a Continuous-Time Component (CTC)

The following provides both a structural template and a tentative syntactic definition of a
HSML continuous-time component:

{ CTC <ctc_identifier> IS
%
{ INTERFACE

[INPUT(<variable>,<type>[,(<range> | <set>)]);] *
[OUTPUT(<var_1>) = <var_2>;] *
[KNOB(<parameter>);] *
[VIEW(<var_1>) = <var_2>;] *

end interface; }
%
{ BODY

[DECLARATIONS

26

[STATE(<var_1>,<var_2>[,<range>]);] *
[LOCAL(<variable>[,<type>][,<range> | <set>)]);] *
[TIME(<simple_variable>);]
[TSWITCH(<simple_variable>);] *
[FLAG(<simple_variable>);] *

end declarations;]
%

[INITIAL
[Computation of initial values for state variables]
[Computation of parameters]

end initial;]
%

[EVENT(<flag_variable>)
[Computation of flag variable]
{ POSITIVE-GOING

[Computation of model changes at event]
[Computation of changes to state variables]

end positive-going; }
[ON-EVENT

[Computation of model "during" the event]
[Computation of state variable transforms]

end on-event;]
{ NEGATIVE-GOING

[Computation of model changes at event]
[Computation of changes to state variables]

end negative-going; }
end event;] *

%
{ DYNAMICS

[Computation of auxiliary variables]
[Computation of output variables]
[Computation of derivatives]

end dynamics; }
%

[CONSTRAINTS
[Computation of auxiliary variables]
[Computation of constraint equations]

end constraints;]
%

[OUTPUTS
[Computation of auxiliary variables]
[Computation of output variables]

end outputs;]
%

[ASSIGNMENTS
[Parameter assignments]
[Initial value assignments]

end assignments;]
end body; }

27

%
END <ctc_identifier>; }

Note that the words in uppercase are reserved words; they cannot be used in other contexts
(e.g., as variable names). The language itself will probably not be case sensitive; fom, FoM,
and FOM would all refer to the same variable; also, DYNAMICS, dynamics, and DyNaMiCs
would be equally acceptable section delimiters. The following constitutes a specification for
the statement types in the above CTC syntax definition:

• INPUT: The first element <variable> is the internal name of a component input; the
second element <type> may take on the values signal (a continuous-time variable),
real (a sampled-and-held discrete-time variable), integer, boolean or string (also
sampled-and-held); optionally a range <range> = (<min>,<max>) (end points excluded
from range) or [<min>,<max>), (<min>,<max>], [<min>, <max>] (one or both end
points included in range) may be provided for signal, real, or integer inputs where
<min> and / or <max> may be a number or a parameter, or a <set> may be specified,
e.g., {high, medium, low} for a string input. There may be any number of INPUT
statements.

• OUTPUT: The first element <var 1> is the external name of a component output; it
must be (in the same statement) identified in terms of an internal name (the second
element <var 2>). There may be any number of OUTPUT statements.

• KNOB: The element <parameter> is the name of a fixed parameter (not a variable)
that is to be varied from run-to-run as part of the definition of an experiment. There
may be any number of KNOB statements. Note that this is a so-called “second-class
input”, which may not be connected to another component.

• VIEW: The element <var 1> is the external name of the internal variable <var 2> which
can be displayed but not connected to another component (a so-called “second-class
output”). There may be any number of VIEW statements.

• STATE: The first element <var 1> is the internal name of a component state variable xc;
the second element <var 2> is the internal name of the corresponding state derivative
ẋc; optionally a range may be provided as for an INPUT. There may be any number of
STATE statements.

• LOCAL: The element <variable> is the local name of a component internal variable;
the second optional element <type> may take on the same values as for INPUT, above;
optionally a range or set may be provided as for an INPUT. There may be any number
of LOCAL statements.

• TIME: The element <simple variable> is the name of the variable that corresponds
to the current simulation time (e.g., to t for evaluating any function gc(xc, t)). There
may be only one TIME statement.

• TSWITCH: The element <simple variable> is the name of a time-point corresponding
to a time event. The simulation should stop when TIME is equal to the quantity
specified in <simple variable>. There may be any number of TSWITCH statements.

28

• FLAG: The element <simple variable> is the name of the variable that is evaluated
to define a state event in terms of a zero-crossing (e.g., an event may occur when
S(xc, bi, mj) = 0.0). There may be any number of FLAG statements.

The functionality of the sections INITIAL, EVENT, and DYNAMICS is setting initial condi-
tions, describing state events and modeling the dynamics (Eqns. 13, 15), respectively, as
indicated by comments. We note only that the value of a state variable cannot be reset in
the DYNAMICS section, where numerical integration varies the state according to the state
variable differential equations; it can be reset in the EVENT section if necessary in state-event
handling (e.g., to change the value of the ball velocity in a bouncing ball problem). The sec-
tions CONSTRAINTS and OUTPUTS are tentatively included in this definition; the former may
be needed if the equation sorting approach outlined in Section 3.3.2 is not powerful enough
to automatically separate out the constraint equations, and the latter is included in case
the model contains extensive output equation computations which would be unnecessarily
burdensome if evaluated multiple times during the numerical integration process.

The only section that may be repeated is EVENT; for each state event to be handled there must
be a FLAG(<simple variable>); declaration and corresponding EVENT(<flag variable>)

section. Finally, mandatory event subsections are provided to handle positive-going and
negative-going transitions, and an optional subsection may be provided to handle structure-
changing nonlinearities (Section 3.5.4). The details of the HSML for the computation of
derivatives, parameter assignment, etc., are not fully defined at this time; the examples in
Section 5 are suggestive.

