
GE's MEAD User Interface -
a flexible menu- and forms-driven interface for engineering applications

Magnus Rimvall, Hunt Sutherland, James H. Taylor, Philip J. Lohrq

Control Systems Laboratory
General Electric Corporate R&D

P.O. Box 8, Schenectady, NY 12301, USA

Lu2&33&

This paper presents the User Interface (UI) of the
MEADt Computer Aided Control Engineering (CACE)
program. After a brief presentation of the MEAD com-
puter program, the unifying philosophy behind the MEAD
U1 is discussed. Main features of this U1 include a "point-
and-click'' style interaction, a unifying grouping of simi-
lar functionality, and a graphical interface to its CACE
data-base management system. A typical modeling,
analysis and design scenario illustrates the interface.
The use of a User Interface Management System (UIMS)
in the design and implementation of the MEAD U1 is
thereafter discussed. The MEAD user interface. i s
implemented using an experimental UIMS developed at
GE which supports both Tektronixa terminal and X
window based window systems. Some implementational
features of the MEAD user interface are: i t is imple-
mented using an object oriented database system, it uses a
state tree to specify the dialog control, and i t is created
entirely by means of a graphical editor thereby avoiding
conventional programming. The architecture of the
UIMS is described and the implications of creating a user
interface with this UIMS are discussed.

Our recent effort in software development for
Computer-Aided Control Engineering (CACE) has in-
volved the integration of standard CACE packages into a n
environment called MEAD1 that includes a n advanced
user interface, a supervisor2 which coordinates the execu-
tion of CACE tasks using these CACE packages, a data-
base manager3, and an expert system. "MEAD" as used
herein refers to GE-MEAD. The GE-MEAD U1 was devel-
oped entirely with GE funds and consists of GE-owned or
liscenced software. The focus of this presentation is the
overall design and implementation of the UI, as seen both
from a control engineer's "user" perspective and the
package designers "developers" perspective.

Our primary goal in designing a "user-friendly"
interface for CACE environments is ambitious: to make
the user interface support control engineers with widely
different levels of CACE expertise. The design require-
ments necessary to satisfy inexperienced users are very
difrerent from those needed for expert users, and one often
--___

q Automation Systems Laboratory, GE-CR&D
t The origin of the acronym MEAD (Multi-disciplinary

Expert Aided Analysis & Design) is the U S Air Force MEAD Project
1161, which is a parallel / synergistic elfort to the somewhat different
(r b version" of MEAD described here. The USAF MEAD effort was

sr)orr?ored i n part by the Flight Dynamics Laboratory, Wright
flesrnrch arid Development Center, Aeronautical Systems Division,
USAF - WPAFB under Contract F33615-85-C-3611.

4' . 7

finds that there is a fundamental conflict that causes
engineers from one or the other end of the experience
spectrum to be very dissatisfied with a given CACE
environment. The interface described here resolves this
conflict in two ways: by making the "user friendly" aspects
of the interface fast and non-patronizing, and by allowing
the user to work flexibly in a variety of modes.

Despite the importance of a good user interface for
the acceptance and success of a CACE package, user
interface aspects have often played a secondary role in the
design of CACE packages. Moreover, even in CACE
software developments where much time and effort was
devoted to U1 design and implementation, the emphasis
was often package flexibility and package extendability
rather than user friendliness. Three periods of U1 design
can be distinguished:

The interactive control packages developed during the
1970's had quite crude user interfaces. Most packages,
such a s KEDDC4, used rigid question-and-answer or
low-level menu interactions. This kind of a U1 can be
made almost self-explanatory for the novice, however,
it becomes very tedious to use for an experienced user

With the advent of MATLABS in 1980, command-
driven interfaces came into vogue. Primarily, these
interfaces "opened up" the programs. The users. can
extend the functionality of a program by adding
interactively defined macros and algorithms.
However, the minimal complexity of such UI's is quite
high for a novice user. This prohibits many computer-
cautious control engineers from using the program.

The third and present generation of UI's, a s
represented by MEAD, combines the simplicity of
modern graphical interfaces, using drop-down menus,
forms, and "point-and-click" techniques, with
extendable command- and macro-interfaces as found
in the MATLAB family, to give both the novice and
expert user a n adequately powerful and yet fully
manageable access to the program.

The MEAD User Interface has been designed and
implemented using a GE-developed, experimental User
Interface Management System (UIMS), CHIDEG. A
UIMS supplies the tools and methods necessary for
building graphical user interfaces. The need for a UIMS
arises especially when constructing a user interface that
requires many advanced capabilities found on engineer-
ing workstations. The use of a UIMS can greatly reduce
the effort required to produce a user interface and yet at
the same time ensures a consistent and reliable design.

Typically, the use of a UIMS enables the separation
of the design of the user interface from the application

TH0270-9/89/0000-0024$01.00 @ 1989 IEEE. 24

-~ ~~

program and independent of the display device. In
principle the user interface can be maintained as a
separate component from the application and thus
enhance the ease of overall maintenance of the
application, ie. changes can be made relatively
independently either in the application or the user
interface. A s is discussed later, whether the user
interface is "loosely" or "tightly" coupled to the application
can also affect the ease of maintenance.

