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FOREWORD

This handbook is the culmination of research
performed on the Covariance Analysis DEscrib-
ing Function Technique (CADETTM) during a two-
year period under Contract NG0014-73-C-0213,
for the Office of Naval Research. The Sci-
entific Officer who monitored and encouraged
this inv.stigation was Mr. David Siegel.
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ABSTRACT

l The Covariance Analysis DEscribing Function
Technique (CADETIM) -- a"technique conceived

' and developed .t TASC for the efficient direct
statistical analysis of nonlinear systems with
random inputs -- has been proven to provi‘re

I accurate tactical missile performance projec-
tions with a small fraction of the computer
time expenditure required for a comparably
reliable monte carloc analysis. This handbook

l is a self-contained, detailed exposition of
the application of CADET tc the missile-target
intercept problem. The broad scope of this

l document is intended to permit tre direct analy-
sis of a wide variety of ncanlinear and random
effects in missile guidrnce systems, and to
facilitate and encoursge the study of other non-

l linear systems via CADET.
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PROLOGUE AND I'EADER'S GUIDE

The development of a complex weapon system with stringent
performance specifications, such as a tactical missile, generally
requires several phases, including preliminary design and feasi-
bility studies, decisions conceraing implemen.vation of various sys-
tem functions, and compensation or design modi."'ication to obtain
the best possible system performance under realistic constraints.
In the later stages of develonment, the mathematical system model

used as a basis for generating system performance projections in-
evitably contains nonlinear efiects and random inputs. Nonline-

arity is generally associated with nonlinear relations inherent

essential design nonlinearities; random effects may include noise
(e.g., thermal effects), sensor mcasurement errors, random inputs

A g oot i

that contain infori.ation required by the system, and random ini- ﬁ
tial conditions. When random effects are significant, some sta- i
tistical measure of system performance is required; for example,
the root-mean-square (rms) miss distance achieved at the time of
target interception may be of interest in assessing the capability

e e TR ok Rt e M

of a tactical missile.

"The traditional approach used for the statistical analysis
of the performance of systems with significant nonlinearities has
been the monte carlo method. In this technique, a large number of
computer simulations (trials) are made using the required non-

linear model with different, randomly chosen, initial conditions
and random forcing functions generated according to given statis-
tics, The resulting ensemble of simulations provides the basis for

making estimates of the true system variable statistics. Asso-
ciated with the monte carlo method is the problem that a large

l to the laws of physics, unavoidable hardware nonlinesarities, and

- xiii
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number of trials is required to provide confidence in the accuracy i

5 of the results; an ensemble comprising as many as 1000 trials '
i : may be needed to obtain an accurate statistical analysis for
a nonlinear system. Thus, while the monte carlo method may
be useful for obtaining a few evaluations of a system's per- ;
formance, it is not a very satisfactory tool for conducting :
“ extensive sensitivity and tradeoff studies for different values
; i of the important system parameters, or for conducting detailed
F 5 studies of nonlinear effects on system performance, due to

-~ = g

the large expenditure in computer time required. ok

The limitations of the monte carlo approach for ob- i‘ i
taining performance projections for realistic nonlinear models

—

of tactical missiles strongly motivated the development of a .
more efficient analytic technique. The resulting method- .
ology, conceived by the technical staff at TASC, has proven -
i to be an exceptionally powerful means for directly evaluating ij
the statistical behavior of nonlinear systems with random ' o
inputs (Refs. 1 to 4). For reasons that will become obvious,
this method is referred to as the Covariance Analysis Deszribing !
function Technique (CADETTM). The purpose of this handbook is P
to present detajiled instructions tc facilitate the application !
of CADET in_studies of weapon systems performance. i ;

The scope and intent of this presentation is as follows:
Chapter 1 gives the theoretical devclopment of the basic equa-
tions of CADET, both for continuous-time and mixed continuous/
discrete-time systems. Chapter 2 provides a step-by-step exposi-
tion of tb~ CADET pro-edure, accompanied with computer flow-charts.

Chapter 3 is a comprehensive discussion of modeling nonlinear
effects in (he missile-target intercept problem; the purpose of
this material is threefold: to provide the basis for the examples
treated herein, to expedite future —~se of CADET in analyzing tac-

tical missile performance, and to provide some guidance in
/
/

Xiv
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modeling analogous phenomena that may occur in studying other
systems hgving similar nonlinearities. The theory and pracltical
application of quasi-linearization is treated in Chapter 4, exact
and approximate methods for calculating random input describing
functions are presented, accuracy of the quasi-linear approxi-
mation is considered, and some sensitivity issues are discussed.
Chapter 5 (blue pages) provides a broad overview of the application
of CADET to general problems -- touching upon philosophy of applica-
tion, assessments of the strong points and limitations of CADET, and

a comparison of the computational efficiency of CADET versus the
monte carlo method. Finally, threr appendices are included to
facilitate the use and evaluation of the CADET methodology: a
catalog of random input describing functions, a presentation of
extensions of CADET that permit the analysis of some unusual non-
linear effects that cannot be treated accurately by the standard
CADET methodology presented in Chapter 1, and a idetailed discus-
sion of the application and reliability of the monte carlo method.

The prerequisites for understanding this document are
introductory modern control theory (including the state-space
formulation of system models in terms of first-order vector dif-
ferential or differential/difference equations, and the asso-
ciated vector-matrix calculus), and elementary random process
theory. The contents of this handbook have been chosen to satisfy
the requirements of a somewhat diverse audience. For this rea-
son, readers of differing backgrounds and interests will find that
some sections are of greater utility than others. 1In the siuplest
case, i.e., the gpplication of CADET toc the missile-target inter-

cept problem treating only those effects discussed in Chapter 3,
the illustrative examples of Chapter 2 and the random input de-
scribing function catalog of Appendix A may suffice. For thosc
interested in the theory of quasi-linearization and CADET, Chap-
ters 1 and 4 should prove to be valuable adjuncts. 1In treating

situations that require the quasi-lineairization of nonlinearities

k.,.\..‘-._. S W RO SR AR T  PORPY S I R WPr SRIPe SET e
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not listed in Appendix A, the examples and princip;es given in

Chapter 4 establish the necessary starting point. Finally,

Appendix C on the monte carlo method provides discusstons of the

theory and application cf the technique (and of its potential ;
pitfalls in the analysis of nonlinear systems), and estaklishes

tlie context for comparisons between monte carlo simulation results

and CADET.

1T s - p——

e X R

While the primary thrust of CADET development thus far
has been the extension and refinement of an efficient tool for
? the statistical evaluation of the performance of missile guidance
systems, the overall scope of CADET is evidently much more general.
The system model based on a nonlinear state vecter differential/ ’
i
[
|
|

i o e e

difference equation with random inputs is of broad generality,
being descriptive of many continuous and discrete-time systems
with random disturban-.es. The specific nonlinear effects dis-

, cussed herein are by no means restricted in occurrence to the

! missile-target intercept problem. It is hoped that the success

} of the research presented here and in Refs. 1 to 4 will encourage
o her applications of the CADET concept.
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1. THE COVARIANCE ANALYSIS DESCRIBING

FUNCTION TECHNIQUE (CADET)

The Covariance Analysis DEscribing function Technique
(CADETTM) is a method for directl: determining the statistical
properties of solutions of noniinear system with random input:,
recently conceived and developed at The Analytic Sciences Corpo-
ration (Refs. 1 to 4). The principal advantage of this technique
is that it greatly reduces the need for monte carlo simulation,

thereby achieving substantial sa:ings in computer processing time,

We [irst motivate the discussion by reviewing the covariance
analysis method for linear systems; then we develop an analogous
procedure (CADET) for the nonlinear case.

1.1 COVARIANCE ANALYSIS FOR LINEAR SYSTEMS

The dynamics of a linear continuous-time stochastic sys-
tem can be represented by a first-order vector differential equa-
tion in which x(t) is the system state vector and w(t) is a forc-
ing function vector,

x(t) = F(t) x(t) + G(t) w(t) (1.1-1)

where we assume that F(t) and G(t) are continuous with respect to
t; Fig. 1.1-1 illustrates the equation. The state vector is ccm-
posed of any set of variables sufficient to describe the behavior
of the system completely. The forcing function vector w(t)
represents disturbances as well as control inputs that may act
upon the system. In what follows, the forcing function w(t) is

R P SIS i
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R-hes2

j’ X

F(t)

Figure 1.1-1 Representation of the Continuous-Time
Linear Dynamic System Equations

essumed to be composed of a mean or deterministic value b(t) and
a random component u(t), the latter being comprised of elements
which are uncorrelated in time; that is, u(t) is a '"white noise"
process having the spectral density matrix Q(t). Thus w(t) is
specified by* .

w(t) = b(t) + u(t)

E [w(t)] = b(t) (1.1-2)
E [g(t) g"'-(r)] = Q(t) 8(t-1)

Similarly, the state vector has a deterministic component m(t)

and a random part r(t); for simplicity m(t) will generally be
called the mean vector. The state vector x(t), then, is described
statistically by its mean vectcr and coviriance matrix,

x(t) = m(t) + r(t)
(1.1-3)

m(t) = E [x(t)]

*

E denotes ensemble expectation, or average value; a super-
script T denotes the transpose of a vector or matrix; 8(t-t)
is the Dirac delta function.
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P(t) = E [g(t) ET(t)J (1.1-3)(Cont)

Henceforth, the time dependence of the variables w, b, u, Q, x,
m, r and P will not be explicitly denoted by (t). unless required

for clarity.

The differential equations that govern the propagation
of the mean vector and covariance matrix for the system described
by Eq. (1.1-1) can be derived directly, as demonstrated in Ref. 5,
to be

m=F(t) m+G(t) b
(1.1-4)

P = F(t) P + PFI(t) + G(t) QGI(t)

The firsi and second momeiuts of the system response are completely
determined by integrating the above vector and matrix differontial
equations, Eq. (1.1-4), when the initial conditions, m(0) and
P(0)*, are specified. The elements of m represent the effects of
deterministic initial conditions and biases due to determin-

istic system inputs (b # 0). The diagonal elements of P are

the mean square values of the random components of the state
variables, and the off-diagonal elements represent the

degree of correlation between the randcem components of the

various state variables.

Equation (1.1-4) provides a direct method for analyzing
the statistical properties of 5{ This is to be contrasted with
the monte carlo method, where many sample trajectories of X are
calculated from computer-generated random noise and initial con-
ditions, using Eq. (1.1-1). The moments m and P are then esti-
mated by averaging over the ensemble of trajectories generated in
the monte carlo procedure. Note that Eq. (1.1-4) leads to exact

*”
The initial time can be taken to be t = 0 with no loss in
generality.

1-3




THE ANALYTIC SCIENCES CORPORATION )

solutions for m and P, to within computer integration accuracy,
whoereas the monte carlo method yields approximate solutions for
any finite number of simulations. Furthermore, the mean and co-
variance equations need be solved only once over the time interval
of interest, whereas Eq. (1.1-1) must be solved repeatedly using
the monte carlo technique; consequently the direct analvtical

method is not only exact, but is also generally the most officient

technique for analyzing linear systems. With this observation as
motivation, we proceed to describe a methodology waereby the sta-~

tistics of a nonlinear syste. can be computed approximately using
recursive relationships similar in form to those of linear co-
variance analysis, Eq. (1.1-4); the monte carlo method is treated
in greater depth 1n Appendix C.

1.2 COVARIANCE ANALYSIS FOR NONLINEAR SYSTEMS

Ti:e wonlinear counterpart of Eq. (1.1-1) treated in this
presentation is

X = f(x,t) + G(t) w (1.2-1)

Figure 1.2-1 depicts this equation. The input and state vectors
are again characterized by the quantities b, Q and m, P, respec-
tively, given in Egs. (1.1-2) and (1.1-3).

R-11802

1€

NONLINEAR
FUNCTICN

Figure 1.2-1 Nonlinear System Block Diagram

1-4




THE ANALYTIC S8CIENCES CORPORATION

It may seem restrictive to have the random inputs enter
the system differential equation linearly as in Eq. (1.2-1).
However, if a system is of the form

X = f(x,y,t) (1.2-2)

and y is a correlated random process that can be represented as
a random vector satisfying

= £ (y.t) + G (t) w (1.2-3)

where w is the sum of suitable vectors of deterministic variables,
b, and white noise processes, u, we can rewrite Eq. (1.2-2) using
the augmented state vector x.,

as

[ £(x4,1) r o
..... i I [._..-__ w (1.2-4)

Observe tkat y is thus considered to be a component of the state

vector, comprised of '"noise states'. Th'’s procedure places the
apparently more general problem of eEqs. (1.2-2) and (1.2-3) in
the format grven in Eq. (1.2-1); since all physically realizable
random processes arc correlated, the assumptica that y is de-
scribed by Eq. (1 « 3) is not particularly restrictive. For con-

venience we thus consider Eq. (1.2-1) to be the basic system
model, with no significant loss in generality.

The statistical differential equations that correspond
to Eq. {1.1-4) can be shown to be (Ref. 5)

1-5
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- .

mo= E{ 2(x.0)] + GO

">
-

?+ G(t)b (1.2-5)

,.__.,_.
- | —

b aE [_r_ 5"‘] + 8 [;_- £7] + aceracTce;

The first equation is the direct analog of the mean differential

i equation of Eq. (1.1-4), since we observe that i is simply F(t)m ‘

i in the linear case. The nonlinear covariance equatiorn can be

i represented in the same format as indicated in Eq. (1.1-4) by E
defining the auxiliary matrix N,

S

e AT T T S

Np & E [g(;,r) IT] (1.2-6)

R o

Then Eq. (1. -5) may be written as

| o= 2+ G(t)D I
- (1.2-7) |
: * -

| B« NP+ PN' + G(t)QGT(t) ]
b

\

: \ The vrelation in Eq. (1.2-68) generally provides an explicit defi- [}

| | nition of N,

f N=E [g(g,c) ET] p-1 (1.2-8)

l

1

T
e

since P is usually positive definite* and thus a unique P~
exists.

FOETTET ST e e

The derivation of Eq. (1.2-5) is based directly on the
principles of covariance analysis, Ref. 5. We cbserve, however, )3

R i

*Often the initial condition P(0) is only positive semi-definite,

in which case the pseudolnverse of P(0) could be used in Eq.(1.2-8).
F As shall be shown subsequently, Eq. (1.2-8) is only formal, in the

' sense that it is almost never used to evaluate N (refer to Xq.

| (1.2-10) and Section 4.1).




rrre——

PR e et RER T - e apmen
T AT TR YT TR g e NI T ey e ]
- . -

THE ANALYTIC S8CIENCES CORPORATION

that the vector I and matrix N defined in Eqs. (1.2-5) and (1.2-6)
are identical to the quantities which provide a minimum mean nquare
error quasi-linear approximation to _the nonlincarity f(x,t). It
cen be shown (refer to Section 4.1) that the approximation

I(x,t) & £+ N(x - m)

with i and N specified by Eqs. (1.2-5) and (1.2-8) yields the best
linear approximction in the sense that

e ® f(x,t) - £ - N(x - m)

satisfies the condition
T
E [g Sg] = minimum

for any positive semi-definite matrix S. The intimate relation
between the well-established describing function theory (Ref. 6)
and Eq. (1.2-6) has permitted the rapid development of an approxi-
mate nonlinear covariance analysis technique based on Eq. (1.2-7)
called CADET -~ the Covariance Analysis DEscribing Function Tech-
nique. Henceforth, we shall refer to i as the expectation vector

and N as the quasi-linear system dynamics matrix.

I ——C——

The quantities i and N defined in Eqs. (1.2-5) and (1.2-6)
must be determined before we can procead to solve Eq. (1.2-7).
Evaluatinag the indicated expected values requires knowledge of the
Joint probability density function (joint pdf) of the state vari-
ables. While it is possible, in principle, to evolve the n-

R ar e

dimensional joint pdf p(x,t) for a nonlinear system with random
inputs by solving a set of partial differential equations known

as the Fokker-Planck equation or the forward equation of Kolmogorov
(Rer. 5), this procedure is generally not practically feasible.

The fact that p(x,t) is not available precludes the exact solu-
tion of Eq. (1.2-7).
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One proccedure for obtairing an approximate soluvion to
Fq. (1.2-7) is to ussume the form of the joiat probability den-

~

sity function of the state variables ir urder to evaluate f and N

according to Eqs. (1.2-5) and (1.2-8). Although it iy possible
to use any Jjoint pdf, all of CADET development to date has been
based on the assumption that the state variables are jointly
normal; this choice was made because it is both reasonable and
vonvenient.

While the above assumption is strictly true only for
linear systems driven by gaussian inputs, it is often approxi-
matcly valid in nonlinear systems with nongaussian inputs. Al-
though the output of a nonlineaiity with a gaussian input is
gencrally nongaussian, it is known from the central limit theorem

that random processes tend to be made gaussian when passed through

low-pass linear dynamics ("filtered'"). Thus, we rely on the
linear part of the system to insure that nongaussian noi:linearity
outputs result in nearly gaussian system variables as .ignals
propagate through the system. By the same token, if there are

nongaussian system inputs which are passed through low-pass linear

dynamics, the central limit theorem can again be invoked to jus-
tify the assumption that the state variables are approximately

Jointly normal. The validity of the gaussian assumption for non-
linear systems with gaussian inputs has bheen extensively studied
and verified; nongaussian random inputs have not been considered.

From a pragmatic viewpoint, the gaussian hypothesis serves
to simplify the mechanization of CADET significantly by permitting

each scalar nonlinear relation in f(x,t) to be treated in isola-

tion, with i and N formed from the individual random input describ-

ing tfunctions (ridf's) for each nonlinearity. Since ridf's have

been catalogued in Ref. 6 for several classes of nonlinearities
encountered in a broad spectrum of practical problems, the

e
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implementation of CADET is a straightforward procedure for the
analysis of many nonlinear systems. We also note that, under the
gnussian assumption, the random input describing functions can

be calculated directly from the mean vector, m, and the covartiance

matrix, P, of the system state vector. Thus, we write i and N
in the form

L =T1Tmp,t)
(1.2-9)
N = N(m,P,t)

As a corollury to the above observations, we have the rosult
(Ref. 7) that

N(m,P.t)

d -
am L (1.2-10)

Since calculating i is required for the propagation of the mean
(Eq. (1.2-7)), it is generally much easier to employ Eq. (1.2-10)
than to evaluate N directly using EqQq.(1.2-6). Quasi-linearization

and the random input describing function are treated in some
dotail in Chapter 4.

Relations of the form indicated in Eq. (1.2-9) permit
the direct evaluation of z and N at each integration step in the
propagation of m and P, as illustrated in Fig. 1.2-2. We note
that the dependence of i and N on the statistics of the state vec-
tor is due to the existence of nonlinearities in the system. With-

out nonlinear effects, the propagation of the mean and covariance
is "uncoupled,'" as in Eq. (1.1-4).

To demonstrate the ease with ~hich CADLT can be mech-
anized under the gaussian assumption, we consider a low-order sys-
tem model for the missile~target intercept problem Laving a s’ngle
nonlinearity in Section 2.2. All of the steps involved in per-
forming statistical analysis via CADET are illustrated in detail.

1-9
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‘ Figure 1.2-2 Nonlinear Covariance Analysis -- CADET

go—
-

i

A comparison of quasi-linearization with the classical

Taylor series or small-signal linearization technique provides a 1!
great deal of insight into the success of the ricf in capturing
the e¢ssence of nonlinear effects. Small-signal linearization for
a scalar nonlinear element f(x) is based on the identification of
a nominal operating point (in this context, the mean value of x,
denoted mx) and the evaluation of the slope of the nonlinearity
at that value; then the approximation is made that :

T I T e T T R

| f(x) = f(myg) + £'(my) (x = my) (1.2-11)

which represents the first two terms of a Taylor series expan-

sion about the given operating point, as illustrated in Fig. 1.2-3 }
for the example,y = x3. While this is a useful approach if excur-
sioas from the nominal are small, the validity of the Taylor series 3
approximation is questionable when x is a random variable which can |

exhibit large variations about its mean value.

1-10 .

:

W RO at JPPRES T OIS - : e . . . CHERY -nv‘uMMAJ

P LI T T SO R ST UL U VA SO VO PR AP IPR SOOI VIR U S Y



THE ANALYTIC SCIENCES CORPORATION

R-16236
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Figure 1.2-3 Taylor Series Linearization of
y = x3 about my =1

g T

By contrast, the quasi-linear representaticn of a non-
linearity is sensitive to the input amplitude in some sense; in
the case of random inputs, the statistics m =E [x] and
p, = E [(x-mx)zj provide the measure of input amplitude. For the
example y = x3, where x is a gaussian random process, we calculate
the desceribing functions in Section 4.3 (Eq. (4.3-7)) to be

- >
]

(pr + mi) my

3(pu * )

s0 the nonlinearity is approximated by

SUl G g G PN gl g @ Suy ey ) R YW TN WD B

=]
[}

e P R R T TR G T T T, Al - Benadhi 4o

RSLPRRr PRI

x3 (3px + mi) m_ + 3<px + mi) (% - my) (1.2-12)

Wt Frwden g, e

Comparing Eqs. (1.2-11) and (1.2-12), we see that the describing
*

e e i

function gains™ depend on both the mean and variance of x, as
indicated in Fig. 1.2-4, while the coefficients in the Taylor

series approximation do not.

*
In treating single-jinput nonlinearities, it is sometimes con-
venient to consider f/myx to be the mean component '"gain'.

1-11
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Quasi- Linearization for mya

Quaosi-linearization for my =1
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Taylor Series Linearization obov"mxn ' '

Toylor Series Linearization about m =1

; 0 1 - 0 1 i . .
] 0 1 2 p, 0 1 2 p, LY
; (a) Mean Component Gain (b) Random Component Gain ¥
& f Figure 1.2-4 Quasi-Linearization of y = x° for .

Unity Input Mean i

T -

C 1.3 CONTINUOUS/DISCRETE-TIME SYSTEMS

Preceding sections of this chapter have treated continuous-

: ' time nonlinear systems; i.e., those that are governed by differen- P
v tial equations. However, in many practical applications, the sys- }&
4 tem may include a digital computer whose operations are expressed 1
F in terms of difference equations, as illustrated in Fig. 1.3-1. {J

Such a structure arises in missile guidance systems when digital

control laws are used to generate acceleration commands, for ex- |é
ample. In this section, equations are briefly developed for propa-
gating the mean and covariance of a nonlinear, mixed continuous/ fi
discrete system. Systems which are wholly d.screte can be treated z
as special cases of the following discussion.

The equations of motion for a system of the type shown in
Fig. 1.3-1 are expressed in mixed differential/difference equation
format. In the continuous-time phase (between sampling instants,
tg, k= 1,2,...) the digital computer is inactive, and the state

. Srarer

variables of the system satisfy an equation of the form

1-12
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N 1
CONTINUOUS - TIME
RANDOM INPUTS l
CONTINUOUS
DYNAMICS
CAMPLER
DIGITAL T,
HOLD [
COMPUTER
OMPUTE DISCRETE-TIME
RANDOM INPUTS

.

Figure 1.3-1 An Example of a Mixed Continucus/

Discrete System

X f (x,t) + G (t) w (t)
5 - -:-— B st T o ’ tk < t 5_ tk+1
X4 [
(1.3-1)

where gc(t) refers to the continuously-varying states in the sSys-
tem, and §d(t) is a collection of discrete-time states (e.g.,
states in the digital computer) which remain unchanged between

the sampling times. Under the assumption that the state variables
are jointly normal, the statistics between sampling instants can
be propagated using a straightforward extension of the standard
CADET equations (Eq. (1.2-7)) as follows:

. tmro] [e ) b,
o= el oL Ll MRpE.
o Y
(1.3-2)
5 GQGl ! o
N.(m,P,t)
b L2 p W ey | oof e Sl O |
0 : l o 1 o
by <2t
!
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where Nc is the quasi-linear system dynamics matrix for the i1
’ 1

1

i

continuous-time state variables, defined by

A T ]
N, = E [ic(é,t) r ] !

e e T P

1}
g which is of dimension (n, x n); n is the total number of state i
' variables and n, is the number of continuously-varying states.

; The continuous-time vector of white noise processes wqo(t) is !;
f described statistically by the mear vector gc and spectral o
: }
? density matrix Q, as before (refer to Eq. (1.1-2)). 1!

Observe that describing functions for a nonlinear time- 13
§ invariant function of gaussian discrete-time states alone need tl
; not be evaluated continuously since the statistics of the

discrete-time states are constant in the interval tk <t <t ?}

- k+1-
T As a special case, if

fo(x,t) = £, (x,.t) + £, (x4) (1.3-3)

C C

1

then Nc may be partitioned into two parts,

No(m,P,t) = [Ncl(mc'pcc't)chz(md’Pdd)] (1.3-4)

e T T, [T W e S T Y e Y O T e, T T T e

wiaere m and P are correspondingly partitioned into
- (1.3-5)

Since my and Pdd are constant during the continuous-time phase,
the matrix Ncy is also constant.

At a sampling time, tk+1' the digital computer performs
a calculation which can be represented as a difference equation,

i i i ada) bt s Ah e o b o bk oAl et S m A e R A G - R s,
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!
|

R .

Xty X (tgey) 0

e Il SET TR anpal ) S (1.3-6)
X3 (tyep) LR (S RANTL Cs 1% 41

where the superscript (+) denotes the new values of the state
variables just after a sampling instant.* The vector Wit
represcents a discrete-time random quantity that can enter the
digital calculation as a result of sensor measurement noise,quanti-
zation, etc. It is assumed that We4+q has a mean of b, ., and a
covariance matrix Qk+1' Observe that in Eq. (1.3-6) Xc remains
unchanged, since variables that satisfy differential equations
cannot change instantaneously in time. Situations where it is
reasonable to assume that a continuous-time variable can change
"almost instantaneously' as a result ot a digital operation can
be treated by decomposing that variahle into components that are
strictly continuous (an element of Xx,) and digital (an element

* —-—
of §d), so the condition that 5c(tk+1) = §c(tk+1) represents no
loss in generality.

Because the mean and covariance of Xe fnd Xq at t,, are
known from Eq. (1.3-2), the expectation vector gd and quasi-linear
system dynamics matrix Ng corresponding to gd in Eq. (1.3-5) can
be evaiuated. Thus we can rewrite the discrete-time part of Eq.
(1.3-6) approximately as

~

+ . A r ’
Xg(tger) = Lg * Ng Li(tk+1) - m(tk+1)] b Ogpa¥er (1.3-7)

From Eq.(1.3-7) it follows that the mean and covariance of the sys-
tem states just after the discrete~time caiculation are given by

*

The discrete-time operation actually takes place between tyg4q and
tk+1 + €. In this discussion it is assumed that ¢ is negligible in
comparison with the time-scale of the continuous-time dynamics,

although finite computational delays can be treated in a straight-
forward manner.
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‘_
4 Mo Clga) = B (lyyq)

+ ~
mg(tyer) = f4
§
N ' . )
I | o0 I 0 0
U I S G R R B R kbt
k+1 v d '
Na 0 [© 1 Ok+1%+1%+1
-
i (1.3-8)

. ) . , + + . s
After cvaluating Eq. (1.3-8), m(tk+1) and P(tk+1) are the initial

conditions for propagating the mean vector and covariance matrix

over the next continuous-time phase using Eq. (1.3-2). Thus by
alternately implementing the continuous-time and digital mean
veetor and covariance matrix propagation equations, Egs. (1.3-2)

and (1.3-8), the performance of a nonlinear system described by

G s SN o it O et A i
" e T i A . A e AT

a mixed differential/difference equation can be evaluated.

The developments discussed in this chapter provide the

necessary tools for analyzing the perlformance of a broad class of
nonlincar systems with random inputs. The efficiency realized by
f CADET has made it an attractive technique for performing sensi-

' tivity studies and investigations of the impact of nonlinear
effeets on the accuracy of tactical missile guidance systems; it
is anticipated that CADET will prove to be equally powerful in

TS TETI AT EIE T TR T T A TR S

treating other nonlinear systems.
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2. CADET APPLICATION: SIMPLE ILLUSTRATIONS |

In this chapter we demonstrate many of the details that
are involved in the application of CADET to a practical problem
involving the statistical evaluation of the performance of a non-
linear system with random inputs. Simplified formulations of the
missile-target intercept problem are treated, with guidance modules
that are either analog or digital; the corresponding CADET equa-
tions are obtained; and their solution -- to establish the evo-
lution of the system variable statistics during a given scenario --
is outlined in computer flow-chart format.

2.1 MISSILE-TARGET EQUATIONS OF MOTION

This secticn treats “he basic differential equations
describing the motion of a tactical missile and a target to be
intercepted. In subsequent sections, examples of two types of
guidance modules are considered -- continuous-time (analog) and
discrete-time (digital) -- to provide the basis for detailing the
C ‘DET mcthodology, both for systems represented entirely by dif-

‘2rential equations and for systems describcd by mixed differential/
difference equations. In order to obtain a system model which is
simple enough to permit a clear presentation of the step-by-step
procedure entailed in the use of CADET, we reduce the planar
missile-target intercept problem to its bare essentials. Chapter 3
provides a more detailed discussion on modeling the missile-target
intercept problem; here we present only a summary of the required
dynamic equations.

The ccordinate frame and the basic variables are por-
trayed in Fig. 2.1-1. Here we consider variations about a head-on

2-1
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Figure 2.1-1 Missile-Target Planar Intercept Geometry

! intercept, i.e., the missile lead angle, 02, and target aspect

angle, ea, are assumed to be small. For the purpose of illustra- i
ting the mechanizatior of CADET, we make the followirg approxi-

oy

mations based on small-angle assumptions: gl
t!

‘ ® The down-range separation, x, and missile-~-

\
j : target range, r, are deterministic, given {;
t ' approximately by
!
% ; x(t) & r(t) & (v +v )(T-t) ]
Lo (2.1-1) If
8
(vm+vt) tgo '
wheie¢ T is the nominal terminal time (time of }j

intercept), tgo is the time-to-go, and vp and
vt are the constant missile and target velocity
magnitudes, respectively. .

% ® The lateral or cross-range separation, y, is

1 determined by the missile and target lateral -
( accelerations, ay and at respectively, as +n !
\ Eq. (3.5-14)

i V& a -a (2.1-2)

f ® The autopilot and airframe dynamics are repre-

sented by a linear plant, modeled by a transfer
function with a single dominant pole at s=-1/7,

L TR i e e ik A b smdanicmribia ; bt s 2l S f sl ke e s ¢ e s - e e AM“J
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followed by an ideal limiter, to model the air-
frame saturation effect. Thus the unlimited
missile lateral acceleration ¥, satisfies the
differential equation

1

1 L)
a’m +?zm" T % (2.1-3)

where ac is the acceleration command generated
by the guidance module, and the limited value,
am, is given by

T ’ Izhl Z %max
am = f(8p) = (2.1-4)

amaxsign(ﬁh), |18 ] > a

m max

e The target acceleration, ai, is the sum of a
deterministic variable and a band-limited
gaussian process satisfying

ét +w, a, = w(t) (2.1-5)

t 7t

where w¢ is the target maneuver bandwidth. The
random input w is described by

E [w(t)] = b(t)
[ ] (2.1-6)
E [(w(t)-b(t))(w(T)-b(T1))] = a(t) &(t-1)

where b is the deterministic component of the
input and q is the spectrsal density of the white
noise process, w - b,

Given the preceding simplified equations of motion, we complete
the missile-target intercept model by considering simple examples
of the two basic classes of guidance modules: continuous-time and
digital.

2.2 THE CONTINUOUS-TIME CASE: PROPORTIONAL GUIDANCE

The acceleration command dictated by the classical pro-
portional guidance law (refer to Section 3.5.1) is given by

a, = n' v, ] (2.2-1)
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wherc n' is the ‘navigation ratio (a constant, here taken to be 3), |
Ve I8 Lthe closing velocity, which in the present scenario is
approximately given by the sum of the missile and tarret veloci- \
ties, -

Q - .
Ve r(t)/tgo v, tov, (2.2-2) t
and § is the angular rate of the line-of-sight (LOS)(Fig. 2.1-1).