4.3 Describing a Discrete-Time Component (DTC)

The following provides both a structural template and a tentative syntactic definition of a
HSML discrete-time component:

{ DTC <dtc_identifier> IS
%
{ INTERFACE

[INPUT(<variable>,<type>[,(<range> | <set>)]);] *
[OUTPUT(<var_1>) = <var_2>;] *
[KNOB(<parameter>);] *
[VIEW(<var_1>) = <var_2>;] *

end interface; }
%
{ BODY

{ DECLARATIONS
[STATE(<var_1>,<var_2>[,<range>]);] *
[LOCAL(<variable>[,<type>][,<range> | <set>)]);] *
[TIME(<time_name>);]
{ TSAMPLE(<sample_T_name>); }
[TDELAY(<parameter>);]
[PRIORITY(<integer>);]
[BITS((REAL | INTEGER),<integer>);] *

end declarations; }

29

%
[INITIAL

[Computation of initial values for discrete-time states]
[Computation of parameters]

end initial;]
%

{ UPDATE
[Computation of auxiliary variables]
[Computation of output variables]
[Computation of updated states]
{ next DTC execution time specification --

e.g. <sample_T_name> = <time_name> + <delta_T> }
end update; }

%
[ASSIGNMENTS

[Parameter assignments]
[Initial value assignments]

end assignments;]
%
end body; }
%
END <dtc_identifier>; }

Note that the words in uppercase are reserved words; they cannot be used in other contexts
(e.g., as variable names). The following constitutes a specification for all the statement types
in the above DTC syntax definition:

• INTERFACE elements are defined precisely as in the CTC case.

• STATE: The first element <var 1> is the internal name of a component state variable
xk; the second element <var 2> is the internal name of the corresponding “new” state or
updated value xk+1; optionally a range may be provided as specified for CTC INPUTs.
There may be any number of STATE statements.

• LOCAL: These elements are defined precisely as in the CTC case.

• TIME: The element <time name> is the name of the variable that corresponds to the
current simulation time (e.g., to tk in any function gk(xk, tk)). There may be only one
TIME statement.

• TSAMPLE: The element <sample T name> is the name of the variable that corresponds
to the simulation time at which the DTC is to be invoked for the next update. There
may be only one TSAMPLE statement.

• TDELAY: The element <parameter> is the name of the parameter that corresponds
to the simulation time offset between the time DTC inputs are sampled and DTC
outputs are made available to the rest of the system. There may be only one TDELAY
statement.

• PRIORITY: The element (<integer>) defines the precedence order of simultaneous
discrete-time events; modules with lower values of (<integer>) should be executed
before those with higher values. There may be only one PRIORITY statement.

30

• BITS: The first element, real or integer is an accepted variable type; <integer>

specifies the number of bits used in representing that variable type in the DTC (of
course, the simulation environment would have to support this feature).

Again, the details of HSML for the computation of updated states, etc., are not fully defined
at this time.

4.4 Describing a Logic-Based Component (LBC)

Only the shell of a logic-based component can be specified at this time. The syntax of a
logic-based component shell definition is as follows:

{ LBC <lbc_identifier> IS
%
{ INTERFACE

[INPUT(<variable>,<type>[,(<range> | <set>)]);] *
[OUTPUT(<var_1>) = <var_2>;] *
[KNOB(<parameter>);] *
[VIEW(<var_1>) = <var_2>;] *

end interface; }
%
{ BODY

{ DECLARATIONS
[MODE(<simple_variable>);] *
[LOCAL(<variable>[,<type>][,<range> | <set>)]);] *
[TIME(<simple_variable>);]
[TSWITCH(<parameter>);] *
[TDELAY(<simple_variable>);]
[FLAG(<simple_variable>);] *
[INTERRUPT(<simple_variable>);] *
[PRIORITY(<integer>);]

end declarations; }
%

[INITIAL
[Computations to initialize the LBC]
[Computation of parameters]

end initial;]
%

[EVENT(<variable>)
[Computation of flag variable]
{ positive-going

[Computation of model changes at event]
[Computation of changes to state variables]
[Invocations of an LBC]

end positive-going; }
{ negative-going

[Computation of model changes at event]
[Computation of changes to state variables]
[Invocations of an LBC]

31

end negative-going; }
end event;] *

%
{ LOGIC

[simple logical expressions |
*** logic/expert system code/interfaces here ***]

end logic; }
%

[ASSIGNMENTS
[Parameter assignments]
[Initial value assignments]

end assignments;]
end body; }
%
END <lbc_identifier>; }

Note that the words in uppercase are reserved words; they cannot be used in other contexts
(e.g., as variable names). The following constitutes a specification for some of the statement
types in the above LBC syntax definition:

• INTERFACE elements are defined precisely as in the CTC case.

• DECLARATIONS elements are defined precisely as follows: FLAG, LOCAL, TIME
and TSWITCH are defined as in the CTC case; TDELAY and PRIORITY are as for
DTCs; and MODEs (mj , Eqn. 11) and INTERRUPTs (signals that the LBC must be
invoked) are unique to LBCs (usage is obvious).

The details of the HSML for the symbolic and / or numerical computations required to im-
plement an LBC are not fully defined at this time.

4.5 Describing a Composite Component

The following provides both a structural template and a tentative syntactic definition of a
HSML composite component:

{ CC <cc_identifier> IS
%
{ INTERFACE

[INPUT(<variable>,<type>[,(<range> | <set>)]);] *
[OUTPUT(<var_1>) = output(<compt_ident>.<var_2>) |

input(<compt_ident>.<var_3>);] *
[KNOB(<parameter>);] *
[VIEW(<var_1>) = output(<compt_ident>.<var_2>) |

input(<compt_ident>.<var_3>);] *
end interface; }
%
{ BODY

{ CONNECTIONS
[INPUT(<component_identifier>.<variable>) = permitted

expression involving <inputs> and/or

32

output(<compt_ident>.<variable>);] *
end connections; }
{ COMPONENTS

[<instance_name>(<file_id>);] *
end components; }
[ASSIGNMENTS

[Parameter assignments]
[Initial value assignments]

end assignments;]
end body; }
%
END <cc_identifier>; }

Note that the words in uppercase are reserved words; they cannot be used in other contexts
(e.g., as variable names). The following constitutes a specification for all the statement types
in the above hybrid system or composite component syntax definition:

• INTERFACE elements are defined precisely as in the CTC case.

• CONNECTIONS: Each input of each component (in global variable notation) is identi-
fied in terms of component outputs (in the same notation) and/or CC inputs. The use of
operators is not definitive at this time; however, the use of addition and multiplication
by a gain is likely to be permitted:

input(az_filter.theta) = output(turret.theta) + k_noise*noise;

However, the specification of “permitted expressions” is still open.