A secondary purpose for a UIMS is to provide
advanced U1 capabilities to the end user which would not
be easily gained otherwise. Thus, a UIMS should provide
a comprehensive and extensible set of interface tools (e.g.
graphical display editor) and support U1 capabilities such
as user profiles, help facility, session logging, definition,
editing and playing of scripts, and display graphics.

IMEAD-
B Com~uk&i€ed Control E-

Most CACE programs are implemented a s single,
monolithic pieces of software containing all necessary
data structures and algorithms. Thus, even extendable
packages, such a s all of the MATLAB-derived packages,
are limited by the available data structures and core
algorithms. Realizing that there will never exist a single,
"frozen" program capable of accomplishing all tasks
performed by a control engineer, the approach taken in
the MEAD Project has been quite different. MEAD has
been created to provide control engineer with a user
friendly and ye t powerful controls workstation, while
taking maximum advantage of existing software mod-
ules. Implementing MEAD1 thus entailed the integration
of a data-base, a n expert system and several CACE
packages, such as the Pro-Matlab@ linear analysis and
design, and the ACSL@ non-linear analysis and simula-
tion package, under a common User Interface. The real
advantage of the MEAD architecture thus lies in its ability
to integrate different packages into a single, uniform
package (despite very different package interfaces).

The User Interface of MEAD communicates with
all different components of the MEAD system, including
the data-base and the expert system, through a common
supervisor2, which in turn coordinates the execution of
the different modules. This supervisor provides the UI,
and the expert user, with a unified and well structured
command language interface. Thus, i t has been possible
to implement the MEAD U1 independent of the quite
diverse underlying modules.

Though largely independent of the underlying
CACE packages, the architecture of the MEAD User
Interface is closely coupled with the structure of the
MEAD Data Base Manager (DBM). The MEAD relational
DBM is used to store away models, and results associated
with these models, in a well structured, safe and
maintainable manner3. The hierarchical organization of
the MEAD DBM mimics the way control engineers
naturally organize models and results, a s shown in
Figure 1. The control engineer typically analyses models
of real or planned systems, and thereafter designs
controllers based on these models. Thus, models form the
main entities of the DBM. Models are grouped into
projects, a DHM may contain several projects. A model
consists of components (e.g. plant, sensors, controllers
and actuators), connected together according to a model
description (ConnSys in Fig. 1). Associated with each
model there are results (e.g. files containing frequency or
time response data).

25

While the CACE database categories are few in
number and simple, there is one more dimension to the
problem: Models tend to change over the life-time of the
project. Thus, the DBM must be able to keep track of
models that evolve over time (e.g., as better modeling
information becomes available or as preliminary
modeling errors are corrected) so that each analysis or
design result can be associated with the correct model
instance. The MEAD DBM includes a version control
mechanism to handle this with no burden on the user.
Figure 1 shows how each model may have different
versions, each with a different class number. Different
component versions may be organized into these distinct
classes, and the results stemming from each model class
are kept separated in the data base.

The DBM functionality outlined above is provided at
virtually no cost to the user. In fact, accessing the
database via the U1 Browsing Facility and the ability to
make direct use of data elements from that facility makes
the DBM a n asset rather than a liability in terms of
overhead. Moreover, the well-defined structure of the data
stored in the DBM is used to simplify user interaction by
extracting information from the L)BM rather than from
the user whenever possible. Also, the DBM can be used as
a self-documenting project development log, an important
feature in large, industrial projects.

The MEAD User Interface (U1) is designed to
successfully facilitate access to the CACE capabilities of
MEAD in a truly heterogeneous industrial environment.
As will be further illustrated in the paper, the MEAD UI'S
multifaceted design allows the system to

support users with widely different levels of familiarity
with the environment,

provide a single tool both for the engineer confronted
with a n occasional control problem and the expert
control engineer using the most sophisticated control
algorithms,

access different control packages in a uniform fashion,

provide uniform interactions for similar but disjoint
tasks,

manage the data for very large projects in a reliable
manner.

By taking advantage of the synergism among these
functionalities, a homogeneous environment within a
large industrial setting will be obtained. Thus, MEAD
should be seen as one of the first general-purpose but yet
fully integrated modeling, controls, simulation and data-
management packages.

