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FOREWORD

This handbook is the culmination of research

performed on the Covariance Analysis DEscrib-A' ing Function Technique (CADETTM) during a two-
year period under Contract N00014-73-C-0213,
for the Office of Naval Research. The Sci-
entific Officer who monitored and encouraged
this inv,,stigation was Mr. David Siegel.
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I-!

I ABSTRACT

The Covariance Analysis DEseribing Function
Technique (CADE•TM) -- a-technique conceived'
and developed aLt TASC for the efficient direct
statistical analysis of nonlinear systems with
random inputs -- has been proven to provJ,'e
accurate tactical missile performance projec-
tions with a small fraction of the computer
time expenditure required for a comparably

reliable monte carlo analysis. This handbook
is a self-contained, detailed exposition of

the application of CADET to the missile-target
intercept problem. The broad scope of this
document is intended to permit the direct analy-
sis of a wide variety of nonlinear and random
effects in missile guidance systems, and to
facilitate and encourage the study of other non-
linear systems via CADET.
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PROLOGUE AND I'.EADER'S GUIDE

The development of a complex weapon system with stringent

performance specifications, such as a tactical missile, generally

requires several phases, including preliminary design and feasi-

bility studies, decisions concerning implemen-ation of various sys-

tem functions, and compensation or design modi.ication to obtain

the best possible system performance under realistic constraints.

In the later stages of development, the mathematical system model

used as a basis for generating system performance projections in-

evitably contains nonlinear effects and random inputs. Nonline-

arity is generally associated with nonlinear relations inherent

to the laws of physics, unavoidable hardware nonlinearities, and

essential design nonlinearities; random effects may include noise

(e.g., thermal effects), sensor measurement errors, random inputs

that contain infori. 5ation required by the system, and random ini-

tial conditions. When random effects are significant, some sta-
tistical measure of system performance is required; for example,
the root-mean-square (rms) miss distance achieved at the time of

titclmaueof syte p nerfomneist reurd!oreape

target interception may be of interest in assessing the capability

of a tactical missile.

The traditional approach used for the statistical analysis

of the performance of systems with significant nonlinearities has

I been the monte carlo method. In this technique, a large number of
computer simulations (trials) are made using the required non-

*1 I linear model with different, randomly chosen, initial conditions

and random forcing functions generated according to given statis-

tics, The resulting ensemble of simulations provides the basis for

making estimates of the true system variable statistics. Asso-
ciated with the monte carlo method is the problem that a large
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number, of trials is required to provide confidence in the accuracy

of the results; an ensemble comprising as many as 1000 trials

may be needed to obtain an accurate statistical analysis for

a nonlinear system. Thus, while the monte carlo method may

be useful for obtaining a few evaluations of a system's per-

formance, it is not a very satisfactory tool for conducting

extensive sensitivity and tradeoff studies for different values

of the important system parameters, or for conducting detailed

studies of nonlinear effects on system performance, due to

the large expenditure in computer time required.

The limitations of the monte carlo approach for ob-

taining performance projections for realistic nonlinear models

of tactical missiles strongly motivated the development of a

more efficient analytic technique. The resulting method-

ology, conceived by the technical staff at TASC, has proven

to be an exceptionally powerful means for directly evaluating

the statistical behavior of nonlinear systems with random

inputs (Refs. 1 to 4). For reasons that will become obvious,

this method is referred to as the Covariance Analysis Describing

function Technique (CADETTM). The purpose of this handbook is

to present detailed instructions to facilitate the application

of CADET in studies of weapon systems performance.

The scope and intent of this presentation is as follows:

Chapter 1 gives the theoretical devalopment of the basic equa-

tions of CADET, both for continuous-time and mixed continuous/

discrete-time systems. Chapter 2 provides a step-by-step exposi-

tion of tli CADET proc-edure, accompanied with computer flow-charts.