Using the assumptions made in Section 2.1, Eq. (2.2-1) can be
reformulated to yield the approximation

% a_ & t“' (§ + fl—) & 3<9 + ;2-) (2.2-3)

¢ *gol go gO

where B denotes n'/-rt80 for notational simpliciity. The complete
system model based on the foregoing assumpticns and development
¥s portrayed in Fig. 2.2-1.

R-18234

PROPORTIONAL GUIDANCE

=== “|
| |
RANDOM w B . - |
INF-UT ] i lm '
i
| -
om*f{Tm) 1 L
STATE VARIABLES: |
I, L Yy ) ) l ’
SRR/ __4‘:_:.',}4: L loc |
» Gman lesr 1 too
- xq* '3',“ = l
I‘ L 0' L ________ _J
Figure 2.2-1 Simplified Missile-Target Intercept

Model With Continuous-Time Guidance
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The state vector differential equation associated with
Fig. 2.2-1 is given by

{37 [ o 1 0 0 [0 [0
%, 0 0 0 +1 -1 0
X = = x + f(xa) + w(t)
3 B/tg, B -1/t 0 0 )
_*44 L 0 0 0 -wt‘ ..OJ 1 i
 Fx + df(xg) + g w(t) (2.2-4) F

From the statistics of the input to the limiter,

m, = E [x3]

(2.2-5)

2 2
Ogq = E [rs]

we can directly 2valuate the scalar random input describing func-
tions (ridf's) used in the quasi-linear representation for the
limiter f(x3),

£ ENE AV A e £ 52 0 AN

4 EIE GID ON o) Pug e ey ) g N W oy N N O D BB &

f(xg) & [ + nrq (2.2-6)

R S

as derived in Example 3 of Section 4.3:

a +m a -m
a = P <_m_x___§.)+p1<_mez*__3>_1

‘3 / 3
' (2.2-7)
) a . +mg\ a___-m
} =g G( max "3} _ . <_max 3) o m
3 [ Y / Oq 3

The functicns G(v) and PI(v) are defined in Eq. (4.3-13); they
are the standard functions used in quasi-linearizing piecewise-
linear elements (Ref. 6). Many computer scientific subroutine

T e e et Y
| s s : ) Almamad s P _ - PP U _L*MM_J
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puckages have available the subroutine "ERF(v)'"., {n which
case

PI(v) = § (1 + ERF (%»

_%v

2 (2.2-8)

G(v) = vPI(v) +

1
/2n

permits direct calculation of f and n. Given the two constituents
of the quasi-linear representation of the limiter indicated in
Eqs. (2.2-6) and (2.2-7), we substitute into Eq. (2.2-4) to get

i = Fm + gf

[0 (2.2-9)

0

1
0

B/tge B -1/1 0O
o

- Y t -
Finally, from the input statistics, b and q, tke dif-
ferential equations and initial conditions that approximately
govern the propagation of the state vector deterministic com-~
ponent ('"'mean") and covariance matrix are given by Eq.(1.2-7):
h=f+ghb; m(0) = m,
(2.2-10)
= T T =
P=NP+PN +ggaq; P(C) = P,
The CADET methodology utilizes the preceding relations to deter-
mine the time histories c¢f the mean vector, m, and covariance
matr.x, P, over the¢ duration of an ensemble of engagements
(0 <t <T). Any standard numerical integration technique may

then be uczd to solve Eq. (2.2-10)." The structure of a computer
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program to carry out the CADET analysis of tactical missile per-
formance is indicated in Fig. 2.2-2.

The results of a CADET and monte carlo statistical anal-
ysis of the performance of the preceding missile guidance system
(obtained from Ref. 1) are depicted in Fig. 2.2-3. 8ince the rms
lateral separation between the missile and target is of primary
importunce in assessing tne ability of the missile to intercept
the target, only that variable is portrayed. The white noise in-
put spectral density, q, was chosen to be a constant yielding an
rms target lateral acceleration of 160 ft/sucz, the bandwidth w
was assumed to be 1 rad/sec, and the autopilot time constant T

was taken to be 1 sec. All initial conditions (mp and Pg) were

t

Zero,

This missile performance study considered three levels

responding to an infinite acceleration command limit is shown;
here, CADET reduces to the standard linear covariance analysis
{(Section 1.1) which is exact, and the 200-trial monte carlo
analysis provides an adequate approximation to this result. For
the study of Fig. 2.2-3b, the restriction that the missile lateral
acceleration cannot exceed 322 ft/sec? leads to a five-fold in-
crease in oy at the terminal time, here taken to be 10 sec. the
CADET and monte carlo aporoximate solutions are in good agree-
ment. Even in the case where the missile lateral acceleration
constraint is very severe (apay = 32.2 ft/sec2), causing a further
l.rge decrease in missile capability as shown in Fig. 2,2-3c, the

CADET solution is verified by the monte carlo analysis.

Thus we observe that the direct statistical analysis via
CADET, implemented according to Fig. 2.2-2, quite accurately cap-
tures the effect of a significant nonlinearity in the missile-
target intercept problem, This invoestigation is performed with
an expenditure of computer time that is a small fraction

{ of airframe saturation. In Fig. 2.2-3a, the linear case cor-

.
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INITIAL
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R.16257

mo. Po. o}

CALCULATE
SSCRIBING

. JNCTIONS
Eq. (2.2-7)

T

EVALUATE
f(m,P), N(m,P)
Eq. (2.2-9)

¥

EVALUATE

o, P
Eq. (2.2-10)

v

PROPAGATE:
m(t) > mt+At)
P(t) > P(t+At)

BY NUMERICAL
INTEGRATION

YES

UPDATE
t=t+At

END

Flow Chart for the Direct

Statistical Analysis of a

Continuous-Time System

via CADET
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Figure 2.,2-3 Performance Projections for Various Levels
of Airframe Acceleration Saturation

(approximately 1/100) of that required for an accurate monte carlo
study. Furthermore, the effect of decreasiig missile performance
caused by airframe saturation is completely beyond the scope of
linear covariance analysis, which requires the small-signal line-
arization of the saturation nonlinearity, i.e. replacing f(X3)

by a unity {inear gain, regardless of the saturation level. Con-
sequently the small-signal linearization approach completely ob-
scures the nonlinear effect and leads to a quite over-optimistic
prediction of missile performance when compared to a more realistic
assumption -- e.g., that ap cannot exceed 322 ft/sec?, as evident
in Figs. 2.2-3a and 2.2-3b.

2-9
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2.3 GUIDANCE SYSTEMS WITH DIGITAL DATA PROCESSING

In some guidance systems, discrete-time measurements of
certain system variables are made available to a computer for
data processing purposes; acceleration commands are then calcu-
f ; lated (in an on-line mode by use of a suitable algorithm) which J
: : are used to control the missile. In this presentation, we assume

-; that the available signal is a noisy sampled measurement of LOS {
f angle, 06, so we have the sequence of values given by '

. t.
Z, ek + Vi k=1,2,... (2.3-1)
at the sampling instants, tk = krs, where Ty is the sampling

|

|

|

|

§ period. The zero-mean white noise sequence, Vi is quantified
)

!

1

by its variance
2 _ 2
o, = E [Vk] (2.3-2)
Generally, the random effects modeled by this sequence 1include

S external inputs (e.g., jamming) and measurement error. In light
- of the small angle conditions, we use the approximation

6 = y/r 8 xr (2.3-3)

where r is deterministic, given by Eq. (2.1-1), and X4 is the |-
state variable representing y, Fig. 2.2-1, 4

Based on the information provided by the measurement
sequence z,, the computer algorithm is often of the form

PRSP CPI P .. TS ST

+ —
§d(tk) = Fd,k §d(tk) + Ekzk (2.3-4)

;
[ . s M i J
P SRRSO /S il L RN L L o ddha e s cade e n Lo b e ekt ). pre—— PRSRRTUS
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(cf. Seétion 3.5.2 for the design of a ghidance modu?v’hhsnd on
the Kalman filter and optimal control theory) where X4 it the
vector of digital states, comprised of variables which are stored
in memory and up-dated according to Eq. (2.3-4) as each new mea-
surement z, is made and processed. The matrix Fd,k and vector
Ek' which may vary from one digital operation to the next, are
specified by the filter algorithm. The difference equation,

Eq. (2.3-4), in combination with the initial condition x4, deter-

mines the time-histories of X4

A typical control law (again, refer to Section 3.5.2)
then specifies an acceleration command, a, given in Eq. (2.1-3),
that is a linear combination of the digital states,

T + + :
a, = cp X4(t), tey 2t <ty (2.3-5)

This relation completes the des: “iption of the overall system
model, depicted in Fig. 2.3-1.

R-16229
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The mixed continuous/discrete-time system depicted in
Fig. 2.3-1 and represented by the total state vector

x' = [zz f §g] (2.3-6)

satisfies a differential/difference equation of the form treated
in Section 1.3. Corresponding to this division of state vari-
ables into continuous-time and digital states, we have

P ) 2

m. ‘ cc : cd
ms=|-——-- . P = e, il et (2.3-7)
LU pcd : pdd

The nonlinearity f(#,) given in Eq. (2.1-4) falls in
the continuous-time dynamics; its argument is a continuous state
variable, Xg. Thus quasi-linearization proceeds as in Eqs.(2.2-6)
through (2.2-8). We can then determine the matrix Nc and vector
ic required for the propagation of m and P during the continuous-
time phase (Eq. (1.3-2)):

o1 o o ! o
00 -n 1 oT
N = == —— - ——
¢ 0 0 -1/t o | 1 T
- _"k_
o0 0 -u ! oT
- . (2.3-8)
[ m ]
. (my-1)
ic = T
(-mg+ey my)/T
L —wtm4 -

These quantities are all that are required for the propagation
of m and P between sample times according to Eq. (1.3-2),

R TR B u PR VR PP R T8 i meoh Al « S SOy SR S SIS U U
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- -
) L [
‘l m B e o fe— b
: 9 0
! L~ (2.3-9)
' -
& Ne T ; B gT | 0 1
: P=---[P+P [N 'O |+ ]--=-4—--a
| 0 | ! o | o

where b and q are the deterministic component and the spectral
density of the random component of the random input, respectively,
as defined in Eq. (2.1-6), and g is given in Eq. (2.2-4).

In the present example, the digital operation taking
place in the infinitesimal interval (tk,t;) has been formulated
as a single linear time-varying difference equation, Eq. (2.3-4).
Recalling that

2, = Xy (t)/r(ty) + vy (2.3-10) H
we obtain
b
- . BEEEEN xo(ty) ?
+ | i |

X3(t) = |5ty K1 21 8V O Fy wl oot Ry
E d" *k r(ty) k== Tdk | k'k
i | ] | i =d" "k

(2.3-11)

>

No,x X(tk) + kv

The change in m and P during the digital phase of operation (as

4 EHE R G w s e W P DR M Y B Y M DY B e am

given in Eq. (1.3-8)) is then
N I, 0
- - omlr o on
m(tk) = m(tk) Nkm(tk)
d,k
(2.5-12)
o ! o
*y = T ———d o
P(tk) NkP(tk) Nk + ) :ozk kT
i V—k—k
2-13
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Implementation or the CADET equations given above (Eqs. (£2.3-9)
and (2.3-12)) is portrayed in computer flow-chart format in i
Fig. 2.3-2.

We observe that th2 difference equation satisfied by

, the digitul states is lineax time-varying, so the matrix Ng
; (Eq. (2.3-11)) contains no describing functions. If it is neces-
sary to include nonlinear effects in the discrete-time portion of |

; ? the system model, one must evaluate appropriate random input
describing functions to be substituted in the vector id and
matrix Nd (Eq. (1.3-7)),; some added complexity is entailed in [

r——1

this case.

The examples 7iven in Sections 2.2 and 2.3 illustrate
; the fundamentals involved in the application of CADET to pro-
' vide assessments of the performance of a tactical missile repre-

nonlinear effect. CADET has been successfully applied to system ¢
models of considerably higher order and complexity (refer, for
example, to Table 5.1-1). The flow charts shown in Figs. 2.2-2 !E
and 2.3-2 accurately reflect the methodology used in the more

1

f

i

L

r i sented by a simple low-order system model with one significant
;

{

b

!

5

y _
; complex problems. |
[ ;
k

Pl v 7R, e,

T
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Figure 2. Flow Chart for the Direct

Statistical Analysis of a Mixed
Continuous/Discrete~Time System
via CADET
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3. MODEL DEVELOPMENT FOR THE
MISSILE-TARGET INTERCEPT PROBLEM

This chapter presents mathematical models which describe
various subsystems required in treating the genrneral missile-
target intercept problem. The material included here summarizes
the nonlinear effects that have been treated in past CADET appli-
cations (Refs. 1 to 4). The aims of this presentation are to aid
future users of CADET in analyzing tactical missile performance,
and to provide some guidance in modeling analogous phenomena that
may occur in the simulation of other nonlinear systems with ran-
dom inputs.

3.1 ELEMENTS OCF THE MODEL

The overall interconnection of the subsystems which
comprise the missile-target intercept model is indicated in
Fig. 3.1-1. The principal variables are shown as outputs of the
appropriate blocks, and random disturbances are denoted W,
Detailed models underlying each input-output relationship are
given in subsequent sections of the chapter. Observe that the

models developed here are of considerably greater realism than

those used in the illustrative examples of Chapter 2, although
the basic closed-loop guidance system is of the same structure.

3.2 THE MISSILE-TARGET KINEMATICS MODEL

The missile-target engagement presented here is restricted
to the terminal homing phase in a planar intercept configuration.

F
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KINEMATICS

MISSLE LATERAL ACCELERATION, aypy,

TARGET LATERAL
ACCELERATION, 0,

MERGET | CONDITIONS I

Figure 3.1-1 Basic System Block Diagram

An inertial coordinate system is defined by the positions of the
missile and target at the initiation of the terminal homing phase
(taken to occur at t = 0); the missile is at the origin and the
line-of-sight (LOS) to the target defines the x-axis at t = O

(see Fig. 3.2-1). The coordinate frame moves with the missile,
without rotation;, by definition, we designate x and vy, respectively,
to be the instantaneous down-range and cross-range missile-target
separation. Expressing the separation in polar coordinates, the

relations
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define the instantaneous range and LOS angle of the target. The
angles ez (missile lead angle) and 9a (target aspect angle) spe-
cify the orientation of the missile and target velocity vectors

with respect to the x-axis, and eva defines the direction of the
missile acceleration vector with respect to the velocity vector;
by convention, ez.ea and eva are positive in the directions de-

fined in Fig. 3.2-1.

——— ..,
y -AXIS R-115924

{t=0) VELOCITY

% - AXIS
(tseg)

2 8,(t,)
- xlty) «™ \-\mcer TRAJECTORY
7 MISSILE TRA)ECTORY N
Lz ~

v - AXIS

ORIGINAL ORIGINAL LINE-OF-SIGHT (LOS) ORIGINAL (¢s0)

MISSILE TARGET
POSITION POSITION
Figure *.2-1 Target-Missile Planar

Intercept Geometry

In deriving the equations of motion, it can often be
assumed that the miusile and target velocity vector magnitudes
are constant, or, equivalently, that the missile and target
acceleration vectors are normal to the velocity vectors (e.g.,
eva is 90 degrees in Fig. 3.2-1). This condition, which neglects
the effect of drag, is representative of many missile-target
engagement situations during the critical last few seconds.

Under this assumption, the lateral acceleration of either vehicle
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produces a rotation of the corresponding velocity vector, given
by

.
8

5°|”
.

(3.2-1)

D
[ ]
<'l—‘
®

t

The equations describing the relative motion of the target are
determined by projecting the velocity vectors onto the axes

shown in Fig. 3.2-1; in terms of the velociiy magnitudes Vm and Vi

X = -V, C€OB (61) - v, cos (Ba)
(3.2-2)

Lo

- -V sin (el) + v, sin (ea)

Equation (3.2-2) represents the essential nonlinearities inherent
to the missile-~target kinematic relationship; the overall kine-
matic equations are portrayed in block diagram form in Fig.3.2-2.

R-11393

Oy o . > lon"(yll) )
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| i ANGLE

v, sin {«}
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Figure 3.2-2 Block Diagram Formulation of
Missile-Target Kinematics
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In situations where drag effects are not negligible, the
missile velocity vector magnitude will vary with time (according
to a nonlinear differential equation) due to the fact that a is
not normal to Vm (8ya ¥ 90 deg). Thus Vi Must be treated as a
state variable and the velocity vectnr rotation is given by the

nonlinear relation

L3 am
92 - ;; sin (Ova) (3.2-3)

This case is discussed in greater detail in Sectios 3.4,

3.3 THEE TARGET MODEL

The model representing the target behavior is based on
the assumption that the target velocity has constant magnitude
E with a direction described by the aspect angle, ea. shown in Fig.
3.2-1. The aspect angle is determined by the target lateral
l; accrleration, a,, as indicat.d in Eq. (3.2-1). A commonly-used
[
|

target maneuver model represents target lateral acceleration as

T e =

a correlated gaussian process derived from a gaussian white roise
input by one stage of low-pass filtering. 1In differential equa-
’ tion formulation, we have*

it = —w, B, + Wg (3.3-1)

This relation and the equivalent low-pass filter representation
are depicted in Fig. 3.3-1

l By adjusting the values of target maneuver bandwidth,
‘ Wy, and rms level, oat, a wide range of target maneuver charac-
L |

B e g e e E e iaca oo

teristics can be represented. The instantaneous target maneuver

-

x
The five white noise inputs to the system are simply Jdenoted
Wi, J=1,2,...,5, to correspond with Fig. 3.1-1,

TSI N R
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R-11007
(a} Dilferential Equation Representetion
{b) Transfer Function Formulation
Figure 3.3-1 Band-Limited Gaussian Noise Model

for Target Lateral Acceleration

rms level is determined by the spectral density, q5, of the rar-
dom input Wg and the initial condition on Cays for example, if
Ug is constant and

2 95 o
E [at(O) ] = z:)—t‘ (3.3-2)

then the rms level of the target acceleration is constant through-
out the engagement.,

oa, * /a5/20, (3.3-3)

It is important to note that the autocorrelation func-
tion and the corresponding power spectral density for a poisson
square wave -- 1.e., a square wave that switches between :tnatft/sec2
with random poisson-distributed switching times having an average
of wt/z zero-crossings per second (Ref., 8) -- are identical to
those of the above gaussian process, although the associated proba-
bility density functions are quite different. The poisson model

3-6
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is often used to represent target evasive or "jinking'" maneuvers.
The poisson square wave can only take on values of & Uag, SO at
any given time its probability density function (pdf) consists of
impulses with a weighting of 0.5 at plus and minus Oag whereas
the above markov process is assumed to have a gaussian amplitude
distribution. Therefore, the response of an amplitude dependent
nonlinear operator could be quite different wh~n driven by each
of these two signal forms. However, if the random square wave is
passed through a narrow-band filter or integrator, its pdf would
experience broadening due to the filter's finite bandwidth. 1In
the case of an integrator, for example, the resulting wave shape
would »e a series of linear segments of constant slope. By appli-
cation of the central limit theorem, as discussed in Ref. 8, the
distribution of the output of a linear subsystem approaches the
gaussian density function as the number of stages of filtering it
represents increases. In this case, the relative target position,
given by x and y in Fig. 3.2-2, are of particular interest in
assessing the performance of a tactical missile; these variables
are two integrations removed from a;. Thus, although the poisson
square wave may iu some situations be a more realistic target
maneuver model, we take advantage of the statistical similarity

of the gaussian process and the poisson square wave and the exis- 1
tance of kinematic dynamics to justify representing this random :

e B o

oy
»
o e

T TR T T VT g T ) s gy T, T WY T ma T T TS gy I s T T
PR I Gt e SR

Caan it

effect by a band-limited gaussian process, which simplifies
CADET analysis.

Oy o—r

3.4 THE AUTOPILOT-AIRFRAME MODEL

In accorda.ce with the assumption that the missile and
target trajectories are confined to a plane, we describe the
missile airframe orientation by the variables depicted in Fig.
3.4-1. This figure establishes the sign convention of each guan-
tity; each variable is positive as shown. Note that we are

e e e e e bl Mk b 5
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particularizing the airframe model at this point by discussing the ﬂ
tail-controlled tactical missile; this is done to provide a con- L

crete model for consideration, not to exclude other configura- o
tions. The primary airframe variables are: L

Angle of attack, o

i (
e Control surface deflection, & L
e Missile body angle, em ;i
e Missile velocity vector, v i
e Missile acceleration vector, an

The velocity vector is specified by its normal and longitudinal
components, Vi and vy respectively, or by its magnitude, Ve and ﬂ
angular relation to the original line-of-sight (missile lead angle),

02. Similarly, the acceleration vector is defined in terms of its

normal and longitudinal components, a, and a, respectively, or hy
its magnitude, a

o’ and angular relation to the velocity vector,
Gva‘ We neglect gravity effects, tacitly assuming that the
intercept plane is horizontal or that the missile has perfect
gravity compensation. v Rt

AXS R-16238 o
y-

}

MISSILE a
_ CENTERLINE S

- x - AXIS

e At Ko ¥« o Akt i AL 7t

Figure 3.4-1 Geometric Definition of Intercept-
Plane System Variables
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3.4.1 Linear Airframe Dynamics

In a general situation, the differential equations ex-
pressing the airframe dynamics are nonlinear and time-varying due

e M M OEe

to the dependence of the airframe parameters on variations in
altitude, angle of attack, Mach number and other factors. How-
ever, we first consider a linearized model of the airframe dynamic

&

equations,

m = qum + Maa + M66

(3.4-1) :

&=ém-Laa—L6

s

where the constants Mq, Ma, Mé, La and LG represent the airframe

stability derivatives. The latter are obtained from the nonlinear

o B~ B —s T ==

airframe paramevers by making the following assumptionns:

® Missile velccity is constant (drag effects
are negligible over the period of time con-
sidered; a,; is normal to v, or Oy, = 90 deg).

e

2!
°

Altitude remains nearly constant. ]

® The center of pressure, mass and inertia of
the missile are constant.

@ Lift force and moments are linearly related
to changes in angle of attack about some trim
condition and to control fin deflection.

W_-f, .,A

A S N N Py e ey ey

@ Fin effectiveness is independent of angle
of attack.

- e ——— e v T

The output of the airframe model is the missile lateral accelera-
tion magnitude, which is given by

T

o SIS T e Lt i R

(3.4-2)

]
<
=
~
|
>3
Q
+
o
(o]
On
A
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L e T —— -

e £ iy = vosrts o vy e s <1 % rer o

where Vi is the magnitude of the missile velocity vector. The

physical basis of the linear airframe dynamic equations is treated

in more detail in Section 3.4-2 (refer to Eq. (3.4-16)).

The missile treated here is steered by control fin de-
flection. Assuming that the actuator dynamics are linear and of
first order, we have

§ = -ué + pu(t) (3.4-3)

where u(t) represents a commanded fin deflection and 1/u is the
actuator time constant. For typical values of the stability
derivatives in Eq. (3.4-1), the missile airframe will exhibit an
underdamped or even an unstable response to a commanded fin de-
flection. Acceptable control is achieved by introducing feedback
compensation in trke fin deflection command,

u(t) = - [kcac - k,(ap/vp) - kbém] (3.4-4)

where a, is the commanded acceleration provided by the guidance

module (scee Section 3.5). The parameter kc is chosen to give unity

steady state gain from a, to an, and Kp and ka are chosen to give
the desired transient response. A complete block diagram of the
compensated linear missile dynamic equations is shown in Fig.

3.4-2,

For ready assessment of the compensated missile airframe
dynamics in the linear case, it is convenient to use a transfer
function formulation of the model. Given two outputs, a and ém’
we desire to obtain gl(s) and gz(s) to provide the input-output
relations indicated in Fig. 3.4-3. Utilization of standard block
diagram reduction techniques shows that the dynamics indicated
in Fig. 3.4-2 are equivalent to the transfer function formulation
depicted in Fig. 3.4-3, where

.—_~‘.,
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PSP S PR SR



- ORI
SRR IR e L e PRI WTRATEET IR TETRLA T e e b A T ane e HEAEE DA SR o btk LI e r - s AL el

THE ANALYTIC SCIENCES CORPORATION

/W
: e |e
| - 0 {c}-
: > =i Lg > | le
'v 3 "
i ;_../v.
E & . ‘n <
g r % ——pul ke B )4n - 3oy | - - s
ol ] Il e R paa kY '9[ oKl pc
b
> Gl
§ b
i i
H "’
e
i S Figure 3.4-2 Compensated Missile Airframe Dynamics
¥ -
E,. n R-1598
F n o ls) I_..o,,.
i ac
boow ad
SN
ié Figure 3.4-3 Transfer Function Definition :
'k of the Compensated Missile .
ig- { Airframe Dynamics
4 {
¢ 5
¢ 8 e,.s + e,s + e
¥ g (s) = > 2 1 (2.4-3) ,
] s + 03s + czs + c1 f
!
d,s + d

e ey

4 Ny By S ad Py Py

Ba(s) = 5—4 1 (3.4-6) !
s + C3S + czs + cl

The indicated transfer function coefficients are given by :

¢, = u[(ka+kb)(L6Ma- LhMG)-'Ma- Lan] (3.4-7)
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! Cq = W(Ly + LMk, - M, = Mgky) = (M, + LM |
E cg = u(l - Lik,) + L, - M;

E dy = uk (LgH - L M) {

l ag = Mgk, (3.4-7)(Cont.)

o -
PR

ey = MV k (LM - L Ms)

e, = umeﬁ quc

e3 = ~Mvplgk,

The aerodynamic coefficients used in any given study are
chosen to correspond to the specified intercept conditions. For
example, if the engagement occurs at 35,000 ft., with a missile
velocity magnitude Vin = 3000 ft/sec, airframe data taken from .
Ref. 10, Vol. II, Appendix H serves as a typical case. The com- );
pensating gains k,, kp and k. (Eq. (3.4-4)) are set to achieve a N
suitable damped airframe response. These parameters and the if
corresponding transfer function coefficients are given in Table
3.4-1. The fact that ey, €y and eq do not all have the same
algebraic sign demonstrates that gl(s) has a right half plane
zerco, which is characteristic of the tail-controlled missile con- ;
figuration depicted in Fig. 3.4-1. '

e

e TR T e R T Y T T T W T | e E e e
P

3.4.2 Nonlinear Airframe Dynamics |

In scenarios requiring significant missile maneuvers, j
nonlinear aerodynamic effects can have a considerable impact on '{
homing guidance system performance. In the most general case,
the differential equations of motion contain expressions that

ig» _— . SRR e e st
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TABLE 3.4-1

EXAMPLE OF COMPENSATED LINEAR MISSILE
AIRFRAME DATA IN THE TERMINAL HOMING PHASE

l Parameter Symbol Value
R
Actuator Lag
Time Constant 1/u 0.0833 sec
L -0.463 gec=-1
¥, -5.81 sec-3
Aerodynamic - -2
Coetficients ) 72.0 sec .
L, 0.379 sec-
Ly 0.070 sec-1
kg 1.032 sec
Gofhensating kp, 0.188 sec
ains .
kg 0.476x 10-3 sec?/tt
cy 720.0 sec-3
cq 275.3 sec-2
c3 18.3 sec-1
Transfer dy 0.240 sec-2 ft-1
Functi a -1 -1
Coefticiasnts da 0.642 sec~" ft
' o3 720.0 sec-3
eq -0.865 sec-2
e3 -1.87 sec-1
- -1
Transfer 8] 3.16 sec .
Function a3 -7.56 + 13.0j sec~
Foles 83 -7.56 - 13.03 sec-1

involve nonlinear functions of the following fundamental param-
eters:

angle of attack

missile velocity and Mach number
control surface deflection

air density

center of pressure for missile body
missile mass

missile moment of inertia

missile center of gravity location

[P DN PPy Ve OO PRI Ak
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# The development of a nonlinear aerodynamic model requires
? & somewhat greater degree of specificity than that needed for the
T general discussion of the linear case given above. For this rea-
son, we confine our attention to a missile modeling problem that

t is similar to that detailed in Ref. 3. The resulting nonlinesar
model is typical of tail-controlled cruciform missile airframe

dynamics under the conditions noted below.

m————y
———

i
i During the terminal intercept phase, the missile is as-
sumed to be in a gli:i.: n...: of operation, corresponding to a thrust

¥
et
— e 2

force of zero. Conseqgv.iily, missile mass, moment of inertia, and
center of gravity ure constant and need not be considered as vari-

i ables in the airframe equations. The assumption that the inter- {i
E cept plane is nearly horizontal in the last few seconds of an B
o

engagement implies that the free stream air density, p_, and the
speed of sound, v

PRSI,

are constants. The latter condition allows us

- s’ 3
3 to use missile velocity, Vi and Mach number, Vm/Vs- interchange- i {
E ably. The variables of the required nonlinear airframe equations i

E of motion are then defined in Fig. 3.4-1. R
b

The lateral component of missile acceleration, g results
from the lateral aercdynamic force which is assumed to be separable '§
5 into contributions Fﬁaot and Flfd due to nonzero angle of attack ‘
and fin deflection, respectively. Similarly, the axial component !

of missile acceleration, a

|
2’ is due to the axial force contributions N
Fagor 8nd Fypy due to a and §. The positive sense of a, is chosen ‘§
to correspond to the sense of the lateral forces produced by posi- o]
] tive a and §, respectively, and the positive sense of a  corres- !
ponds to positive drag. Letting m denote the mass of the missile ' !
during the terminal irntercept phase, the acceleration components i

s f a, and a_ can be expressed in terms of these force components as

L a
L
a, = (F + F m b
. ( 2aot zfd)// P
(3.4-8)

' a = [(F + F >/An !
i a ( 8a0t 8sd b
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It is then a simple derivation (Ref. 3) to show that

1
& =8 + — (F + F ) sin o - (F + F ) cos a
m MVm [ aaot Bsd 1aot Q'fd
(3.4-9)

The differential equation for body angular rate, 6m’ is
obtained from the summation of the moments acting about the body
principal axis. The body lateral force Fﬂaot acting on the air-
frame at the body center of pressure, and the control surface lateral
force Fgfd acting at the center of pressure for the tail are primary
contributions to the moment equation., Other aerodynamic moments
may also be significant; for example, rotation of the missile body
produces a moment mq that is sometimes not negligible. Letting Ib
denote the missile moment of inertia about the body axis and letting
da and d6 denote the respective moment arms through which the forces
Fant and szd act, the expression for the missile body angular

acceleratioir is
LT3 1
B = - = F d + F d. + m > (3.4-10)
m I ( zaot o 2fd § q

The rate of change of the magnitude of the velocity vec-
tor can be obtained from the projection of the body acceleration
components onto the velocity vector. This procedure, followed by
the substitution of Eq. (3.4-8), yields

- | ) con o+ )
VvV = = - F + F cos a + |F + F sin a
m o [ %20t %fd Yaot  Fra

(3.4-11)

The above lateral and axial forces are in themselves a
source of nonlinearity. For example, they are proportional to
the dynamic pressure, q_, given by

it et ot e il i At e
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qQ = % p“v: (3.4-13)

The dependency of the forces on a and § is also nonlinear; how
the relations are modeled would depend or the particular missile
under consideration and the range of o and § of interest. The
study in Ref. 3 obtained realistic results with the following
truncated double-power-series expansion formulation:

i} 2
F, kv (1 * ko )(1 + kyav m)

2
Fz kv (1 + kyya )(1 + kppvo )
(3.4-13)

(
Fa_ m (1 * kg )(1 * kszvm)
(

By 4vm 1+ k + k42v2) 62

These relations can be directly substituted into Eqs. (3.4-8) and
(3.4-11). The moment equation, Eq. (3.4-10), requires further
consideration because while the moment arm d; may be considered
constant (since the variation in the fin center of pressure is
small in comparison to its nominal magnitude), the moment arm d“
is generally a function of a and v_; the combined nonlinear moment

m
term Flaotda can be reeligstically modeled by (Ref. 3)

%y da kg(1 + kyyvy ) o + kg1 + kgyv,) o

3 (3.4-14)

The body rate moment contribution to Eq. (3.4-10), m is gener-

q'
ally small with respect to the force components, so it can often
be adequately represented by a linear term,

mq = -Iquem (3.4-15)

where Mq then corresponds to the stability derivative defined in

the body rate term in Eq. (3.4-1).