The task of producing a single program serving a
large, multidimensionally heterogeneous community is
non-trivial. In designing the MEAL) UI, two basic
principles have been consistency and agility. The user is
presented with a very predictable menulform
environment operated with "click-and-point'' operations.
Careful mendform layout design passively aids the user
in his work, and a n interactive help facility gives active
assistance when necessary. More experienced users are
also given the ability to enter complex commands in a fast

and efficient manner. Thus, to accommodate the largest
number of control engineers, a user may drive MEAD in
diKerent modes, each suiting different needs and level of
experience:

The primary U1 mode is a menu and forms based
"point-and-click" style graphical interface. This mode
gives quick and convenient access to basic CACE
functionality. The well structured menus and forms,
together with context-dependent helps a t each action
point on the screen, makes this mode suitable for
beginning users. Moreover, as each individual action
button and form launches more powerful commands
than the ones available in the underlying packages (for
example, a connect action in MEAD translates into
over a dozen commands which are sent i n to the
underlying package), the expert user i s also well
served by i ts efficient "point-and-click" operation.
However the functionality is definitely prescribed in
this mode, so the expert user may not be able to achieve
all desired results.

The MEAD command mode allows the user to directly
enter supervisor level commands. This mode i s
primarily intended for the expert user wishing to enter
command using the full command language of the
supervisor (which includes conditional statements,
loops, etc.). Although most of the commands on this
level a r e available through the more friendly
userlmenu mode as well, the ability to combine and
structure commands freely can expedite tasks for the
expert user.

The "package-level" mode gives the user the option of
entering arbitrary commands. directly to the underly-
ing packages, using the native command syntax of the
package. This mode requires the user to know how to
operate the underlying package in a stand-alone fash-
ion, i t is intended to be used when the exact desired
functionality i s not available through the MEAD
commands. Because the commands are entered
through the supervisor, full data-base management
capabilities are still available on this levels.

A macro mode allows the user to define sequences of
commands for repeated execution. These commands
may have been captured in script form during normal
operation of MEAD, or they may be entered in a
regular text editor. Macros may contain both MEAD
and package level commands, they may be edited for
customization, and they may be dynamically
associated with menu fields for easy access when in
menu mode.

During the last half decade, the workstation and
personal computing arena has been revolutionized by the
advent of completely graphics-based systems. This is best
illustrated by the Apple@ Macintosh@ computer family,
which features a graphical operating system relying on
icons, menus and a mouse, enabling the user to perform
all necessary actions with "point-and-click" operations.
Computers from other vendors feature similar, albeit less
dominant, operating environments. These machines
have proven to be particularly well suited for computer
"illiterates" and casual computer users. Using the same
general paradigm, t h e main MEAD operat ing
environment is menus and forms based. This is i n
distinct contrast to the command-oriented operatine

environments prevalent i n modern MATLAB-based
CACE packages. Although "graphics" always played a n
important role in CACE, i t was hitherto mainly used for
plotting curves (e.g. frequency and time responses), or
enabling graphical input of models in block diagram
form. The control engineer was thought to "need the
power" of a command-driven interface, just a s software
engineers were long thought to "need" the cryptic details
of the UNIX@ operating system.

The MEAD graphical operating environment
allows the user to perform all controls-related operations
in a very consistent manner over mouse-operated menus
and forms. A menu hierarchy is used to group related
operations together into domains fariiiliar to control
engineers. The menu tree hierarchy is limited to two to
three levels for quick access to all domains. At the bottom
of the menu tree, selection and action forms are used to
give a highly interactive execution of most operations. All
of this is illustrated in the Figures 2,3 and 4.

Figure 3 shows a screen-dump of the MEAD
graphical operating environment. The top-level
horizontal menu, or Resource Bar , i s continually
displayed at the upper edge of the screen. When a field in
a menu is clicked upon, the corresponding sub-menu or
action form pops up. The main resource bar and its drop-
down sub-menus have been structured to be consistent
with other menu-based systems (e.g. t ha t of the
Mac in tosh@ and Sun@ computers), making the U1
uniform in appearance and t ransparent to use
throughout the CACE domains. In the snapshot shown
in Fig. 3, the main "IDE" button (Integrated Design
Environment) has been selected, followed by the "Lin Mdl
Xform" and "ABCI) to DABCD" selections, which brought
up the continuous to discrete model transform form.
Activated fields are always displayed in reverse video and
sub-menus appear in decreasing hierarchical order to the
right of the original menu. Action forms vary in size and
content (also see Fig. 4), but they are always aligned with
the right edge of the screen.

In a n object-oriented user interface like the MEAD
UI, the user selects items and options over point-and-click
operations rather than typing in a name or a certain
keyword. In MEAD, different SelPction Forrits are used to
present the user with the available selections, together
with any pertinent information about the selectable items.
The information within these forms change dynamically
as objects are created or deleted. Items presented to the
user on selection forms range from projects, models and
components a s stored in the data base, to simulation
output signals to be graphically displayed and other object
groups dependent upon the internal structure of the active
model. As an example of a selection form, Figure 4 shows
the Browse Model form. This form presents the user with
a list of all available models in the data base and their key
attribute$. The user first selects one of these models by
clicking on the corresponding left button, and thereafter
chooses the action to be taken with the selected model by
clicking one of the buttons on the bottom row.