Chapter 3 is a comprehensive discussion of modeling nonlinear

effects in the missile-target intercept problem; the purpose of

this material is threefold: to provide the basis for the examples

treated herein, to expedite future "se of CADET in analyzing tac-

tical missile performance, and to provide some guidance in

xiv
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modeling analogous phenomena that may occur in studying other

systems h~ving similar nonlinearities. The theory and pracJ:ical

I application of quasi-linearization is treated in Chapter 4; exact

and approximate methods for calculating random input describing

functions are presented, accuracy of the quasi-linear approxi-

mation is considered, and some sensitivity issues are discussed.

I Chapter 5 (blue pages) provides a broad overview of the application

or CADET to general problems--touching upon philosophy of applica-

tion, assessments of the strong points and limitations of CADET, and

a comparison of the computational efficiency of CADET versus the

monte carlo method. Finally, three appendices are included to

I facilitate the use and evaluation of the CADET methodology: a

catalog of random input describing func t ions, a presentation of

extensions of CADET that permit the analysis of some unusual non-I
linear effects that cannot be treated accurately by the standard

CADET methodology presented in Chapter 1, and a detailed discus-

sion of the application and reliability of the monte carlo method.

I KThe prerequisites for understanding this document are

introductory modern control theory (including the state-space

formulation of system models in terms of first-order vector dif-

ferential or differential/difference equations, and the asso-

ciated vector-matrix calculus), and elementary random process

• I theory. The contents of this handbook have been chosen to satisfy

the requirements of a somewhat diverse audience. For this rea-

3son, readers of differing backgrounds and interests will find that

some sections are of greater utility than others. In the simplest

3 case, i.e., the application of CADET to the missile-target inter-

cept problem treating only those effects discussed. in Chapter 3,

3 the illustrative examples of Chapter 2 and the random input de-

scribing function catalog of Appendix A may suffice. For thosc

interested in the theory of quasi-linearization and CADET, Chap-

ters 1 and 4 should prove to be valuable adjuncts. In treating

situations that require the quasi-lineai-ization of nonlinearities

I
• xv
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not listed in Appendix 4, the examples and principles giv,,n in

Chapter 4 establish the necessary starting point. ?'1nally,

Appendix C on the monte carlo method provides discusstons of the

theory and application of the technique (and of its potential

pitfalls in the analysis of nonlinear systems), and establishes

the context for comparisons between monte carlo simulation results

arnd CADET.

While the primary thrust of CADET development thus far

has been the extension and refinement of an efficient tool for

the statistical evaluation of the performance of missile guidance

systems, the overall scope of CADET is evidently much more general.

The system model based on a nonlinear state vectcr differential/

difference equation with random inputs is of broad generality,

being descriptive of many continuous and discrete-time systems
r: with random disturban,.es. The specific nonlinear effects dis-

cussed herein are by no means restricted in occurrence to the

missile-target intercept problem. It is hoped that the success

of the research presented here and in Refs. 1 to 4 will encourage

other applications of the CADET concept.

xII

! xvi
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5 1. THE COVARIANCE ANALYSIS DESCRIBING
FUNCTION TECHNIQUE (CADET)I

The Covariance Analysis DEscribing function Technique
(CADETTM) is a method for directl: determining the statistical

properties of solutions of nonlinear system with random input",

recently conceived and developed at The Analytic Sciences Corpo-

ration (Refs. 1 to 4). The principal advantage of this technique

5 is that it greatly reduces the naed for monte carlo simulation,

thereby achieving substantial sa-,ings in computer processing time.

5I We first motivate the discussion by reviewing the covariance

analysis method for linear systems; then we develop an analogous5 I procedure (CADET) for the nonlinear case.

1.1 COVARIANCE ANALYSIS FOR LINEAR SYSTEMS

5 The dynamics of a linear continuous-time stochastic sys-

tem can be represented by a first-order vector differential equa-

l I tion in which x(t) is the system state vector and w(t) is a forc-

ing function vector,

A+ (t) =F(t) x(t) + G(t) w(t) (1.1-1)

where we assume that F(t) and G(t) are continuous with respect to

t; Fig. 1.1-1 illustrates the equation. The state vector is com-

* posed of any set of variables sufficient to describe the behavior
of the system completely. The forcing function vector w(t)

represents disturbances as well as control inputs that may act

upon the system. In what follows, the forcing function w(t) is

U -I'
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Figure 1.1-1 Representation of the Continuous-Time