3-186
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i
3
H
i
;
}
i

9 ™ om

A further simplification of the basic aerodynamic dif-
ferential equations, Egs. (3.4-9) to (3.4-11), cun be achieved
by making suitable small-angle approximations to the trigonometric
functions involved; this entails truncating the series

o |

L 4

3

N sin a = o + a® + ...

02 +

o
N O

cos o = 1 -~

o o e e v

at a point consistant with the range of a and the accuracy of the | 1
nonlinear representation of the normal and longitudinal forces,
u Eq. (3.4-13). The basic equations then contain only terms of the

BTN T ST - T IR N R I v, R Y
4

4
. form ak62v$ for which quasi-linear gains may be derived directly
,- using Cases 1 to 3 of Section 4.3.2; many results of this form
. are given in Appendix A.

piae - Wt

To relate the nonlinear model to the linear case given !
in Eq. (3.4-1), we observe that the linear terms of Eqs. (3.4-9)
to (3.4-14) with v, taken to be constant are equivalent if f

- me

1
= [k1(1 + KyoVm)-Kg (1 + kazvm)]

a1
-
Q
]

K, ]
Ly = o (1 + kggvp) 1

(3.4-16)

i a r p ——y & W g = -y ,v.,‘ g

kg
M, = - T (1 + kgyvy) ‘

i
j
f
i

k
- Tg (1 + K
b

22Vm) dg

| AN AR . e A Aty . &

The nonlinear model of the autopilot-airframe module is
completed by deriving a formulation of the control fin actuator

A4 G g Omf g Py o
=
O
n

%
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dynamics and compensation. A simple linear model ror this func- i
tion is given in Eqs. (3.4-3) and (3.4-4), viz.

§ = —ué + pu(t) !E

' (3.4-17) [
o - [kcac = ket - kbem]

- with typical parameter values given in Table 3.4-1. If there are
significant nonlinear effersts to be modeled, such as actuator
saturation, hysteresis, nonlinear friction or the like, then it

may be necessary to develop a much more detailed representation. _
An example of a complete autopilot/airframe model in which con- f

trol fin actuator saturation is included is depicted in Fig.
3-4"40

3.5 THE GUIDANCE SUBSYSTEM MODEL I

The operation of the guidance module may be separated !
into two cascaded functions: filtering of the signals obtained
from the seeker in order to reduce the effect of measurement noise, ‘
and control of the missile lateral acceleration on the basis of
the filtered measurements. There are a number of filtering and
control schemes that can be used in tactical missile design, as ‘
reporced in Refs. 9 and 10. The systems that result may be di-
vided into analog guidance modules in which the missile accelera-

; tion command is obtained by standard analog techniques which may

be modeled using continuous-time dynamic equations, and digital

F guidaice modules in which filtering is accomplished using discrete-
! time data processing techniques, including sophisticated algorithms
f based on modern estimation theory (extended Kalman filters), and

F the control function may be based on optimal control theory. In
this section, we treat the classical proportional guidance law as
an example of the first category, and discuss several alternative
digital guidance systems based on the use of a Kalman filter.

T e G e T I T | Ry T VY T ST T TS e g T 7T
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‘ 3.5.1 Proportional Guidance

The guidance signal available from the seeker (n in .
Fig. 3.1-1) is typically a variable proportional to LOS angle {
‘ rate, 8, corrupted by measurement noise. This signal is passed
‘ through a single-stage low-pass noise filter, the output of which
is thus a filtered ostimate of LOS angle rate, 8 « 8. The pro-
portional guidance law is then implemented, which calls for the
% component of missile lateral acceleration that is normal to the
f line-of-sight (LOS) to be proportional to the closing velocity
times the estimated LOS angle rate.

-y ® -~

[

This guidance law is based on the concept of the missile- iw

target col'ision triangle. In a simplified scenario in which the & i
target is following a straight line trajectory, with constant ¥
aspect angle 6; and velocity vector magnitude Vo the most effi-
cient intercept path for the missile (assuming its velocity, A/
is also constant) is a straight line specified by a constant lead
k angle 6:. chosen such that the cross-rangce components of the mis-

sile and target velocity vectors are equal:

e

——g—

! h——-:

[N
—u

* *
Vin sin 92 = Ve sin ea (3.5-1)

o - §
g

{ If the missile lead angle is not equal to e;, then there is a T] 1
5 nonzero heading error, BHE’ given by 2 1
i & o* .

bqp = O¢ - 9y (3.5-2) 01

We observe that flight along the collision triangle (along the i
vector y;, Fig. 3.5-1) results in a nonrotating LOS, 1.e.,é = 0. .
Thus § can be considered the error signal for this guidance

; strategy.

For the purpose at hand, we assume that the missile !

acceleration vector a, is normal to the velocity vector (eva is

3-20
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90 degrees in Fig. 3.2-1); thus we desire to generate an accelera- 4
tion command to cause a, to satisfy :

S s s
[ ]
L »

a_ cos (61 -~ 8) = n'vc§ (3.5-3) j

i g
.

. where the parameter n' is called the navigation ratio. The clos-
i. ing velocity - obtained by projezting the ‘issile and target
velocity vectors onto the instantaneous line of sight; as shown

: in Fig. 3.2-1,

s T i T T

Y
1

e o i i ambmn e e

k - V, = V. COS (el- 8) + v, €Os (ea4-e) (3.5-4)

E @ In order to achieve a response that obeys Eq. (3.5-3), the ideal s‘

E - acceleration command aé should be chosen to satisfy ?

E 5

E n'vcé

4 ' = -

! I 3 cosTB2 - 6) (3.5-5)

1 where the incorporation of the factor 1/cos (e2 - 0) as dictated
by Eq. (3.5-3) is known as secant compensation.

1

L
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In mechanizing the guidance law, the value of the closing
velocity is never klown exactly. If a radar homing seeker is used,
then a reasonable estimate of v, can be obtained by doppler mea-
surements or by differencing range measurements. An infrared scek-
er system generally does not yield a good estimate of range, in
which case vV, may be taken to be a prespecified constant. Any
uncertainty in the closing velocity is modeled by introducing a
variable e, into Eq. (3.5-5) which represents either a band limited
noise, obtained by a single-stage low-pass filter with white noise
input, or a bias, denoted simply €ob* Thus, for example,

v, cos(f_ + 6) + e
al = n' 8 [vm + L a "] (3.5-6)

cos(ez - 0)

provides the final acceleration command used in Ref. 4, where ey
is modeled by one of the differential equations

Random Uncertainty: é

v = “wse, * W, E [eV(O)] = 0
(3.5-7)

Bias Uncertainty: e =0, eV(O) = e

v vb

and Wy is white noise with spectral density dq- With this model
we can study either the effect of the noisy estimation of Ve Or
of a constant error in the assumed value of Ve

Finally, the guidance law must account for an important
nonlinear constraint on missile operation -- acceleration command
limiting. The acti 1l acceleration command a, that determines the
input to the fin deflection aictuator in Figs. 3.4-2 or 3.4-4 must
not exceed the structural capacity of the airframe and must not be
so large as to cause the missile to stall. Thus the above idealized
acceleration command aé must be limited in order to prevent exces-
sive lateral acceleration command levels or angle of attack; the

limiting procedure is represented by the saturation nonlinearity

et e n stk T .
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] ] >
}amax sign (ac)' IacI amax

a = f(a') 8

c e (3.5-8)

The guidance law features described above are incorporated
in the system model illustrated in block diagram form in Fig.3.5-2.

R-11599 b
CLOSING VELOCITY s

ERROR MODEL

(;DlSYTE n f " }
LOS RA ___’{
ESTIMATE i‘fz‘

D S— \ ) \ J

NOISE FILTER CLOSING VELOCITY WITH SECANT ACCELERATION
COMPENSATION AND UNCERTAINTY COMMANDS

Figure 3.5-2 Proportional Guidance Law Model

3.5.2 Modern Digital Guidance Systems

Recently-proposed high-accuracy guidance systems for tac-
tical missiles have been designed using digital data processing and
optimal estimation and control theory. The resulting combination
of Kalman filter and optimal control law that comprises the digital
guidance module is generally based on a linear system representa-
tion ("filter model") that is significantly less detailed than the
simulation model ('"truth model') which strives to repres~nt all
important dynamic effects. Quantities that can be assumed to be
available to the filter without measurement noise are treated as
deterministic inputs to the filter and thus need not be considered
in the model (Ref. 11). To obtain a filter model that is linear in

3-23
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the variables of interest, all nonlinearities that occur in the
truth model are replaced by constant or time-varying gains derived
by small-signal or Taylor series linearization.

Kalman Filter Model — A basic 3-state Kalman filter can

~be designed for the missile-target intercept problem using the

model depicted in Fig. 3.5-3. It is assumed that noisy measure-
ments of LOS angle, 6, are available to the filter in conjunction
with noise-free measurements of missile lateral acceleration and
missile-target range. The range information is required in the
filtering procedure because the LOS angle is assumed to be related
to the cross-range separation, y, by the time-varying gain 1/r, and
the measurement noise sequence Vi (Fig. 3.5-3) is range dependent,
as detailed below; the Kalman filter algorithm makes use of know-
ledge of these dependencies in generating estimated values of the
filter state variables, denoted if.

In state-space formulation, the filter model is given by
the vector differential equation

Xp = FoXxe(t) + gewg(t) + dea (t) (3.5-9)
where
y 0o 1 0 ] 0 0
= |V |, Fp=]0 0 1 j,g.=[0| de=1]-1
2t 0 0 -uwg J 1 0
(3.5-10)

and wg is the white noise process which is the input to the tar-
get acceleration model (Section 3.3). The white noise process w
is specified by its mean and spectral density,

5

E [ws(t)J = 0

| . (3.5-11)
E [W5(t) ws(T)] = qg6 (t-1)
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R-16228

MEASUREMENT 'k
NOISE SEQUENCE

TARGET LATERAL CROSS-RANGE
ACCELERATION, ay SEPARATION,y ANGLE,§

wHITE "
NOISE
INPUT

MISSILE LATERAL
ACCELERATION, am

t ——

RANGE M
of — )r s

9
PTIMA
MISSILE _J QINEAR: V| kALmAN
DYNAMICS GUIDANCE Y FILTER
\\ LAW ot
ACCELERATION ESTIMATED STATE
COMMAND, o, VARIABLES, &
Figure 3.5-3 Missile-lfarget Intercept Model for the

Derivation of the Digital Guidance Module

The vector Xe is initially specified by the mean vector
mf(O) and covariance matrix P¢(0); observe that these may or may
not be directly related to the statistical initial conditions on
the truth model state vector, since the filter model variables
are not necessarily a subset of these states. In the kinematics
subsystem model, for example, y is generally not a state variable;
rather the time derivative of the state y is a nonlinear function
of the states el (missile lead angle) and ea (target aspect angle)
as given in Eq. (3.2-2),

y = i/ sin 62 + vt sin Ga

3-2¢
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in which case

mf2(0) = E [y(0)] = -v_ E [sin 6,(0)] + v.E [sin 6,(0)]

-4p -4p
ek ea

. =-ve sin mez + v.e sin me (3.5-12)
S a

where mg, and Pg, are the mean and variance of P respectively,

E ‘ mg . and Po, refer to the same statistics of 0g: and use has been

: made of the result

- -3p
]

E [sin x] = e x

sin mx

i} (Ref. 3; see also Eq. (4.3-10)). The variance of y(0) can be : 1
Ev calculated from the statistics of ea(O) and 62(0) in a similar &

3 manner. It is also possible to choose mf(O) and Pf(O) to be ¢ |
E inconsistent with the truth model state initial statistics, to
E
F
[
g

determine the performance of the filter when its initialization H
is in error.

[
C——

The model shown in Fig. 3.5-3 can be derived directly from
the results given in other sections of this chapter under the sim-
plifying assumptions that

PRRSA,

e Missile and target acceleration vectors i

(Fig. 3.2-1) are normal to the respective
F velocity vectors (velocity vector magni-
tudes are constant),.

e Kinematic nonlinearities (Fig. 3.2-2) are
3 negligible.

e The target maneuver is represented by a
band-limited gaussian process (Fig. 3.3-1).

® Seeker dynamics (Section 3.6) are negligible. .
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We then obtain the results

0 = sin~Y(y/r

a y/r (3.5-13)

from Fig. 3.2~1, and
d (V) = v, 6_cos8_ -v_6, cos 6
dt t ‘a a m % L

- at cos ea - am cos 0

L
& a, - a (3.5-14)

from Eqs. (3.2-1) and (3.2-2). These relations in combination with

Eq. (3.3-1) complete the derivation of the dynamic equations de-
picted in Fig. 3.5-3.

The measurement to be processed by the Kalman filter is the
sampled LOS anglce, ek, corrupted by additive independent samples of
noise Vi - The latter have zero mean and range-dependent variance

given by
2
e []

© 91 \2 2 . 2
(?Tf;T) + (ozr(tk)) + Oq

>

02(r(ty)) (3.5-15)

where 04+ Og and 0q represent the constant rms levels of noise
components defined in Section 3.6.1. 1In terms of the state vec-

tor Xe in Eq. (3.5-9) and the approximation indicated in Eq.
(3.5-13), the LOS angle measurement is expressed as

T
z, = hi(tg) xe(tg) + vy

| (3.5-16)
ET(tk) = [;%-1::7 0 O]
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POTH R TR TR T

The discrete Kalman filter provides an estimate, ;r. of
the reduced-order state vector X, utilizing mechanization equa-
tions (Ref. 11) of the form

I 3 ~
Xo(t) = Foro(t) + dea (t), g <t 2ty (3.5-17)

A +oo0 T A 4 .t
Xp(ty) = Xo(t,) + K (Z-h (£ )%.), t, <t < tre ¥t (3.5-18)

where gf(tk) denotes the solution to Eq. (3.5-17) just before a
measurement is processed, and if(t;) represents the state vector
estimate ufter the measurement and update take place*. The gain
vector Ek is obtained recursively from the matrix covariance equa-
tion assnciated with the Kalman filter; the sequence of operations

is given by: (i) propagation of the filter covariance matrix
according to

P, =o Pl . o7 +q (3.5-19)

where P+ is the value of the filter covariance matrix after the

k-1
previous update, ¢, given by

s @ exp (Fo1,) (3.5-20)

is the transition matrix expressed in the usual matrix exponential
form, v, = t -t, , is the time interval between samples, and

Ts T.(1_-t) Fi(t_—t)
qQ & ag So e I 'S Ef5¥ e I8 dt (3.5-21)

*
Refer to the footnote on page 1-15.
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is the noise covariance matrix; (1i) calculation of the Kaulman
gain vector,

-1
k, = Py (g’{pkgk + o:‘;(r(tk))> (3.5-22)

(iii) updating the filter covariance matrix (to represent the

effect of updating the state vector estimate)

. T 2\ T 3. 52
P = Py - Ky (ﬂkpkﬁk * °v>-‘5k (3.5-23)

It is 1ikely that tlre range-dependent gain vector in this example
can be precomputes and stored as a function of range if range in-
formation is available in the guidance module. Otherwise, the
implementation of Eqs. (3.5-22) and (3.5-23) would be responsible
for most of the digital computational capability required by this
guidance system.

Equations (3.5-17) to (3.5-23) are a set of typical Kal-
man filter mechanization equations based on a simplified design
model. The filter state estimates §, § and at provide the basis
for the missile guidance law which generates the commanded missile
lateral acceleration, denoted a, in Fig. 3.4-2. An optimal control
approach to developing a guidance law is described below.

Control Law Model — An optimal control policy is derived
by selecting the commanded acceleration time history to minimize
an appropriate performance index. An index that is found useful
for the missile guidance problem is the so-called quadratic index,

2 tf 2

J=E [y (tg) + v a/(t)” dt (3.5-24)
0

which effectively minimizes the expected value of the square of

the miss distance while imposing a penalty on the control level.

The quantities y(tf) and y are the terminal miss distance at

i
|
|
j
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intercept time tr and the weighting on control effort, respec-
tively. The value of J is constrained by the equations of motion
o given in Eqs. (3.5-9) and (3.5-10) and the form of the autopilot
% § dynamics. The compensated missile airframe dynamics can be

.

modeled by the first order transfer function

w
m

+
s mm

a
. (3.5-25)
8¢

k f where we note that the higher-order autopilot dynamics, Eq.(3.4-5),
and airframe saturation are neglected in Eq. (3.5-25).

The solution to the above minimization problem is called
an optimal guidance law. By invoking the separation principle
(Ref. 12), it is known that the control is of the form

al = cl§ + °2§ + caat + cuan (3.5-26)

- s e e et e e e = e

The indicated control gains, Cy> have been determined by Willems*
(Ref. 13) to be functions of tgo' the time until intercept:

T T i TR Y < WY T TS T T "_‘-_prw""*mﬂ*" Ch

Bn'
Cy. ;2—
g0
nl
Cpr B e
2 tgo
~w,t ) (3.5-27)
e tg°+mt -1
Ch, = n' t go
3 wttgo
: J
~w_t i
| e MEO . v _ 1
c. = -n' m_go
4 w2t2
m go

b 3
The derivation cited above is based on the assumption of con-

tinuous control -- i.e., the sampled and held nature of the
control law is neglected.
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The time-to-intercept., tgu‘ and optimnl navigntion ratio, n', are
gliven by

t =ty -t @I -t (3.5-28)

where v, is the closing velocity, Eq. (3.5-4), and

2, [y (™00 ) o]

3t

3 m go (o) m go .3

v o (1o ) B (12 ) g (re0m E)
m m

. (3.5"29)

‘The expression for n' is considerably simplified if the compen-

sated airframe dynamics are neglected entirely; from Eq. (3.5-25),
am-aé if we permit Wy to approach infinity, in which case

3

n' - (3.5-30)
W, 1+ 3Y/t80

1f there is no constraint on acceleration, vy is equal to zero and
the resulting navigation ratio from Eq. (3.5-30) is constant.

Finally, in implementing the control given in Eq. (3.5-26),

it is often advantageous to use an alternative formulation for tgo;

¢ =@ a_I (3.5-31)
g0 \' r

c

Using the instantaneous value of range divided by closing velocity
is equivalent to Ejy. (3.5-28) when range is nearly deterministic.
This expression is conveniently evaluated in the digital guidance
module using a discrete approximation to the derivative,; at each
sampling instant

(3.5-32)
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Given the above set of optimal linear control gains,
various suboptimal approximations can be made to simplify the
P computational requirements. If vy, 1/w

m* ©3 and cyq Bre taken to
% be zero, for example, a digital version of classical proportional

%‘ guidance (based on optimal estimation theory) with n' = 3 is the

Py resulting control policy. Another common simplified guidance law
is obtained by including a component of target acceleration in

E the formulation of the autopilot command by permitting Cq to be

nonzero. A complete digital guidance module having the latter \
é form is depicted in Fig. 3.5-4, ‘

3
| o
E ! |
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Figure 3.5-4 Digital Guidance Module Based on

Optimal Estimation and Control

The digital guidance module must be correctly interfaced

with the overall truth model to permit simulation of the missile-
target intercept problem.

PRPIFIRPUEE NPT P

At the input to the guidance subsystem,
noisy measurements of LOS angle must be made available to the
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Katman filter,  How this sipnal is obtnined 0 ponceally dofor.
mined by the specific seeker design and hardware considerations.
A variable which is often readily available as the seeker output
is n, shown in Fig. 3.6-9, which is an approximate noisy measure
of line-of-sight angular rate; to be more precise, it is demon-
strated in Soection 3.6.3 that n is related to the LOS angle 8 by
dynamics that can be approximately represented in transfer func-
tion form as

™4 F o e M W

T S m o 8 -
1 8%‘5‘5’ T3 (3.5-33)
b i where T4 represents the dominant time constant of the overall
* L]
| secker track loop. Thus a direct method for obtaining the re-
; . i' quired filter input signal from the seeker output n is to inter-
< pose a prefilter of the form
o
) 1 .
L hf(s) il r (3.5-34)
§
' i to provide effective compensation for the dominant pole in the
seeker dynamic model.
; i. Another factor in implementing the guidance law is that
’ - the ideal acceleration command aé given in Eq. (3.5-26) is based
- on the assumption that missile acceleration is normal to the LOS.

As in the previous section (cf. Eq. (3.5-3)), the fact that ap is
uctually nearly normal to the velocity vector requires secant com-
pensation (division by cos (ez-e)) to guarantee that the accel-
eration command leads to a suitable acceleration component normal
to the LOS.

{4

The guidance module design is completed by incorporating
an ideal limiter to prevent excessive acceleration command levels.
An overview of a typical digital guidance module based on the
foregoing discussion is shown in Fig. 3.5-5.

Gl Oomw Puy Sy
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Figure 3.5-5 Complete Digital Guidance Module Stiructure
3.6 THE SEEKER SUBSYSTEM MODEL o) ']
There are several effects inherent to the seeker which can iy
() ‘
have a marked influence on overall missile performance. These in- o
clude ’y
i

® Boresight error distortion sources

Noise
Aberration
Receiver and signal processing characteristics

P
PO

e §
PO

e Disturbance torque sources

Seeker mass imbalance
Secker gimbal friction
Spring restoring forces on the secker head

-y
U,

- Py

3.6.1 Boresight Error Distortion

et bl

A fundamental variable in the seeker subsystem is the S
true boresight error, £irue’ defined by the angle between the
antenna centerline and the instantaneous line-of-sight (LOS) to

the target,; referring to Fig. 3.6-1,

R TR TIE B S,

= 0

Etrue = ) - ()h - N = - ) (3.6—1)
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R NNV -l Mhsd Lol

ANTENNA
CENTER LINE

SEEKER HEAD
CENTER OF GRAVITY

|
|
I s
|
[

o e T

€etf = %100k T %ap ~ On (3.6-2)

%
i -
—
3 [ 1 9
;
' T “rgé;sl%Sum i
{ : 4
:Q / - "f !

‘ é"— ﬁ‘ 19"' 5
- i X~ AXIS 1
: MISSILE .1
o CENTER OF GRAVTY

§ ) Figure 3.5-1 Seeker System Configuration $

-
¢ i

t » The estimated or measunied value of the boresight error will differ §

; T from €true duz to several factors; among the more important of §

k . these are aberration, noise, and nonlinear receiver characteristics. :

| i .

; .. The effect of aberration is very highly dependent upon the ;
geometry of the seeker-detector cover, the frequency and polarization '
of the incident energy and other factors; furthermore, it is variable

i due to manufacturing tolerances, possible erosion during flight, and

} - changes iu environmental parameters. This phenomenon can often be

i represented by a nonlinear and possibly time-varying operation on

! the look angle, elook = e-em, so that an effective boresight error,

E Cafp: 1S obtained in the form

!

|

i

where tne aberration angle ea is a nonlinear function of 6

b look’

as depicted in Fig. 3.6-2. A tactical missile with a radar track-
ing system that exhibits nonlinear aberration (caused Ly a protec-
tive radcme) is treated in Ref. 3. In that study, the radome aberra-

tion characteristi.: was modeled as a piecewise-linear relation with

. e ARARA A aaFaale h b ok b aa ke

M g

S YW e el

odd symmetry and 5 linear segments, as depicted in Fig. 3.6-3.
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Figure 3.6-3 Nonlinear JAngular Aberration Charac-
} teristic Investigated in Ref. 3
]
»

In considering the degrading effects of noise, we include
threce fundamental categeories of effects. lInverse range propor-
tional noise, which has an effective rms level of the form

V1
o T) = =7 (3.6-4)
}
i .
1 3-36
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wuere 04 is a constant, is representitiyve od -~ avise source that
increases in effect as range approaches zero. Target angular scin-
tillation (caused by the apparent motion of the target due to the
change in position of the target controid of radiation) is a phenom-
enon of this sort. This effect can be modeled as a wide-band noise
state, * Xqs with constant rms level,ol} multiplied by a gain 1/r.
Range proportional noise includes any noise source that yields an ef-
fective noise level that decreases as the missile approaches the tar-

get, i.e., as range approaches zero. This type of random disturbance may
be represented by an equivalent noise with an rms level of the form

ob(r) =0y (3.6-5)

which in turn can be modeled by a wide-baud nuise state xg with a
constant rms level of Oy passing through a gain r. Noise sources
that exhibit this property are the distant stand-cff jammer and
receiver noise (generally due to thermal effects). Range independent

noise represents noise sources that have a constant effect on the
signal-to-noise ratio; target amplitude scintillation (due to time-
varying effective target cross section, for example) and seeker
servo noise are typical examples of noise sources that can be
modeled by a noise state Xq of constant vai._.nce og. The complete

noise model is shown in Fig. 3.6-4 where Wy Vo, and Wg are gaus-—-

sian white noise processes.

All three types of ncise described above have been treated
in previous studies (Refs. 2 to 4), in two forms. The most ele-
mentary implementations of this model may be taken to be linear
time-varying; i.e., r(t) is assumed to be deterministic in the

noise model. 1In a mcre recent treatment, Ref. 4, the nonlinear
relation indicated in Fig. 3.6-4 is rigorously implemented by

* -~
Where no conventional state variable nomenclature is suggested,
arbitrary state numbers are assigned for convenient reference.
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Figure 3.6-4 Seeker Noise Model
X
S N (3.6-6)

S /x2+y2

where X1s Xg and X4 are the wide-band noise states mentioned above
and X and y are the cartesian components of missile-target separa-
tion, respectively (sec Fig. 3.2-1). The linear time-varying
formulation may be adequate in situations where range has a negli-
gible random component (as is sometimes the case for the head-on
intercept where the mean missile lead angle and mean target aspect
angle are both zero), but Eq. (3.6-6) is generally significantly

more accurate when the range is appreciably nondeterministic.

The receiver characteristic is a potentially complicated

effect, highly dependent upon the specific antenna design, type of
detector, and signal processing scheme. In order to avoid a very
specialized discussion based on a particular tactical missile, we

confine our attention to one basic phenomenon: the attenuation of

the received signal which occurs when the effective boresight error,

€off’ becomes large, i.e., when Coff approaches €nax 0 Fig.3.6-5a.
The detector aloue will have an output which is very nearly pro-
portional to its input for siiall values; however, as the effective

boresight error magnitude approaches Emax' we note in Fig., 3.6-5b
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R-11603
Y A ANTENNA
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-
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7
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/ | LINE OF SIGHT

4
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,‘\Q BEAM PATTERN
ANTENNA POSSIBLE

SIDELOBE

(a) Antenna Beam Pattern

(b) Antenna-Detector Characteristic (c) Signal Processing Nonlinaarity

Figure 3.6-5 Receiver Boresight Error Distortion Effects

that the signal strength decreases to a null. If the antenna pattern
has appreciable sidelobe sensitivity, there may also be some response
for values of €off greater than € max" The upper limit on the bore-
sight error, £, such that the detector characteristic is nearly
linear for !eeffl less than €,is quite variable, depending on the
type of target tracking system under consideration. For monopulse

radar or infrared detectors, € could be as small as a fraction of a
degree (Ref. 14).

The undesirable detector null and possible spurious side-
lobe response can be circumvented in the signal processing scheme.
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As an example, some value €1im < € may be chosen; a nonlinearity is
then introduced such that whenever the effective borvexipht crror
maghitude exceeds € im’ the output of the signal processor is held
: at + €1 im" This provides a simple model, depicted in Fig. 3.6-5c,

% which will capture the effect of a narrow antenna beamwidth and a

reasonable signal processing nonlinearity.

The combined effects of aberration, noise, and receiver/
signal processing characteristic are illustrated in the general
boresight error model shown in Fig. 3.6-6. We mention in passing
that a more exact noise model might divide noise sources into ex- f
ternal, predetection and postdetection effects, i.e., noise sources

entering the boresight error model before aberration takes place,

o e A e e e

and before, as well as after, the receiver characteristic. For the
present discussion, this categorization is excessively detailed.

7 e o e e T TR T T WY T g AT T T

R-16237 3
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} Y 1
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L3 xz :
{ TOTAL
ABERRAIION RECEIVER ns | SEEKER
| 0 MODEL MODEL NOISE
g e . look 7’4 + € meas
i LOS
A MEASURED 3
g ANGLE — BORESIGHT
; ERROR |
! G i
{
Figure 3.6-6 Final Boresight Error Measurement Model %

3.6.2 Disturbance and Control Torques

The seeker model is completed by developing a suitable
tracking and stabilization control system including several important

F 3-40
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sources of disturbance torque inputs. In terms of the inertially-
referenced angles ¢ and ¢ shown in Fig., 3.6-1, we can derive a
relation of the form

I ¢ =190 = T, - Ty (3.6-7)

I
p p
where Ip is the moment of inertia c{ the seceker head about the
gimbal pivot, 'I‘c is the external control torque (derived from an
electric servo motor, for example), and Td is the total disturb-

ance torque.* For the present discussion, consider three components,

'I‘d =T, + Tf + T, (3.6-8)
where T is an effective torque due to seeker head mass imbalance,
and we include two external torque components, Ty due to nonlinear
friction in the gimbal and T, due to nonlinear restoring torques.
Since the seeker head center of gravity is generally displaced

from the pivot point, as shown in Fig. 3.6-1 and specified by the
parameters r, and 90, the moment of inertia Ip is related to the
correspcnding moment of inertia referred to the center of gravity by

2
Ip IO + mr (3.6-9)

where m is the mass of the seeker head.

The external torques due to spring and friction effects
are modeled by the relations

Restoring Torque: Tr = fi(eh)
(3.6-19)
Friction Torque: ’l‘f = fz(eh)

where Oh is the angle between the seeker and missile center lines.
Often restoring torques are linear for small angle deflections,

*

The use of hydraulic actuators for mechanizing the seeker track-
ing function generally leads to a quite different model of the
seeker dynamics; we do not consider this case here.
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becoming nonlinear only as eh increases in magnitude, as illus-

traced in Fig., 3.6-7a. This behavior correspounds to the symmetric
"hard spring'" case (Ref. 15) where the elastic limit of a spring is
; exceeded and Hooke's law for linear spring behavior becomes invalid;

t often the nonlinear term is taken to be a power law relation,
Bh K
; fl(eh) = kleh + k'< 5;:; sign (eh) (3.6-11)

where ¢ is an integer greater than one, so that 'l‘r exhibits a dis-

tinct departure from linearity as |eh| exceeds eljm’ as is typical

of a symmetric nonlinear spring characteristic. A common Lype of
nonlinear friction is the dry or Coulomb effect depicted in Fig.
3.6~-7b (Ref. 15), where

fz(eh) = k2 sign (Oh) (3.6-12)

i.e., the friction term of the disturbance torque has constant mag- ;

L ' nitude with the algebraic sign of the gimbal angle rate.
R-1N604
. Ay, k T¢
! £(6,) k, sign 8},
| k2
E - k]eh ]
-
: elim eh eh
-k,

{a) Nonlinesr Restoring Torque, fbin) {bl Nonlinear Friction Effect, to(h )

Figure 3.6-7 External Disturbance Torque Models

s A el i i <o ek 2L

The effective disturbance torque ‘:omponent due to seeker

mass imbalance can readily be determined by application of the basic
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principles ol mechanies (Ret. 16); the details ave given in Relr. 1,
Combining the seeker mass imbalance term with the friction and
spring disturl ince torque components, we obtain the complete dis-

turbance torque contribution,

Td = fl(Oh) + fz(ﬂh) + mr. [rlem cos (w—ﬂm)
(3.6-13)

.92 .
+ ll(ﬂm) sin (w—Om) + vmﬁﬂ COs (w-nq)]

The control torque Tv in Bg. (3.6-7) is chosen to make the
scecker track the target, i.e.,, to maintain the measured horesight
error at. a small value. The nominal seeker is designed under the
assumption that there is no friction and that spring effects are
negligibte; thus, it is necessary to include rate feedback in tLhe
torque command (a feedback term proportional to ¢ which is measured
by a rate gyro) to provide suitable dampling. Thus we write the
nominal control torque as

" - o A . ‘ 1.
I k | k, (0, + ) (3.6-14)

where (9 is the track loop time constant, k”r 1.2 the rate gyro gain,
and kq is the torque servo gain. The implementation of this con-

trol 1s depicted in Fig, 3.6-8,

While the implementation of the seeker control function
depicted 1n Fig. 3.6-8 will provide an adequate response under ideal
conditions, it ¢an be shown (cf. Section 3.6.3) that the dynamic
response ol the seeker is quite sensitive to steady-state disturb-
ance torque inputs. Since, ar we have already indicated, dis-
turbance torques pgenerally have a significant impact on the coffec-
tiveness of the seeker, compensation must be included Lo achieve

satistactory performance., A simple and effective compensation

3-13
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Figure 3.6-8 Nominal Seeker Track Loop (Neglect -
ing All Nonlinear Effects)

procedure is to insert proporiional plus integral cascade compen-
sation belore the torque summing junction in Fig. 3.6-8. That is,

we specify the compensated control torque by

k()
Al - —_— . 3. ‘r
l(:(f 1 + S )Tcn (3.6-10)

The complete scoker simulation model, representing the

N A e TN R T IR T ¢ = s -

synthesis of the dynamic equations derived in this section, is ..
shown in Fig. 3.6-9.