Figure 2 shows the general layout of a MEAD
Action Form. Though few of the actual forms utilize the
full functionality shown in Fig. 2, the form layouts have
been standardized for clarity and consistency. The Info
and Setup buttons enable actions that the user may want
to or have to perform before executing the function (such
a s setting up the midmax frequency for a Bode operation,

26

or defining the end-time for a time simulation). The
Execute button triggers the actual operation to be
performed (e.g. to calculate the Bode frequency data). The
Secondary Execute buttonb) gives the user access to
dependent functions (such as the determination of gain
and phase margins after a Bode is done). A bottom row of
command buttons is always arranged a s follows: a
Display button to the far left allows the user to view the
results of the operationb) and produce hard copies. The
Save button lets the user save the result(s) in the Data
Base. The Model button is available on forms where the
result may be interpreted as a model, in which case the
result is reformatted into a model and stored as such in
the Data Base. Finally, the quit button moves back up the
menu tree. Whenever the user is requested to enter any
alphanumerical information, such as the name of a new
resulthodel, an additional input form will open up below
the action form.

All MEAD screens and forms are variants of one of
these three basic screen layouts: the top menu system for
accessing functionality, the select forms for object-
oriented selections, and the action forms for invoking
control functions. All actions are controlled by mouse
operations (point-and-click) down to the bottom level
(where sometimes names or parameters have to be
entered using the keyboard). This makes the U1 very agile
and easy to use. The user does not need to know any
commands or syntax, and the menu tree hierarchy is
designed so that there is a natural and easy-to-remember
path to each desired functionality (as the IDE -> Lin Mod
Xform -> ABCD to DABCD).

The general screen layout and forms design of the
MEAD U1 provides the user with a mechanical operation
that is very simple and easy-to-learn. In addition to this,
a n advanced dynamic s ta te -machine t akes t h e
responsibility for a large number of administrative tasks,
including retaining, coordinating, and reusing already
made selections and specifications. Moreover, all entities
in the DBM may be assigned individual notes through the
UI. Also, if the user returns a t a later time to review
results, the U1 gives access to the so called condition
specification, which is a list of changes made to a model
or other data-base entity. This list is automatically
collected by the supervisor and retained within the DBM.
For example, an interactive change of a model parameter
is retained throughout all following operations on tha t
model, and the fact that the parameter has been changed
is entered by the supervisor into unique condition
specifications, one of which is created for each result
deriving from that particular instance of the model and
stored in the data-base in association with the result.

Whenever MEAD is started, the user is given the
option of entering a tutorial mode, in which case lie ninv
walk through an on-line tutorial. If the user is already
familiar with MEAD, he would instead click to proceed.
MEAD would then scan the selected data-base for valid
projects (a user would typically work with only one data-
base, he can switch to another one by editing his startup
file). If the data-base is brand new and no valid projects
can be found, the user is asked to enter the name of a new
project. If one or more projects already exist, the user is
presented with the Browse Projects form shown in Figure
5. This form illustrates another feature of the MEAL) UI,
namely a dynamically changing layout of U1 screens.
Before any project has been selected, the form has only
four action buttons (select/create/delete a project, quit).
After a project has been selected, four more action buttons
specifically operating on the selected project are made
available, as shown a t the bottom of Figure 5. This
scheme prevents the user from selecting certain buttons
prematurely, i.e. before they have a valid meaning. In
another scheme used in other parts of the U1 (in
particular on drop-down menus), non-active selections
are still displayed in order to indicate their general
availability to the user, but if the usel wlects one of these
buttons prematurely, the U1 will display an error
message of the type “Select a model first”.

As soon as a first project has been selected, the
login sequence is over and the user is presented with the
regular resource bar on the top of the screen. However,
before any control-related functions are made available to
him, he has to create a new or activate an already existing
model on which these functions are to operate. In MEAD
terminology, this model is thereafter called the configured
model. Such a configuration involves collecting all
components of that model from the data-base, connecting
them together, and loading the complete model into the
workspace of the linear or nonlinear package.

A model is activated/created over the Browse
Models form shown in Figure 6. The “Configure Model”
button on this form is used to activate an already existing
model. The “Create Model” button will bring up a se-
quence of forms, as shown in the Figures 7 through 9. In
Fig. 7 the user has elected to create a linear continuous
state space (ARCD) model with the name TEST. The
model is to contain four component connected in a post-
compensator configuration (other predefined configura-
tions are available, an arbitrary general connection of any
number of components can be constructed using “General
Config”). In Fig. 8 the user has indicated that the first
component (”Actuator”) is to be created from scratch.
This component is to be entered in ABCI) format, using a
template file a s base. The user defines the new
component in a regular text-editor, Fig. 9 shows the edited
template file. After all components have been entered, the
system will automaticallv confirrure them into a sinele.

the MEAD program. Second to thac a case study walk-
through should give a good perception of what kind of
unique support MEAD oflers the control engineer during
his system modeling, analysis and design. Thus, in the
rest of this section we will illustrate the use of MEAD on a
small example problem. In this example, we will create a
new linear model of a system and make a simulation to
calculate the step-response of the system. Albeit simple
enough a task, i t will still illustrate most of the salient
features of the UI.