4.6 Describing a Hybrid System

The following provides both a structural template and a tentative syntactic definition of a
HSML system driver component (SDC):

{ SDC <sb_identifier> IS
%
{ INTERFACE

[KNOB(<parameter>);] *
[VIEW(<var_1>) = output(<compt_ident>.<var_2>) |

input(<compt_ident>.<var_3>);] *
end interface; }
%
{ BODY

{ DECLARATIONS
[TIME(<simple_variable>);]
[TSWITCH(<parameter>);] *

end declarations; }
%

{ CONNECTIONS
[INPUT(<component_identifier>.<variable>) = <variable>;] *

end connections; }

33

%
{ DRIVERS

[Computation of CC input variables]
end drivers;

%
{ COMPONENTS

[<instance_name>(<file_id>);] *
end components; }

%
[ASSIGNMENTS

[Parameter assignments]
[Initial value assignments]

end assignments;]
end body; }
%
END <sb_identifier>; }

Note that the words in uppercase are reserved words; they cannot be used in other contexts
(e.g., as variable names). This construct is similar to the definition of a CC, as CONNEC-
TIONS and COMPONENTS are defined in a SDC module; it also has characteristics of a
CTC in that continuous-time signals and time events may be modeled in the DRIVERS sec-
tion. The most significant departure relative to the four basic component types is that an
SDC cannot have INPUT or OUTPUT variables in the INTERFACE section.

4.7 Component Encapsulation

We emphasize that each component is, with very few and carefully circumscribed exceptions,
rigorously encapsulated. The goal is that a component’s internal variables and parameters
must not be confused with or inappropriately influenced by those of other components. This
property is critical if components are to be interchangeable, reusable, and arbitrarily inter-
connectable without having to worry about “side effects”. For example, the fact that the
states in turret (see Section 5.2.1) are called theta and theta dot for θ and θ̇ does not rule
out using the same names in other components; if this is done, then no undesirable side-effects
should occur.

The two instances where internal variables in one component may be influenced by those in
another are as follows:

• The state of one component may depend on that of another in an initial section. In
fact, it is assumed in the initial section of turret (Section 5.2.1) that the turret is
coupled to the tank in some way, and that the tank body component also contains an
angle variable called theta; the angle state of turret is initialized to be offset from
that of tank body by the amount del theta. To support this permitted violation of
encapsulation (see Section 4.7), we use the unambiguous “global-variable” notation for
external variables introduced in Section 5.1, i.e., tank body.theta, as shown in that
example.

• The state of one component may depend on that of another in an event section. For
example, if two objects collide then each velocity after collision depend on the precol-

34

lision velocities of both objects. This intercomponent interaction is also implemented
using global variable notation.

The reason that these influences are not modeled at the interface (using component in-
put/output variables) is that these effects are qualitatively different, that is, the influence is
instantaneous rather than dynamic. Also, to add the input/output “hooks” to implement
these effects via the interface would create unnecessary complexity as well as topological
confusion in other domains (e.g., linearization and stability analysis).

35

5 HSML Modeling Example

It is useful to illustrate the basic ideas and approach for modeling hybrid systems by intro-
ducing a moderately comprehensive example. This illustration is developed by presenting
low-order components to flesh out parts of the composite component depicted in Fig. 1
(Section 2.3.1). The block diagram of Fig. 1 is first translated into an HSML composite com-
ponent; then the pure components turret, pid control, and engagement mgr are very
simply instantiated.

5.1 A Composite Component Connection Definition

The block diagram example in Fig. 1 defines a composite component, which may be described
in textual form as follows:
CC turret_azimuth_control is

%

interface % declare CC interface variables:

input(threat_priority,message); % threat priorities input

input(engage,boolean); % set ‘true‘ to engage target

input(threat_az,real); % threat azimuth angles

input(disturbance,signal); % external disturbance

input(noise,real); % sensor noise source

knob(k_sat); % two ’knob’ parameters to

knob(k_noise); % ... experiment with

output(track_status) = output(engagement_mgr.stat);

output(noisy_theta) = input(az_filter.theta);

output(azimuth) = output(az_filter.theta_trk);

% make turret.volt_lim a ’view’ variable:

view(volt_lim) = output(turret.volt_lim);

end interface;

body

connections % define the component connections:

input(engagement_mgr.prio) = threat_priority;

input(engagement_mgr.aim_it) = engage;

input(engagement_mgr.az_trk) = output(az_filter.theta_trk);

input(track_mgr.az) = threat_az;

input(track_mgr.threat_num) = output(engagement_mgr.which_one);

input(pid_control.ref) = output(track_mgr.theta_com);

input(pid_control.y_sensor) = output(az_filter.theta_trk);

input(turret.volts) = output(pid_control.command);

input(turret.load_dist) = disturbance;

% make turret.Ksat a ’knob’ variable:

input(turret.Ksat) = k_sat;

input(az_filter.theta) = output(turret.theta) + k_noise*noise;

end connections;

components % identify sources for component descriptions

turret(turret.mdl);

az_filter(/library/filters/kalman.mdl);

36

pid_control(/library/controllers/d_pid.mdl);

track_mgr(track_manager.mdl);

engagement_mgr(engagement_manager.mdl);

end components;

assignments

k_noise: 1.0; % default noise gain

k_sat: 2.0; % [v**-1] (default)

end assignments;

end body;

end turret_azimuth_control;

The graphic representation in Fig. 1 is related to the above composite component textual
description as follows:

• Note that the notation % denotes the beginning of a comment; here we have used this
feature to provide a road-map of the component model, and in general it encourages
good in-line documentation.

• Every component has an interface and a body. The interface section specification is
the same for all component types, while the contents of the body differ from case to
case.

• Primary inputs and outputs in the interface correspond to those data-flow arrows that
enter and exit the dashed box defining the scope of the CC in Fig. 1; these define the
variables that may be connected to in order to build a hierarchical hybrid system using
this component.

• Each CC input and output inherits the type of the associated lower-level component
variable; in fact, every variable incorporated in the system description is typed in the
lowest-level component where it is used.

• CC inputs named in the interface section must be used to specify component inputs
within the system. In the example in Fig. 1, threat priority(k) is a message-vector
from an external module telling the engagement mgr module the importance of each
potential target, engage is a Boolean signaling the system when it is appropriate to slew
and track the most threatening target, disturbance is a signal input for the turret

component, noise corrupts the signal processed by the az filter, and threat az(k)

represents the azimuth angles (a vector) of the various threats being tracked.