3.6.3 Transfer Function Representation ol the
Equivalent Lincar Seeker

For a subsystem of the complexity ol the seekor as modeloed
in Fig. 3.6-9, it is often helpful to derive the transfer function

formulation of the linear system obtained by neglecting all non-

linearities. Several assertions made in the previous section in

' !
! simplifying the seeker model are based on this representation, and !
i |
r the procedure used for the purpose of designing the compen:ation
F network (choice of ko) can beslL be treated in this way, More de-
tails may be found in Ref. 4.
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‘ We deline four inputs (refer to Fig. 3.6-10),

| |l] = )

| w2 = 0, (3.6-17)
Uy = ns(t)
\l4 = Tm

% The transfer lfunctions d](s) to d4(s) for the equivalent block

diagram representation depicted in Fig. 3.6-11 can be shown to be

d. (s - kg S [92 t g8 4 pIJ
1 S = T— ,..5_. —— - o ———— = s A

: s +tag,s + s+

: 1 s (g8 PY a,
] k3 kot + Ky
L‘.‘ - d (S) = - TR T T R Tem———— (3.“-—|H)
- 2 Inty [93 + q3s2 + yys + q1] ’
E

]

'E dyls) = [ dy(s)
;* k
n 3 S e
| da(s) = = 3 R
} P11 s + AqS + UnS + a4

where the numerator and denominator coefflficients are given by

k, + k. k_Kk k
p = -]N -__:\___L‘g q = p + ....h' 3
1 2 1 i
P p o1
(3.6-19)
) zkﬁﬁiiﬁ . P I
" | N T

——
-
-
p—
=

The nominal secker is delined by a choice ol parameter:

that 'eads to accoptable dynamic behavior in the absence of
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Figure 3.6-11 Linear Seecker Model in

Transfer Function Form

disturbance torques; exampie data and transfer functions are given
in Table 3.6-1. A second case is the nominal compensated secker,
whicvh has been designed Lo exhibit a significantly better por-
tormance in the presence of disturbance torques; the design by root
locus techniques is indicated in Rer, 4 and the transter functions

are summarized in Table 3.6-2,

In both the nominal and the nominal compensated secker,
we note that dz(s) " 0. This demonstrates that with no linear
friction or spring restoring torques, the seeker has perfect sta-
bilization, i.e., the measored boresight errvor is unaffected by

rotation of the missile body.

For lrequencies considerably less than 10 rad/sce, we have
(l"] 5 d(-l & 8, which is the transter function of a difforentintor,
Heneo, the assertion that n is an estimate of the LOS angular rate

(1) holds at low freguencies.

The secker compensation removes steady state disturbance
torque sensitivity, due to the zero of d 4 (s) at s = 0, as dis-

cussed in Rel, 4,
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TABLE 3.6-1

TYPICAL NOMINAL SEEKER SPECIFICATIONS

Parameters Transfer Functions
—
ko = ky = ky =0
- 100 8(8+60
k3 -1 dnl(s) I3 ?E:%BTTE%EET
k =1
‘ -
] dpots) =0

- in-oz-sec
k! 6 Ta
I =0.1 in-oz-sec2
1T, = 0.12 sec n4 12 (s+10)(s+50)

1 . i

TABLE 3.6-2

TYPICAI. NOMINAL COMPENSATED SEEKER SPECIFICATIONS

W S X T R T ATy e A WY T T T T T T T

Parameters Transfer Functions

B
S e ky =k, = 0 2
3 f d (8) = lgog‘s +GOS+‘1-2_OO)
S N kg = k=1 cl 12(83+6052+17005+10, 000)
i g |
o K. = 20 sec”! d . (s) =0
2 0 c2 =
] 2
3 % in-0z~sec
! ke " e
L o] deat® = 40
S I = 0.1 in-oz-sec
B P 1000s

b doq(s) = 5 p)
3 ! Ty = 0.12 sec 12(s°+60s°+1700s+10,000)
kS
L Poles at 8 = -7.71, s = -16.1 +24.8]

(3

LW LA AR L e

ay U Ond g PeE]  pouy et
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3.7 SYSTEM MODEI. SUMMARY

An example of a complete missile-target intercept modoel

i

; is portrayed in Fig. 3.7-1 with representations of all of the i
E subsystems described in the previous secctions appropriately ?
| interconnected. This particular system model was extensively L h
f analysed in an investigation of the accuracy and efficacy of CADET v i
E in evaluating the impact of various random and nonlincar effectls ;

E : on the performance of missile guidance systems in Rel. 4, As O ;
indicated in previous sections, there are niany assumptions behind
this formulation; the system depicted in Fig. 3.7-1 is intended
t. be demonstrative of the large class of problems that wmay be
considered in this realm, and not to be all inclusivoe.

) All of the state variables are depicted except angle of

Sl 5 5

; quired to implement proportional plus integral compensaticn, kq.

: (3.6-31); these states are encompassed in the linear dynamics

PP

represented by the transfer functions g](s). gz(s) (Fig, 3.4-3),
and (1+kg/s). For convenient reference, we list the nonlineari- é‘

:
:
E : attack, a, control fin deflection, 6, and the sccker stiate re-
;
E
E
3 ties incorporated in this particular system model and indicate

their form: i 3

® Sceker head restoring torque
% |< 0
sign (Gh)

I il B

fFa(0,) = Kk
1" h 1 O]im

® Seeker gimbal friction

v o 8 L s

fo(8,) = ky, sign (6) é‘

® Receiver/signal processing characteristic

; el 2 lim

ERV R e

fqa(e) =

€1 jpSignce) le] > 1 im
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\

® Range dependent noises

X
ng = e + %, AZey? 4 x
flrye

® Seeker mass imbalance torque

= a s . 2 2 s
Tm mr, [rlem cos(0h+00) + r](nm) sin (9h+00)

+ 8 -0 -0, -¢
vm 62 cos (02 Om eh 00)]
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® LOS angle calculation ,
= tan-] :
0 = tan (y/x)
; ® Range calculation
;
ro= x2 + y2
E e Velocity resolution :
b
i X = -vo cos(nz) - Vg cos (nn) - ;
¢ I
y = - s ] + : 0
F y Vi sin ( z) Ve sin ( a) N
4 @ Acceleration command limiting L
; ' & a' < a : i
! c ’ c] - "max e
a, = Q
) 0y 'y ' ! ™ [ ‘
.amaXQiLn(ac)’ lacl nnmx Y
;
® Proportional guidance law with scecant compensat ion co
, and closing velocity error model il
> |
: l
‘s ) +” + ) s
1 s wed [ Yo v ey .
d e m vns(ng-ﬂ) MBI
. A !
' 14
,; ! \ E
E This chapter presents an overview of modeling tasks that . j
; arise in considering the missile-target intercept problem,  Real- 4
E istic representations for a variety of nonlinear effecets have been } i
A given, both Lo provide a ready reference for future studies of ?
] tactical missile performance and to facilitate model development i
in other areas. The material is intended to guide the user in §
: . . . 1
ﬁ developing mathematical models appropriate for analyzing missile 1

systems using CADET.
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U1V SISO Y

14, QUASI-LINEARIZATION: PRINCIPLES AND PROCEDURES

7 own T BN

4.1 CADET AND STATISTICAL LINEARIZATION

To review the fundamental equations of CADET derived in
Section 1.2, Egqs. (1.2-8) and (1.2-7), the differential equations

Rl ai s ¢ - Lot R

h=1+ab
) 4.1-1)
- (

D = NP + PNT + GQGT

s B o B L B

»
At
E:
1

govern the approximate evolution of the mean vector and covari-
ance matrix of the state variables,

m=E [x]

P =E [(i‘ﬂ)(i'm)T]

ey B 5 |

(4.1-2)

wheroe the state vector differential equation is nonlinear and time-

varying,

x = f(x,t) + G(t)w (4.1-3)

FEquation (4.1-1) involves the vector f and matrix N which are
delined by

T IELTACTET Y s AP 8 AR

A L=E[ £(x,)]

f (4.1-4)
& N =TF [E(&-t>(§-m>T] p~?

g

3
& Analytic expressions for i and N in Eq.(4.1-1) can be de-

l‘n;"_

? termined only if the form of the joint probability density function

4-1
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? of Lthe state variables is known or assumed.  For many problems ,
(the present one included; cof. Section 1.2) it is appropriate o Lo
assume that the states are jointly normal, or nearly so. A power- ]
ful corollary to the gaussian assumption is that cach scalar non-
linear relation embedded in_the stute variable differentinl equn-
tions may be treated in isolation; this lfact greatly fuecititatoes
the evaluatior of i and N in the application of CADET. Another

el

direct result of the normality assumption is that F and N are func-
tions of m, P and t alone and are not dependent upon higher-ordor Ly

TR TR T

moments,

e r

It was mentioned in Section 1.2 that  and N defined in
Fq. (4.1-4) have also been derived in the context of applving sta- s 3
tistical linearization to arrive at a quasi-linear approximation L
to the vector nonlinearity I(x,t). The form obtained is ;o i

f(Xx.t) # [ + Nr (4.1-5)

where

r=x-m (1.1-6)

e ™ e 0 HEAG

is the random component of the state vector X. Since the theory

ol il ant

ol random input describing lunctions under the gaussian asouamp- il

tion is well developed (Ref. 6) and ol direct utility .n CADET i

Sl b

analysis, it behooves us to consider quasi-linecarization in some R
detail,

In Section 4.2 we outline the overall context of describ- '

ing function theory, the derivation of basic resulls, and basic |
limitations _of the technique. Sections 4.3 and 4.4 treat some 5 f

rpecific examples of ridl calculation, giving a fow general results !

and some useful approximation techniques (including discussions of

suitability and accuracy). In Section 4.5 we consider the sensi-

Ltivity of ridf calculation to departures from the gaussian assump--

tion. The above sections treat a single nonlinearity, in accordancoe
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with the asamertion that euch nonlinear relation can be troanted
independently, as mentioned in Section 1.2. For a prool of the
validity of this procedure, see Refs. 7 and 11.

T ™ TN R R

4.2 PRINCIPLES OF QUASI-LINEARIZATION

In the discussion that follows, we consider the quasi-
linearization of the single nonlinearity, f(x). In some instances,
the nonlinearity may be a single function of one or two states, as
in the example treated in Chapter 2 where f(x3) represents the ideal
limiter characteristic acting on the missile lateral acceleration,
Xq3 (Fig. 2.2-1). In other cases, the nonlinearity may be a com-
plicated function of a number of states; as an example, combining
Eq. (3.4-2) and the last term of Eq. (3.6-13) with 00 = O leads to
a seeker mass imbalance torque term of the form

» o,

mrovméz cos(y-8,) = mryv (L a+Lg8) cos(8,+8 -0,)

T T T T IR T R T T T
[
* . 3

§ which involves the variables a,5,6,,6 ,8, which may, for example,
f be state variables ty to Xg respectively. The complexity of this
b [t formulation tends to obscure the basic form of the nonlinearity,

§ f : i.e., vy cos v,, where vy and v, are simply linear combinations

N of the indicated state variables,

: g vy mromeOl mrome6 0O 0 0

& ve - x

& Vo 0 0 1 1 -1

g & Hx (4.2-1)

Since the input variable statistics are immediately obtainable
from the state statistics, Eq. (4.1-2),

m_ = Hm
-V - - (4.2-2)
Pv = HPH

A Ol W g s Py T

[V VIV S
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we simply treat nonlinearities aa functions of one or soveral input
variables, v or v, where the statistics of y are given by Eq.
(4.2-2). From this point on, we omit the subscript "v" to simplify
our nutation; m and P always refer to the nonlinearity input sta-
tistics, and r denotes the random component of v. The fact that
only a few input variables need to be considered simplifies the
subsequent development.

The essence underlying nll guasi-linear analysis is the
substitution of one or more approximate, input-ampljtude-mensi.ive
linear gain(s) for each system nonlinearity. The analytic form of
the resulting quasi-linear gains (deacribing functions) is deter-
mined by three factors:

e The nonlinearity

e The assumed nonlinearity input form

o The error criterion used (th. measure
of approximation error to be minimized)

The number of describing functions required to represcnt each non-
linearity is determined by the number of input variables and the
number of input signal components specified by the assume: input
form; each input variable component has its own independent mea-
sure of amplitude and requires a quasi-linear gain.

Given a nonlinearity and an assumed input variable form,
hereafter taken to be the sum of a gaussian random variable and
a deterministic signal ("mean'), we desire to express the non-
linearity output as a linear combination of each input signal
component plus an error or distortion term. Considering ihe gen-
eral case of a nonlinearity with k inputa, we have

Z = f(vl.vz,....vk,t) (4.2-3)

Tty

Bt L it e . ol L S it
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for which we seek an approximation of the form
“z +br (4.2-4) 1

where z  and b (a vector of dimension k) are to be determined.*

Based on the desired form ‘f the quasi-linear approxi-
mation, Eq. (4.2-4), we consider the mean square error,

2
~2
ce“ = E {z -z, - jz; bjrj} (4.2-5)

TIPS gy m—
e )

Setting the partial derivatives of the mean square approximation
error with respect to z, and bJ equal to zero gives us the set of {
necessary conditions for minimization,

i
i
[
[ T
[
L
L
”

s i e )
& -

T ae2 F{ ﬁi ; ]
S s = 2E |{f - 2_ - b,r(-1)| =0 s
) H Bzo o - J°J
8 ) |
. r }
' ag? 2E [{f - z_ - jb b,r,(-r,)| =0 J=1,2 k
- 5 o = &4 ByTy(-Ty) ' ECEERN
¥ [ J J .
 } :
S (4.2-6) Fi
§' L Taking the indicated expected values term-by-term reduces Eq. ;
i r (4.2-8) to :
z, = E [t] ]
(4.2-7) |

b'P = E [f ;T]

*The first term in Eq. (4.2-4) could be expressed as ETE» i.e., a
linear combination of the means; however, we note that the clements
of a can only rarely be found explicitly, as can be appreciated in
the example of Eq. (4.3-34).

e bk v s o A i

M mma g Py P
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where we have expreased the results in thair more compact vector- P
matrix form.

l Comparing Eqs. (4.2-3) and (4.2-7), we have i)

f(v,t) % E [2] + E [r ;?] p-lp \ ||
r ~
; ERN Y- (4.2-8) i
I
f which is identical to the scalar case of Eqs. (4.1-4) and (4.1-8). g; E
| o
: y
1 To see that the above solutions do indeed lead to mini- o
i mum mean square error, we observe that b
) 2-2 |
E( 3_¢e - 3> 0 A
x azo
2~2 P
2t -ar [r?] > 0, J=1,2,...,k ]
| T |
1 b
. which are sufficient conditions for the existence of a local mini- )
K. i!
5 mum. L!.
In evaluating the expected values needed in Eq. (4.2-8) ii i
we invoke tho assumption of joint normality to write (Ref. 11) b
4
‘ . 1.7 -1 |
: p(y) = [(Zn) lPl] oxp,- gr Pr (4.2-9) ’
: P
i By definition, then S
{ :
L fa [(21') IPI] ‘[ i t(v,t) exp’- 7 (v=m) P""(y-m) o
L o [ 3
dv1 dv2 cen dvk (4.2-10)

4-6
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e e e T — T T T T T T T T TRy AT,
g = T e =

To aid in evaluating m, we form

TN

A9
1
f

il
%E)T 4 3-; - [(Zn)klpl]-éj::...sm f(v,t) exp ;— % rTP'lggp'l

-

dvldvz..,dvk

1 3
QL
;1—,'). . e
fadl

« Pl E [f(v,t) r] (4.2-11)

which demonstrates that the second relation in Eq. (4.2-7) under
the gaussian assumption is identical to*

>

T, 2

=3 (4.2-12)

i3

which is the scalar version of Eq. (1.2-10). After f is calcu-
lated according to Eq. (4.2-10) for utilization in Eq. (4.2-8),
the random component describing function vector n usually may be
obtained much more easily using Eq. (4.2-11), than by direct solu-
tion ot Eq. (4.2-8).

From the development outlined nbove, we note that the
use of describing functions provides an approximation to nonlinear
phenomena that retains irput-amplitude sensitivity through the
dependence of t and nonm and P. In CADET, the usefulness of the
quasi-linear approximation, Eq. (4.2-8), depends on the validity
of the gaussian assumption on x. The accuracy question is a very
complex issue -- probably, an unresolvable onc in a general,

»*

Note that by convention the derivative of a scalar by a column
vector is a row vector, and, by extension, the dervivative of a
column vector by a column vector is a matrix.
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rigorous sense. The following paragraphs provide some insight
into the problem, however.

puanmary —ny

An important factor is that it is generally beneficial
to have a syastem of the form indicated in Fig. 4.2-1 where there

L ot ]

is a significant preponderance of linear dynamics over nonlinea.
elements -- especially if the linear parts, represented in trans-
fer function form by WJ(s). are "low-pass', in which case the
central 1limit theorem indicates “hat the outputs vJ are qQuite
nearly gaussian, despite nongaussian inputs uJ. We observe, how-
ever, that this condition is not in itself completely decisive,
since the CADET equations are based on the assumption that all
atates must be nearly jointly normal. The examples considered in
Appendix B are situations in which the nonlinearity inputs are
given to be gaussian, yet the nongaussian nature of state vari-
ables after the nonlinearity leads to inaccurate CADET results.

oy S et Bt S s SRS anutis

[

R-16243 F ;
I
'1
|
Figure 4.2-1 Example of a Nonlinear System With {

Desirable Separation of Nonlineari-
ties by Linear Dynamics :

e—
el

Another issue that may have considerable impact on the
accuracy of quasi-linearization is the nature of each nonlinearity \
with regard to being odd of even in its input variables with li
respect to the input mean. To illustrate this terminology, a

function f(vl,vz) is odd in vy with respect to m, and even in Vo Yo
with respect to m, if !

ESUPRTIS COW U

f(ml-rl,vz) = f(m1+r1,v2) for all ry ;

e < bl e

f(vl.mz-rz) = f(vl,m2+r2) for all ry

4-8
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e I

For the rest of this discussion, we concrider the zero-mean case,

-

and refer only to oddness and evenness since the extension tco

e e e e s e Y SN

N non-zerc means is obvicus.

e |

It is beneficial to have single-input nonlinearities
which are odd functions of their inputs. (Section A.1 contains
a comprehensive catalogue of ridf's for this basic type of non- :
linearity.) In contrast, even nonlinearities must be considered Q
é with caution. It is simple to demonstrate that the random com-
b ponent gain, n, is identically equal to zero when f(v) is an 3
' even function of a zero-mean input v,; this condition generally 1

A e iR
2
1

P I
.

bprovides an inadequate approximation. 1

j In treating multiple-input nonlinearities, the situation 1
becomes mere complicated. Let us consider a few examples: first,
i' we inziect

A e N S
-

o g

f(vl,vz) =vyvq = f + nlr1 + nyr,

i, f =mymy + pygy ;
3 .- n, =m, 1
}’ da nz = ml 4
3 i where the indicated quasi-linear approximation has been derived in
3 i Ref. 3. In a zero-mean situation, the quasi-linear representation
3
; .- degenerates to a single mean component* given by Pyg» the cross
E . correlation of A2 and Vg - By extension, any two-input relation

of the form

v - = £

- T(v1:v3) = %y 6aalV1) T2 0da(V2’ «
will have zero random component describing functions when vy and
{ - Vo have zero means, which will generally lead to unsatisfactory

results. Next, we consider

= 2 ~ 3
f(vl,vz) = ViV, F f + n,ry + nyr,

e 3 sk Aalem P st e a

*
We observe that the quasi-linear approximation, Eq. (4.2-8),
always conveys the mean input-output relation correctly.

4-9
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- 2
f= [m1(mz+p22) * 2”2912)]

2
ny = Mg + Pyy

ng = Lmymy + Pyy)

i
.
k‘
¥
;
E

which can be derived using the general result given in Eqs.(4.3-22),
: (4.3-32), oud (4.3-33). Here, in the zero-mean input case, we have
no output mean and non-zeruv random component gains for both ry and

Ty, provided Pio and Pyo 8re non-zero. Thus in general it would
seem that two-input relations of the form

f(vl,vz) = fl,odd(vl) fz,even(vz)
are advantageous from the point of view of describing function ap-

proximation accuracy in the zero mean case. Finally, using the
result in Eqs. (4.3-39) and (4.3-40),

e R s s st i

! - o2 2 A
" f(vl,vz) =V, Vo & f + n,ry + n,r,

y

2 2
(my+py ) (My+r55) 42D o (P o +2mymy)

_ 2
n; = 2m;y(my+py,)+dmgp,

sk e ikl

_ 2
ng = 2my(my+pyq)+dmipy,

E Again, there is no random-component transmission (n1=n2=0) in th.:
E zero mean case, so the nonlinearity form
f(V1'V2) = fl,even(vl) f2,even(V2)

is apt to give poor results in this situation. As in the discus-
sion of single~input nonlinearities, these comments may be di-

E rectly extended to the non-zero mean case.

;

|

The preceding paragraphs consider t¢he accuracy of quasi-
linear approximation for a number of nonlinearity types. The

problem that often arises is '"zero transmission' of one or more ran-
dom component(s); the basis of this phenomenon is that the random in-
put describing function n in the quasi-linear approximation, Eq.

(4.2-8), only captures that random component of the nonlinearity out-
put, z,which is correlated with the input variables, in the sense that

i

L= £ &= | e =
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D [rJz] 0
How serious this effect is on the overall accuracy of CADET is
highly dependent upon the complete system model; it may be that
the random effect which is neglected by the quasi-linearization pro-
cedure is truly insignificant, in the sense that other linear or
nonlinear dynamics may dominate. In this eventuality, the useful-
ness of CADET is unimpaired. On the other hand, it is a straight-
forward exercise to fabricate simple examples where a CADET analysis
would be totally incorrect --cf. Appendix B. A loose but useful
analogy can be drawn between the relation of describing function

accuracy to the validity of the complete guasi-linear system model
(in particular, to the accuracy of CADET analysis) and the parameter

sensitivity problem in linear systems theory (in particular, the re-

lation between the accuracy of standard covariance analysis, Sec-
tion 1.1, and imprecision in knowledge of the linear gains of the
system model). In the parameter sensitivity problem, an inaccurate
value for a specific gain in the model of a system may have virtu-
ally no effect on the overall system performance (in the low sensi-
tivity case), or it may make the model behave in a completely dif-
ferent manner than the system (in the high sensitivity case), ren-~
dering the model meaningless. Thus in assessing the usefulness of
CADET in a given situation, one must use insight and experience in
order to evaluate the approximate accuracy of the describing func-
tions used and the relative importance of their inaccuracy.

The preceding comments on the significance of oddness and
evenness should provide some useful guidelines in estimating the
accuracy of various ridf's. The results outlined in Section 4.4
also provide a good qualitative '"feel" for the inaccuracy in de-
scribing function calculations that arise from the departure of the
nonlinearity input from the gaussian assumption. We emphasize that,
because CADET is an approximate technique, it should be compared
with monte carlo simulations in a few selected cases, to verify
that CADET accurately captures the nonlinear effects under con-
sideration (refer to Fig. 5.2-2).
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4.3 RANDOM INPUT DESCRIBING FUNCTION CALCULATIONS

4.3.1 Siangle-Input Nonlinearities

In obtaining a quasi-linear representation of a nonlinear
function of one variable (v) under the gaussian assumption, we

E.
?

{ have
i f(v) &€ f + nr (4.3-1)
% where
% m=E [v]
3
. r =v -m
. = <2 =
h p = o = [r2]
g: 9 (4.3-2)
| . - L (x=m)
‘ f = 1 S f(v) e 2 o dv
/2n0 -0 v
; S
‘ . - - 1(em)’® ]
r n=23f_.__1 S (v-m) t(v) e 2% 7/ av L ]
B M famo3 :
3 o
3 Since the catalog of random input describing functions (ridf's) l f
provided in Appendix A is not exhaustive, the following detailed
examples will provide future users of CADET with some useful in- ﬂ
} sights into the development of describing functions for other non- i
! lineerities. E}
. {
E As a general observation, it is often advantageous to Ja
3 use a linear transformation to simplify the exponential function if :
; in Eq. (4.3-2); the change of variable o ;
v-m o
u o

N i
]
*\i
o " e
[ VAR RSN SER PSP SV ssw
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yields

1
A 1 Ao -iu
f & — f(ou+m)e
/27 S-w

du (4.3-3)

Further simplification may result by eliminating all terms in f
that are odd in u; for example

1.2 12
® 2 e ® 2,. 4 -3
S_m[ao+a1u+a2u +---] e du = S.w [a0+a2u +a,u +~--] e du
In general,
® = 3u had 12
f(outm)e 2 du = S £, (ousmye” 2% du (4.3-4)
where the even part is given by
fev(ou"'m) = % [f(ou+m) + f(—ou+m)] . (4.3-5)

After this procedure has been carried out, the following integral
evaluations often prove to be useful:

B SR
21 ¢ e
1.2
1 SOF) 2 - Eu
r——— u“e du = 1
/21 d»
- _1.2
7%: S ule 2 4y = 3 (4.3-6)
T -l
- 2
1 2k T 32
/2n S_m u-e du = (1)(3)(5)--(2k-1), k > 1
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? These results and others involving the integrand factor e"i u

may be found in any complete tables of definite integrals; cf.
Ref. 16.

Example 1: Using the above relations, we can obtain the
quasi-linear representation of the nonlinearity v3 by inspection.
: From Eq. (4.3-3)

B s e e R A e A R

g o - %-uz

? t =E [va] -1 (cu+m)3e du

5 2T Y=o

{

b Dropping terms that are odd in u yields

| .

E f=-L S [m3+3m02u2] e 2 du

i fon 9w ?i ;
E , so application of Eqs. (4.3-6) and (4.3-2) results in ¢ i
: . f = m3 + 3mo2 gg A
\ : (4.3-7) b
- af 2, 2 1|
\ n = gp = 3(m% + o) 1

Example 2: Trigonometric nonlinearities may be treated
conveniently using the above techniques in conjunction with com-

plex variable notation: recall that the complex function eiv is
X of the form

.
>
v ed

e
e

f(v) = elV

~

(]

cos v + 1 sin v (4.3-8) V
SO we have L

o

[ TSP P S

2
2 1 ‘ 1 /v-m
f = exp {- & {(— + iV‘ dv
2ng ¢~ 2 ( ° )

Adding and subtracting (- %02+ im) in the argument of the ex-
ponential function permits us to complete a square;

4-14
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1 2 j
A g 2 *
b L’ expg-é(!'-"“—;ﬁ’-—) fd" |

The final result is obtained by transforming as in Eq. (4.3-3);

12
- - + im
f =e ¥

- Lo?

= e (cos m + i sin m) (4.3-9)

Taking the real and imaginary parts of Eq. (4.3-9) yields the
mean component of the quasi-linear approximations of cos v and
sin v, respectively; the random component ridf is obtained by
taking the partial derivative with respect to the mean. We thus
obtain

cos v & E [cos v] + (v - m)

C SO o s e 80 8 e B8 o e

12
- e z [cos m - (sin m) r]
(4.3-10)
F sin v 8 E [sin v] + n(v - m)
i 1
= g [sin m + (cos m)r]

Example 3: Piecewise-linear characteristics corrmonly
occur in models of systems with saturation, quantization, dead-
zone, and other similar phenomena. Consider the ideal limiter
(saturation element):

v , lv] < v
f(v) = (4.3-11)

VmaxS1i€0(V), lv] > v

Direct application of Eq. (4.3-3) leads to

A S N g en Py ™
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n Vm 81 - 1u2 1 )
{ = - ax S e du + —=— S (ou+tm)e
1.2
v © - U
+ —pax e 2 du
/2n a,
{ where
| .
: max
% ; a8 * - o
L
‘ : Vv - m
PR = Mnax
S 42 o

F E possible.
]
u
E PF(w)
E
E PI(w)
'
E G(w)

PF(-w)

PI(-¥)

n>

>

>

I

- b
e

1
/2n
w

S PF(w) dw

-0

W
S PI(w) dw

w PI(w) + PF(w)

Some useful properties of these functions are

PF(w)

1 - PI(w)

G(-w) = G(w) - w

_ 1,2

du

(4.3-12)

Since some of the limits of these integrals are finite,
the direct evnluation of f in terms of erementary functions is not

We require two auxiliary functions based on the normal
density function, here denoted PF(w):

(4.3-13)

(4.3-14)
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lim PM(w) = 0
weie

i
1
|
l 1lim PI(w) = O, 1im PI(w) = 1 (4.3-18)
I
|
i

Wran W

lim G(w) = O, 1im G(w) = lim w = =
W= wo W

The mean ridf term f (Eq. (4.3-12)) can be manipulated directly
to obtain

+m v -m
f - a[G (2225-— )— G(L!E%$-—) ] - m (4.3-186)

[
From Eq. (4.3-13) we have that
B, dG
Y. -l PI(w)
ﬂ so by inspection the random component gain is
E 2t Voax™™ Vax™D
n=xs = PI — + PI - ] - 1 (4.3-17)

The functions in Eqs. (4.3-13), (4.3-16) and (4.3-17) are
standard in several works (cf. Refs. 6 and 18). Other references
(cf. Refs. 15, 17) use the error function,

e B

T R e T T e T T TP S, ST TR, T T T e

4, -
T LTI e

Gaq Py ey g

w 2
ert(w) 8 2_{ e au (4.3-18)
/F'So

which is related to the probability integral ™I(w) by
erf(w) = 2PI(/2w) - 1 (4.3-19)

Since the error function is available in some computer scientific
subroutine packages, it may be advantageous to use

' 4-17
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v +m\ v -m ]
n = % erf ( j:r ) + erf (—%é#——) ] (:1.14-20) T
20 20 i

This result and many other describting function representations

for a variety of piecewise-linear functions may be found in
Ref. 6, basic examples are given in Appendix A.

R

g [ T o
L] [ Y

L LR |
——rd

4.3.2 Multiple-Input Nonlinearities

s e e r——

4
»
[ ot )
Y

As might be anticipated, the describing function deriva-

t -

% ticn for functions with multiple inputs becomes more involved e}

g }han for the single-input cnse. In general, for two variables

i. ‘we seek T

' S [~3 . - é T T o
. C f(vy,vy) f + nyry * ngoy [ +nr

!
il
where L3

o T g8 LT T

T

: {]
p 5 )
- .| L % I
] P =g {5 r ]‘= sl
~ 2
! L P77y 92 .
\ 3
; SENE
f = S S f(v,,v,,) e dv,dv . i
k ——ZHIP_I i72 ) . ). 1'72 1772 i
h'\ (4-3‘-21) “
n, = <f_ ‘
1 9my 3
7
3t "
n' T vemmanmm
2 am2
‘ 4-18
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To demonstrate evaluation of iategrals of this form, we
consider the following general form of two-input nonlinearity for
which we derive a useful new result:

Case 1: For a nonlinearity that has a linear fector in
one variable,

f(vl,va) - vlg(va) (4.3-33)

we write Eq. (4.3-21) out fully to obtain

2
- 1 Y O 1 vy—my
f = v.8(Va) exp{- [(L___;>
aualonﬁ-p! S-u S- 172 2(1-p3) 9

o) (5 e

It would be possible to integrate this equation with respect to
vy directly, making use of the relation

v2

[ ) —
S u exp (—uu2+2vu) du -/1 ! X (4.3-24)
e u u

(Ref. 17). However, a more systematic approach, explained below,
reduces the possibility of error in the manipulations and algebra
involved in evaluating f. (The same technique is indispensable
for three or mere variables.)