In creating the new model, we note how a relative
complex model creation is accomplished with a few
keyclicks and the editing of four prepared template files.
If the same component definition and component
connection was to be performed in one of the popular
CACE matrix environments, more than a half dozen
complex connection commands would have been entered,
including the definition of three opaque interconnection
matrices. Moreover, the MEAL) U1 allows the user to copy
or link already existing components into other models (the
link command will preserve the version control between

27

the two components, so tha t all updates to the original
component is reflected in both models; copy will severe the
connections and make the two components truly distinct)
and combine already existing models into components of
other models for a true hierarchical model building.

Once a model has been configured, all actions are
automatically directed to tha t model, and it is not
necessary for the user to continuously indicate on which
model a function is to operate. Thus, the user is now
ready to set up the specifications for a simulation of the
created model by selecting ”Define Condition” and “Set
Input”. This brings up the selection form shown in the
left portion of Figure 10, in which all input signals to the
active model are listed. Note that the number and names
of these inputs may vary from model to model. The user
picks one of these inputs, selects the kind of input signal
(not shown) and enters the parameters of the selected
signal form as shown to the right of Fig. 10. The defined
input signal is thereafter retained as part of the model
condition until the user deletes the signal, configures
another linear model or exits MEAD.

To alleviate the user from reselecting and
reconfiguring models, both a linear and a nonlinear
model may be selected a t the same time. This parallel
workspace is particular useful when comparing the
behavior of a nonlinear model and its linear counterpart,
or when a linear controller is to be verified against the
complete nonlinear model. Each operation in MEAD is
defined to operate only on one of the two models (e.g the
linear model for pole-placement , nonlinear model for
linearization), or the user is given an explicit choice on
the action form. As MEAD supports both linear and
nonlinear simulation, the simulation action form in
Figure 11 gives such a choice. Note that exactly the same
action form is used for both the linear and non-linear
simulation, despite the fact that two completely different
packages with two different command interfaces are used
for the two simulation domains (Pro-Matlab and ACSL,
respectively). After a simulation has been invoked, the
user may save the results as is also shown in Fig. 11.

In Figure 12, the generic display facility of MEAD is
shown. The user may plot or list any output time history
against time or another time history (phase plots). The
same selection form is used when viewing results
retrieved from the data base.

Throughout this short scenario, we have assumed
that our imaginary user was quite knowledgeable about
the MEAD U1 environment. Often, however, this is not
the case. Therefore, interactive help is available both for
general help information and for information on any
particular form or button in the U1 (over a dedicated
button on the multi-button mouse). Figure 13 shows the
top help screen in MEAD. Note how the user may browse
up and down within the HELP information tree.

e dmct CO-

The graphical interface to MEAD gives the novice
and expert user alike a convenient and powerful interface
to CACE functionality. However, for tasks not directly
supported by the UI, the direct MEAD and Package
command modes are available. Moreover, the MEAD
Macro facility allows the user to reuse or modify complex
functionality stored in a canned form for later reuse.
Unfortunately, it would go well beyond the intended scope
of this paper to given any detailed description of these
modesa.

The MEAD graphical U1 has been implemented
us ing a n environment provided by the CHIDE
User Interface Management Systeni6. The CHIDE

(Computer-Human Interface Development Environment)
provides a graphically based editor and run-time
environment which together enable a developer to
completely implement a user interface. The user
interface is designed as a “wrapper” over one or more
underlying applications as shown in Figure 14. CHIDE
also provides the means to design a user interface
independent of the target graphics terminal or
workstation. CHIDE enabled the MEAD user interface to
be implemented with the following features:

Support migrat,ion from a TektronixB terminal display
to the X window system with minor changes to the
user interface,
Provide a “Point and click” , command line, and macro
script styles of user interaction,
Communicate to the MEAD supervisor through a
command line interface ,
Create complex forms from files retrieved from the
MEAD database, and
Support on-line and context determined helps.

The first implementation of the MEAD U1 operates
with a Tektronix 4107 terminal or a T4107 en~ula tor
running on any other terminal, IBMB PC or workstation.
The overall design of the U1 was made with a generic
workstation in mind, and the general layout of the U1 is
closer to what is normally found on a workstation than on
a “dumb” terminal. However, the size and resolution of
the T4107 has somewhat limited the complexity of the
individual screens. Also, the limited character fonts have
precluded the use of advanced workstation features such
as graying out of selections. The remainder of this
section describes four novel features provided by CHIDE.

U Looselv CouDled” Interface. . Most “point-and-
click” style interfaces are developed with a “tightly
coupled” interface with the application program. The
user interface software, which may be implemented by
means of a UIMS, is bound into the same executable code
as the application which it manages. An alternative
approach is a “loosely coupled” interface which is
developed at the same time as the conimand line driven
application that i t drives. As shown in Figure 14, CHIDE
provides a “wrapper” program which is a separate
process from the application and which conimunicates
with the application via ASCII messages through a
mailbox or socket inter-process communication
mechanism. Existing applications can remain unaltered
and new applications, such as the MEAD supervisor, can
be maintained independently of the user interface. The
command line interface, which accepts ACSII coniniands
and returns ASCII prompts, errors, or data, continues to
be supported by the application. When connected to the
user interface, the input and output channels a re
redirected to the U1 process, and the application can act
as if it were communicating directly with a user on a n
ASCII terminal.