Linear Dynamic System Equations

P.ssumed to be composed of a mean or deterministic value b(t) and
a random component u(t), the latter being comprised of elements
which are uncorrelated in time; that is, u(t) is a "white noise"

process having the spectral density matrix Q(t). Thus w(t) is
specified by*

w(t) - b(t) + u(t)

Ea[wM) = NO)(112)L

E [ UMt u!T*T)] = Q(t) 6(t-T) [
Similarly, the state vector has a deterministic component m(t)
and a random part r(t); for simplicity mR(t) will generally be
called the mean vector. The state vector x(t), then, is described .

statistically by its mean vector and cov-eiance matrix,

x(t) = m(t) + r(t)
(1.1-3)

M(t) = E [x(t)]

E denotes ensemble expectation, or average value; a super-
script T denotes the transpose of a vector or matrix; 6(t-T)
is the Dirac delta function.

1-2
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P(t) E [r(t) r'(t) (1.1m3)(Cont)

Henceforth, the time dependence of the variables w, b, u, Q, x,

m, r and P will not be explicitly denoted by (t). unless required
for clarity.

The differential equations that govern the propagation

of the mean vector and covariance matrix for the system described
by Eq. (1.1-1) can be derived directly, as demonstrated in Ref. 5,

[ to be

_ = F(t) m + G(t) b (1.1-4)

P = F(t) P + PF T(t) + G(t) QGT(t)

The firsL and second momeiats of the system response are completely

determined by integrating the above vector and matrix diffe.,,ntial

equations, Eq. (1.1-4), when the initial conditions, m(O) and
P(O)*, are specified. The elements of m represent the effects of

deterministic initial conditions and biases due to determin-

istic system inputs (b 0 0). The diagonal elements of P are
the mean square values of the random components of the state

variables, and the off-diagonal elements represent the
degree of correlation between the random components of the

various state variables.

the Equation (1.1-4) provides a direct method for analyzing

S1 the statistical properties of x. This is to be contrasted with
the monte carlo method, where many sample trajectories of x are

calculated from computer-generated random noise and initial con-K. ditions, using Eq. (1.1-1). The moments m and P are then esti-

mated by averaging over the ensemble of trajectories generated in
the monte carlo procedure. Note that Eq. (1.1-4) leads to exact

The initial time can be taken to be t- 0 with no loss in
generality.

1-3
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solutions for m asad P, to within computer integration accuracy,

whereas the monte carlo method yields approximate solutions tor

any finite number of simulations. Furthermore, the mean and co-

variance equations need be solved only once over the time interval

of interest, whereas Eq. (1.1-1) must be solved repeatedly using

the monte carlo technique; consequently the direct analytical

method is not only exact, but is also generally the most efficient

technique for analyzing linear systems. With this observation as

motivation, we proceed to describe a methodology whereby the sta-

tistics of a nonlinear syste-i can be computed approximately using

recursive relationships similar in form to those of linear co-

variance analysis, Eq. (1.1-4); the monte carlo method is treated
in greater depth in Appendix C.

1.2 COVARIANCE ANALYSIS FOR NONLINEAR SYSTEMS

Th-e k.:onlinear counterpart of Eq. (1.1-1) treated in this
presentation is

f_- (_,t) + G(t) w(1.2-1)

Figure 1.2-1 depicts this equation. The input and state vectors I'
are again characterized by the quantities b, Q and m, P, respec- v
tively, given in Eqs. (1.1-2) and (1.1-3). V

R-11902w

++ NONLINEAR
" "-FUNCTION

Figure 1.2-1 Nonlinear System Block Diagram

1-4
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i It may seem restrictive to have the random inputs enter

the symtem differential equation linearly as in Eq. (1.2-1).