Ccnsider the argument of the exponential factor, ng'lg;
we seek a linear transformation w = R'lg which simplifies the
integrations of Eq. (4.3-23). Choose the matrix R to be

.. R b (4.3-25)

{
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; l
g so by definition {
T .
p - RR (4.3‘26) -
; Defining w tuv be given by
| (|
| w = R"(y-m) l
|
e |
r - - B
: be Y W T [
- (4.3-27) ' 4
Vg-mg i
0
3 and 2 - } 3
3 ' E
i we obtain
; b
" (v-m)T 271 (y-m) = w'w (4.3-28)
L This change of variables in Eq. (4.3-23) leads to B
: i ;k
- - . - 1(w2+w2) H
l' 2‘ -l s m. +0 1—p2w+pw g (0 ,Watm, )€ LAl 2dw dw '
f 2r y ¥ )11 1772 272772 1772 |
¥ - . |
(4.3-29) ﬁ
.
The matrix R in Eq. (4.3-25) is specifically chosen to be lower l‘ {
triangular, i.e., zero below the diagonal, in order to make vg 4 —
linear function of wg alone, so that integration with respect to ’ ‘

t wy can be carried out irrespective of the form of g. Discarding . q
the odd terms in Wy, We use Eq. (4.3-6) to arrive at }

1
~ : 1 - 3v .
1 - o (m1+01pw2) g(02w2+m2)e dw2 (4.3-30)
a0 :

\
| ) 2 1
2 o
V3 ]

|

which has reduced the evaluation of f in Eq. (4.3-23) to an inte-
gration in one variable,

4-20
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The result in Eq. (4.3-30) can be further internreted to
obtain a fundamental form {or nonlinearities which are dincar in
one variable. First, consider the ridf approximation of g(vz)
alone: from Eqa. (4.3-1) to (4.3-3) we have

g(vg) @ &(m2'02)+ng‘(m2'02)(vz - m2)

where

41 S ey ewm i N O 0B B

o L e - 12
,: g g 1 S g(02w2+m2)e 2 2dw2
é TR
{ % (4.3-31)
- 1.2

& L - ng

¢ Al__l._s OnW, B (CoWotm,)e dw
% E ne ;g Jan 3w 2 2 272 72 2
Py

g
i t Qe We then recognize that Eq. (4.3-30) is simply
] 5,
k ?« I: f = mg + 00,0, ng (4.3-32)
o " and that the two random component ridf's are

‘4

k ' e - .—-—a? = r
. } ny = 3m; = 8(Mz.93)
i " .

. o o2 an

- g —B -
& ng = my 8m2 + po,04 amz (4.3-33)

——
i kX At

an
= myng * Pyg 3y

Consequently, given that the nonlinearity g(vg) is readily quasi-
linearized, it is a direct matter of differentiation to evaluate
ridf's for the multiple input nonlinearity vlg(vz).

ad Semg Pes]  jueq  pu?

4-21
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Example 4: As a special case, for the single-input
nonlinearity

f(v) = vg(v)
where g({v) has the quasi-linear approximation

g(v) & g + n (v - m)

we obtain

A ~ 2
f eamg + 0o ng

an

ne=g+ mn, + a2 565

This result permits the direct evaluation of ridf's for nonline-
arities that are related to simpler forms [g(v)] by multiplicative

powers of v, provided the quasi-linear approximation of the simpler
form is available,

Example 5: For the nonlinearity

f(vl.vz) = vy cos v,

we apply the relations given in Eqs. (4.3-32) and (4.3-33) to the
ridf's given in Eq. (4.3-10) to obtain

1
3 Pao

f = [m1 CO8S My = Dy, sin mz] e
n, =e cos m, (4.3-34)

1
n = - Im, sin m, + cos m e‘ 2 P22
2 1 2 7 Pig 2

4-22
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This result wes obtained in Ref. 3 by the more tedious direct
evaluation of Eq. (4.3-21).

Case 2: By using similar transformation techniques (refer
to Eqs. (4.3-25) and (4.3-26)), the three-variable case

2
<2
3
§

!

¥
?r

]
¥
r

|
|
I
[
i
{
L
L

é
g has been proven to lead to a mean component quasi-linear term of
. the form
& 5 . 8g 88
S =m,g +p = +p Cyeu
% | 1 12 am2 13 8m3
: ? . = mlg + plzngz + Plsng (4.3—36)
] L3 1 3
E .E ?_ where g(vz,vs) is represented in quasi-~linear form by
; ] g(vz,vs) g g+ ngz(vz-mz) + ngs(vs-ms) (4.3-37)
. i
L ? ’ This result should greatly expedite the evaluation of ridf's for |
) §' three-input nonlinearities that are linear in one variable.
k} & i
v Cuse 3: Based on the above results, Eqs. (4.3-32) and
3 T
E ; (4.3-36), it is a matter of direct extension to prove a general
b direct quasi-linear approximation for the nonlinearity class
o £(v,,vy) = vig(va) k=1,2 (4.3-38)
k- ‘ 1' 2 1 2 ] » T . {
|
»o First, we treat the case
o £(v,,V,) = V2E,(V,) (4.3-39
r . 1'V2 182(Vg -3-39)

as a special case of Eqs. (4.3-35) and (4.3-36) with g given by
vlgz(vz); applying Eq. {4.3-32), we obtain

o~d Puoed  peq

S e emera .--wmﬂi
e o b Bad i g B e i S S PO S AU U B NS URIPPRINT = SV SRV ATE TR SR T e

s a1+ Sl e ks - - o
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_ 2~ ;
$ %y , 2 4.3-40 1
b f= (m ) 82 + 2m1p12 r— + 912 ';n‘z' ( U ) U
i 2
? We can then proceed by induction to show that the general form {]
§ of the mean component ridf is
;' f =& vE|g+kp, EEL 2.1 k(k-1)p3, E |vi~2 |
b 1 12711 om, 2 12 am2 ,
|
Y k-1~ KA . ¥
| k-1 G k 3B (4.3-41) |
g * + kpyg E [va] kT T P12 TX U
! m om i
b 2 2 y
5
; or, to use the more compact binomial coefficient notation (Ref.18), [ »
F@ kY § k(k-1) .. (k-j+1) i
; (3) 3T (4.3-42) [
el 4
a: “ k aJé l
> 4] 2%
: = p [V ] (4.3-43) {
i | J-O( ) 12 1 a3 1 i
E f The random component ridf's are directly obtained by differentia- [J L
g f tion according to Eq. (4.2-11). This simple and powerful expres- f
§§ sion for ? reduces the ridf evaluation to a ralatively easy task []!
gj for a broad class of two~-variable functions. f}
R | -
- .
E‘ Various techniques exist for manipulating nonlinearities [f’f
é into forms that are directly treated by the above developments. )
y i
3 A particularly fruitful approach is the use of trigonometric iden- !{
3 tities to reformulate nonlinearities, as the following case demon-

strates.

T

ey

Example €: For a nonlinear function with multiple trigo-
ncmetric factors, e.g.

JOS——

i salCel i e

f(vl’VZ’VB) = v4 sin v, cos vq (4.3-44) g

|
L M i RG-SR JUr ) it PR e Hame ks Fad A s vmt o gk kT ,,,,V,___‘ug“s...m“w
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wer oan usce tho sum-and-dilference formulae (cef. Ref. 19) to
obtain

T P .

&

. 1T,
g sin v, cos v = 3 [51n (v2+v3) + sin (vz—vs)]

a5

and proceed as follows: From Eq. (4.3-10),

t

iy [
» oo b

-

1.2
E [sin w] = e 2 V¥ sin (my)

where w = vy + Va. In the two cases w = Vo v Eq. (4.2-2)

R i = A RS T e RN T R R L e T A N M LN

-~ 3 ’
_ yields
N
] _ ) 2
i i ‘ W = Vgtvg —e M, = Moimg, Oy = PyotP33tlPyg
k-\,‘ %‘i j
. '3: = - L = - 2 = -
[ T W= YaTVs My = Mp-My, Oy = Pya*P33=2Pa3
E : b
E L. Thus
: { i. g = E [sin v, cos VB]
? . L -3 (Pag*Pag) ~Pa3 Po3
é =ge e 81n(m2+m3) + e sin(mz—ms)]
i and the direct application of Eq. (4.3-36) leads to
> 1
i s _ o173 (PaptPy3) =P %
r= mlg + -2_e (p12+P13)e 23 COS(m2+m3)
I ’
Pa3 |
l + (plz-pls) e COS(mz-mB) (4.3—45) ?
‘ ) 4-25
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Obtaining this result by the direct application of Eq. (4.2-10)
would be very tedious.

Witk the tools developed in this section of the handbook
and the cataogue of single-variable ridf's provided in Appendix A, {g

TR TRETRICY M T e

a broad class of nonlinearities can be treated in a straightfor-
ward manner (with little or no analysis of the sort illustrated in :
this chapter). Thus these contributions significantly enhance the {
direct usefulness of CADET.

TR T ST E T N T WA e e e

; 4.4 EFFECTS OF DIFFERENT PROBABILITY DENSITY FUNCTIONS }J

E An important issue that must be investigated in order to
34, assess the potential accuracy of CADET is the effect of deviations

,_
T T

from the assumed joint normality of the state variables on the N
evaluation of random input describing functions (ridf's). The

gaussian hypothesis is the only approximation made in the appli-
cation of CADET, so any inaccuracy in performance projections ob-

tained via CADET is due to the nongaussian nature of the actual :
state variable joint probability density function (pdf). J

T,

In this section, we present results of an investigation (

PPV T

of the sensitivity of quasi-linearization to changes in the pdf of
the nonlinearity input (Ref. 4). We compare the ridf's correspond- [

ing to three common nonlinearities -- the limiter, the sinusoidal

operator, and a power law nonlinearity -- computed for a variety

e~

of density fuactions. Seven probability density functions with
quite different functional forms are considered. Four of these .
are given in Table C.2-1, viz., the exponential, gaussian, tri- {; f
angular, and uniform distributions. Three additional densities

i are special cases of the sum of two symmetrical triangular func- {‘
tions, defined in general by

L“. i
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NEEEN
p(x) 8{2%8 (1 — ) [Ixl- x| < (4.4-1)

Y

0 , ]le- xo' > A

which has a zero mean, a variance given by

2 _ .2 1 .2 -
o X, + 3 A (4.4-2)

and a kurtosis (ratio of fourth moment to variance squared, of

u x4 + Azxz + 1 A4
A A4, 0 0 15 (4.4-3) ]
4 1,2 §_+ 1 A4 ‘ 1
o Xo + -3-A Xo 36 3

The three cases of Eq. (4.4-1) chosen for the comparison cor-
respond to A = % Xor %o and 2xo; the associated pdf's are por-
trayed in Fig. 4.4-1. Note that two of these densities are bi-
modal; i.e., they have two distinct peaks.

Aph)

e R Pl i

p(x) R-1952
J.

2%y

2

Axg <Xy -1x o %o % x "2 X X !
A
3

(°)A=‘3X° (b) A= xg
\ ‘
-‘- !
/4% i
~.- |

AN

; A I —— i

=3xg “Xo *o Ixg X

(¢) A=z2x,

Figure 4.4-1 Three Density Functions Comprised of Two Triangles i
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It is shown in the discussion of confidence intervals for -
the estimated standard deviation obtained via the monte carlo method .
(Section C.2) that the kurtosis has a significant impact on the
confidence we have in the accuracy of the estimate. Here it is
observed that the value of the random input describing function
calculated for various pdf's seems to be directly related to the
kurtosis. Thus we order the seven pdf's under consideration [}
according to the value of A:

[
pl(x) - T;; OXp (- —? le) H *1 =g (exponential) .
-l 2\ . A, =3 (gaussian) [
Tl W) 2 ‘ .
1 JE3N t :
Po(x) = — (1 ~ . |xl < /8 o; Aq * 3.4 (triangular) = |
s /50( /30) =l < 3
1 ""l - "ol ) ” ‘
p‘(x) = (1 - __—!x_o— . l]xl - xo' 2 ax, x‘ = 2,14 (Fig. 4.4-10) Lk
h
1 . -
Py(x) = 7 Ix| < /3o ; Ag = 1.8 (uniform) H ;
. 3
. x| - x a ki
Pg(X) = g- (1 -Lx—o—f’-) ]xl - xol < x5 A\g = 1.52 (Fig. 4.4-1b) “ j
d i
']
x| - x {
Py(x) = _l.(} - I X °{), Ixl - %) < 5%, Xy =1.16 (Fig. 4.4-1n) l-l :
(4.4-4) i.'
.
|
While these density functions are not exhaustive in a formal -
sense, they dco represent a yﬁriety of situations. All of the f;
densities given in Eq. (4.4-4) have even symmetry; we note that . @
skew densities can be disregarded in this context with no loss tf

in generality. For a skew density ps(x) we can define its even
part by }

Pey(X) = 3 (D (x) + p(=%)) ;\




g e e

R Rt e Al e T

adds falgat ot 4

TPV TR W e U LT T T T r

d o P

pae gals

YR Wy O

i
i
I
i
i
!
i
i
i
I

L gy {

| w4

THE ANALYTIC S8CIENCES CORPORATION

Since the three nonlinearities considered are symmetric (odd) and
the mean values of their inputs are zero, only the even part of
the pdf contributes to the describing function calculation.

Limiter — The ideal limiter or saturation operator,

x , x| 28
f(x) = (4.4-5)
§ sign (x) , |x| > 6

is a common piecewise-linear function used to model nonlinear
phenomena. 1In Fig. 4.4-2, we portray the various describing func-
tion gains for this nonlinearity, corresponding to the pdf's de-
fined in Eq. (4.4-4), as functions of the ratio of the input rms
level, o, to the saturation point, 8. As would be expected, all
seven quasi-linear gains capture the fact that the effective gain
starts to decrease from unity whenever a significant portion of
the assumed input pdf lies beyond the saturation point, i.e.,
whenever there is a significant probability that |x| is greater
than §. As has been pointed out previously, this effect is the
key to the success of quasi-linearization techniques in reflect-
ing nonlinear system behavior that is beyond the scope of small-
signal (Taylor series) linearization.

It is interesting to observe that the relative positions
of the curves in Fig. 4.4-2 exhibit a monotonic relation to the
value of A. The greater the difference between A for a particu-
lar pdf and the value for the gaussian case () = 3), the greater
the difference between that density function's ridf curve and the
curve for a gaussian distribution. This behavior holds in all the
cases considered here, and is indicative of the fact that the value
of A is one quantitative measure of how 'close" the density func-
tion is to being gaussian. The variation of the ridf's with A is
about at its maximum (on a percentage basis) for the case 0 = 2§;
the ridf decreases 13% as A increases from 3 to 6, and increases
28% as ) decreases from 3 to 1.16.

4-29

S R N AT PRTI STROOY J R vy MMMM



e - - e he S alingh o8 44
en - ; L e T PR T
T I L T BRI A Ve S R B deC SN L  bETERAME AN RSN M

THE ANALY TIC SCIENCES CORPORATION

12, ®» 11008

SMALL SIGNAL LINEARIZATION

V “ |
.. 0 LIMITER
: UNIFORM t
E os } 3
r
osl
EXPONENTIAL

GAUSSIAN
0A TRIANGULAR

Mr

RAND/ M INPUT DESCRIBING FUNCTION FOR THE LIMITER,

it

0 1 1 i A e . sk
03 10 1K) "0 28 30 2% 40

RATIO OF INPUT STANDARD DEVIATION TO SATURATION POINT, 0/6

o Figure 4.4-2 Random Input Describing Function
! Sensitivity for the Limiter

P. - Law — A similar study was performed for a power-
law characte ‘'stic,

- T T T L T TR AT Y T T G
=

f(x) = x2 sign (x) (4.4-6)

| ‘ This type of nonlinearity is often used to model effects such as i

the "hard spri._ ' characteristic (Ref. 15) discussed in consider-
i ing nonlinear restoring torques acting on the missile seeker head,
? Section 3.6. For the power law, the ridf's calculated for the :
same density functions considered previously have the form (Ref.4) i

] n; = uyo (4.4-7)

where o is the input rms level and Wy are coefficients determined
by the input pdf's, pi(x). Thus the describing function gain for
f(x) increases linearly with the input rms level, in direct con-
trast to the small-signal linear gain which is identically equal

At s R o

. IS ... ~ - . RG] ‘__.LMMAJ
L i S s bk bk AR R 3 " A reaite e s G ten s e b dokeem - . . . st
s . i L ’ ik A




THE ANALYTIC SCIENCES CORPORATION

!
0
U
|
!
CI
]
]
[
!

P ——"

RPN

Caa e Bt St A Mt b AL RPN T

to zero, as shown in Fig. 4.4-3. It is again observed that there
is a monotonic relation between ki and the ridf curves. In this
case, an increase in )\ leads to an increase in the describing
function gain, which is contrary to the behavior shown for the
limiter. This is a result of the fact that the power law output
increases more rapidly with increasing input than a linear charac-
teristic, whereas the opposite is true for saturation. For the
power law nonlinearity, the ridf sensitivity is independent of o,
i.e., the ratio of ridf's calculated for pi(x) and py(x) is simply
“1/"3‘ For f£(x) in Eq. (4.4-6), the describing function gain n
varies from + 33% for the exponentially distributed case, to -34%
for the pdf p7(x}, compared to the gaussian input ridf, which
shows that this nonlinearity is somewhat more sensitive to vari-
ations in A than the limiter.

e n.11968

% POVIER LAW NONLINEARITY EXPONENTIAL

: o A

g 20|

z

2 > GAUSSIAN
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IR ¢ by

E UNIFORM

4 Po

& J

B 1o}

by

g

@

&

g os} Z

§ Z SMALL SIGNAL LINEARIZATION

2

g 0 ) 1 I 3 ) q

0 0.2 04 0.6 " 08 10 1.2
INPUT STANDARD DEVIATION, ¢
Figure 4.4-3 Random Input Describing Function

Sensitivity for the Power Law
Nonlinearity
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Sinusoidal Operator — The third nonlinearity considered
in these sensitivity studies is the sinusoidal oporator,

e g

f(x) = sin x

§ T ey g -

which is needed to resolve the missile and target velocity vec- ']
tors in the missile-target intercept model, for example. A po- L
tential source of difficulty with this function is that the non-
linearity output periodically changes sign with increasing or .
decreasing values of its input. This leads to quasi-linear gains
that, for large values of rms input, v, may even differ in sign
for different input pdf's. This problem is not unique to CADET;
e in many modeling and simulation studies, care must be exercised

P )

- e e

Preemising

when the input to a sinusocidal operator (or any other trigono-

metric nonlinearity) can exceed t 90 deg (x n/2 rad), since in
P some sease the 'gain'" can change sign in some situations. Bear-
o ing this in mind, we have calculated the random input describing
functions for values of o as large as 3 rad to indicate where
such effects become important, as shown in Fig. 4.4-4.

PRSP
PR

o T Y

The quasi-linear gains for o < n/2 rad show some simi-
larily to those obtained for the limiter; this is a reasonable
mode of behavior, since the sine function shows a definite satu- :
ration effect of the range |x| < n/2 rad. As expected, the ridf's (N
are inversely related to A for ¢ < n/2 rad, i.e., us A increases,
n decreases. However, as the input rms level approaches 3 rad,
the describing functions for all of the pdf's except pj(x) and
pz(x) become negative, and the monotonic relationship between A ,
and n appears to be lost. : i

T T T T e R T WO

The preceding studies\ﬁndicate that the sensitivity of
random input describing funahioﬁ calculations to variations in
input probability density function is slight for small values of 8
input rms level; as ¢ approaches zerc, the quasi-linear gains
approach unity for the limiter and sinusoidal operator, and zero
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-
»

024 m T = % T 10
INPUT STANDARD DEVIATION, v {rou}
Figure 4.4-4 Random Input Describing Function
Sensitivity for the Sinusoidal
Operator

for the power law nonlinearity. These limiting cases are che same
values of gain that would be obtained by the traditional small-
signal linearization approach -- viz., by replacing f(x) with a
linear gain equal to the slope of the function at the origin
(Section 1.2). As a general result, it has been shown (Ref. 6)
that quasi-linearization subsumes small-signal linearization,
i.e., for small signal: the two are equivalent. This, in turn,
proves that CADET provides nearly exact statistical analyses when
the random variables have a small rms value in relation to the sys-
tem nonlinearities, i.e., when most of each nonlinearity input
probability density function lies in the linear region of its non-
linearity. As the rms levels of system variables increase so that
the nonlinearities are being exercised significantly, the describ-
ing function sensitivity to the input pdf can be appreciable; then
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it must be ascertained how sensitive the system performance is to
variations in gain at each point in the system model where a non-
linearity occurs. No general answer can be given to this question;
the verification of CADET for particular applications must be
accomplished by direct comparison with monte carlo results, as has
been done in Chapter 4 of Ref. 4 for the missile homing guidance
system.

4.5 DESCRIBING FUNCTIONS NOT EXISTING IN CLOSED
FORM UNDER THE GAUSSIAN ASSUMPTION

For certain nonlinearities, random input describing func-
tions cannot be obtained in closed form under the assumption that
the inputs are jointly normal. In this section we indicate some
approximate methods for computing ridf's that involve either ap-
proximations to the input probability density function, or approxi-
mations to the nonlinearity, and discuss their usefulness.

An example of interest in the missile-target intercept
problem is the nonlinearity

f(x,y) = x2 + yz (4.5-1)

which defines the missile-to-target range in terms of the cartesian
components of the separation, X and y. This problem is considered
in some detail to provide a focus for the discussion of several
ridf approximation techniques. We compare the accuracy of each
approach for the nonlinearity given in Eq. (4.5-1), and point out
some pitfalls that may be encountered if care is not taken.

In order to simplify the discussion, we assume that»y
does not have a mcan component, and X has a negligible random
component., This approximation is valid in many missile-tavget
intercept situations except at the very end of the engagement
(refer to Section 4.1 of Ref. 4). Vith these assumptions, there

i e Al
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ure only two ridf's, ? and n , needed for a quasi-linear repre-
sentation of the range. Thus from Eq. (4.1-1), we seek to evaluate

- E[,/‘i + ya]-f p(y) /m2 + ,3ay

73
ny =g { wpy) /of +y? oy
o )
y

§ Under the assumption that y is a gaussian random variable, the
second of these integrals can be evaluated analytically; however,
-
T the first, which is of the form
*
! E f = 1 Sw /m3 + y2 exp| - 235 dy ' (4.5-2)
¢ fano o’ X 20
y y i
B f
Y cannot generally be solved in closed form unless m, = 0, in which 4

case we have

e i

e . ST T B r—rr— T Al R S T T T T
FLE Jm—

N P A D
if t=E[|yl] ‘/T-I’: o (4.5-3) .J
=‘ |
ot For the more general situation given by Fq. (4.5-2) with m ¥ O, |
3
e it is desirable to use some approximate technique to obtain a ]
L closed form expression for f that is convenient for use in a CADET 1
- analysis. * ‘
A
§ A Taylor series expansion of a function of a random vari-
by i able, f(y), about the mean of that variable, m, results in i
E df 1 a%¢ 2 3
: I f(y) = #(m) + go| T+ 5 =3 ré+ . .. (4.5-4) :
s Vigem dy®ly=m !
* — i
I While f in Eq. (4.5-2) for given values of mx and oy can be cal- T
culated by numerical integration, a less time-consum¥ng approach
l is desired for repeated evaluation in a CADET analysis,
' 4-35
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where r = y-m. We desire to determine the expected value of the
above function, which is given by

2

3
E[f(y)] = f(m) + 3 3_5 o2+ % i*g E [r3] + .
y y

y-m ylm

E
E
b
t

(4.5-5)
where use is made of the fact that E [r] is zeru to eliminute
the second term in Eq. (4.5-4); all other odd central moment

terms (E [r3] etc.) are also zero for symmetric pdf's. Truncat-
ing the series given in Eq. (4.5-5) at the second term, we obtain

1 ¢? 2
E[f(y)]® £(m) + 3 3 oy (4.5-6)
y

y=m

i which is un approximation suggested in Ref. 8. We note that this
result is independent of the particular density function of yv. If
more terms are desired, the higher-order central moments can be
evaluated using a specified pdf. If y is gaussian, all odd cen-

tral moments are zero and even central moments are given by
(Ret, 8)

gy & E [rsz = (1)(3)(5)...(2k - 1)o2K

b

T T g Y P T T g T T T T i = 0w i, T

; as can be inferred from Eq. (4.3-6). Thus the full expansion is

: ELrn] = rm + L4 2, @ e 4y
4y yem dy | oem
(4.5-7)
i
g The use of the first term alone in Eq. (4.5-7) corres-

ponds to sma'!l signal linearization; taking two terms as indicated 1

in Eq. (4.5-6) results in a quasi-linear gain that is often use- |

ful. We observe that the existence of a well-behaved (i.e.

A3

i
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convergent) expansion for f(y) does not guarantee that Eq. (4.5-7)
exhibits the same behavior.

gonecy

In the present case, the series expansion approach is
effective for evaluating f only in situations where m, is con-

siderably larger in magnitude than o
2

. |

-
.

, due to the singularities
at the origin (mx = 0). To demon-
strate this difficulty, we write the series expansion for the
nonlinearity under consideration (Ref. 19),

. 2 4 3
W NNI TR TS D PP

$

of the derivatives of mi + y

..“‘1 r“&
b oatilaacels ¥t

X X

o=

from which we obtain

al . 0. \2 o, \4
' l £f=|m| [1 *%(Eﬁ)‘ %(m—1> + .. ] (4.5-9)

.

L — TR Y Y

X l
]
' 1
P I‘ as an approximate describing function to represent the mean com- :
i ponent of the range. For my considerably larger than Oy’ the ]

first few terms of this expansion yield acceptable accuracy.*

[ Y]
L] a

However, since my apprcaches zero as range goes to zero in the
- missile-target intercept problem, using Eq. (4.5-9) is generally

k
not suyitable.

T T -

[ 2 o

A second method for approximating the integral in Eq.
(4.5-2) is the substitution of a nongaussian pdf for which the
integral can be obtained in closed form. As in previous sensi-
tivity studies (Section 4.4), the best result is obtained using
the triangular pdf. Substituting this distribution into

54
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*We note that the expansion indicated in Eq. (4.5-9) never con-
verges formally, i.e., for any value of oy/mx, no matter how

small, the series will eventually diverge® as more terms are
evaluated. This is a standard property of asymptotic expansions
which are useful only when truncated after a finite number of terms.
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Equation (4.5-1) leads to an integral that is evaluated in closed
form to be

n m Al /— 42
f = —35- 1402 42 log ELELA LA PR N \)3-(1+\)2)3/2

v /6

14.5-10)

where the auxiliary variable v is given by

s M

= 7=
60y

AV

(4.5-11)

The accuracy of Eq. (4.5-10) is quite good, especially when com-
pared with the poor approximation given by the series expansion

in Eq. (4.5-9) when |mx| is less than or equal to oy. The error
between f£q. (4.5-10) and the exact result specified ‘n Eq. (4.5-2),
as shown in Fig. 4.5-1, is less than 3%, which is adequate for
most applications.

¥e note that the conclusion that the series expansion

technique is not useful for computing the ridf in the case treated

above should not be taken as universally true. When series ap-

proximations for an ridf can be obtained which are accurate over
the entire range of the input statistics, they will generailly
yield good results. Another important consideration is that the
series expansion technique is generally feasible for highly com-
plicated nonlinearities, as demonstrated in Section A.4, while
evaluating f by integration with any approximate pdf p(y) may be
impractical or impossible. The cases treated in Section A.4 thus
illustrate the power of the series expansion technique, given in
Eqs. (4.5-6) and (4.5-7), while the above presentation indicates
the care that must be exercised to avoid convergence problems.

This chapter presents a detailed outline of the theory
and application of statistical linearization. Guidance in

4-38
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Figure 4.5-1 Comparison of Approximations for
the Expected Value of the Range

deriving random input describing functions is suppl.ed in a
variety of examples, and a comprehensive discussion of the sen-
sitivity of ridf calculation to deviations from the assumption
of joint normality is provided. These contributions should aid
future users of CADET in performing statistical analyses of non-
linear systems with random inputs, and in assessing the accuracy

of their results.
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5. OVERVIEW AND ASSESSMENT OF CADET

5.1 DIRRCT CADET-MONTE CARIO COMPARISONS

Since CADET and the monte carlo method are the oply tcolse
available for the statistical analysis of the performsuce of asop-
iinear aystems with random inputs, the ultimate value of CADRT csn
only be established by comparing the reistive efficacy of the two

_approaches. In 1his section, we wiil touch oa utility, gggg;gg

application, expeuditure of computer time, and accurecy. Based

on these factors, and on other characteristics nf the two tech-
niques, ws will outline the philosophy for th asplication of CADET
that has been developed at TASC, and summarize the sironrz snd weuk
points of this methodology. The coaclusinns, while bamed chiefly
on extensive experience gained in treating the missile-target

intercent nroblem ehould

»”
..... PRI »

applications of CADET.

-a

rovide useful guldelines for broader

5.1.1 Overview and CADET Mechanization

In Chaptsr 1 we have derived differentisl equations gov-
erning the approximate evolution of the mean vector and covir.ance
matrix of nonlinear time-varving systems with random inputs, Have
ing the form

k= f£(x,t) + G(¢) w(t) (5.1-1)

where x(t) and w(t) are vectors compuseld of the system states azd
raéndom inputg, respectively. (Refer to S8ection 1.2 for further
details.) Boarore the CADET egquations can v iaplemeated, it is
necessary to have the random input describing funct.ons (ridf'e)
required for a guasi-:ipear representation cof every system

el g ek o T romina e i Sk 3 m R e ik L L
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nonlinearity. The ridf's for a broad set of single-input non-
linearities are directly available from Ref. 6 (see also Appen- {
dix A). In addition, Chapter 4 of this handbook providses ridf's T}
for a number c¢f common multiple-input nonlinearity form:.  Con- '
sequently, use of CADET is often a matter of direct substitution o
of kncwn ridi's in the mean and covariance equations, as demon-

strated in Chapter 2. If a matrix computer language is available
to the anelyst, the construction of a computer program for apply-
ing CADET is no more difficult than the programming required for

using the monte carlo method. As an added benefit, CADET does o
not necessitate use of a rag&om number generator; a common source '
of concern in the monte carlo method is the gquestion of what con-

stitutes a '"good"” random number sequence and how such a sequence

can be generated.

Thus from the point of view of utility and mechaniza-
tion, the two techniques appear to be quite comparable -- there
is no clegr~cut reason to state that one technique is superior

t0 the other based on ithese considerations.