S t a t e t ree d ialop CO ntrol mechanism; The
functionality of a UIMS can be partitioned into software
components in several different ways7 and is shown in
Figure 15. CHIDE follows to some degree the Seeheini
model which divides a U1 into three components, a
Presentation Manager, a Dialogue Control System and an
Application Interface Manaaerg. The three comDonents

28

can be viewed a s the lexical, syntactic and semantic
portions of the interface, respectively.

The Presentation Manager is composed of a window
system, a U1 toolkit and a n event handler and deals with
the appearance and user interaction with the UI. The
Application Interface Manager handles the external
interactions with the application. I t translates user
events into text which is meaningful to an application,
and decomposes application responses into information
meaningful to the user and Dialogue Control System.
Between these two components is the Dialogue Control
System which manages the flow of control in the
interface. For example, if we consider a drop-down
menu, the Presentation Manager allows us to create,
display, and receive events from the user, while the Dia-
logue Control System describes when the menu is
displayed and what should happen when each menu item
is selected. The Application Interface Manager
determines what resulting information, if any, is sent to
the application upon menu selection. The Application
Interface Manager utilizes event translation to process a
response which is parsed in order to update the state of
the interface, handle errors and to display the results of
an operation.

In CHIDE a state tree model is used in the Dialogue
Control System. The state of a U1 a t a given time defines
tlie context for user and application interaction. The state
tree model organizes U1 states in a tree where event traps
and action routines are attached to tlie states in the tree.
A complete description of this model has been defined by
Rumbaughg. A structured state machine such as a state
tree, provides many advantages as the basis of the dialog
control system as summarized below:

User state diagrams are a powerful tool for designing
user-friendly products and systemsg. The state tree
model provides a way to move a state driven U1 design
directly and simply into the U1 implementation.

Structure is imposed on tlie state, events and action
routines, making an interrace more modular, easier to
understand and easier to modify.

The state tree provides a convenient way of graphically
programming the Dialog Control System. The
restructuring of an interface can be accomplished sim-
ply by repositioning sub-trees in the s ta te tree
hierarchy.

The state tree organizes and reduces tlie complexity of
the Application Inlerface Manager. The control
aspects of an interface are specified in the state tree
and not in code. Action routines are more likely to be
simple and reusable. Few, if any, existing UIMS
models address this issue.

Database Storaee of b e c i f i c a t i o n ; CHIDE also
differs from other UIMS’s in that CHIDE generates and
manipulates a U1 specification as data in a database,
rather than as code in a programming language. To the
joy of some, and dismay of others, no code is generated,
modified, compiled or maintained when CHIDE is used to
create a U1. This means that a31 the code within CHIDE
is application independent. Only the database changes
from one application interface to the next. This approach
has two useful side effects.

the interface are immediately executable. No code needs
Lo be changed, recompiled or linked before the changes are
tested. This capability has been demonstrated in other
UIMS’s which incorporate a language interpreter into
their environmentlo. An interpreter also allows a U1
developer to try out new or modified portions of a n
interface before compiling and linking, but requires the
U1 developer to understand the interpreted language
which is being used.

The second side effect of storing the interface as
data is the ability to modify the interface a t run time.
Existing UIMS’s generally limit the changes which are
allowed at run time to the display or “lexical” portions of
the UI. CHIDE allows syntactic and semantic portion of a
U1 to change at run time sinre all the U1 specification is
maintained a s d a t a l l . ‘I’here is also nothing which
precludes supplying the end user with the facility to
modify a n interface.

Interactive DeveloDment Tool: GUIDE: CHIDE
interfaces are created and modified by editing graphical
and tabular representations of the UT. This editing
updates the databases which describe the interface, a s
explained in the previous section. Like some other UIMS
systems, CHIDE provides WYSIWYG (what-you-see-is-
what-you-get) graphical editing of the display objects,
such as menus, panels, dialog boxes etc.10912913. The user
deals only with look and frel of these objects. No
knowledge of the underlying presentation and user
interaction mechanism are assumed.

IJnlike all other UIMS’s observed to date, CI1II)E
also allows a non-programming description of the control
flow and application interaction portions of the interface.
See the Lohr paper14 for a more complete description of
these facilities. The complete structure and control flow of
the interface can be graphically edited because the
Dialogue Control System is based on tlie state tree model.
A state tree editor is provided which shows the structural
connections between the states and the flow of control
which occurs for each user event. States and subtrees
may be created, deleted and copied. The UI’s structure
and control flow can be modified by grapllically
nianipulating the displayed structure and control arcs.
In addition, each state may be “opened” to show its
contents, i.e., the action routines executed when a state is
traversed.