However, if a system is of the form

k - f(x,yt) (1.2-2)

and y is a correlated random process that can be represented as

a random vector satisfying

+ G (1.2-3)I • -~fn(y[,t) + n(t) w( . -)

where w is the sum of suitable vectors of deterministic variables,

I5 b, and white noise processes, u, we can rewrite Eq. (1.2-2) using

the augmented state vector xa,

as
I . I ~~f(Xa't ' F 0 "

-- I--- -- " . .-----*. . . - w ( 1 . 2 - 4 )I ,~ -,a 4,•(Y,~ ~ntj

I 5.Obser\( that is thu:, considered to be a component of the state
_ C

vector, rompri.sed of "noise states". Th,,Q procedure places the

apparently rror. general problem of iqs. (1.2-2) and (1.2-3) in

the format given in Eq. (1.2-1); since ill physically realizable

random proce;Jses a'ec correlated, the assumptio.a that y is de-
scribed by Eq. (1 ,- 3) is not particuAarly restrictive. For con-

venience we thus consider Eq. (1.2-1) to be the basic system

model, with no significant loss in generality.

The statistical differential equations that correspond
to Eq. .11.1-4) can be shown to be (Ref. 5)

Iq4 1-5
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tii E ý: 1(a.t)) + Ct(t)b L
f + G(t)_b (1.2-5)

SE [I !T] + 1[~T] + G;(t)QGT(t

The first equation is the direct analog of the mean differential {i
equation of Eq. (1.1-4), since we observe that i' is simply F(t)rn

In the linear case. The nonlinear novariance equation can be
represented in the same format as indica t ed in Eq.'(1.1-4) by UL11
defining the auxiliary matrix N,

NP E[xt)T](1.2-6)

Then Eq. (1.. -5) may be written as
mi a + G(t)b L

(1.2-7)

P w NP + PNT + G(t)QGT(t)

The relation in Eq. (1.2-6) generally provides an explicit defi- [3
nition of N,

N- E [f(•,)rT] Pr (1,2-8)

since P is usually positive definite* and thus a unique P- 1  -

exists.

The derivation of Eq. (1.2-5) is based directly on the
principles of covariance analysis, Ref. 5. We observe, however,

Often the initial condition P(O) is only positive semi-.dofinite,
in which case the pseudoinverse of P(O) could be used in Eq.(1.2-8).
As shall be shown subsequently, Eq. (1.2-8) is only formal, in the
sense that it is almost never used to evaluate N (refer to Eq.
(1.2-10) and Seution 4.1).

1--6
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that. the vector f and matrix N defined in Eqs. (12-5) and (1.2-6)
are Identical to the quantities which provide a minimum mean nquare

.rror uasi-linear approximation to the nonlinearity f(.,t). It
I ean be shown (refer to Section 4.1) that the approximation

f(xt) a f + N(x - m)

with f and N specified by Eqs. (1.2-5) and (1.2-6) yields the best
linear approximrtion in the sense that

I e f(x,t) - f N(x- m)

satisfies the condition

E [eTse] - minimum

for any positive semi-definite matrix S. The intimate relation

between the well-established describing function theory (Ref. 6)

and Eq. (1.2-6) has permitted the rapid development of an approxi-S~mate nonlinear covariance analysis technique based on Eq. (1.2-7)
il I eallv~d CADET -- the Covariance Analysis DEscribing Function Tech-

nique. Henceforth, we shall refer to if as the expectation vector

and N as the__=uasi-linear system dynamics matrix.

A

The quantities f and N defined in Eqs. (1.2-5) and (1.2-6)

must be determined before we can proceed to solve Eq. (1.2-7).
* • Evaluating the indicated expected values requires knowledge of the

. .joint probability density function (joint pdf) of the state vari-r - ables. While it is possible, in principle, to evolve the n-
dimensional joint pdf p(x,t) for a nonlinear system with random
inputs by solving a set of partial differential equations known5 as the Fokker-Planck equation or the forward equation of Kolmogorov

(Ref. 5), this procedure is generally not practically feasible.
3 The fact that p(x,t) is not available precludes the exnct solu-

tion of Eq. (1,2--7).

[ • 1-7
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One procedure for obtairtnr an approximati, solution to

Eq. (1.2-7) 18 to assume the form of tk.v ,joit. prohability dten-

sity function of the state variables ir. Jrder to evaltvate f and N

according to Eqs. (1.2-5) and (1.2-6). Although it is possible

to use any joint pdf, all of CADET developMent to date has been

based on the assumption that the state variables are jointly

norinal; this choice was made because it is both reasonable and

c'onvenient.