5.1.2 Accuracy and Efficiency

One of the main arguments that can be advanced for the
use of CADET in ob*aining projections of nonlinear system per-
formance is the significant reduction in computer central pro-
cessing unit (CPU) time achieved by using CADET instead of the
monte cario method. In making this comparison, two issues must
be addressed: the number of monte carlo trials that must be per-
formed in order to cobtai comparably accurat2 results, anli the
practical limitation impcsed by computer costs. From the stand-
point of accuracy, a decision regarding the required number of
monte carlo trials is somewhat arbitrary, because the error
mechanisms of CADET and the monte carlo method are dissimilar.
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Referring tc Fig. C.3~2b, we note that, in a situation where the
statistics are ¢uite nongaussian, the CADET computation of the

rms value vf a system variable appears to be at least as accurate
as the value estimated with 400 monte carlo trials, in the sense
that the 95% confidence band for 400 trials brackets the CADET re-
sult. Where the statistics are more pearly gzussian, e.g. as in
Fig. C.3-3a, it would seem that CADET accuracy is comparable to
that achicved by mors than 500 monte carlo trials.* On the other
hand, a pragmatic evaluation of the efficiency of CADET should take
inio account the fact that most monte carlo studies must be limited
in scope by computer budget constrainte. A reasonable upper bound
is ihus 256 trials since, in the gaussian case, this results in

85% confidence that an accuracy of 10% can be achieved (S8ecticn T.2);

Yor high-order systems, even this number of trials may require an
.nordinate amount of computer time. For the present discussion,
we therefore compare the relative efficiency of the moante carlo
and CADET approsaches on the basis of 256 trials, recognizing that

the estimated rms values of the system variables obtained for this
num'ne.s' Qf monta carln ay

LU L PR

CADET results,

s may be l&éss accurate than the

In pust studies, Refs. 1 to 4, the savings in computer
CPU time achieved by the appiication of CADET has always been
significant in comparison with 256-trial monte carlc studies., even
though the system troated in some cases has been of high order
(with up to 42 system states) and very nonlinear (having up te
26 nonlinesarities). We discuss below hew both of these factors
tend to reduce the relative {ficiency of CADET.

Honto cerlo simulation for a system with n states requires
the integration of an n-vector differential equation (repeated g
times where q is the number of trials), while CADET iavolves Lhe

*
Racall that CADET is exact in the linear gaussian case,
Section 1.1,
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propagation of the n-element mean vector, m, and the nxn symmetric
; i covariance matrix, P ~- a totsl of n(n+t3)/2 elements. Thus the

% : computational burden for CADET can increase as fast as n2/2 while

L : the CPU time for monte cirlo analysis only varies as n, demonstrat-
E ‘ ing that an increase in the number of states may reduce the ad-

f vantage of CADET in efticiency. This factor can be mitigated to a
: , large extent when there is little dynamic cross-coupling in the
system; in the quasi-linear system model, Eq. (4.1-4), this cor-
responds to N having few non-zero elements (N being sparse). In
many practical problems, N is sparse uand s considerable increase
in the computational efficiency of CADET can be realized by the
application of techniques which circumvent multiplications in-
volving zero elements, thus streamlining the evaluation of P
{(Bq. (1.2-7)). Such sn approach has proven to be valuable in the
studies presented in Ref. 3.

The number of nonlinearities may also increase the com-
putation time required by CADET, since the calculation of a ran-

dom ianput describing Juuncilon generaily reqguires more iogical and -

,.
P
[

numerical operations than evaluating the corresponding nonlinear
function in the monte carlo program (refer to Appendix A, for

4 example). The investigation treated in Ref. 4 was exceptional in

§ having nearly as many nonlinearities as state variables; more

E typical applications of CADET would focus on a few principal non- ?} E
}

grsnnmia
Nttt

linear «ffects, leading to u still more favorable comparison of
CADET with the monte carlo method in terms of computatior il burden :
per performance evaluation. R

Using the same integration method in performing the monte

carlce ensemble ¢f simulations as was used in propagating the sys-
tem mean vector a d ccvariance matrix vis CANDET, and assuming that

ISP PRI T

the same integration step size is required in each procedure, the
results summarized in Table 5. 1-1 indicate the effect of the sys-
tem dimsnsionality (number of states) and degree of nonlinearity
{number of nonlinearities) in typical studies of the missile-target

S
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TABLE §.1~1

CUOMPARISON OF CADET AND MONTE CARLO E¥FICIENCY
BASED ON 256-TRIAL MONTE CARLO ANALYSIS

Numdy - Number SI Ratio of Computer Time Costis:
of Btaies® [Honlinearities Monte Curlo/c:?!T
Ret. 3 1 3 | 30
Ref. 3 17 B 18-20
Ref. 4 22 a3 10
uanf. 23 432 28 20-30%**

‘COutinuous- any discreto-time dypasic states Hnly; bisas
states omitted.

“Optiniuod. using fast sparse-matrix-sultiplication
gubroutines.

intercept problem. Comvaring the investigations of Refa. 2 and 4

’

we note a considerable decrease in relative CADET efficiency caused

by increased s, . . Omp .ity; in the analysis of the system
model given in /. 3, an intermediate degree of cocupiexity and
corresponding efriciency is noted. The study of Ref. 23, also
indicated in Table 5.1-1, shows the significent improvement that
can be achieved by careful CADET program optimization, using the
fast sparse-matrix-multiplication subroutine approach mentioned
above,.

We should also point out that in some circumstances the
monte carlo approach may require 2 reduced integration step size
to avoid failure of the numerice’™ ~tegration technique (refer te
Section 4.4 of Ref. 4, for examy .. In such cases the monte
carlo/CADET CPU time ratio will be even higher.

e o e e
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5.2 OTHER FACTORS AND PHILOSOPHY OF APPLICATION

In comparing CADET and the monte caric method for use ip
odtaining performance project’ons for acnlinear systems with raa-
dom inputs, we have obgerved that there are several significant
simiiarities. Both techniques are gpplicable to nonlinear kyu—
tem models with an arbitrary aumber of statee and nonlinsarities,
and we often rely on the gaussian assumption in sssesaing the
sccuracy of the performance statimtics obtained (refer to Sec-
tions 1.2 and C.2). In either case, departure from normali‘y
can he compensated for to a certain extent; in CADET, nongauseian
probability density functions can be used in calculating de-
scribing functions, while in monte carlo simulation the facit that
the confidence band linmits may increase for nongaussian random vari.
ables (Fig. C€.2-2) can be counteracted by increasiang the number
of trials performed. The principie trade-coff between the two
methods is in efficlency versus versatility.

The monte cario gimiiation enmsemble of q representative
state trajectories (Eq. (C.1-4)) can be used not oaly &8 a data

base for calculating astimated performance statistics é(t) and
ﬁ(t) at instante of time of interest, but also for estimetisyg
highe» order moments, and for generating histograms which are ap-
_roximate density functions for the variables undcr considera-
tion. However, :the versatility of the monte carlio method can only
be exploited with a further ignificant increase in computer time
expenditure over that indica.ed in Table 5.1-7; while the esti-
mation of é and ﬁ may reguire several hundred trials or more, it
is gererally necessary to perform thousands cof trials in order to
obtain an accurate estimate of the paf cf a random variable (and,
cf course, what constitutes an '"'accurate estimate’” 1is generally a
subjective value Jjudgmert in a nopgaussian case). In the sense
that one can always obtaln a2 better egtimate of the statietics

of s random vaiiable by running more trials (computer budget per-
mitting), the monte carlo method iu a "self-checking" procedure.

5-8
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CADET, on the other hand, provides approximate values for m(t)
and P(t) in a single numerical integration of the quasi-linear ]
covariance equations (Eq. (1.2--7)), usually in a small fraction
of the computer processing time required for an accurate monte
3 carlo analysis.

ey |

{ “ One of the primary purposes of the statistical analysis
r of nonlinear systen performance is the evaluation of tle change in {
system effectivoness due to variations in random ipput lavels, i

- -

- initial condition statistics, system paramcter values and second- 4
N ary nonlinear effects. The multiplicity or factors such as these
implies that the analysis will generally be ¢ e repeatedly, and i
computational efficiency is thus an important consideration. This !
point is a strong argument in favor of CADET. On the other hand, i
the versatility of monte carlo simulation (with its self-check i
; capability) permits us to assess the accuracy of the nonte carlo

> W——w’w-—-rv”—— e e
> . .-
- 1

[~ analysis. This is a feature lacking in CADET which makes it !

. advisable to utilize monte carlo simulaticn in a monitoricg capa- f

r~ city, since it is always possible to obtain reasonably accurate i

é . performance projecitions by increasing the number of trials suffi- E
ciently.

The effective use of CADET and mounte carlo analysis in 1
[~ concert can be demonstrated in a hypothetical trade-off study where }

. two parameters, say oy and O are to bpe varied over ‘ertain ranges 1

- to obtain optimal performance in some sense (to minimize rms

{ terminal miss distance in the missile-target intercept problem, for
example). As shown in Fig. 5.2-1, a few points in the parameter
rlane are chosen for careful CADET-monte carlo comparison (verifi-
cation of CADET); then extensive performance curves are generated

using CADET, from which the optimal values of ay and o, are chosen.

2
If desired, the vicinity of the pcint of optimality can be studiec

I using a few selected values of oy and a, and performing the required

moxte carlo simulations. Similar approsches can be used in study-
ing sensitivity to nonlinear and random effects.

w
1
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Figure 5.2-1 Illustration pf CADBT and Monte Carlo

Anrlysis in a Parameter Trade-Off Study

The overr 1l philosophy of CADET usage, based onr the str
points of both CA 4T and monte carvlo simulation, is illustrated :
Fig. 5.2-2. The initial verification procedure is generailly unds
taxen for the ''nominal system,"” i.e., for ithe system with nominasl
parameter values, and is of necessity quite meticulous. Thus
several hundred monte carlo triale aay be performed, and if therc
is reason to helieve that the system is highly nonlinear -- so
that the system variables may be quite nongaussian -- it may de
necessary to investigate higher order moments orx histograms to
decide whether more trials are needed in order to obtain a re-
liable statistical analysis. Once this phase has been completeu
satisfaciorily, the CADET parameter sensitivity studies can then
be performed. Observe that the preliminary carsful but time-
consuming monte carlo study is always required if sccurate per-
formance statistics are to be obtained from monte carlo simulstic
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! Figure 5,2-2 Philosophy of CADET Applicaiion
[ 99
with high confidence. The use of these statistics to verify
[' CADET paves the way for efficiently performing a wide variety of
) sensitivity studies. In the latter analyses, it may be advisable
{ to make comparisons with monte carlo results i1n selected cases to
reverify CADET accuracy. This approach mirrors that used in the
!' studies described in Refs. 1 to 4.
i' 5.3 CADET DEVELOPMENT TO DATE: SUMMARY AND CONCLUSIONS
r 5.3.1 Summary
L.

A major goal of the studies described in Refs.

—~ ey P

1 to 4

was to extend the proven capsbility of the Covariancc Anaiysis
DEscribing Function Techniyue -~ CADET -- to provide accurate

.
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performance projections for tactical misstle guldence system
models that are quite reslistic -- i.e., tiat incorporate a num-
ber of gignificant nonlinoar and random effects. The approach
used to achieve this objective has entailed

e Verification of CADET periormance projactions
by the use of selected munt. carlo perform-
ance studies

o Investigation of the sensitivity of CADET
analysis to deviafion from the assumption that
the state variables are Jjointly normal.

In these investigations, the following effects were treated:

Sources of Nonlinearity

® Guidance law
® Acceleration command limiting
® Aerodynamic effects (nonlinear airframe)
® Missile-~target intercept geometry
e Coordinate transformuatiions
e Range-dependent seeker noise sources
e Receiver/signal processing characteristics
® Seeker radome aberration
® Seeker mass imbalance
® Seeker gimbal Coulomb friction
e Seeker head restoring torques (nonlinear
spring effects)
Random Effects
& Tracking sensor noise and measurement errcors
® Range rate measurement error
¢ Target maneuwvers
e Deviation of initial conditions from

nominal values

Two aspects of the sensitivity piobiem have been considered
in Chapier 4: the sensitivity uf random input describing funcuion

o
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calculations to tie probability density function of the nonlinearvity
input, and the calculation of approximate random input descr bing
funciions when it is inconveniont to use the exact result for the

gaussian case.

5.3.2 Conclusions

The investigastions described in Refs. 1 to 4 have indeed
shown tnat CADET iy un sccurate aund efficient tool for conducting
Statistical) snalyses of the performance of a tactical missile

4

system including the eifects of a number of significant nonlinear

and random phenomena. The conclvi-ions drawn from these studies

can he summurizod as follows:

3

[

@ CADET hag ibhe demousirated abilixy to capture
the tapact of ali of the ncenlinear oflects
iisted above on guidance sysiem perfoimance.
Im all cuses studied, CADET results are close
to or within the 95% confidencs iimits of the

4

- gy P .ua-.h ' -

*

T T S a, T e~ T T e =

g' monte carlo auslysis for up to H090 trials.
i. Thily degree of agréemnent was gensrally main-
ﬁ teined even in the numerous instunces where the
.- nonlinecarities were showa to have a marked
! deleterious effect on ries misg distance.

o e EBven in cames where the nusber of system states
é andg nonliinearities is large, CARET shows =

$ significant computacicnal advantage over the
munte carlo method: Between 10 and 20 CADET per-
formance projections nave peen oktailaned for the
same amount of computer time required by onc
accurate monte cerlo study.

a7,
L] 4

There are certain kighly nonlinear cases in
which CADET analysis may be inadequate. Typic-
ally, these are sliuatious in which a non-
linearity input is uncorrelated with its output;
for a more complete discussion, refer to Sec-
tion 4.2 and Appendix B. The Modified CADET
methodology presented in Appeadix B appears to
offer a solution to rhis problem.
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9
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e Highly nongaussian system variables not only
lead to inaccuracy in the CADET analyeis, but
also make the monte carlo method less reliable
and reduce the meaningfulness of the basic
statistical measures of system performance, the
mean vector and covariance matrix.

@ The value of ithe kurtosis, 1\, (the fourth cen-
tral moment of a density function divided by
the variance squared) is a useful measure of
the departure of the lensity of & random vari-
able from the gaussian case It would thus be
valuable to estimate this parameter for each
nonlinearity input in the monte carlo analysis

to help in appraising the accuracy of the monte
carlo method and CADET.

]

EER Y oo
[N,
ek,

S

In light of these and related findings, it is felt that
confidence in the ability of CADET tc provide accurate staiistical
analyses of ..omplex nonlinear missile guidance systems with a g f
number of sandom disturbances has been aguite well established.
Based on the diversity and complexity of the effects studied so ;q
far, it seems reasonable to anticipate that similar results will
be obtained in applying CADET to a broad spectrum of problems - T
modeied by nonlinear systems with random inputs. It is hoped i
that this handbook will facilitate the further extensicn of the “
usefulness of CADET, as well as permitting the direct application il
of the technique to the missile-target intercept problem.
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APPENDIX A

A CATALOG OF RANDOM INPUT
DESCRIBING FUNCTIONS

In this appendix, we provide random input describing
functions (ridf's) required for quasi-linear representations of
a number of nonlinearities that are commonly associated with
effects that may be incorporated in a realistic missile-target

e

intercept model. The material is organized in order of increas-
ing complexity; single-input nonlinearities are listed first,
followed by two-input characteristics, and finally, selected
three-input nonlinearities are considered. Two highly nonlinear
guidance laws are also treated, to demonstrate results that have
been successfully used in the CADET analysis of missile guidance
system performance. For those results without explanatory notes,
ridf's have been taken from Ref. 6 or directly cbtained using
the formulae given in Cases 1 to 3 of Section 4.3. The back-
ground and notation of this appendix and a number of useful
examples are given in Chapter 4.
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=
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A.1 RIDF'S FOR SINGLE-INPUT NONLINEARITIES

[ 20 ]
»

. _ - _ _ 2
1 - General case: y =1f(v), E[v]=m, E[(v-m)2]=p=o0
5 Quasi-linear representation: y 2 f + nr, r = v-m
- -
- i . ) L oo _&(X:E}z
~ Definition of ridf's: f & E[f(v)]= S f(v) e o dv
] I /21 0 Y-
S
- . of
: I n am
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A.1.1 Simple Analytic Nonlinearities

y = sin(v)

; =
y = v2
y = v?
y = v*
y = v°

>

cos(v)

>

)

[

>

>

sinm

e cos m

-4
e cos m

sin m

m(3p + m2)

3(p+m?2)

4

m- + 6m2p + 3p2

4m(m2 + 3p)

5

= m- + 10m3p + 15p2m

5(m? + 6m2p + 3p2)

(A.1-1)

(A.1-2)

(A.1-3)

(A.1-4)

(A.1-5)

(A.1-6)

Results for higher powers can be obtained directly using the

relations given in Example 4 of Section 4.3.

A-2
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A.1.2 Nonlinearities Involving Sign (v) and
Piecewise-Linear Characteristics

Nonlinearities in this group require evaluations of
PF(w), PI(w) and G(w) given by

2
PF(w) = 7%: e~ ¥V
v
w
PI(w) =S PF(w) duw (A.1-7)

w
G(w) = S PI(w) dw = WPI(W) + PF(w)

(For more details, see Example 3 of Section 4.3.) For convenient
reference, the piecewise-linear gains listed below are depicted
in Fig. A.1-1.

R-16240

o s e a o

(c) Linesr Gain With Dead.one {d) Relay With Deadzone {e) Limiter With Deadzone
Figure A.1-1 Basic Piecewise-Lineur Characteristics
A-3
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Ideal Relay y = sign (v)
T = 2pI (i“-) -1
, ° (A.1-8)
F n o= % PF (g)
|
E Ideal Limiter v, v] < 8
E a {6 sign(v), [v] > &

]
5. = 0[G<6+m>_ G <6—m) ]_ o N
: 5 > ]
: N
E (A.1-9) .
.' - 6_‘@) <G—m)_ |
i, n PI( = + PI . 1 ¥ j
b M
| |
1 &
§ Linear Gain _ 0, , v <8 o
{ With Deadzone - .
: (|v]-8)sign(v), |v| > & - |1
E . 1
\F t 6 +m § -m -
g‘ t = 2m—o[G<————> -G <__)] t
iv O Y -4
k‘
(A.1-10)
5 . ) J
t n= 2 - PI(M) _ p1<§_0_n1) i
4
“ Relay With  _ {0» vl < 8 |
1 Deadzone 1, |Vr - |
:
’ s 5+ 3
f = PI <__ﬂ> - PI (Q:E)
] o g 3
‘ 1 S+m §-m
] [PF<T + PP (250 ]
A-4
i\
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0 , lv] <84

Limiter With
Deadzone

y = {(|v]-61) sign(v) , &5 < |v] < 8

(62-87) sign(v) ,

o)) o () ()
n =PI (62:m>+ PI (f-@aﬂ>- px(ﬁ?) - PI («6—1—;)

65 < |V]

(A.1-12)

We observe that ridf's for a large number of more coii~
plicated piecewise-linear characteristics can be obtained by
decomposing them into a linear combination of the basic nonline-
arities shown in Fig. A.1-1. To cite two examples, & multi-level
idcal symmetric quantizer can be expressed as the sum of several
characteristics of the type portrayed in Fig. A.1-1d, and a
change from unity gain to a gain of k at breakpoints + § can be
represented by a linear unity gain plus the characteristic of
Fig. A.1-1c multiplied by (k-1).
ted in Fig. A.1-2,
ciated ridf's can be obtained from the results given in Egs.
(A.1-8) to (A.1-12) by simple addition; for the above examples,
we obtain:

These procedures are demonstra-
From decompositions of this sort, the asso-

Five-level Symmetric Quanvizer (Fig. A.1-2a)

A _ §+2m 6-2m 38+2m\ 36-2m)
f—PI(ZG) - PI (—-——20)+PI ———20> PI( 52

- §+2m (6—2m> 35+2m (36—2m
n=3 [PF( 20 ) t PF{75 ) + PF ("'2“5") + PF\™5; )

(A.1-13)

-
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R-16239
y = Hv) g](V) ‘2(")
2
| | 1
-38/2 -3/2 v o SAN o4 B E;
- 8/2 as/2
J'—' N 8/2 38/2' ___[_‘ J N
-2
{a) Decomposition of a Five-Level Symmetric Quantizer
f‘( v)sv f2( v)
k
v NG 3 v
> = + \\:?>
SLOPE
zk-)
(b} Decomposition of a Gain-Changing Nonlinezrity
Figure A.1-2 Decomposition of Complicated Piecewise-

Linear Characteristics into Basic Components

Gain-Changing Nonlinearity (Fig. A.1-2b)

m + (k—l);zm‘U[G(é—;—m) - G(‘d“;“"”])]i

-
L]

=
i

1+ (k-1) 32 - p1(§§m) - p1(§5ﬂ§$

The functions PF, PI and G (IBqg. (A.1-7))

quasi-linearizing nonlinearities having the factor sign(v).

common examples of this type of characteri-tic sre

Absolute Valiue Function y = v sign(v)
m
206(3) - m

= 2p1(§) -1

£

=
|

(A.1-14)

also occur in

(A.1-15)

Three
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Odd Square Law y = v2 sign(v)

= 2moPF(%) + (m2+02) [2p1 (%) -1]
(A.1-16)

n = 4opp(§) + 2m [2p1(§)-1]

[ |

- 7
Exponential Saturation y = [l-e @ fj rzn(v)

= sz(-'c"—‘):,ei“zp;eam [1-p1 (ao+ g)] —e0m [I—PI (ao- '—;‘-)]f— 1

n = % PF(%)-&ae*azp;eam rl—PI<a0+ %) ~ L PF(an+ g)]

e P

—

(A.1-17)

These results complete the catalog of ridf's for single-input
nonlinearities.

A.2 RIDF'S FOR TWO-INPUT NONLINEARITIES

General case: y = f(vqy,vp), E [vi] = mg, r;o=v,-m
b o) 02 po4 0
T 11 12 1 172
E [r r ] = =
LA 2
P1g  Pag P9192 92
Quasi-linear representation: y # T + 2?5
= f + nlr1 + n,ry
A-7
N WY a1 e - _ e sacd o s _.,._....‘




THE ANALYTIC SCIENCES CORPORATION

Definition of ridf's:
Tt =E [f(vl’vz)] = 1 573 Sm Sm f(vl,vz)exp - —-_i_ﬁm
210,0,71-p°) -0 Y= 2(1-p°)
1 2 re
)I
L
2 2
(;—1—) -2p ;‘1:2 + <_1_‘_2_> dvldv2 -
1 192 %2 ﬂ
4
; n. = 2f 0o
il 1 8m1 3‘ ‘
| of |
n, = =—— 5
.
A.2.1 Simple Analytic Nonlinearities :
-
Most of the results of Eqs. (A.2-1) to (A.2-8) were re- N
» ported in Ref. 3. ) {1
3 ol
\ . §
| P =mmy + pyy P
5 ng =m, (A.2-1) o
il
ng = my . ‘
£ y = V1V2
f =m (m2 + Posp) + 2m,p
172 22 2712
! 2
- n, = (m2 + p22) (A.2-2)
A Ny = 2(mmy + Pyy)
3
4

i A - . SURN ,,,N-,_..__.,‘,.J\__M...‘J
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y = Vyvg

>

N 2 9
mymy (My+3py5) + 3py4(My+p,,)
n, = m,(m2+3p..)
1 = Mp(my+3p,,

- 2
n2 = 3m1(m2+p22) + 6m2p12

- 2 2
o= (m+py)(ma+pyp) + 2pyp(2mymytp, o)

~ 2
ny = 2my(my+py,) + 4myp,,

- 2
9 = 2m2(m1+p11) + 4m1p12

y = v; cos v,
o _ T¥Pgy
f =e (m1 cos mz—p12 sin mz)
~#Pg
n, =e cos m,
_ -épzz )
n, = -e (m1 sin m, + Py, cos m2)
y = vy sin Vo
- -4p
y 22 .
f =
e (m1 sin m, + Py cOS m2)
-3p
n, = e sin m,
_ ¥pg
n2 = e (m1 cos m2 - p12 sin mz)

(4.2-3)
|
{
(A.2-4) {
3
]
(A.2-5)
i
(A.2-6)
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E v? cos v2 i
' y
-4p |
~ 22 [( 2 )
E f = e [(m1+p11-p12) cos m2—2m1p12 sin mz]
!
"2 A.2-7 )
| = - 3 2~
‘ n, = e (Zm1 cos m, 2p12 sin m2) ( ) 51
: i
-3p :
- 22 2 - oS 7
n, = -e [Qn1+p11~p12) sin m2+2m1p12 cos mz] |
\?1
2 i
vy sin Vg ei
'¥ -3 NI
! f=e *Pag 2 m, + m2+ - ) sin m {
- © MmyP1g €OS My *(MTP117P12/ ¢ 2 .
i
-4p
- 22 [ B o . _ _—
ny e -2p12 cos m2+‘.m1 sin mz] (A.2-8) | 1
-ip N
~ V22 . 2 _ i1
n, = € F-zmlplz sin m2+(m1+p11 p12) cos mz] al
v - {0
‘ il
Fi |
| Results for nonlinearities involving higher powers of input vari- {
ables can be obtained directly using the relations of Case 2 of . j

Section 4,3. For powers or products of trigonometric functions, oo

e.g., vVip sin? vy, the use of trigonometric identities, as

D

sin vy = (l-cos 2v2)

PR S PO SR

permit the direct use of results given in Eqs. (A.2-5) to
(A.2-8).

A-10
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A.2.2 Analytic Nonlinearities Without Closed-Form
Gaussian ridf's

The quasi-linearization of the range,

is treated in detail in Section 4.5. Note that it was assumed
that x & m. i.e., the down-range component of the missile-target
separation is essentially deterministic, as is true for head-on
intercepts (Fig. 3.5-1). 1In this case, the range is a function
of one random variable, y. We further noted that the most effec-
tive approximate ridf for this nonlinearity was obtained by using
the triangular distribution for y (Table C.2-1); this result is
given in Eq. (4.5-10).

In the seeker noise model, Section 3.6-1. related non-
linearities arise in the range-dependent components of the noise.
Thus approximate ridf's for the following two nonlinearities were
cbtained in Ref. 4, based on the triangular distribution for y:

. = /2, 2
Range Proportional Noise vy vy /ItVg

m l/"‘ﬂ' /1442 { 3
7% sign(my) 1+v£+v2 log (%i—%il—>+ taa—(1+v2) /ﬁﬂ

_ f
n, = a; (A.2-9)

- 2
+
n, b /%'-plz [(1+4v2) 1+\)2 -4\)3-3\)2 log (—l——é—&-ﬂ
where v is an auxiliary parameter given by

m
v & —l—"l (A.2-10)

[ -2
w

D
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\'

Inverse Range Proportional Noisco y = - -
i X 2
L . m AR —

f = /%_ 1 [log (l_"_!‘_tv_.) + Vv - /i_._\)Z]

e 02 Y
, n, = —i (A.2-11)
i 1 m )
i 1
i p YA f
f n, & - /Q',_lz log {121V ofv- /1402
} 2 3 3 V
E 02

where v is given in Eq. (A.2-10).
\
i A third nonlinearity that is not tractable for gaussian
F random variables is the inverse tangent function, which is re-
}

quired in obhtaining the line-of-sight angle from the cartesian

5 coordinate representation of the missile-target separation, viz.

‘ -1 ("1
h. — d k3 e t— 2 -
0 f(vl,vz) tan <v2> (A.2-12)

The approximate ridf's for this nonlinearity were also derived

in Ref. 4, using the truncated expansion technique demonstrated

in Section 4.4, as follows:

Inverse Tangent y = tan'l(vl/vz)

o,

ey e —

et geen pmosy e

Braery g sy
¢ :

P s
P ") [

PR

A -1 (™M 1 2 2
LEtan " {m, )" (""2“‘“'5)*2 [ml’“z("zz‘pn)*(’“1'"‘2)"12]
m,+m,
Mo A.2-13
nl - m2+m2 ( o )
17Mo
n . "ml_
2 25
m1+m2
A-12
. ¢ - _ . N _“m_,_._.._...‘_.‘
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These results conclude the presentation of ridf's for two-input

nonlinearities,

g 2 o SRR

The following results are useful for ncnlinear airframe
models as described in Section 3.4; many of these ridf s were

v l A.3 RIDF'S FOR SELECTED THREE-INPUT NONLINEARITIES
I first reported in Ref. 3.

f = mymomg+mpyg+myp,3+map,

et iR L | 2adha il bkl A
o .y
[ 4 A 4
= =
0o -
k ]

MoM3+Pog
(A.3-1) |
myma+Py 4
-
1. Ny = MMy+Pyg
I vV = V.,V V2
i ) 1VaVa
. o
! (Mg¥Pag)(mymy_pyg)+2my(mip,a+mypy 4) +2p] abo g

2
_ Mo (M3 +Pgq)+2m,p, 4

N (A.3-2)
‘ 2
= my(m3+pgq)+2mgp, 4

=]
-

E . "2 |
1 _ i
_ Ag = 2(Mmo+pyp)ma+2(mypygtmypy 4)
. . 3
E Y~ V1VeV3
- A

) 9 o o
P= my(mgtpgg) (mymy+py o)+ Bm+p ) (my Py +mgp) ) +0map) oy

= 2,. 2 .
ny mzms(m3+3p33)+3p23(m3+p33) (A.3-3)
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2,. 2
mymg (M3+3p,44)+3p;5(Mg*Pgg)

2
ng = 3(m3+pyg) (Mymy+py ) +6(Mymgpyg+myMmapy 3*+Py3Po3)

[
[ —

(A.3-3)(Cont.)

ey
[

e ’
—————

hy
]

2 2 2
[m1(mz+p22)+2m2912] (m3+pgg)+2mgpy 3 (My+Pyy)

— ot
P

*2mypyq(2mymat Py 4 )+4pg3(Mypyg¥mapy )

— 2 2 14 + :’
ny = (My+pyy) (M5+pag)+2p,5{(2moMa+pyg) 3!
(A.3-4)
- 2 2
ng = 2(mymy+py o) (my+Pgq)+4(mymapy 3 *+m maPy3+Pg 3Py3) g
_ 2,
ng = 2(mymg+py4) (g +Pyy)+4(myMapy 5 ¥myMyPy3+04 9bo3) g
ol
Expressions for still higher powers of Vi Vo and Vg can be ob- -

tained by exlending the techniques given in Sec.ion 4.3.

The following nonlinearities are required for 3-dimensional il

coordinate transformaticons: !
L §
y = vy sin v, sin vg o
» _ 1 "3(PggtP33)[ Py3 : |
f = 5 € e {mlcos(mz-mB)—(plz—p13)s1n(m2—m3)}
—e_pzs{m cos(m,+m, ) —(pq ot )sin(m,+m,)
1 2" M3 12"P13 2™ M3 ‘
-3(PyotPaa) [ P -p |
1 22 %33 23 23
n, =s5e e cos(mz—mB)—e cos(m3+m3)

(A.3-5)

A-14
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-3(PyotPqaq)
1 2277337 Pggq ,
ny = - 5 € [e {m131n(m2~m3)+(plz—pla)cos(mz«ms)}
—e-p23{m sin(m,+m,)+( + 3 +
1 2*tM3)*(P15+Pyg)cos(m, ms)}
~3(Dy0*+pa0) Py
[‘[3 - % e 22 33 [e 23{mlsln<m2~m3)+(p12-—p13)COS(m2"m3)}
~Pa3 .
+e {m151n(m2+m3)+(p12+p13)cos(m2+m3)}
(A.3-5)(Cont.)
y = vy cos Vg COS Vg
: =3(Poo*Pan ) Pos.
{ ~ 1 22 33 . :
E f = 5 € [e 23{m1cos(m2—m3)—(plz—p13)S1n(m2—m3)} m
] | A
4 {
E i‘
b +e_p23{m cos(m,+m,, ) ~( tp,,)sin(m,+m,)
i rhe 1505 g™y ) =Py 9" Py 3 2" M3” ;
! i
4 ~3(Pyo+Paa) p ~p '
: ¢~ _ 1 22 733 23 23
g i ny, =y e {e cos(m2—m3)+e cos(m2+m3)
! -
] -3 (Py,tpa )] P
; 1 2 23 .
é “a ng, = - 5 e 2 733 e {m181n(m2—m3)+(p12—p13)cos(m2—m3)} ]
. i
‘ . ~Pg3 . |
E +e {mlsln(m2+m3)+(p12+pl3)cos(mz+m3)’ :
- ) J
“ 3 |
n, = 1o i P22Paa)f pog( !
- 3 5 e {mlsln(mz—ms)+(p12-p13)608(m2—m3)} 4
- il 2 3 . i :f
1 -e {mlsln(m2+m3)+(p12+p13)cos(m2+m3)} f
I (A.3-6) ;
r Y A-15
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e o = 7B T T e T e T S TR T e T g YT

y = vy sin v, COS VQ
-3 (Poo+Paa)| P
5 1 22 33 23 . |
f = 5 e e €m1s1n(m2—m3)+(p12—p13)cos(mz—ms%
+ “Pa3 sin(m,+m, ) +( + )cos(im,+m ﬂ
€ My 2'M3 ) ¥ {P;07Py3 o*Mgz )¢
=3(pyo*tpao) P -p
1 22 %33 23 . 23 .
n, =35e e s1n(m2-m3)+e s1n(m2+m3)
=3 (PootPas) Poa.
_ 1 22 v33 23 _ . _
n, =4 € e {mlcos(mz-mS)—(plz p13)31n(m2 ms)}
L
+e-p23 m, cos{m,+m,)-( + )ysin(m,+m )(
' 1608{MyTMg)={Py57Py 3 2 M3 )y
~3(pootpa,)| P
1 22 Y33 23 . _
ng =5 e e {—mlcos(mz—m3)+(p12—p13)s1n(m2 ms)}

ve P23 : \
e \mlcos(m2+m3)—(p12+p13)s1n(m2+m3),

(A 3-7)

The last result is obtained in Example 6 of Section 4.3, the

first two nonlinearities may be quasi-linearized by the same
technique illustrated in that example.