• Inputs may be instantiated by connecting this CC to a “driver” (system block) or by
using this module as a composite component of a larger system. Such a connection
defines the specific nature of the inputs (e.g. how disturbance varies with time, the
dimension of threat az(k), when engage changes from false to true, etc.). Specif-
ically note that the dimension (k) of vector inputs may be established by external
definition (system model drivers) if permitted within the component. That is, a com-
ponent may allow (k) to range between K min and K max, or it may specify a specific
value. Consistency between the input source and the component constraints would be
checked as part of validating the CC when it is assembled prior to simulation.

• Outputs named in the interface section must be (in the same statement) connected to
an appropriate internal component input or output. In the example in Fig. 1, azimuth

37

is the azimuth angle of the current target being tracked, noisy theta is the noisy
input signal to the az filter, and track status is a message from the engagement mgr

indicating track quality. Note that we allow a component input to be a CC output only
because we permit operations in the connection definition (see following point); this
would not be necessary or desirable if operations were not permitted in that context.

• The example in Fig. 1 shows two simple operations beyond connection, i.e., multiplica-
tion by a gain factor k noise and then addition to inject the signal into the az filter

input az filter.theta. It is an open question whether to allow more generality; for
example, to permit multiplication or division of variables or other nonlinear opera-
tions; or conversely to forbid all operations (in which case one must move the gain and
addition into the az filter component).

• Secondary CC inputs and outputs (not shown in the graphical rendition) are “knobs”,
usually parameters that can be changed in the course of performing simulation exper-
iments, and “views”, variables that can be displayed (e.g., plotted after simulation).
These secondary inputs and outputs cannot be used for connection purposes. Note that
knobs and views may be designated at the component level as well; at whatever level
in the model hierarchy an element is designated as a knob or view, it cannot be used as
a first-class input or output above that level. Also, note that a component’s knob and
view variables are always accessible, even if it is embedded in higher-level composite
components.

• A global variable “dot notation” is used to create unique identifiers for system variables.
For example, any number of components may have a variable theta; turret.theta is
unique to component turret. As a syntactical matter, it is undecided whether or not
to permit unique identifiers to be used without the global variable “dot notation” in
defining connections.

• The validity of each component connection must be checked and enforced by the inter-
preter / compiler before a system is deemed acceptable for use (simulation or analysis).

• Components comprising the CC are named and their source files identified in the
components section. Note that the component names must be unique, but source files
may be used repeatedly; thus, for example, the module /library/filters/kalman.mdl
may be employed in several filtering operations in a composite component or complete
hybrid system model.

Note that the above interface structure is common to all component types. Also, the dis-
tinction between first- and second-class inputs and outputs is important when analyzing the
topology of the system and performing operations such as linearization where unwanted in-
puts and outputs (artificially incorporated to serve the purposes of knob and view variables)
would generally be bothersome.

5.2 Pure Component Model Definitions

The HSML requirements for CTCs and DTCs are defined by proposing suitable extensions
to various existing modeling languages. The modeling framework for LBCs is less clear, since

38

this is a new area for most conventional simulation environments. Appropriate paradigms for
LBCs may be discrete-event systems in petri-net or finite-state machine form, expert systems,
neural nets, fuzzy logic, or other logic-based discrete-time software; since the internal form
of an LBC is open, we merely provide an interface or “shell” for such components.

The basic schema of HSML component modeling can be illustrated by the following exam-
ples representing three of the modules that comprise the sample CC depicted in Fig. 1 plus a
corresponding system block to act as the signal generator. We focus on the turret drive (repre-
sented by the continuous-time component or CTC turret), a discrete-time component (DTC)
pid control that instantiates a PID (proportional-integral-derivative action) control algo-
rithm, and a (mindless) logic-based component (LBC) shell engagement mgr. The final hy-
brid system is then assembled using these components plus an SDC azimuth control system

to provide system inputs.

5.2.1 turret – A Continuous-Time Component

The following HSML model is a simple example of a nonlinear physical “plant” that might be
used for control systems analysis and design. There is one elementary state event, modeling
Coulomb friction and handled inside the CTC component where it occurs:

CTC turret is

%

% an electric-drive ’turret’ example

%

interface

input(volts,signal,(-vl,vl)); % voltage-source input

input(load_dist,signal); % load disturbance torque

input(Ksat,signal); % permit varying this "parameter"

output(theta) = theta; % turret azimuth angle

output(volt_lim) = v_lim; % another output variable

knob(del_theta); % permit use of different offsets

view(current) = curr; % this variable may only be displayed

end interface;

%

body

% declare internal variables:

declarations

state(theta,theta_dot); % first state and derivative names

state(theta_dot,moment); % second state and derivative names

local(moment,(-m_max,m_max)); % "moment" has a limited range

flag(theta_dot); % declare flag for state event

end declarations;

% now handle initialization:

initial % (this section is executed at start of simulation):

theta = tank_body.theta + del_theta; % init turret/tank offset

sgn = if theta_dot < 0.0 then -1.0

else if theta_dot > 0.0 then 1.0

else sign(moment); % init friction sign

end initial;

39

% now handle the state event:

event(theta_dot)

positive-going

sgn = 1.0;

end positive-going;

negative-going

sgn = -1.0;

end negative-going;

end event;

% now handle system dynamics:

dynamics

v_lim = volts/(1.0 + Ksat*abs(volts)); % input is softly saturated

curr = (v_lim - Km*theta_dot)/R; % current

frict = B * sgn; % Coulomb friction

% combine electrical, friction & load torques

moment = (Km*curr - frict - load_dist)/J;

end dynamics;

% ... and finally assign parameter values:

assignments

vl: 15.0; % [volts]

del_theta: 0.1; % [rad]

Km: 6.2E-3; % [NM/A]

R: 5.3; % [Ohm]

B: 1.0E-2; % [NM]

J: 7.5E-7; % [kg-m**2]

m_max: 25.0; % [Nm]

end assignments;

%

end body;

end turret;

The above example illustrates many additional features of the HSML language:

• Interface variables must be identified in the interface section, where, as in Section 5.1,
they are categorized as input, output, knob, and view; again, the first pair are first-
class inputs and outputs that can be connected to other first-class I/O variables, and
the second pair are secondary variables that provide access from outside the com-
ponent but are not connectable. Note that the modeler allowed Ksat to be a vari-
able input to the CTC; it is declared to be a knob at the higher level defined in CC

turret azimuth control. In a similar way, volt lim is an output here, but is demoted
to being a view variable in the CC.