While the above assumption is strictly true only for

linear systems driven by gaussian inputs, it is often approxi-

mately valid in nonlinear systems with nongaussian inputs, Al-

though the output of a nonlineailty with a gaussian input is

generally nongaussiar, it is known from the central limit theorem

that random processes tend to be made gaussian when passed through

low-pass linear dynamics ("filtered"). Thus, we rely on the

linear part of the system to insure that nongausslan noislinearity

outputs result in nearly gaussian system variables as Aignala

propagate through the system. By the same token, if there are H
I.)

nongaussian system inputs which are passed through low-pass linear

dynamics, the central limit theorem can again be invoked to jus-
tify the assumption that the state variables are approximately

jointly normal. The validity of the gaussian assumption for non-

linear systems with gaussian inputs has been extensively studied i

and verified; nongaussian random inputs have not been considered.

From a pragmatic viewpoint, the gaussian hypothesis serves

to simplify the mechanization of CADET significantly by permitting

each scalar nonlinear relation in f(x,t) to be treated in isola-

tion, with f and N formed from the individual random input describ-

ing functions (ridf's) for each nonlinearity. Since ridf's have

been catalogued in Ref. 6 for several classes of nonlinearities

encountered in a broad spectrum of practical problems, the
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Implimentation of CADET Is a straightforward procedure for the

analysis of many nonlinear systems. We also note that, under the

,3 gatussin assumption, the, random input describing functions can

"*I be calculated directly from the mean vector, m, and the covariance

matrix, P, of the system state vector, Thus, we write f and N

, In th .e fo'rm

3 f = f(m,P,t)
5- -(1.2-9)

N = N(m,P,t)

As a corollary to the above observations, we have the result

(Ref. 7) that

Id
N(m,P~t) - f (1.2-10)

Since calculating f is required for the propagation of the mean

I (Eq. (1.2-7)), it is generally much easier to employ Eq. (1.2-10)

than to eývaluate N directly using Eq.(1.2-6). Quasi-linearization

and the random input describing function are treated in some
dtail in Chapter 4.

Relations of the form indicated in Eq. (1.2-9) permit

the direct evaluation of f and N at each integration step in the

Ipropagation of m and P, is illustrated in Fig. 1.2-2. We note

that. the dependence of f and N on the statistics of the state vec-

tor is due to the existence of nonlinearities in the system. With-

out nonlinear effects, the propagation of the mean and covariance

g is "uncoupled," as in Eq. (1.1-4).

To demonstrate the ease witu ,hich CADET can be mech-3 anized under the gaussian assumption, we consider a low-order sys-

tem model for the missile-target intercept problem having a R'ngle

nonlinearity in Section 2.2. All of the steps involved in per-

forming statistical analysis via CADET are illustrated in detail.

1-9
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BIAS
Ii.

INPUT COVARIANCE

SPECTRALR e-

DENSITY MARI
GQe

Figure 1.2-2 Nonlinear Covariance Analysis -- CADET

A comparison of quasi-linearization with the classical

Taylor series or small-signal linearization technique provides a H
great deal of insight into the success of the ri f in capturing

the essence of nonlinear effects. Small-signal linearization for

a scalar nonlinear element f(x) is based on the identification of

a nominal operating point (in this context, the mean value of x,

denoted mnx) and the evaluation of the slope of the nonlinearity

at that value; then the approximation is made that

f(x) = f(mx) + f'(mx) (x - mx) (1.2-11)

which represents the first two terms of a Taylor series expan-
sion about the given operating point, as illustrated in Fig. 1.2-3
for the example,y = x 3. While this is a useful approach if excur-

sio•,s from the nominal are small, the validity of the Taylor series

approximation is questionable when x is a random variable which can

exhibit large variations about its mean value.