A.

4 RIDF'S FOR GUIDANCE LAW NONLINEARITIES

A.4.1 Proportional Guidance

Referring to Eqs. (3.2-6) and (3.5-8), the acceleraticn

command is the output of a limiter whose input is a highly

A-16
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nonlinear function of six system variables, viz.

a, = f(a1¢1+azq>2+a3v1)A £(o") (A.4-1)

R

.~ s s o

where the components ¢1 and ¢2 are given by

$1 = V1Vg

TN M
Lo |

(A.4-2)

o

cos(v2+e)
bp =V
2 1 cos v3-6)
The latter equation can be expressed in terms of system state
-~ variables by substituting the LOS angle relation,

- to obtain k

TR E e AR

vscos(vz)—v4sin(v2)

¢ = Vg vscos(v3)+v4sin(v3) (A.4-3)

T A - TV e Y Y A e T T Ty
*

[V T

Assuming that the input to the limiter, ¢' in Eq.(A.4-1),
is nearly gaussian, we quasi-linearize the acceleration command
using Eq. (A.1-9),

R it
-

~

ac 2 f + nr . (A.4-4)

where r is the random component of ¢ ' and

i. +
: 2m - o [G(aﬂla(); m) -G (ama;c"m )]

U P

)
L]

e e TN d L R aeam e el

i (A.4-5)
* a +m a -m
P - _ max _ “max
‘ I n=2- PI(———-———O ) PI(-——«o >
l where m and o are the mean and standard deviation of ¢', respectively, i
' A-17 |
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Next, we must obtain the statistics of ¢', i.e., m and
o, ftor use in Eq. (A.4-0); to do this, consider the three con-
stituents given in Eq. (A.4-1): The third term is linear, thus
presenting no probiem, and for the product of variables, ¢1 of
Fq. (A.4-2), we use Eq. (A.2-1) to obtain

-~ . d
@1 = myme + Pyg )
(1) “l
ny = mg (A.41-6) .
n(l) _m »
6 B |

The second term, ¢2 in Eq. (A.4-2), is impossible to quasi-
linearize cxactly in closed form under the gaussian assumption;

thus we use a generalization of the truncated series expansion

approach discussed in Section 4.5 (Eq. (4.5-3)):

) ¢0
o (my g, mg) +- ﬁi 2: s P (A.4-7)

il
>

o

b, (my my,...,mg)
n§2) = 21 znm 5’ i =1.2,...,5 (A.4-8)
i

Listing the partial derivatives called for in Eq. (A.1-8) re-

quires the introduction of some auxiliary notation:

1,'_;1 = Mgcos m, - m sin m

4 2 .
:
Yo = MeCOS my, + m,Sin m, ;
2 ) 3 1 3 1
(A.1-9) 4
I = - S i — TOS

p3 m5s1n m2 m4< S m2 !
1 = -Mm.Ssi + tOS . %

1:4 mbsln m3 mdc. s m‘3

In terms of thesc expressions, the quantities required to cvaluate
Eq. (A.4-8) c¢an be shown to be

i
1
PR, s i A faam [ e s ...._-MAM.....M......;...AJ
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] . LB
'. ¢2(m1,m2, ¢ o ,ms) = ml ﬁ)“;
| M2 0, @
;_' l E)m1 wz 1
1 3o _ V3 (2)
; [ sz vy 1 2
T R O
; am,, .3 ™M T g
. I
A 3¢ m,m
2 175 . (2
T
oL 30
‘ S & m,m
| 2 MMy L. (2)
% . am,. - g Ssin(my+mg) = ng
?‘ S
. 32¢2
3 =0
¢ ; am1
2
T 9%3 _ Vs
o 3m18m2 wz
T 2
. 3%, Vv,
am18m3 v 2
2
32‘1’2 Mg
Sm.am, - - 2 Sin(mg+mg)
1°M4 v
2
82¢2 m,
‘5‘"—11—3;‘—5- = -3 sin(m2+m3)
Vo
A-19

(A.4-10)
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e i Ay 7 A T T i T T T T e nw—-mvwﬁ.; e

20, ¥y
A P
] 2 )
2
am23m3 wg 1
2
3%¢ m,m,
am_éﬁh - . 23 cos (my+mgy)
274 ¢2
2
20 ™M™ g(motma)
= cos(m,+mg
am,3mg Wg 2
2
874y _ V1M (2 2
R A
am ]
3 2
a2¢’2 myMg .
Smam, 3 (W4S‘"(mz+m3)*wl
[N 11)2
32@2 myMy .
hoQ -
am  om, 3 (“4hln(m2+m3) wl)
e “»)2
a2¢’2 myMg
—5 = ~~7r-sin(m3)sin(mg+m3)
8m4 wz
220, my .
P - -3 (w2—2m5cos(m3))51n(m2+m3)
49ms vy \
82¢2 2m1m '
~ga§ = 3 cos(mg)sin(mg+my)
meg Yo
A-20
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Returning to Eq. (A.4-1), we have
= > "N A.4-11
m = 8,0y ¥ ayéy + agmy ( )

where $1 and 62 are given in Egqs. (A.4-7) and (A.4-8). The ran-
dom component of ¢' can be expressed in terms of the quasi-linear
gains in the same equations to be

¥
3
} .

|
|
|
[
i
[

L -
B [ (1) (2)
(- 810y taghy *ig
b L a nl2)
: 272
% { “2“&2)
i r=|r, r, ...T
RIEEE
Vor a n(z)
] 214
£ (2)
i l. 2275
L (1)
| ®1% i
i. & ETQ (A.4-12)
§ Since r is a quasi-linear combination of the random components
of the six variables v;, the variance is approximately
i
.l 2
o® = E [r2] = E [bTr rTb]
- = p'Pb (A.4-13)
- Given the statistics m and ¢ required in Eq. (A.4-5),

the quasi-linearization of Eq. (A.4-1) is completed as follows:
We express a, as a mean 1 plus the inner product of a vector of
ridf's with the random vector,

a_ =f+nr (A.4-14)

G Aeed i
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: The quantity f is specified in Eqs. (A.4-6) and (A.4-11) to :

1 H

| (A.4-13), and by ixspection 1]

]

; n = nb (A.4-15) };

: i

? where n is given in Eq. (A.4-6). The foregoing describing func- ;i
a3

tion development was originally performed and verified in Ref. 4;
a more complete discussion of its basis is given in that work. .

F The approach outlined above in Egqs. (A.4-1) to (A.4-15)

| considers a nonlinearity of the form w
}‘ - \J

E a, = f(¢ (Vl,V2,...,V6» -
ﬁ . .

& i.e., a nonlinear function of a nonlinearity. Because 1t is .
! . essentially impossible to quasi-linearize this relation as a ;1
E " wholce, we have first quasi-linearized ¢' to obtain the statistics

E m and o necessary to calculate the ridf's for f(¢'), Eq. (A.4-6), }
; then '"cascaded the ridf's" for the random part in arriving at )
k

E

Eq. (A.4-14). While this is not a completely rigorous procedure,

[N

8 .

we must rely on a priori knowledge that in the guidarce law, ¢'

| can reasonably be assumed to be nearly gaussian. In this situa-

1
-———e

a
E tion, the above technique adequately represents the guidance law
]

nonlinear effects.

v -
Pe—

A.4.2 Digital Guidance

: A major source of nonlinearity in the estimation algo-

rithm of the guidance module is embodied in the range dependence
of the Kalman filter gain vector. Referring to the development

of Section 3.5.2, we combine Eqs. (3.5-15), (3.5-16), (3.5-18)

] and (3.5-22) to arrive at the nonlinear difference equation |
] |
' xfl(tk) 3
3 > - I
; Xp(ty) = Xp () + p w(r) [z(ty)- = (A.4-16)

A-22
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The time-varying vector p is comprised of the first column of the

filter covariance matrix Pf (Eqs. (3.5-19) and (3.5-23)), ¢y is
given by

r

p(r) = (A.4-17)
(Pryg*o3) + o5r” + opr®

with pg,, the first diagonal element of Py and 0,,0,,05 Speci- ‘
fying the r.1s seeker noise levels, and r is the present range,

ro= A2t + y2(ty) (A.4-18)

Thus from Eq. (A.4-16) we 3ee that the first nonlinearity
which must be quasi-linearizc i in order to study the nonlinear
implementation of the filtering algorithm is of the form

/2 2
1/ V2" (A.4-19)
f(vy,Vqe,Vy) = voy(r) = .4-
1’72 2
3 1 a1+a (v2+v3)+a3(v2+v§)2

where vy represents the measurement z (which is typically a linear
combination of system state variables; cf. Fig. 3.5-5), Vg and vy
correspond to x and y, and the parameters oy correspond to the coef-
ficients in the denominator of ¢ (Eq.(A.4-17)) in the obvious way.

As in the preceeding case (the proportional guidance law,
Eq. (A.4-1)), the nonlinearity in Eq. (A.4-19) is too complicated
to permit the derivation of exact ridf's. We thus again resort
to the truncated series expansion technique derived in Section 4.5:

3 f(m)
1
f“f("‘)"ﬁz i: am o Pik

¢ j=1 k=1
>t (m) (A.4-20)
m
ng Z ‘SE;; , j=1,2,3
J

The details required to complete the quasi-linearization of f
are the partial derivatives indicated in Eq. (A.4-20):

A-23
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.
| ]
: 5 2 |
/s g ™" . ]
E u1+u2(mg+m§)+u3(mé+mg)z d(m,.) ' ) '
E n o .._'.'.‘.!‘___ ]
; "1 d(my)
2 4 ]
mym,(a -0, M_-3a,m.)
n, a1 21 22 r 3r (A.4-22)
mrd \mr) ]
m.m,(a,-u 3 m4)
« 1371772 3'r
3 p) H
mrd (mr)
’ 2, ]
m2
my .
o 2_ 4 I]
E“’ azr B mz(al-azmr 3a3mr)
am, d = -
my oMy m_d?(my.) ]
: 9 4 .
f 22r _ Malag-agmy-3agm) )
E am, dmg mrdz(mr) (A.4-23) |
b
{ 2 4 2 ]
} azf ) ml(al—azmr—3a3mr) mym,
i 2 2 - 3.3
E Bmz mrd (mr) mrd (mr) [
i
; 2 2 2 4 6 2 8
E [a1+6a1a2mr+3(6a1a3—a2)mr-loazasmr—lsasmr] "
E ; {
m,m,m
: 3°f 17273 [ 2 2 2, 4
e =~ e | ay+6a,a,m +3(60,0,-2,)m
am23m3 m?ds(n ) 1 17°2r 13 "2 r [
y 6 1. 28 |
—10a203mr—15a3mr] f
5 2 m, (a, -0 2—3& m_) m m2 ‘I
p°f _ "1 %1%m0 13
2 2 -
2 m_a%(m_) m2d3(m_) 1

2 2. 2. 4 6 2 8
[a1+6a1a2mr+3(6a1a3-a2)mr-10a2a3mr—15a3mr]

A-24 1 |
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These relations complete the quasi-linearization of Eq. (A.4-19)
according to Eq. (A.4-20).

The second nonlinearity in Eq. (A.4-16) is of the form

o
1
! i l
i I
B

v et (A.4-24)
f(vy,vq,Va) = V = ) .4~
E PURUST O v aprap(vpivprag(vyvy)?

]

E where v, now represents the first filter state, Xfq - As above,

-
i
pa f = =

(A.4-25)

d(mr)

}
i,
1
£ . n, * d(m.y
F ) 2m1m2(uz+2a3m3)
| . a”(m,,)
P - 2m.m, (a,+2a mz)
) ' n. o= . 173 22 ““3"r
- 3
o ) I
| I azf ] i
b 2= 0
i " Bml ']
[ 2 2m,(a,+20a mz)
- o7 f  _ 22 3r 3
i w 9m,amgy d“(mp) %
} - 0 j
E l __afL _ 2m3(a2+203mr) (A.4‘27) .l‘
‘ 52¢ 2m, (ay+2a m?) 8m1mg 2 2 2 l
E I .._-_2.. = - 5 = + 3 [(a2—0133)+303mr(32+a3mr)] ;
3 amy, d™(m_) d (m.)
€
i A-25
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2 8m,m,m
A°f 17273 [ 2 2 2
= (o=, 0., ) 30, m (a,+ta,m )]

3m28m3 da(mr) 2 '1°3 3r 2 "3

2 2m, (a,+20 mz) 8m m2
e f _ 1'72 3r’ 173 (A.4-27)(Cont.)
5 2 7 2 -3

m d“(my) d“(my)

2 2 2
[(az-a1a3)+3a3mr(a2+a3mr)]

complete the requirements for a quasi-linear representation of
the second basic Kalman filter nonlinearity specified in Eq.
(A.4-24), in accordance with Eq. (A.4-20).

A second important source of nonlincarity in the digital
guidance module is the tgo-dependence of the optimal control gains,
and the acceleration command limiter. The latter is of the same

form as indicated in Eq. (A.4-1),
a, = f(c vy v +eavy) & ree) (A.a-28)

where ViVg and Vq represent the Kalman filter estimates of
missile-target lateral separation, y, lateral separation rate, vy,
and missile acceleration, ay, as discussed in Section 3.5.2. The
gains ¢y considered here are those given in Egs. (3.5-27) to
(3.5-30), under th¢ assumptions that the missile dynamics are
neglected (by permitting W to approach infinity) and that the
control c¢ffort weighting, y, in the performance index, Kq.(3.5-24),

is zero:

cy = =3
1 L 2
g0
3
ey = (A.4-29)
g0
. -w, t
3 Yiteo ]
fp = —2—© o ‘ot -1
3 (wtt )2 Lt "go
go
A-26
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The gain Cq can reasonably be simplified by taking the first 5

- ‘.r
terms of the expansion of e t 50. i.e.,

~ 1 1 27
Cg * 3 [- -6 wttgo M7} (wttgo) J

(A.4-30)
is a good approximation until the last fraction of a secend of
&n engagement and is more readily implemented in the guidance
module.

In order to estimate tiro, thn digital system may hold
the range from the previous measurement, ry_3p, and difference
it with the present value, as indicated in Eq. (3.5-32), viu.

T v2+v2
teo = — 1.5 (A.4-31)
Ve

<

+

<
oo

- 2
4

where Ve represents the digital state holding Tye_q° and v§+v§
is the prescnt range in cartesian coordinates in the state vec-
tor formulation.

Combining Eqs. (A.4-27) to (A.4-30) yields the complete
nonlinear representation of the acceleration command limiter
input:

2, 2 2 2,2
vay |1 . %4 VatVsg L 2 V4*Vs
3)2 © 6 //5——5 74 > Z
Ve~ /Va'Vs [Ve' 4+V5]
(A.4-32)
A-27
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where

T (A.4-33)

Since the basic form given in £qs. (A.4-28) and (A.4-32) is
exactly analogous to that treated in the proportional guidance
law, Section A.4-1, we can abbreviate the previous presentation
as follows: First, the variance of ¢' is given approximately
by Eq. (A.4-13),

02 = pT pp

where b is the vector of first partisl derivatives of ¢'(m), viz.

—_—2
/2 2
36" (m) 3 [mg— m4+m5]

2
boo- . b 3(m6-mr)
1 om 2, 2 2 2

1 rs(m4+m5) (Tsmr)
I 3(m6—mr)
om,, T_m
oA ST
r m 2 2
b, = 20l _ 4 ’l 4 _r i
3 o, 2 6 m.-m 24 2
3 i 6 r (m6—mr)
r (A.4-34)
L ,6m1m6(mr~m6) 3m,, g
4 " Tm, T My RV T3
1 [r m ] T..m
sr s r
2
U gMame ayMmame ]
) z 3
zmr(mG—mr) 4(m6~mr) J
o T mgb.q
;r- et
D Bms m4

e el boAt e st e et
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, 6ém,(m_.-m_) 3m
b6 = %L = __-1'__.__6~_é!__ + ._.._F?‘._
n T
(3] (Tsmr) sr
o ,m m_
+ ias r .
(mg-myp)

Then we evaluate m using the approxim

which we require the following second

6m4m6(mr-m6)

2,2
(v m2)

6m5m6(mr—m6)

N
(Ismr)

o(m6~mr)

2
6 (Tsmr)

2
o m
- 7; r 5| (A.4-34)(Cont.)
(mg-my)
ation of Eq. (A.4-7), for

partial derivatives:

(A.4-35)

e .
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[
|
i

Bads et n e

@
3

w
@
=]

9

B A ettt AR

b 2. a,m - a
£ a ¢ = 4 r m..— 1-{- _:4_. m -]
' 3m38m6 2(m.~m )3 6 2 rJ
E 6 r (A.4-32)(Cont.)
tj‘ ] t
] ms Mg M5 9MgMg
3
|
i 32 o 6m1m6(4m6—3m12+9m2m6 ) P
! 8m48m5 475 3\2 5 - )3
E (Tsmr_ T M. A(mﬁ—mr
S Seq | ]
i 2 - T T
g ( m. ?(m6-mr)‘
i
f ' : _ .
é 52, . [?ml(mr 2m6) ) 3m,, . a4m3(m6+mr)
dm,om 4 2.2 3 3
4 -
§ 1776 (rsmr) T M. Zmr(m6 mr)

1
i

2
) a4m3(2m6+mr)J
4
4(m6—mr)

[ ] A
i

A%

Poonrmand

[ 220 ]

(58
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2% P4, Ts a%
amg m, m, am43m5 i
a2 ) m5 82 ! i
9% _ 95 93¢ (A.4-35)(Cont.) }
om.9om m Am,om !
56 4 = 6 {
- 6m o ,m,m 3a
i 3% _ > L a3 m 1+ —4) _ o
' om (t.m )2 (ms~m )4 d 4 6
P { 6 sSr 6

; ; % With these results, we have the vector . required to evaluate 02
(Eq. (A.4-13)) and the second partial derivatlves needed to ob-

tain m according to

6
1 9 ¢
m = ¢'(m) + 3 2: ~ P, (A.4-36)
, 2 =14 amiamj ij

These statistics permit the calculation of the limiter ridf's,
Eq. (A.4-6); f is then the required mean component of the limited

g T e AR Y RPN TN SENIY I ST 5w

digital acceleration command and the random component ridf vector

oo 4
- .

is simply

n_ = nb (A.4-37)

(oS
. f

A e r—

as before (Eq. (A.4-15)). This completes the quasi-linear repce-
sentation of the Kalman filter gains and optimal control gains ir

PR

the digital guidance module.

T
P s

The randcem input describing functions catalogued in this
appendix should be sufficiently inclusive to permit the direct
quasi-linearization of a quite broad variety of system models
{ . representing the missile-target intercept problem. The examples
1 and new results given in Chapter 4 (especially Cases 1 to 3 of

8 -
.

E» Section 4.3) allow ridf's to be calculated for a nunber of other
. nonlinearities with a relatively modest analytic effors. A

I majority of the nonlinearities treated in this handhook are alsc
? A-31

{
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of common occurrence in other nonlinear system models, so it is

i
'
|
'
f

our hope that Chapter 4 and this appendix will facilitate the

use of CADET in other applications as well.

. e e e

T

L.,_~ - a . e nat ottt s s - i, Mata s ASpheam < ¢ e et ok A ABRID Atk i seict e ¢ s = i e =

L m— L T o " b AL A e n AR b ) T m

Snd

|

Lol




Bt s 2 T i A o o Stk & it e AR han AR O bk et kil ad

L T L . et AP

THE ANALYTIC SCENCES CORPORATION

t
i
;
5
b

APPENDIX B i

R

1 e peey gAB R

EXTENSIONS OF CADET

PR LR & o Siod

g ‘ I- B.1 INTRODUCTION

We have indicated that there are situations in which the
' i basic CADET methodology is inadequate. As discussed in Section

P s e
-
L4

4.2, the most common difficulty that arises is that the random
component of a nonlinearity input, v;, has zero correlation with
the output, z = f(vj). For example,

N
L}

cos vy, E [VIJ =my = 0

= = = i = 2
z ViVg: E [vid m, o, i 1,

are cases for which

SR

(%9

e T £y = T AT TS g N W T R T
.. . - - «
L L]

. T where v; is a gaussian random variable. 1In this event, the ran- é
t i dom input describing functions (ridf's) for the random compc-

ﬁ .. nent -- which by definition only capture the nonlinearity input-

¥

output relations for the correlated components of the output --
are identically zero. If this problem occurs in a primary trans-
] : mission path of the system model, a statistical analysis using

E the basic CADET approach may be significantly in error.

e Gty /S I

o A practical resolution of the difficulty described above
has been proposed in Ref. 20. It is based on the selective

P
Lﬁ_ i L\ it 7 4"— e s b, OOV UU P UURERSPROUS S S e e e ki
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relaxation of the assumption that all of the state variables are

Jointly normal; in this way it is possible to propagate the first-

and second-order statistics, m and P, accurately using modified
CADET methodology if some of the higher-order moments (cor-
responding to the states that are not assumed to be gaussian) are
propagated as well.”*

We present the essentials of Modified CADET via treat-
ment of a simple low-order example. This material is directly

based on the research documented in Ref. 20,

B.2 BASIC CADET FAILURE

In this section, we analyze an example using both the
basic CADET approach and a direct solution technique (which is

too cumbersome to use in all but the simplest situations) to

demonstrate the need for extension of CADET in some circumstances.

Consider the nonlinear system depicted in Fig. B.2-1, which has
an output that is the integral of a simple product nonlinearity
driven by twc random biases. We assume that the corresponding

state vector differential equation and initial condiiLions are

given by
0
x=1f(x)=|0 (B.2-1)
X1X2
mlo
A
E[x(0)] = m, = m2 (B.2-2)
m304

*

If all stat= variables are jointly normal, then m and P com-
pletely characterize the statistical properties of the system
variables and higher-order moments are redundant.
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Figure B.2-1 A Product Nonlinearity Driven
by Random Biases

Pemwr

B 7
P119 P12 O
f E (0)-m,)(x(0)-m T8 p, =|p p22 0 (B.2-3)
. (x m, ) (X Mg,/ 0 120 0 :
R 0 0 P339
' SL - -
{ Equation (B.2-3) indicates that the initial condition on x3 is
{ ' independent of those on the first two states. Since there are
U no random inputs (w = 0), the evolution of the state variables is
F

completely determined by the random initial conditions.

g. First, we indicate the exact solution, which can be

E obtained by direct integration. For any initial conditions X19
‘ and Xgq the first t.o states remair constant, by Eq. (B.2-1),.
The solution for the third state is then given by

!

| . x3(t) = Xzg + X1%2qt (B.2-4)
- Taking the mean and variance of this solution, using the statis-
“- tics specified in Egs. (B.2-2) and (B.2-3)., we obtain

mg(t) = m3q + (M m2,+p12,)t

(B.2-5)
P33(t) = p33,* [mlo(m109220+m20p120)

‘ 2
+m20(m20p110+m10p120)+p11opzzo+p§2o]t
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In wpplying basic TADET, Egs. (1.2~6) and (1.2-7). wo
require the ridf's given by

[ o 0

0 0 0 A
(B.2-6)

ND s E [_r_x._w)f] - 0 0 0 |
~ : P 1
E [xl.\zrl] E [x1;42r2] E [.\1}\21'3]-3

T ; ;

=} 0 0 0

2 27 -
Lmlplz*m2911+£[r1”2] mlp°2+mzp12+E[”1’2J My Pag*iyPyg*E [r1r2r3] |

Under the assumption that all of the states are Jointly normal, the
expacted values of the form E [rlrzrjj, J=1,2,3,
third row of NP in Eq. (B.2-6) are all zero.
the time derivatives of m3(t) and

given in the
We can then evaluate

P33(t) using Eq. (1.2-7), and
integrate directly to obtain

m3(t) = m30 + (m +

m p )t
10 20 120

2
Paqg(t) =p + [m (m, p,,+m, p Y+m, (m, p,, +m, p )} t
33 330 16" 1y 220 20712, 20 29 110 1o 12,

On comparing Eqgs. (B.2-5) and (B.2-7) we observe that the
mean is propagated correctly by basic CADET in the above example .
In the variance cquation,

¢

q
and (p12,t)° ace absent in the CADET result.

if Mmyy and mo, are
zero, CADET indicates that p33(t) is

identically equal to its
initial value P33y, while the exact result increases with time,

however, we note that the terms pllopzzot2

T AT 7 T e T T g Y T L ST ey (ot T P 19 T Y s Py ¢ RIS s e —“'mqﬂ
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2 2

Paq(t) = Ppon t (p + Pyq Py ) t“ (B.2-8)
337 =, =0 33, 12, © P11 Pez

\\ ‘\\

\

In the general case (nonzero means and correlated states driving

the product nonlinearity), then, CADET will do relatively well
in estimating the varjance of xj3 if

2m + m2 2

, 2
: m, p P + my p >> p p +p ‘(B.2-9
t 15 29 12, 25 11, 1,722, 11,722, 12, ( )
S - .
¢
| » This is a quite restrictive condition.
{ As demonstrated in Section 1.2, CADET will propagate the

mean and covariance of the nonlinear system exactly if the ex-
pected values appearing in Eq. (B.2-6) are correctly evaluated.

I o T T -
[ odihed |
L]

. Basic CADET does not evaluate these expectations appropriately
) 2 for the product nonlinearity just considered, because the proba-
i bility density function of the product of two gaussian random
% variables is clearly nongaussian. Thus Xq cannot be assumed to
i L be jointly normal with X4 and Xq without causing CADET accuracy {

deterioration, except in cases that satisfy Eq. (B.2-9). An
. approach for modifying CADET, which tends to eliminate this source |
) ) of error, is introduced and explained in the next section. !

)

- B.3 TWO GENERALIZATIONS OF CADET

B.3.1 Exact Solutions via Higher Moment Propagation

! 4
Having motivated the need for generalizing basic CADET
1 by demonstrating its breakdown for a system having a product non- '
linecarity, a technique for extending CADET is introduced using the l
I s me example. Consider the problem originally posed in Section
B.2 -- the nonlinear system of Fig. B.2-1 driven by two random
l
¢ ] B-5
¢ ii
kh»# ““i‘
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bias states. Since Xq is not jointly gaussfian with Xy and Xg

no assumptions arc made regarding the density function of xj.

The states driving the nonlinearity are still given to be jointly
normal. Referring to Eq. (B.2-6), lack of knowledge ot the joint
density p(xy,X,,X5) implies that the term E [r1r2r3] cannot be
immediately evaluated. In order to obtain this otherwisc unknown
higher-order moment, consider its propagation in time, in the
same sense that basic CADET consid~=rs the propagaticn of the

mecan and covariance. Making use of the chain rule and the com- "
mutativity of differentiation and expectation, we obtain the tol-

lowing expression for the derivation of the higher-order moment:

2 /\ d o - - 1 ~ n vy . » - > e
P123= qt E[IerrBJ = h[r1’2r3] * L[r1‘2’3] * L[‘lrzrs]

The first two terms are zero since ry and r2 are constant; the

e e e e e e

- v—

last term is evaluated using

; ." - " ‘-.' = 3 ‘ ; - .’.
; Fg T XgTMa T Xy Yao (mlomzo p120)
| s
L B
E Lo he - i
a S
a S = + p2 (B.3-1)
| Pignq = P p Lo
; 123 110 22O 120
Integrating Eq. (B.3-1), and substituting into Eq. (B.2-6), we
have
‘}
'_ 0 4] 0 ]
; , ' i
NP = 0 0 0 ! ;
i
! mypy, tm, pyo b dnml b oem pl. TN
j 1,125 2 P11 { 1,022, 20“120} {"1OD'J+“:U"13 “110'330*P1:O“}{
(3.3-2)
B-G6
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Evaluating P according to Eq. (1.2-7) and integrating, we obtain
the result given in Eq. (B.2-5) which is the exact solution to
the problem.

To summarize this methodology, the lack of knowledge about
the joint probability density function of the system states is com-
pensated by introducing additional differential equations that
govern the propagation of selected higher-order moments of the
state variables. Initially, the components of the state vector
may be assumed to be jointly gaussian in distribution; this
estabiishes the initial values of the higher-order moments. As
these moments propagate, however, the normal relation between m,

P and the higher-order moments disappears, due to the evolving
nongaussian nature of the system states caused by the existence
of the nonlinearity in the system.

B.3.2 A Further Application of Exact Higher Moment
Propagation

A more complicated dynamic system containing the product
nonlinearity is shown in Fig. B.3-1. The two nonlinearity input
states are assumed to be band-limited gaussian processes with cor-
relation determined by the parameter o, and the output of the mul-

tiplier is passed through two stages of low-pass linear dynamics.
The state vector differential equation formulation of this sys-
tem model is given by

-1 0 0 0 0 1 0
x=]0 -1 o N 0 R I T

0 0 -0.1 0 0.1 xx, 0 0

0 0 0.1 -0.1 L0 o 0

where x and w are the state vector and the input vector of gaussian
white noise processes, respectively. Note that the correlation
between X1 and xo is given by
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Figure B.3-1 Dynamic Svstem With a Product-
ol'-Stutes Nonlinearity
p woz
12 L 1 (B.3‘4)

so the degree of correlation is directly proportional to . The
state variable initial conditions were chosen to be zero; then
given the constant input means, bi' and spectral densities, ay
(refer to Eq. (1.1-2)). the statistices of the states driving the

multiplicer can be directly obtained to be

m = b1(1 - ('_‘) -
-2t
p = (j4(1 - e )
11 1 (B.3-
m, = (bz + abl)(l - e't)
o

p22 = (Q2 + Jql)(l - ¢ ‘~)

The statistical analysis of the syvstem depieted in Fig.
B.3-1 was carried out in Ref. 20 by applying basic CADET, exact
higher moment piropagation (hercafter designated HMP) ., and the

monte carlo method (200 trials). In the cases presented here,

B} L A
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a is taken to be 0.1, and the input white noise processes were
chosen i have means and spectral densities given by bi = 0.01,

Q = 1.0 respectively. Consequently, from Eq. (B.3-5) we observe
that the means are much less than the rms values, so, as indicated
in 2q. (B.2-9), it would be anticipated that CADET would be quite
inaccurate in this circumstance. The results are portrayed in

and x are jointly

1 "2
gausslan, we confine our attention to the evolution of 03 and 04

with time. Observe that the HMP result is exact, as verified by

Fig. B.3-2; since the driving states, x

the monte carlo data, while the basic CADET analysis is completely

inadequate in its projection of o.,, and v, versus time.

3 4

For the above example the HMP analysis only entailed the

propagation of two higher-order moments, E [r1r2r3] and E [r1r2r43.

The computer time expenditure was thus nearly identical with that
of basic CADET; +the monte carlo analysis required 26 times the
CADET computational expense,.