The Application Interaction Maiiager portion of the
interface is defined in a format which avoids use of a
programming language. Instead, the approacli is to
represent the flow of data to and from an application as
passing tlirough a series of interchangeable filters. A
library of filters are provided which pct form standard
parsing, arithmetic and string manipulation functions.
These filters work from a coninion input and output
steam and thus, may be strung together in different
combinations to accomplish complex processing of data.
This approach is sufficient for most c a w s because the
state tree dialog control mechanism greatly simplifies the
action routines. For the more complicated, non-generic
cases, the application developer will have to extend the
library to provide a new filter. Simplicity has been gained
at the expense of complete flexibility provided by using a
programmi rig language.

F i r s t , t h e U1 developer has on-line re-
configurability. That is, any changes or additions made to

29

In this section the steps which were taken by the
project team in developing the design specification for the
MEAD user interface are described. Through the several
stages in the project a series of prototypes of the MEAD
system were used to develop a design specification. In the
beginning, the style of interface and the needs of our class
of user, control engineers in GE, had to be discovered
through the use of several prototype programs.

A prototype of the user interface enables a n
understanding of the actual user needs more so than
through a specification document. The initial prototype of
MEAD was implemented using lisp programs under
GNU Emacs and provided a mock-up of all the major
components, including the user interface, to be
implemented in the MEAD project. This prototype was
intended only as a vehicle to establish the functionality
required for MEAD. For the user interface, the structure
of the menus and the method for accessing the database
through browse screens was identified. At that time we
did not attempt to establish the style of interaction. Next, a
Hypercard@ program mock-up of the user interface was
developed which concentrated only on the look and feel of
the menus and forms (as opposed to establishing the
underlying functionality). The Hypercard mock-up
became a living specification which was refined over
several months of evaluation by all parties involved.

An alternative to using a Hypercard mock-up
might have been immediately to implement the user
interface with a UIMS tool set. However in our case, we
desired a platform, the Apple@ Macintosh@ computer,
which was freely accessible to all parties involved and
which enabled easy experimentation by those people.
Also, to simplify building the mock-up the interface to the
application (the MEAD supervisor) was only simulated
through scenarios. Thus we did not require any of the
other functionality of MEAD to be implemented on the
Macintosh. I t is important to note that by simulating the
interaction to the application we were able to concentrate
solely upon issues which were important to the users.

From the Hypercard@ mock-up two documents
were developed: a style guide and an application interface
specification. While sometimes a User's Manual is also
developed at this time, i t was felt that the Hypercard
mock-up was equivalent for our purposes. The style guide
captured the essential look and feel desired for the MEAD
user interface and took into account the constraints of the
expected platform - a Tektronix@ terminal or IBM@ PC.
Importantly, the specification of the interface between the
MEAD supervisor and user interface interface was
developed before implementing the UIMS based user
interface. Because of the "loosely coupled architecture,
the specification established the set of commands planned
for the supervisor and the kinds of responses which might
occur from the supervisor .

The purpose of the style guide is to provide
guidelines to the developer of the user interface which
establish the appearance and operation of the user
interface. The style guide provides a statement of desired
attributes of the user interface and is divided into four
sections. The first section establishes interface
assumptions which would include hardware, software,
human and performance characteristics. Next, usability
principles a re stated which in this document summarize
accepted practicels. The third section describes the

TM Hypercard is a trademark of Apple Computer, Inc.
30

standard of style for the MEAD application. Finally, a
strategy for screen layout is identified along with major
display components which make up the screen layout.
This was a particularly important need since the first
release of the MEAD user interface was intended for a
TektronixQD terminal display.

MEAD represents a new, more supportive
environment for computer-aided control engineering
(CACE). This paper has shown the flexible user-friendly
user interface of MEAD, which is based on a "point-and-
click" interactive mode and complimentary direct
command modes. I t has been shown how a single,
consistent user interface may give access to the full range
of modeling, analysis and design functionality of a
complete CACE environment.

Also, this paper has described the concepts of a n
experimental UIMS which is based upon the X window
architecture. The architecture of the UIMS is further
described as is implemented for the MEAD user interface.
The user interface has been successfully operating with
Tektronixa terminal version for about a year and in 1989
has been moved to function with the X window system
under the UNIX@ operating system.

AclmowledPment
The authors would like to acknowledge the

contribution by Michael Charbonneau who took on the
task of using the newly developed GUIDE graphical editor
to create the MEAD user interface.

References
Taylor, J. H., Frederick, D. K., Rimvall, C. M. and
Suther land , H., "A Computer Aided Control
Engineering Environment with Expert Aiding and
Data-Base Management". Proc. IEEE Workshop on
Computer-Aided Control System Design, Tampa, FL,
1989.

Rirnvall C. M., "A Data-Driven Command Interface
and Translator for CACE applications", to be
published.