1-10
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I
Y R-16236

£ 1----------| 'I',

Figure 1.2-3 Taylor Series Linearization ofy = x3 about mx = 1

By contrast, the quasi-linear representation of a non-

linearity is sensitive to the input amplitude in some sense; in

the case of random inputs, the statistics mx = E [x] and2x
Px = [(x-mx) ] provide the measure of input amplitude. For the
example y = x3 , where x is a gaussian random process, we calculate

the describing functions in Section 4.3 (Eq. (4.3-7)) to be

[n- ~ 3Px+m)x

~ [ n3(px~2)

so the nonlinearity is approximated by

x 3  3 + m2) x + 3(Px + m2) (x - mx) (1.2-12)• x x "

Comparing Eqs. (1.2-11) and (1.2-12), we see that the describing

function gains* depend on both the mean and variance of x, as

indicated in Fig. 1.2-4, while the coefficients in the Taylor

series approximation do not.

W *In treating single-Input nonlinearities, it is sometimes con-
venient to consider f/mx to be the mean component "gain".

, 1-1
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3t-11604

f/rnn

4

Quasi- Linearization for mX87
2 Quasi-Linearization for mX8l

Taylor Series Linearization obout mx, I
Taylor Series Lioearization about mra 1

0 II 0 I

o 1 2 PX 0 1 2 PX
(a) Mean Component Gain (b) Random Component Gain

Figure 1.2-4 Quasi-Linearization of y = x3 for
Unity Input Mean

1.3 CONT[NUOUS/DISCRETE-TIME SYSTEMS

Preceding sections of this chapter have treated continuous-

time nonlinear systems; iLe., those that are governed by differen-

tial equations. However, in many practical applications, the sys- I

tem may include a digital computer whose operations are expressed

in terms of difference equations, as illustrated in Fig. 1.3-1.

Such a structure arises in missile guidance systems when digital

control laws are used to generate acceleration commands, for ex-

ample. In this section, equations are briefly developed for propa-

gating the mean and covariance of a nonlinear, mixed continuous/

discrete system. Systems which are wholly d~.screte can be treated

as special cases of the following discussion.

The equations of motion for a system of the type shown in

Fig. 1.3-1 are expressed in mixed differential./difference equation

format. In the continuous-time phase (between sampling instants,

tk, k = 1,2,....) the digital computer is inactive, and the state
variables of the system satisfy an equation of the form

1-12
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CONTINUOUS-TIME

RANDOM INPUTS
[• -• DYNAMICS I

SAMPLER

k• DISCRETE-TIME

RANDOM INPUTS

Figure 1.3-1 An Example of a Mixed Continucus/
Discrete System

f -t [+d [ M W J t k < - k+1
S[-- - . .d. .l; -j
S- ' - (1.3-1)-

Swhere• x (t) refers to the continuously-varying states in the sys-
tem, and xd(t) is a collection of discrete-time states (e.g.,
states in the digital computer) which remain unchanged between
the sampling times. Under the assumption that the state variables
are jointly normal, the statistics between sampling instants can

be propagated using a straightforward extension of the standard
CADET equations (Eq. (1.2-7)) as follows:

f[cm,'Pt)] [G+(t)bc

K1  (1.3-2)I [Nm t !1 [GQGT -0jl
c(m,P,t) + 0-'c ( m ,P t ) 0 ~ __[ ,, to ,o

0 0

i 't < t< t
k -k+1

1-13
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where N is the quasi-linear system dynamics matrix for the

(cfl. intious-time -dale( vnirinlibl,(', d(el'ined by

INL g E [f(x~t) rT]

which is of dimension (n0 x n); n is the total number of state

variables and n, is the number of continuously-varying states.

The continuous-time vector of white noise processes wc(t) is

described statistically by the mean vector bc and spectral

density matrix Qc as before (refer to Eq. (1.1-2)).

Observe that describing functions for a nonlinear time-

invariant function of gaussian discrete-time states alone need

not be evaluated continuously since the statistics of the

discrete-time states are constant in the interval tk < t < t

As a special case, if

f (x t) = 11 (xc't) + f 2 -d (1.3-3)

is
then N may be partitioned into two parts,c

IamPt c~cPctIc

'p'

m = ,P = Pd
-Ccc 1 cdI~ (1.3-5)

_Md-cd Idd-

Sineo mnd and Pdd are constant during the continuous-time phase,

the matrix Nc2 is also constant.