• The roles of key internal variables must be declared in the declarations section, where
in this model we have examples of state, local, and flag variables. The state vari-
ables correspond to the dynamic states in the CTC, as in Eqn. (3); the first entity is the
state x (e.g., theta) and the second its derivative ẋ (e.g., theta dot). The purposes of
local and flag variables are described below. Two additional declared variable types
are time (the scalar variable t in Eqn. 3) and Tswitch, used to define the instant a time
event occurs; both are illustrated in the SDC component azimuth control system,

40

Section 5.3. It is not necessary to declare all internal variables (e.g., frict is unde-
clared).

• The interface variables input and knob and the internal variables state and local

may be specified to be restricted in range, as shown; for example, volts must be in
the range (-vl, vl); the simulator must support checking such restrictions and either
warning the user or stopping the simulation if they are violated.

• Introducing the local variable classification permits the specification of internal vari-
able characteristics (e.g., type and range); this allows strict control over internal vari-
ables without making them external, and makes it unnecessary to add range specifica-
tions to output and view variables.

• Provision could be made for the specification of the precision to be used in representing
the continuous-time signals in a CTC; most simulators, however, do not support this
level of specification and it is not clear that it would be of sufficient benefit to be worth
the extra detail. Modern computers have a single-precision arithmetic that is usually
adequate; also, automatic step-size-control algorithms generally reduce or eliminate the
need for double-precision arithmetic.

• Support for specifying units of key physical variables might also be provided. This
feature would prevent errors like connecting an output torque in foot-pounds to an
input torque in newton-meters or worse yet to a voltage. However, checking that units
are correct and consistent is not a simple task (is it appropriate to connect 0.3048*l(feet)
times 4.4482*F(pounds) to a torque in Nm?), and a poorly implemented facility would
be very frustrating to use. We are presently undecided about this area of support, but
tending to be negative.

• A designated section provides for initial condition calculations and other “set-up” evalu-
ations. Here we have specified that the turret angle is initially offset from the tank body

center-line by amount del theta, and that the variable sgn takes the sign of theta dot

if that state is not zero, otherwise it takes the sign of moment (θ̈). Observe that we are
permitting prescribed cases where absolute encapsulation is violated; we introduce a
global variable notation to support this.

• A designated section provides for state-event handling (change of sign in the friction
term when theta dot passes through zero); the occurrence of a state event is indicated
by a zero-crossing in the variable contained in the flag statement. Separate subsections
are provided to account for the positive-going and negative-going transitions. There
would be a separate event section for each state event if there were more than one. A
detailed discussion of state-event handling is provided in Section 3.5.

• Note that the state-event handling mechanism illustrated here is the internal or “en-
capsulated” form; this usage assumes that no other module needs to “know” the status
of this event (whether the friction term is positive or negative).

• We believe that support for a class of differential-algebraic equations (DAEs), that is,
systems modeled by ẋ = f(x, u, t) subject to 0 = h(x, u, t), could be incorporated by
adding a constraint . . . end constraint; section to the formal definition of a
CTC. The code in a constraint section could be similar to that in the dynamics section

41

except each constraint may have to be stylized (e.g., 0.0 = <arbitrary expression>),
to distinguish it from other regular function evaluations. It is not clear whether other
limitations or mechanisms would be required for this approach to handle all problems
in this class; this idea is still tentative. Of course, the simulator would have to support
nonlinear equation solving in coordination with numerical integration; DASSL [6] is the
best-reputed solver for this class of DAEs. For a more general and rigorous discussion
of DAE solvers, see [9, 30].

• The efficiency of the CTC “code” could be improved by introducing an additional
section for calculations not required in derivative evaluation. For example, if the output
equations (Eqn. 2) are substantial and unrelated to evaluating ẋ, then they need to be
performed only after the numerical integration process is complete rather than at every
invocation of the dynamics section. We are undecided about adding this feature.

• The differential equations are simply and naturally rendered. Here we have a “chain”
of integrators, that is, the derivative of state 1 (theta) is state 2 (theta dot); then the

derivative of state 2 is moment; in mathematical notation, θ̈ = M where M = moment

denotes the total moment acting on the turret.

• We have minimized superfluous and / or redundant programming to the extent possible,
and have tried to keep the language simple. Simplicity is important because it allows
the incorporation of model checking logic in the compiler or simulator that can perform
equation sorting, detection of algebraic loops, checking for topological consistency, type
constraints, semantic rigor, etc. (see Sections 3.1 and 3.3.2).

• We have designed the tentative syntax in this report to be moderately terse rather than
verbose. A more readable or novice-friendly notation might use key words (as in Ada);
for example,

input(name=>volts,type=>signal);

state(name=>theta,derivative=>theta_dot);

eliminates the need to remember that the second element plays a very different role in
these two statement types. Construction of a verbose variant of the HSML delineated
here would be a straightforward task. On the other hand, the language is not cryptic,
either; for example, the event subsection delimiter negative-going could be ng, but
that would be a nuisance to remember.

5.2.2 pid control – A Discrete-Time Component

The representation of a discrete-time component in HSML is similar to that in the continuous-
time case. This similarity is a natural outcome of the fact that DTCs are defined to be the
digital analog of a CTC (in the sense that a difference equation is the discrete-time analog
of a differential equation). Note that some of the complications arising in the modeling and
simulation of continuous-time components do not occur in treating DTCs; for example, there
are no state events to worry about. The following is a digital implementation of a PID
algorithm3:

3Note that this controller does not include the logic needed to handle targets that pass through the
singularity at θ = ±π; protection is provided by specifying appropriate ranges for the angular inputs.