Taylor, J. H., Nieh. K-H, and Mroz, P. A., "A Data-
Base Management Scheme for Computer-Aided
Control Engineering", Proc. American Control
Conference, Atlanta, GA, 1988.

Schmid, C., "KEDDC - a Computer-Aided Analysis
and Design Package for Control Systems", in M.
Jamshidi and C.J. Herget (eds.), "Advances in
Computer-Aided Control Systems Engineering", pp.
159-180, North Holland, Elsevier Science Publishers,
1985.

Moler, C. MATLAB User's Guide. Dept. of Computer
Science, University of Albuquerque, NM, 1980.

Lohr, P.J., "CHIDE: A Usable UIMS for the
Engineering Environment". Tech. Report, GE
Corporate Research & Development, Schenectady,
NY, 1989.

Green, M., "A Survey of Three Dialog Models",
Trans. on Graphics, ACM, Vol. 5, No. 3, July, 1986.

[8] Green, M., "Report on Dialogue Specification Tools",
User Interface Management Systems, edited by
Guenther E. Pfaff, Springer-Verlag, Berlin, 1985.

Rumbaugh, J., 'State Trees as Structured Finite
S t a t e Machines for User Interfaces", ACM
SIGGRAPH Symposium on User Interface Software.
Banff, Alberta, October 1988.

[9]

[lo] Foody, M., "UIMX: A User Interface Management
System for Visualization in Scientific Computing",
unpublished paper, Visual Edge Software Ltd., St.
Lautent, Que., Canada, 1988.

[ll] Hardwick, M., et. al., "Advantages of Using Database
Technology in a User Interface Management
System", 1989 (submitted for publication).

Display

User

ProJecls

Models

Attributer

Save Model Quit

(Rarultr. Comronanttl

(121 TAE Plus and TAE Plus Workbench Documentation
(Version 3.11). Century Computing, Inc., Laurel,
MD. 1988.

[13] Open Dialog UIMS Product Literature, Apollo
Computer Inc., Chelmsford, MA, 1988.

[14] Lohr, P.J., "CHIDE: A Usable UIMS for the
Engineering Environment", Proc. 10th GE Software
Engineering Conference, Daytona, FL., April, 1989.

[15] Shneiderman, B.,"Designing the User Interface:
S t r a t e g i e s for Effective Human-Compute r
Interaction", Addision-Wesley , 1988.

[16] Taylor, J.H., McKeehen, P.D., "A Computer-Aided
Control Engineering Environment for Multi-
Disciplinary Expert-Aided Analysis and Design
(MEAD)". Proc. National Aerospace Electronics
Conference (NAECON), Dayton, Ohio, May 1989.

Qb Apple, Hypercard, and Macintosh are trademarks of Apple
Computer Corp.
ACSL is a trademark of Mitehell and Gauthier Ass.
IBM is a trademark of IBM.
Sun i s a trademark of Sun Microsystems, Inc.
Tektroniz is a trademark of Tektronix, Inc.
UNIX is a trademark of AT&T Bell Laboratories.

@

Figure 1. The MEAD Data Base relationships.

Functionality Name

1 InfoBetup Button(s) I
I Execute I

I n Secondary Execute(s)

Figure 2. Principal layout of a MEAD action form.

Continuous t o Discrote t r a n s f a l o t i

Enter D o i t a T 8 . 1 1

Figure 3. The MEAD resource bar and the main IDE menu operating envi-
ronment. A "continuous-to-discrete" action form is also open.

31

o o - . r - n
m o o o o o

L L r L

L 2 z z

4 4 4

I e

1

6
A

32

(d

6

.. .. -
0 0 4

I
m

.B
Y

%

P
8

Y
1 a

.Ei
P) a
3
B w

8
.d
U

3 a
tij
rl
rl

ii
5;:

33

.

-0 -
\ I I ' , 1 ! ! 1 : ; I : ! ! / j

..... k t 1 1 1 j i 110
! I : ! ..-- 1
I ! I ;

I \ , i i 1 ,
...........\;.. 1 ; (. ._ W ; ,,I 1

I /
........ -1..} ..

j '+,. j i i
j j j I *.__ j :

I ! I i

! ! .

\ / - 1

\ :
i ! !

c i

..........
I t ! !

! .
! i

-+
: ,
j i'. 1 j

......... 1.. :...;...

'i. j !

1 'i" i
! I '...I

' .

'\ I

i i i ;

\ . I

....... j hl

?. - j i ! . : ! ! *..
! ! I : ';
: ! I

1 , , I I t i I I f , , I I 1 I I _

I
0

c) E!
m
h
v)

&
Q e

E
W
n
f
0

x
h a,
a c
5

3 0

h m

k
E
a

a,

d
W +J

U
E

W
I
F

0
L

U
U

B

L 01

F
P

V c

f
U

r" c -
d
B
U 1: c

9,
-
U

w
L

>
0

@ ..-
a
I

I L

S

c'
01

0
0 0

n~ 0 0 0

c -
d

m r. m

34