At a sampling time, tk+1, the digital computer performs

a calculation which can be represented as a difference equation,

"1-14
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X (tk+ [ ttk+l) 0

+ + (1.3-6)
Wt (k+1) d (x(t k+l),t k+1) Gr k+l~k+1

where the superscript (+) denotes the new values of the state

variables just after a sampling instant.* I'he vector wk+l

I represents a discrete-time random quantity that can enter the

digital calculation as a result of sensor measurement noise,quanti-

zation, etc. It is assumed that wk+1 has a mean of bk+l and a

covariance matrix Qk . Observe that in Eq. (1.3-6) xc remains

unchanged, since variables that satisfy differential equations

cannot change instantaneously in time. Situations where it is

reasonable to assume that E continuous-time variable can change

"almost instantaneously" as a result of a digital operation can

be treated by decomposing that variable into components that are

strictly continuous (an element of xc) and digital (an elementS sori t he codiio thatta

of X), so the condition that x,(t+) = xc( t k+l) represents no

loss in generality.

Because the mean and covariance of x and xd at t are-c an tdk+l

| known from Eq. (1.3-2), the expectation vector Sd and quasi-linear

system dynamics matrix Nd corresponding to Ld in Eq. (1.3-5) can

I !be evaluated. Thus we can rewrite the discrete-time part of Eq.

(1.3-6) approximately as
dtk+1) • d+Nd •(kl -t +l Gk+l~k+1

(td + N (t k+1) rn(tk+l)J wkly~ (1.3-7)

From Eq.(1.3-7) it follows that the mean and covariance of the sys-
tem states just after the discrete-time calculation are given by

The discrete-time operation actually takes place between tk+1 and
tk+1 + c. In this discussion it is assumed that c is negligible in
comparison with the time-scale of the continuous-time dynamics,
although finite computational delays can be treated in a straight-
forward manner.

q 1-15
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Cn-c tk+1) = nc(tk+1)

=-d

md(tkl f

P(t t+l )=dt_. t l) _,,NT + 0 G + ~ +G +

ltk+1) - (t=)N±dOl~k1 L0'1 G [ Gk+lQ:+ IGk+1]d Lo (1.3-8)

After evaluating Eq. (1.3-8), m(t+ and P(t are the. _ k+1)adP k+l)aete nta

conditions for propagating the mean vector and covariance matrix

over the next continuous-time phase using Eq. (1.3-2). Thus by

alt,,rnately implementing the continuous-time and digital mean

vector and covariance matrix propagation equations, Eqs. (1.3-2)

and (1.3-8), the performance of a nonlinear system described by

a mixed differential/difference equation can be evaluated.

The developments discussed in this chapter provide the

neces(,,ary tools for analyzing the performarice of a broad class of

nonlinear systems with random inputs. The efficiency realized by
CAI)ET has made it an attractive technique for performing sensi-

tivity studies and investigations of the impact of nonlinear

effects on the accuracy of tactical missile guidance systems; it

is anticipated that CADET will prove to be equally powerful in

treating other nonlinear systems.

1-16
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52. CADET APPLICATION: SIMPLE ILLUSTRATIONS

In this chapter we demonstrate many of the details that

are involved in the application of CADET to a practical problem
involving the statistical evaluation of the performance of a non-
linear system with random inputs. Simplified formulations of the

5 missile-target intercept problem are treated, with guidance modules
that are either analog or digital; the corresponding CADET equa-5 tions are obtained; and their solution -- to establish the evo-

lution of the system variable statistics during a given scenario -

is outlined in computer flow-chart format.