42

DTC pid_control is

%

% PID controller

%

interface

input(ref,real,(-pi,pi)); % reference input

input(y_sensor,real,(-pi,pi)); % feedback signal

input(trk_speed,integer,[1,2]); % "fast track" indicator

output(command) = comm; % controller output

knob(K_P); % provide access to vary K_P

view(deriv) = D; % .. and to see the deriv term

end interface;

body

declarations

state(integral,new_int,real); % numerical integrator state

state(old_y,y_sensor); % "old sensor data" state

time(T); % current time

Tsample(Ts); % time of next sample

Tdelay(Td); % delay time from sample to output

Priority(2); % priority 1 modules execute first

end declarations;

% now handle initialization:

initial % (this is done at beginning of simul):

old_y = y_sensor; % set the derivative est = 0.0 at first sample

end initial; % ends INITIAL section

% begin difference equations:

update

error = ref - y_sensor; % error signal (summing junction)

ratio = 1.0 / real(track_speed);

DT = DT_nom * ratio; % sampling time depends on ’speed’

P = K_P * error; % proportional term

D = T_D * (y_sensor - old_y)/DT; % derivative term (rate feedback)

new_int = integral + error*DT/T_I; % update integral term, and ...

Ts = T + DT; % update time for next sample

comm = P + new_int + D; % controller output voltage

end update;

% ... and finally assign parameter values:

assignments

pi: 3.14159;

K_P: 1.0; % ‘proportional’ gain

T_D: 0.3; % ‘derivative’ gain times DT

T_I: 1E1; % 1/‘integral’ gain

DT_nom: 0.1; % nominal sampling interval

Td: 0.0125; % output delay

end assignments;

end body;

end pid_control;

43

The elements of this DTC are similar to those of CTCs, as illustrated in the previous section.
The in-line comments provide a guide to many important features. Note that the HSML
description rigorously distinguishes between the ‘state’ xk and the ‘new state’ xk+1, which
are the first and second arguments of the state statements, respectively. This feature (taken
directly from Simnon [18, 21]) prevents a common problem of updating higher-numbered
states on the basis of lower-numbered states that have already been updated, which destroys
the integrity of the algorithm (Eqns. 9, 10). In addition, we note the following features:

• The DTC component interface section is based on exactly the same prescription as
in the CTC case.

• Internal declared variables include state (xk, Eqn. 9); time or t; Tsample or time of
next sample (internally specified in the component); Tdelay or δk, Eqn. (10); and
Priority, which establishes the precedence ordering of discrete-time modules that
might be invoked “simultaneously”. In this example, other Priority 1 LBC or DTC
interrupts are processed before pid control.

• The provision for writing the DTC difference equations is also simple and natural, as
in the CTC case. The fact that the “new” value of the state old y is declared to
be y sensor (a module input from the component az filter) eliminates the need to
specify in an explicit update statement that old y = y sensor.

• The key variables may be restricted in value, as shown; for example, ref must be in the
range (−π, π) and the integer trk speed may take on values only in the range [1, 2].
Again, the simulator would have to support checking such restrictions.

• Each DTC has its own built-in “timer”; each time a DTC is invoked, it tells the simula-
tor when it is to be called again (via the Tsample variable Ts), placing the corresponding
event time on the simulator’s “time-event stack”. Time between samples may be vari-
able, as in this example.

• The DTC makes provision for a constant time delay, as outlined in Section 3.1. The
data is sampled at each time specified by Ts and used to calculate the next command;
the pid control output is only made available to the rest of the hybrid system (i.e.,
to turret) after a fixed delay of Td = 0.0125 seconds. Note that the simulator should
check that the delayed output should be available before the time of the next sample,
to avoid a pathological condition.

5.2.3 engagement mgr – A Logic-Based Component

The last component type in the multi-block HSML model portrayed in Fig. 1 is the logic-based
component (LBC). As mentioned previously, the internal representation of such a component
is not specified at this time. However, we can define the shell for such a component and
leave the representation of the internal behavior arbitrary:

LBC engagement_mgr is

%

% provide a shell for a logic-based component

%

interface

44

input(prio(1..k_max),string,{high,medium,low}); % threat priorities

input(aim_it,boolean); % flag to engage a target

input(az_trk,real); % turret azimuth angle

output(which_one) = worst_threat; % ID of target to track

output(precision) = prec; % track precision flag

end interface;

body

declarations

flag(trigger); % condition for execution

Tdelay(Td); % time-delay for execution

Priority(1); % interrupts processed first

end declarations;

% now handle initialization:

initial

% do whatever preliminary things need to be done ...

end initial;

% now perhaps handle a state event:

event(trigger)

% express invocation condition as a state-event zero-crossing:

trigger =

% one may specify a delay-time (Td) as the time between the

% event and the delivery of a result.

end event;

% and now begin logic here:

logic

% we leave it up to your imagination how this module decides to

% pick and engage a target, and determines track precision:

worst_threat = . . .;

prec = . . .;

end logic;

assignments

k_max: 20; % logic handles no more than 20 targets

Td: 0.0375; % takes 0.0375 seconds to deliberate

end assignments;

end body;

end engagement_mgr;

5.3 Completing a Hybrid System Model

The following HSML SDC module provides the input variables necessary to run the CC model
turret azimuth control and thus can be used to complete the definition of a simple hybrid
system:
SDC azimuth_control_system is

interface

view(azimuth) =

output(turret_azimuth_control.azimuth);

view(noisy_theta) =

45

input(turret_azimuth_control.noisy_theta);

view(track_status) =

output(turret_azimuth_control.track_status);

knob(T_aim);

knob(disturb_1);

knob(threat_az_1(2));

end interface;

body

declarations

time(T);

Tswitch(T_aim); % these define time events

Tswitch(T_dist); % (see below)

end declarations;

connections

% attach the SDC to the CC turret_azimuth_control:

input(turret_azimuth_control.threat_priority(k)) = t_p(5);

input(turret_azimuth_control.engage) = engg;

input(turret_azimuth_control.disturbance) = dist;

input(turret_azimuth_control.noise) = noise;

input(turret_azimuth_control.threat_az(k)) = t_a(5);

end connections;

drivers

t_p = [low, high, medium, low, medium];

engg = if T < T_aim then false else true;

dist = if T < T_dist then disturb_0 else disturb_1*sin(T);

noise = gaussian_random_process(0.0,0.25,0.01);

for k in 1..5 loop

t_a(k) = threat_az_0(k) + threat_az_1(k)*T;

end loop;

end drivers;

assignments

T_aim: 2.34;

T_dist: 4.32;

disturb_0: -.123;

disturb_1: .231;

threat_az_0: [-1.23, -.5, 0., .76, 1.92];

threat_az_1: [-.13, .15, 0., -.15, .02];

end assignments;

components

turret_azimuth_control(az_ctrl.mdl);

end components;

end body;

end azimuth_control_system;

Much of the above syntax and structure is tentative; however, note the following:

• An SDC may not contain inputs or outputs; knobs are permitted (to define simula-
tion experiments), as are views (to allow display of simulation data). Note that knob
and view entities of lower-level components are also accessible within the simulation

46

environment.