A question of some importance regarding the general prac-
ticality of HMP concerns the impact of increasing the complexity
of the system before and after the nonlinearity. As demonstrated
in Ref. 20, simply introducing coupling between states 1 and 2,
e.g. replacing the first two state variable differential equations
in Zq. (B.3-3) with

X T @qgXp T oaggXy T W

Xg = B99%g

ircreases the number of higher order moments that must be propa-
gated from 2 to 4. A similar increase in computaticnal complexity
occurs when the system is made more complicated folilowing the non-
linearity. Thus the analysis of high-order closed-loop systems
via HMP may be impractical.

i Bmtiatall.
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The Modified CADET methodology suggested in Ref. 20
serves the purpose of providing a significant increase in the
accuracy of CADET without the great increase in computational
burden that may be necessitated in using HMP to treat high-order

l B.2.3 Modified CADET

i
systems, especially those in a closed-loop configuration where t
all or nearly all of the system state variables may be nongaussian. f
- The application of Modified CADET to the simple system
i treated in the preceding section (Fig. b.3-1), containing a pro-
duct nonlinearity followed by two stages of linear dynamics, is
} summarized by the following basic steps:
.T ® Relax the gaussiaan assumption only on that
codL component of the state vector ''nmearest'" the
¢ output of the nonlinearity (i.e., x3 in
- Fig. B.3-1); retain the assumption of joint
1 3 normality on all other states.
? @ Develop expressions for the derivatives of
3 v all resulting unknown higher-order moments
i iJ appearing in the evaluation of the expected
values in f and NP, Eq. (1.2-6) (as in
- Eq. (B.2-6)).
3 ‘- ® Integrate these derivatives along with the
} derivatives of the system mean and covari-
! . ance from assumed initial values.
; - The rationale behind this selective assumption of joint normality
3 .. is that in general, states more than 2 few integrations from the
3 ) nonlinearity (e.g., X4 in Fig. B.3-1) can be assumed to be jointly
; normal with respect to other gaussian states (e.g., X1 and X, in
the same figure), for reasons discussed in Section 1.2.
. To demonstrate the usefulness of Modified CADET, we treat
the same example as above (Figs. B.3-1 and B.3-2) under the assump-

tion that X4 1s gaussian. Then E [r1r2r4] is identically zero, and
only one higher-order moment is propagated. The corresponding time
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history of Oy is compared with the HMP result in Fig. B.3-3;

¢learly it provides a close approximation to the exact solution.

! 16299

: 0.10 ]
: EXACT HIGHER
i MOMENT FROPAGATION )
: 0.08 } (Figure B.3-2) -
|
;
)
&
¥ 006} ;
v
)
w MODIFIED CADET
3 j
s
2 0.04
- o ‘ B
'
|
4 0.02 iy
3
A 3
o | 'Y
1 0 1 .
J ] 10 20 20 40 : .
K: TIME, t (sec) ' i
E o
; {3

| Figure B.3-3 Modified CADET Solution For the o
3 System Shown in Fig. B.3-1 With T
‘ Only One State Assumed Nongaussian :

Modified CADET represents a methodology which potentially .
broadens the usefulness of the CADET concept, permitting its ‘ i

applicability to a wider class of nonlinear systems. For the low-

L order examples presented in this appendix, Modified CADET has

clear-cut advantages, and we anticipate that it will be a useful

i
|
method for improving the accuracy of statistical analyses for more : %
complex systems.
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APPENDIX C

THE MONTE CARLO METHOD: APPLICATION AND RELIABILITY

C.1 DESCRIPTION OF THE TECHNIQUE

The monte carlo method provides an approach for the
statistical analysis of the performance of a nonlinear system
with random inputs, based on direct simulation. “ entalls de-
termining the system respoase to a finite number of '"typical"
initial conditions and noise input functions which are gener-
ated according to their specified statistics. Thus, the infor-
mation required for monte carlo analysis includes the system
model, initial condition statistics, and random input statistics.

The system model can be given in the form of a state
vector differential equation,

x = £(x,y,t) (C.1-1)

where x is the vector of system states, y is a vector of random
inputs, and f(x,y,t) represents the nonlinear time-varying dy-
namic relationships in the system. We assume at the outset that
the elements of y are correlated random processes with deter-
ministic components that may be nonzero; in this case, a system
model of the form

x = f(x,t) + G(t) w(t) (C.1-2)

where w is the sum of a vector of white noise processes and a
deterministic vector can generally be obtained that is equiva-
lent to Eq. (C.1-1), as discussed in Section 1.2. Henceforth,
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we treat Eq. (C.1-2) as the basic system model; it is por-

traved in block diagram notation in Fig, C.1-1, .
: R-11802 ‘e
3 :
! x .
| w--p ol -+ ‘
|
; .i
| l
: MONLINEAR
i FUNCTION b
-h
! Figure C.1-1 Nonlinear System Model
1 -
R
. . . .l
F The initial condition of the state vector is specified
' by assuming that the state variables are jointly normal. Thus, -
] given an initial mean vector and covariance matrix*, g
p B [x(0)] = my ‘e
(C.1-3)
} T o
- - : - = D)
the initial condition specification is complete. As stated )
s above, the input vector w is assumed to be composed ol eclements o
! that are white noise processes, plus an additive deterministic
i component or mean; thus
; b Lw(t)] = b(v)
' A (C.1-%)
. 33T - _—
L) -b(t)) (w()-b(1)) ] = QL) S(t-1)

Joll | ] denotes the expected value of the bracketed variable.

c-2

i
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where Q(t) is the input spectral density matrix and the impulse

fuuction 6(t-1) indicates that the input vector random components
have zero autocorrelation for t ¢ t; i.e., the quantity u(t) = !
w(t)-b(t) is "white noise", as stated. !

Given the above information, monte carlec analysis re-
Quires a large number, say q, of representative simulations of
the system response, viz., the q-fold repetition of the following
procedure: First, an initial condition vector is chosen according
to the statistics indicated above; i.e., a random number genera-
tor calculates the elements of a random vector x(0) based on Eq.
(C.1-3). Then a random initial input vector, w(0), is generated,
using the statistics given in Eq. (C.1-4)*. These vectors pro-
vide the data for evaluation of x(0) in Eq.(C.1-2) which in turn
is used to propagate the solution from t=0 to t=h according to
any standard technique for the digital integration of a state
vector differential equation. Then, given x(h), simulation con-
tinues by the generation of a new value of the input noise vector
w(h), evaluation of x(h), numerical integration to obtain x(2h)
and so on, to the specified terminal time tf.
*We simulate white noise with spectral density matrix Q(t) by

using a random aumber generator to obtain an independent sequence
of random vectors u(kh), k=0,1,2,... satisfying

Efu(kn)] = 0
E[u(kn)uT(kn)] = § Q(xh)

Then we define u(t) by
u(t) = u(kh), kh <t < (k+1)h

where h is a small time increment. For h small (1/h much larger
than the bandwidth of the system in question), u(t) is an accu-
rate approximation to a white noise process.
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Performing q independent simulations yields an ensemble
i i i
of state trajeciories, each denoted §( ) (t:,gk )(0), g< )(t)) to
stress the dependence of the trajectory on the random initial

condition and noise inpat sumple function:
-
§(1)(t; }_(1)(0), g“)(t))

x(Dce; x Doy, Wl

o

Each satisfies the state vector differential equation (Eq.
(C.1-2)) to within the accuracy of the numerical integration
method used, and the ensembles of initial conditions, §(i)(0),
and random inputs, !(i)(t), obey the statistical conditions
given in Eqs. (C.1-3) and (C.1-4), subject to the limitations
of the random number generator employed. The mean m(t) and
covariance P(t) of the state vector are ce¢stimated by averaging
over the ensemble of trajectories using the relations

( .
i) &3 ): ey = e
i=1
(C.1-6)
, g . A :
puy 4 Ly D n-ncon D o-meenT = p(e)

i=1

~ ~ , * .
where m(t) and P(L) denote the estimated values . Tao essence

of the monte carlo technique is illustrated in Fig, C.1-2

—a

*
In estimating P, we obscerve that it is necessary to divide by
(q-1), since the sample variance,

q
p 223 M
S =
is biased (Ref. 8), i.c.
i ) = g:—l D
E [IS] =
C-1
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Figure C.1-2 Schematic Characterization of the
Monte Carlo Technique
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C.2 ASSESSMENT OF ACCURACY -- CONFIDENCE INTERVALS

1 ' In order to asscss the accuracy of the approximate sta-

i tistics given in Eq. (C.1-6), it is necessary to consider the

) L statistical properties of the estimates m(t) and P(t). To sim-
plify the notation, consider a scalar random variable y (e.g.,

the value of some system state variable at some time of interest),
and let m and p represent the true values of the mean and vari-

[ \ ance of vy,

L ) m=E [y]

- p=E[(y - m)2]

(C.2-1)

e

i)

By performing osne set: of q monte carlo trials, we obtain a single
estimate of m and p, which we denote m and ﬁ. These estimates
are also random variables; that is, if another set of q monte

C-5




- - T r—— r——— —— ~ ™ = T a7 ¢ = e -

k
L
v
P

——— Y

THE ANALYTIC SCIENCES CORPORATION

carlo trials were performed independently of the first set, but
with the same statistices for the initial conditions and noisc
inputs, then a different cnsemble of simulations results, and

different estimates for the mean and variance would be obtained.
If q is sufficiently large, then we can invoke the central limit

theorem to justify the assumption that the random variables m
and ﬁ are gaussian*, a..d thus that their distributions are
asymptotically specified by the following statistics for large
q (Ref. 21):

E[m] = m

E[p] = »
N 2 (C.2-2)
2 \ ~
up " = E[(m - m)“] = g
2
H, = P
24 - 21 = _4___
o5~ 2 E[p p)2] a
where My is the fourth central moment,
4
ny = E[(v - m7] (C.2-3)

For many common probability density functions (pdf's), a con-

st.nt Y exists such that

2
hy = Ap (C.2-4)

Table C.2-1 gives a summary of values of ), known as the kurto-

sis or excess of the density, for aome comnon pdl e Far pdt s

*
For q<20, it is necessary to assume that

ey

‘ p has the chi square
distribution if y is a gaussian variable (Ref. 225, 1if vlis
SignificantlyAnongagssian, the validity of the guussiun‘as-
?:Tgiion for m and p may require considerably more than twenty

L]
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TABLE C.2-1
SOME COMMON PROBABILITY DENSITY FUNCTIONS

td Pt e o O O O

the vicinity of p such that the true value of p is guaranteed to

C-7
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b i
! .- of this type, we can express both of the standard devia*ions of
. the estimated statistics given in Eq. (C.2-2) in terms of the
: true variance, p, to obtain
. . B
. i J q
} A -1
GaA
E I p a P
I The above discussion of the s‘atistics of the gaussian
random variable ﬁ provides the basis fcr determining a range in
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lie within that range with n specified probability, ¢. This i
done by determining the number, no» of standard deviat ions, n“,
such that

Prob [0 N Ip - f)l * nnnﬁ] C I (C.2-6)

Since p is approximately gaussian, n, is the solution to

1 no
V21 J-n

a

exp (- % t2)d:. = (C.2-7)

For example, {f the desired probability is 0.95, kEq. (C.2-7) yiclds
no = 1,96. Other values of n, corresponding to dittferent values of
¥ can be obtained from probability integral tables (Ref., 18);

several representative values are given in Table C.2-2,

TABLE C.2-2

CUMULATIVE PROBABILITY WITHIN n,
STANDARD DEVIATIONS OF THE MEAN
FOR A GAUSSIAN RANDOM VARI1ABLFE

'10 l")
1.0 0.6827
1.615 0.9000
1.9C0 0.9500
2.576 0. 9900

To reformulate Eq. (C.2-6) .uto an inequulity for p,
we substitute for 8p from Eq (C.2-85) into Eq. (C.2-6) to obtain

Prob| p & P - <p < w_~ﬁ“_~_"::: & pl=q
1 +n_JLo - 2 - ,} -1
0 q ! nU q
(C.2-8)
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that is, the true value of p lies betwcen the values p and p iadi-
crted in Eq. (C.2-8) with probability . Alternatively, in terms
of the estimated rms value of the variable, 0, we have the com-
parable result

Q>

o /- 8556
1 +n KN
o q
(C.?2-9)
a‘a/p- y 3 A—lésa
1 -n
Y q

The quantities g and o are referred to as lower and upper confi-
dence limits; the value of | expresced as a percent is the degree
of confidence. Equation (C.2-8) demonstrates that the stand~rd

deviation confidence limits can be obtained from 0 simrly by using
the multipliers p and rn. The latter are fun~ticas only of the
kurtosis, %, the number of monte carlo trials, q, and the number
of standard deviations, no, required to achieve the desired de-
gree of confidence.

The problem of naking a reasonable choice ol ), which de-
pends upon the statistics of the random variable y, must be faced

before the confidence limit multipliers can be calculated. One
option is to determine an approximate value of A by estimating
the fourth central moment using the q sample values of the vari-
able y, and calculating

A

s 52 4 3}
A u4/p A
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The value of A need not be kanown exactly, since the confidence limits |
o and 0 are not extremely sensitive to errors in this parameter. Un- o

fortunately, as we rnote in a subsequent example, a meaningful esti-

& mate of A can often require several hundred trials. In the absence of {;
% reliable information about the higher central moments, it is fre-

quently assumed that y is gaussian; i.e., that A = 3. However, if

L ) |
e ¢

§, .there is any reason to believe that the pdf for y has abnormally
é heuvily weighted tails -- as in the case of the exponential dis- g;
[ tribution in Table C.2-1,. for example -- then a larger value of A

! may be required in order to arrive at a realistic assessment of
the accuracy o* an estimated rms value obtained via the monte

carlo technique. 3

Values of p and p for A= 3 are indicated as functions of
the number of monte carlo trials in Fig C.2-1, for two typical !
values of confidence. As an example of the significance of the
confidence interval, if we desire to have 99% certainty that ¢ is :f

.
-

within 10% of the estimated value, g; i.e.,

Prob [0.905< ¢ < 1.1 6] = 0.99 (C.2-10) s
then Fig. C.2-1 demonstrates that it is necessary to perform 440 .
{ trials; 256 trials suffice for 95% confidence.* -

Figure C.2-2 shows the deterioration tkat occurs in the -
accuracy of the monte carlo estimated standard deviation, for a i. ]
given level of confidence, if the kurtosis of the random variable ‘ }

is greater than 3 dve to y being nongaussian. We discuss an in- f'

e

stance where A 15 in Section C.3; in this case, even for 256
trials, the upper 95% confidence limit is 36% greater than the

estimated value of g.

it i i e a7

x ' -
Note that the bounds, p and p, are not symmetric with respect to
one; thus the point at which p crosses 1.1 determines the value of
q for which Eq. (C.2-10) is satisfied.

C-10
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- Figure C.2-1 Typical Confidence Interval Multipliers
for the Estimated Standard Deviation of
E . a Gaussian Random Variable () = 3)
] - The confidence interval calculation for the estimated ‘
s m=2an is quite direct, since o (Eq. (C.2-5)) is not a function of
- the mean. The same value of n is obtained for the desired de-
L gree of confidence (e.g., from Eq. (C.2-7), n, = 1.96 for y =
* —
0.95 corresponding to 95% confidence), and the value of p given
] in Eq. (C.2-8) is used in deriving the result that for m and
m given by
] — ,
; : While op is given by vVp/q in Eq. (C.2-5), the true value of p
is unknown. Thus a conservative (large) value of op is ob-
l tained by using . .
Cc-11
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= _ ~ E N !
F m m + n *,q N 1
one can assert that
Cc-12
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Prob [m < m < ﬁ] =y (C.2-12)

Here, we see that m and m cannot be readily expressed in terms
of a multiple of m.

s Se ST

The confidence 1imit concept developed above provides a

tosis is not known at least approximately, however.

; ? statistical measure of the accuracy of the estimated mean and

E & standard deviation of a random variable obtained by using the

§ > monte carlo method. It is only possible to assess the accuracy

E SRS of such estimates in a probabilistic sense; e.g., for 256 trials,
E - we can assert, for example, that an estimated standard deviation
E i, (rms value) of a gaussian random variable is within 10% of the

E - true value, with probability 0.95 (with 95% confidence). We note
& : L below that even this assessment may be open .o question if kur-

L.-

a
«

h C.3 ILLUSTRATIVE EXAMPLES

- Considerable practical experience has been gained in ap-

: .- plying the monte carlo method in studies undertaken to validate the

.. use of CADET to provide accurate and efficient performance evalua-
tions for tactical missile guidance systems (Refs. 1, 2 and 4). The

significance of the confidence interval concept and the important
role played by kurtosis have been graphically demonstrated by the
results obtained, as the following example shows (Ref.4).

3

A variable of particular interest in the planar missile-
target intercept problem during the terminal homing phase is the
cross-range (lateral) separation between the missile and target,
denoted y (refer to Fig. 3.2-1). 1In a typical analysis, y (and :
all other system variables) is assumed to be gaussian at the !

A mictlans et 1

initiation of the terminal homing phase, and y remains quite

C-13
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Figure C.3-1 Time History of rms Missile-Target
Lateral Separation

gaussian until the last few seconds of the engagement. Fig. C.3-1
shows the variation of oy with time during a six-second engage-
ment, where a quite highly nonlinear system model of the type
developed in Chapter 3 with 17 state variables, 9 nonlinearities
and 5 random inputs has heen used for simulation purposes. The
solid curve is cbtained by CADET, and the results of a 500-trial
monte carlo study are indicated with circied data points to indi-
cate 8y and vertical I-bars to indicate the 95% confidence inter-
val. The estimated value of kurtosis is also indicated near each
data point; as observed above, A is nearly 3 until the last second,
while at the final time, t=6 sec, X is 15, whkich is indicative of
the quite highly nongaussian character of the final léteral separ-
ation (miss distance).

Figure C.3-2 gives a more detailed view of the CADET and
monte carlo analysis depicted in Fig. C.3-1; for two values of

time the estimated oy is shown as a function of the number of trials
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performed, q. We note in Fig. C.3-Z2a that the estimated value of
oy at t=4 appears to '"settle'" to about 145 ft after a few hundred
trials; after 500 trials we have the result that .

[ Prob [138 ft < o (4) < 156 ft] = 0.95 (C.3-1) -
which indicates that the monte carlo estimate of oy has nearly _
converged to its true value with high probability. The situation ij

at six seconds is quite different, as demcastrated in Fig. C.3-2bh.
For X = 15 the result of 500 trials is

Prob [ 24.7 < 0,(6) < 33.9 ft] = 0.95 (C.3-2) ]

which indicate a considerable margin for error in the monte carlo .oy

estimate of oy, on a percentage basis. .|

Ej
;

A synopsis of a part of the data portrayed in Fig. C.3-2b g
is provided in Table C.3-1, broken down into five sets of 100 trials
§ (set 1 corresponding to the first 100 trials, set 2 including trials f%
' 101 to 200, etc.). The data demonstrates that in this case the re- -
i sult of 100 trials is highly random -- with 8y(6) varying between .
19.72 ft and 35.88 ft; the variation exhibited by A is even more
dramatic. We also observe that therc exists a clear relation be- T
tween A and Sy; 8y is small if A is small and 8y is large if X is
large. This phenomenon is a direct resuit of the basic signifi-
} cance of Kkurtosis® if A is appreciakly larger than 3, then the
1 "tails" of the density function are abnormally heavily weighted --
] implying that there is an unusually high probability of the occur-
: rence of very large values of the randow variable in comparison
with a gaussian random variable having the same standard deviation.
(To cite an example, given two random variables with unity vari-
? ance, vy, normally distributed and Vo exponentially distributed
(A = 6; Table C.2-1), the probability that iyll > 3 is only 0.0027,
compared with the probability of 0.0144 that |y2| > 3.) Thus the

e T it i i e ol e
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TABLE C.3-1

ESTIMATED STANDARD DEVIATION AND KURTOSIS
FOR LATERAL SEPARATION, t = 6 sec

100-Trial ~ 2

Set Number oy (ft) A
1 19.72 4
2 32.08 15
3 22.25 6
4 25.67 4
5 35.88 23

Aggregate*

(500 Trials) 27.78 15

‘To obtain aggregated values for o, and X,
it is necessary to average the co¥responding
values o1 variance and fourth central moment
(Eqs. {(C.2~2) and (C.2-3)).

incidence of several large values of |y| in the space of a few
trials results in a sudden jump in the estimated oy. as evident in
the vicinity of 160 and 440 trials in Fig. C.3-2b, while it is
probable that the '"settling'" observed during the third and fourth
sets of trials is due to the untypically benign character of these
trials (an abnormally small number of trials occurred in which

|y| is large). Table C.3-1 thus demonstrates a fundamental pro-
blem with the monte carlo method applied to nonlinear systems:
Analysis based on a modest but seemingly reasonable number of
trials (say 100) may be quite inconclusive unless the value of

A is known quite accurately in advance. Thus the analyst should
be extremely cautious in assessing the reliability of monte carlo
estimated statistics, even if the estimated kurtosis is monitored.
In the preceding example, the importance of a few large values of
miss distance that occur in a set of trials in characterizing the
tails of the pdf, and thus in determining the kurtosis of a non-
gaussian random variable, also demonstrates that the common

C-17
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practice of '"discarding the pathological trials" can lead to
very misleading results,
C.4 CONFIDENCE INTERVAL LIMIT TABLES

The confidence interval limits of an estimated standard
deviation 0 can be expressed as multiples of G, viz.,

g=p0
(C.4-1)

Q>

T3

where p and p are determined only by the desired degree of con-
fidence, the kurtosis of the random variable, A, and the number
of trials performed, q. These multiples, p and p, have the form

(C.4-2)

where nO is determined by the confidence y expressed as a decimal
fraction,

1 n
/E—;r:f—r(: exp (- % t®yde - v (C.4-3)
a

This formulation, Eq. (C.4-1), makes it particularly convenient
to present the confidence interval multipliers in tabular form.
Thus we include Tables C.4-1 to C.4-3 for eanry reference, giving

C-18
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confidence interval multipliers p and p for 90% confidence (¢ =
0.90), 95% confidence and 99% confidence. This data is directly
applicable to gaussian variables, or any other case where A = 3;
for other values of kurtosis, the confidence interval multipliers
can be determined by use of the gaussian equivalent number of
trials, derived as follows: for a specified degree of confidence
(or, equivalently, a given value of no) the multipliers p and )
(Eq. (C.4-2)) are determined solely by the ratio (A - 1)/q. Thus ?
given a set of monte carlo trials typified by the parameters (q,
A), the confidence interval multipliers are identical to those

mo———

for (qeq’ 3) where qeq is chosen to satisfy

s

or

o

}
]
|
b ~
L 3-1_2)-1 (C.4-4)
<. doq q
!’

T

Qeq * xgg‘r (C.4-5)

The desiied multijliers p and ? may ther be obtained from the

.._t..:

appropriuate table of con”idence interval wultipiiers for gaussian

Dbt §
[} v

random variables under q

! o’ |
i. Example: Tr the preceding section we discussed a study of 50
trials where A % 15; to obtaiu 5 and p use 1
-
* . 1000 . .o
. Qeq ~ 14 ]
- !

as given in Eq. (C.4-5). From Table C.4-2, nnder the entry for 70
trials, we see that the 95% confideuce interval 1limit multipliers
are p = 0.866, p = 1.225.

S
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TABLE C.4-1

90 PERCENT CONFIDENCE INTERVAL LIMITS,

GAUSSIAN RANDOM VARIABLES,

(no = 1.645)

q e P
20 0.8337487 I LY RYY'
22 0,At14433 1,425104
24 0.,RA20%599 1.39352%
°6 0.,026470 1307472
°8 0.A81t22 1.3%485%8%
3o 0.,835670 f1,30681%
3 0.,A39AY 1,310573
34 0,Au3b49 1,290336
s 0.,Ru721%6 1,283735
38 0:.7A50541 1.”724A0
40 0,A51584 1,P6237%
4e 0, N56458 1,253223
44 0.h59187 1,24489%
48 0.061696 1,23727%
us 0,864092 1.230269
50 0.,866358 1,2238068
55 0.871527 1,209618
60 0.876101 1,197662
6% 0.,h80183 1,187427
14} 0,"3387¢0 1,1785u%
78 0.887213% 1.,170742
89 0.89026% 1,163826
as 0.893068 1.197642
90 0,89%68%S 1,152072
95 0.,A9R053 1,147023
100 0.900284 1.1062420
108 0,902367 1.138202
110 0.904318 1,1343240
11s 0,906150 1,130731%
120 0,907876 {1,§27402
128 0,909%06 §1,1243%03
130 0,911048 1,121409
138 0.912509 1.118499
140 0,913408 1.416154
148 0,915220 1.,113740
150 9.916480 1.111504
160 0,91m883% 1,107343
170 0692069990 1,103600
180 ‘04922977 1.100208
199 0,92481S 1,097117

C-20

q TRIALS
q e p
]
2ANg (28428 1, 0902KR%
210 0,92R115 1,091A7x
220 0,029604 1., 087284
230 1.97310n4 18T
240 9.,932315% 1,0049%)
€30 0,2334%5 1.083007
260 0.°3“72ﬁ !.O“!l'a
270 N,"15435 1.07974
280 0,93404A 1.077R87
290 0,9317AR9 1,0763%48
100 0.9%RA43 1.074912
312 0,%40p21 1,072281
340 0,9u22uH 1 N800
3800 0,963745 1,068704n
3n0 0,945127 1,f685609]3
4oo B.VUM4YD 1.063844§
420 0,947005 1.,002173
44 0,0u8721 1,0608607
460 0.,949767 1,758918}
489 0.95¢7%0 1,05779Q3
500 0.,95167 1,056527
520 0,9525%0 1,0553°29
540 0,953378 1,054207
560 0,95%4143 1,653149
5890 0.,754908 1.052149
600 0,955617 1.,0512¢03
6590 0,957251 1.049040
700 N,758713% 1. 047126
750 0.,960032 1.06%418
800 0,961230 1,043874
asy¢ 0,962324 1,042478
900 0.,9863329 1,0u41205
950 Ue98L2SY 1,040034
1000 0.9651106 1,038943
1100 0,966660 1,0370ub
1200 0.968013 1.035%182
1300 0.969212 1.033022
1400 0,970283 1.037608
1500 0.,971248 1,031464%
200¢ 0.974959 $.,027075

- e T
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TABLE C.4-2

95 PERCENT CONFIDENCE INTERVAL LIMITS,
GAUSSIAN RANDOM VARIABLES, q TRIALS

("a = 1,960)
‘ q P [ q e (o]

20 9,7R1848 1.087247 200 | 0.,%142%0 1.119888

J 22 0,7003572 1,87%5921 210 | 0.916033 1.,112299

ra g.79a071 1.,5%9450% 220 | 0,917740 1,10926%

26 0,005092 1,497989 230 | 0,9193a2 Yo10048)

28 0,A07Sub 1,468009 20 | 0,%9200%0 1,103840

30 0.,A1P5%22 1.,43%49) 2%9 0.,922274 1.101402

32 D.A17087 1.R111%08 260 0,9236¢0 1,099121

1 34 0,821299 1.390100 270 | 0,92489 1,096982

. 36 0,825201 1,371693 2080 0,9206107 1,094970

38 0,A2R832 1,%5%429 290 0.,%9272%9 1,093074

ac 0,A32223 1.,3409yY 300 | 0,9243%8 1.,0912438

L. a2 0.835400 1.,3276098 320 | 0,930407 1,087980

04 0,A383M8 1.318127 300 | 0,932284 1,08a999

as 0,A41109 1,30%430 360 | 0,93u4012 1,082293

ue 0,Au388 1.,29%6%6 380 | 0.93%610 1,079222

S0 0.84a373 1.,286683 600 | 0,9370% 1,0775%4

3s 0.A%2123 1,267138 620 | 0.,93847 1,07843

69 0.,057222 1.2508%9 849 | 0.939749 1,0735%27

\ 1 0.861789 1,234999 460 | 0,9409A0 1,071729

70 0.86%911¢ 1,22%009 480 | 0.%62120 1,070083

78 0.869659 1,2146%9 $00 | 0,943193 1,00848%

80 0,873087 1,20%478 S20 | 0.944208 1.007016

as 0.,876240 1.,197304 840 | 0.94%169 1,068634

: 290 0. AT9183 1,1899a0 560 | 0,946080 1,064333

| L1 0.8818%7 1,1083362 $80 | 0,9409%40 1,003104
.

100 0,A8037S 1,177348 600 | 0,9%4T770 1,0619a0

: 108 0.884729 1.17185%8 6%0 | 0.,9%49a70 1,05928¢

f 110 0.,88A9%% 1.,106813 T00 | 0,951372 1,056933

‘. 18 0,89101 1,162168 750 | 0,9%2908 1,054843

120 0,892967 1,157863 800 | 0,954305 1,0529%8

1 12% 0,394818 1.153887 8%0 | 0.,958%2% 1,0512%1

| 130 0.896566 1,150143 900 | 0,9%47%¢ 1,089098

135 0,A98227 1.,186062 9s0 0.997837 1,088278

. 140 0,8990806 1,143400 1000 | 0,95884u0 1.,086900

: 148 0.901309 1.,164033S 1100 | 9,%0684 1,048020

150 0,902744 1.137448 1200 | 0,962229 1,082600

. 160 0,90%42% 1,132148 1300 | 0,963832 1,04082)

! 170 0907888 1.127385 16400 | 0,964887 1,039248

a- 189 0,910154 1.123081 1500 | 0,%966018 1,037840

190 0.9122%6 1.1191087 2580 | 0,970373 1,032517

c-21
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TABLE €.4-3

99 PERCENT CONFIDENCE INTERVAL LIMITS,

GAUSSIAN RANDOM VARIABLES,
(n0 = 2.578)

Y

190

¢.738071
0.74buto
0.753879
Da7n0604
0.746728

0,772334
0,777u%
C,TR22TY
0.7446709
0.770849

0.294728
0.778365
0.801794
0,050
0.,R0R09%

0.,811001
0,31 7ThbU
0,823597
0,828928
0.A317Y%7

0.083A180
0.,Au2199
0.AuS922
0.84937}
0,A5287¢9

0.,855%72
0.A5A37s
0,A061009
0753489
0.,A688%

0,868047
0.,A70148
0,A72148
0,874008
0,A75854

0.AT75A9
0.880A30
0.AA3A10
0,88650)
0.,889118

2.u0Tt37
2.,208189
2.,039417
1,919349
1.,42989%)

1.75A031
1,700693
t,6932%2
1.513199
1,57890%

1.,5u9181
1,523048
1,499938
1,479303
1.460754

1.44397)
§.408197
1.379144
1,V55002
1,33u568

1317003
1301747
1.208269
1.,7763%0
1.285044

1.256012
1.2647278
£1.239313
1.232014
1.,22529%

1.219087
1,213328
1.207969
1,202966
1.i98243

1.193888
1,18%85¢
f1.178684
1.172238
1o166402

c-22

q TRIALS

q Il 9]
2%0 LA LY telBIONY
e10 0.RA03721 1190228
220 0,895106 1.15175)
230 0 RATT08 1,147028
¢dd 0,%99513 1,14379
250 O.°°l$'56 1|!u(‘83°
2h0 Ma903210 1,)134918
270 N,90u57A 1e13%0807
290 Q.907uAY {12800
300 0,90A040 1,12%5%0)
320 0.,911370 1,120007
340 0,913n90 fe1lubHd}
Jo0 0,715430 1,1172h4)%
3ao 0,9174811 1,1391%
400 0,919653 1,109 2
a0 0.,92137¢ 1.102945%
“ug 0,922979 1,100204
Y C.92uuAn 1.097n82
480 0,925909 1,0935298
500 0.927249 1.093001
520 0.928517 1.091024
S40 0,92°7%8 1,0890AS
560 0,73048A 1,0A72A0
580 0.9319%02 1,98%5839
600 0,932976 1,083943
630 0.,935359 1,080208
708 0.737408 14076940
150 0.93943¢ 1,074030
800 0,94119% 1,071418
850 0,942801 1,069057
900 0.94u282 1,064909
950 0,94%651 1.06494%
1000 0,940920 1,063139
1100 0,949208 1,059929
1200 0.,9512106 1,0587182
1300 0,952999 1,054720
16400 0.95459% 1,0525649
1500 0,954035 1,050847
2000 0,761594 1,043409
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