• The SDC drivers should correspond exactly to the highest-level composite compo-
nent(s) input list(s). The type of each SDC driver is checked against the corresponding
component input where it is ultimately consumed.

• The SDC completely instantiates the hybrid system. In addition to supplying scalar
and vector signals to drive the composite component(s), it defines the dimension of the
vectors (subject, in this example, to the LBC’s internal specification that k must not
exceed 20).

• The above assumes the existence of a gaussian noise generator with user-supplied spec-
ifications for mean, rms level, and sample time, respectively.

• Time-varying outputs may contain time events; these events are made known to the
simulator via the Tswitch entities. The simulator must stop at these times exactly
and exercise the SDC to change the associated variable. The significance and handling
of Tswitch elements is thus exactly similar to the Tsample elements in a DTC; note,
however, that the SDC is generally operated as a continuous-time component.

• Handling of vector signals above is highly tentative.

47

6 Conclusions

A quality hybrid system simulation environment (QHSSE) will have broad usefulness in
both commercial and government applications, as outlined in Section 1.3.1. In fact, it is
obvious that the use of modeling and simulation is not just confined to controls applications,
although that is the application with which ORA is most familiar and we would be satisfied
with commercial viability on the basis of that market alone. The surveys of user needs and
available methods and software for modeling and simulation as outlined in the previous Task
Statements will be designed to permit us to understand and develop the broadest possible
user base; the breadth of this marketplace is a major consideration in our strong positive
assessment of the commercial importance of this proposal.

We expect to have decided either to choose a partner or proceed alone during Phase I. If
possible, and if a collaboration makes sense, we anticipate that at least an outline of such
a partnership will be established. We believe tentatively that collaboration would give us
several advantages in comparison with a solo approach, because

1. it is easier and less risky to increase an existing market share instead of starting from
zero, and

2. it is conceivable that a limited Version 1.0 of QHSSE might be available by or just after
the end of Phase II.

For these reasons, unless we fail to achieve an equitable partnership or an unforeseen technical
or business reason negates these positive considerations, we plan to form an alliance in Phase
II and proceed into Phase III with internal ORA support, support in kind from our commercial
partner, and perhaps a modest revenue stream from an extended version of an existing
commercial simulation package.

48

7 References

[1] Advanced Continuous Simulation Language (ACSL), Reference Manual. Mitchell & Gau-
thier Associates, Concord, MA 01742.

[2] Amsterdam, J., “Automated Modeling of Physical Systems”, ASME Winter Annual
Meeting, Anaheim, CA, November 1992; in Automated Modeling, ASME Publication
DSC-Vol. 41.

[3] Ascher, U. M. and Spiteri, R. J., “Collacation Software for Boundary Value Differential-
Algebraic Equations”, SIAM Journal of Scientific Computation, to appear.

[4] Augustin, D. C., Strauss, J. C., Fineberg, M. S., Johnson, B. B., Linebarger, R. N., and
Sansom, F. J., “The SCi Continuous System Simulation Language (CSSL)”, Simulation,
Vol. 9, No. 6, December 1967.

[5] AutoCode User’s Guide, Integrated Systems, Inc., Santa Clara, CA 95054.

[6] Brenan, K. E., Campbell, S. L. and Petzold, L. R., Numerical Solution of Initial Value
Problems in Differential-Algebraic Equations, North Holland, 1989.

[7] Campbell, S. L., “A General Form for Solvable Linear Time Varying Singular Systems
of Differential Equations”, SIAM J. on Mathematical Analysis, Vol. 18, pp. 1101-1115,
1987.

[8] Campbell, S. L., “Least Squares Completions for Differential Algebraic Equations”, Nu-
merische Mathematik, Vol. 65, pp. 77-94, 1993.

[9] Campbell, S. L., “High Index Differential Algebraic Equations”, J. of Mechanical Struc-
tures and Machines, to appear.

[10] Campbell, S. L. and Gear, C. W., “The Index of General Nonlinear DAEs”,
preprint/report, Dept. of Math, North Carolina State University, Raleigh, NC 27695-
8205, November 1993; slc@math.ncsu.edu.

[11] Campbell, S. L. and Griepentrog, E., “Solvability of General Differential Algebraic Equa-
tions”, SIAM Journal of Scientific and Statistical Computation, to appear.

[12] Campbell, S. L. and Moore, E., “Progress on a General Numerical Method for Nonlinear
Higher Index DAEs II”, Circuits, Systems and Signal Processing, Vol. 13, No. 2-3, pp.
123-138, 1994.

[13] Campbell, S. L. and Moore, E., “Constraint Preserving Integrators for General Nonlinear
Higher Index DAEs”, Numerische Mathematik, to appear.

[14] Cellier, F. E., “Combined Continuous/Discrete System Simulation by Use of Digital
Computers: Techniques and Tools”, PhD Thesis, Swiss Federal Institute of Technology,
Zurich, Switzerland, Number ETH 6438, 1979.

[15] Cellier, F. E., “Combined Continuous/Discrete Simulation - Applications, Techniques
and Tools”, Proc. Winter Simulation Conference, Washington, DC, pp. 24-33, 1986.

49

[16] Cellier, F. E., Continuous System Modeling, Springer Verlag, 1991.

[17] Cellier, F. E., Elmqvist, H., Otter, M. and Taylor, J. H., “Guidelines for Modeling and
Simulation of Hybrid Systems”, Proc. IFAC World Congress, Sydney, Australia, 18–23
July 1993.

[18] Elmqvist, H., “SIMNON - An Interactive Simulation Program for Non-Linear Systems”,
Proc. of Simulation ’77, Montreux, France, 1977.

[19] Elmqvist, H., Cellier, F. E. and Otter, M., “Object-Oriented Modeling of Hybrid Sys-
tems”, Proc. ESS’93, SCS European Simulation Symposium, Delft, The Netherlands,
1993.

[20] Filipov, A. F., Differential Equations With Discontinuous Right Hand Side, Kluwer Aca-
demic Press, 1988. (See also article of the same name, AMS Translations, 42:199-231,
1964.)

[21] Frederick, D. K. and Taylor, J. H., “SIMNON Reference Manual”, GE Corporate Re-
search and Development, 1989.

[22] Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations,
Prentice-Hall, 1971.

[23] Gear, C. W., “The Simultaneous Numerical Solution of Differential-Algebraic Equa-
tions”, IEEE Transactions on Circuit Theory, Vol. TC-18, pp. 89-95, 1971.

[24] Gear, C. W., “Differential Algebraic Equation Index Transformations”, SIAM J. of Sci-
entific and Statistical Computation, Vol. 9, pp. 39-47, 1988.

[25] Gear, C. W. and Petzold, L. R., “ODE Methods for the Solution of Differential/Algebraic
Systems”, SIAM J. of Numerical Analysis, Vol. 21, pp. 367-384, 1984.

[26] Hassard, B. D., Kazarinoff, N. D. and Wan, Y-H., Theory and Applications of Hopf
Bifurcations, Cambridge University PJress, 1981.

[27] ISEE Interface to Simnon, A. Marttinen, Control CAD, Espoo, Finland.

[28] Karnopp, D. C., Margolis, D. and Rosenberg, R. C., System Dynamics: A Unified Ap-
proach, John Wiley & Sons, New York, 1990.

[29] Mattsson, S. E. and Andersson, M., “The Ideas Behind Omola”, Proc. CACSD’92, IEEE
Computer-Aided Control Systems Design Conference, Napa, CA, pp. 218–224, March
17–19, 1992.

[30] Mattsson, S. E. and Söderlind, G., “A New Technique for Solving High-Index
Differential-Algebraic Equations Using Dummy Derivatives”, Proc. CACSD’92, IEEE
Computer-Aided Control Systems Design Conference, Napa, CA, pp. 218–224, March
17–19, 1992.

[31] Mattsson, S. E. and Söderlind, G., “Index Reduction in Differential-Algebraic Equations
Using Dummy Derivatives”, SIAM J. of Scientific and Statistical Computation, Vol. 14,
pp. x-x, 1993.

50

[32] Model-C User’s Guide, Systems Control Technology, Inc., Palo Alto, CA 94303.

[33] Pantelides, C. C., “The Consistent Initialization of Differential-Algebraic Systems”,
SIAM Journal of Scientific and Statistical Computation, Vol. 9, No. 2, pp. 213–231,
1988.

[34] Petzold, L. R., “A Description of DASSL: A Differential/Algebraic System Solver”, Proc.
10th IMACS World Congress, Montreal, August 8-13, 1982.

[35] Potra, F. A. and Rheinboldt, W. C., “Differential-Geometric Techniques for Solving Dif-
ferential Algebraic Equations”, in Real-Time Integration Methods for Mechanical System
Simulation, Ed. by E. J. Haug and R. C. Deyo, Springer-Verlag Computer & Systems
Sciences Series, Vol. 69, pp. 155-191, 1991.

[36] Rabier, P. J. and Rheinboldt, W. C., “A General Existence and Uniqueness Theorem for
Implicit Differential Algebraic Equations”, Diff. Int. Eqns., Vol. 4, pp. 563-582, 1991.

[37] Rasband, S. N., Chaotic Dynamics of Nonlinear Systems, John Wiley & Sons, 1990.

[38] Reich, S., “On an Existence and Uniqueness Theory for Differential Algebraic Equa-
tions”, Circuits, Systems and Signal Processing, Vol. 10, pp. 343-359, 1991.

[39] Redfield, R. C., “Bond Graphs as a Tool in Mechanical System Conceptual Design”,
ASME Winter Annual Meeting, Anaheim, CA, November 1992; in Automated Modeling,
ASME Publication DSC-Vol. 41.

[40] SimuLink User’s Guide, The MathWorks, Inc., Natick, MA 01760.

[41] Steward, D. “Partitioning and Tearing Systems of Equations”, SIAM J. on Numerical
Analysis, Series B, Vol. 2, No. 2, pp. 345-365.

[42] SystemBuild User’s Guide, Integrated Systems, Inc., Santa Clara, CA 95054.

[43] Tarjan, R. E., “Depth First Search and Linear Graph Algorithms”, SIAM J. on Com-
puting, Vol. 1, pp. 146-160, 1972.

[44] Taylor, J. H., User’s Guide for MEAD Computer Program Version 1, GE Corporate
R &D, 29 January 1989. See also: J. H. Taylor, D. K. Frederick, C. M. Rimvall, and H.
A. Sutherland, “The GE MEAD Computer-Aided Control Engineering Environment”,
Proc. IEEE Symposium on CACSD, Tampa, FL, December 1989.

[45] Taylor, J. H., “Toward a Modeling Language Standard for Hybrid Dynamical Systems”,
Proc. 32nd IEEE Conference on Decision and Control, San Antonio, TX, 15-17 Decem-
ber 1993.

[46] Taylor, J. H., “A Modeling Language for Hybrid Systems”, Proc. CACSD94 (IEEE/IFAC
Symposium on Computer-Aided Control System Design), Tucson, AZ, 7-9 March 1994.

[47] Taylor, J. H., A Rigorous Modeling Language for Hybrid Dynamical Systems, ORA Re-
port TM-94-001, ARPA/US Army Contract No. DAAA21-92-C-0013, February 1994.

51

[48] J. H. Taylor and A. J. Antoniotti, “Linearization Algorithm for Computer-Aided Control
Engineering”, IEEE Control Systems Magazine, Vol. 13, No. 2, pp. 58-64, April 1993.

[49] J. H. Taylor and J. Lu, “SIDF-Based Nonlinear Control System Synthesis for an Electro-
Mechanical Pointing System”, accepted for Special Issue on Motion Control Systems,
Journal of Systems Engineering.

[50] VisSim User’s Guide, Visual Solutions, Inc., Westford, MA 01886.

52