5 2.1 MISSILE-TARGET EQUATIONS OF MOTION

5 This sect ion treats -,he basic differential equations

describing the motion of a tactical missile and a target to be

g intercepted. In subsequent sections, examples of two types of

S guidance modules are considered -- continuous-time (analog) and

discrete-time (digital) -- to provide -the basis for detailing the

~ K NDET methodology, both for systems represented entirely by dif-
~rential equations and for systems described by mixed differential/5 difference equations. In order to obtain a system model which is

simple enough to permit a clear presentation of the step-by-step

procedure entailed in the use of CADET, we reduce the planar

missile-target intercept problem to its bare essentials. Chapter 3
provides a more detailed discussion on modeling the missile-target

~ U intercept problem; here we present only a summary of the required

dynamic equations.

U The ecoordinate frame and the basic variables are por-
trayed in Fig. 2.1-1. Here we consider variations about a head-on

2-
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Figure 2.1-1 Missile-Target Planar Intercept Geometry

intercept, i.e., the missile lead angle, 01, and target aspect

angle, 0 a, are assumed to be small. For the purpose of illustra-

ting the mechanization of CADET, we make the followirg approxi-
mations based on small-angle assumptions:

9 The down-range separation, x, and missile-
target range, r, are deterministic, given
approximately by

x(t) a r(t) i (vm+vt )(T-t)

(Vm+vt ) tgo
whew T is the nominal terminal time (time of

intercept), tgo is the time-to-go, and vm and
vt are the constant missile and target velocity
magnitudes, respectively.

e The lateral or cross-range separation, y, is
determined by the missile and target lateral
accelerations, am and at respectively, as 4.n
Eq. (3.5-14)

Y at am (2.1-2)

* The autopilot and airframe dynamics are repre-
sented by a linear plant, modeled by a transfer
function with a single dominant pole at s=-l/T,

2-2
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followed by an ideal limiter, to model the air-
"I frame saturation effect. Thus the unlimited

missile lateral acceleration 14 satisfies theI •differential equation

Im* + Im " I ac (2.1-3)

where ac is the acceleration command generated
by the guidance module, and the limited value,5i am, is given by

X m< amaxam = f(m) - (2.1-4)
ami amaxSign( Im), 'a"m I > amax

9 The target acceleration, at, is the sum of adeterministic variable and a band-limited
gaussian process satisfying

i t + Wt at u w(t) (2.1-5)

where wt is the target maneuver bandwidth. TheI random input w is described by

E [w(t)] - b(t)

E [(w(t)-b(t))(w(T)-b(T))] = q(t) 6(t-T)

where b is the deterministic component of the
input and q is the spectral density of the white
noise process, w - b.

Given the preceding simplified equations of motion, we complete

the missile-target intercept model by considering simple examples

of the two basic classes of guidance modules: continuous-time and

32.2 THE CONTINUOUS-TIME CASE: PROPORTIONAL GUIDANCE

The acceleration command dictated by the classical pro-3 portional guidance law (refer to Section 3.5.1) is given by

ac n' vc (2.2-1)

I,2
S~2-3

-------------------------------------
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where n' is the-navigation ratio (a constant, here taken to be 3),

vC Is the closing velocity, which in the present scenario Is

approximately given by the sum of the missile and tarret veloci-

ties,

v r(t)/t i v + v (2.2-2)Sgo m t

and 4 is the angular rate of the line-of-sight (LOS)(Fig. 2.1-1).

Using the assumptions made in Section 2.1, Eq. (2.2-1) can be

reformulated to yield the approximation

a t In + + (2.2-3)
aT g T tgg togo)

where 8 denotes n'/Ttgo for notational simplicity. The complete

system model based on the foregoing assumptions and development

$s portrayed in Fig. 2.2-1.

R -1,234

PROPORTIONAL GUOINCE

INW" T $ +Wt g

STATE VARIABLES: 
M

uuou at r

" X3 a om m maIIN4 at

Figure 2.2-i Simplified Missile-Target Intercept
Model With Continuous-Time Guidance
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3 The state vector differential equation associated with

Fig. 2.2-1 is given by

I 11  0 1 0 0 0- 0-

2 0 0 x + f(x 3 ) + w(t)*3 O/t ° B -1/T 0 0 0S• •t 1

L*4J 0 0 0 _W tj L0J J

[ Fx + df(x 3 ) + I w(t) (2.2-4)

From the statistics of the Input to the limiter,

m 3 - E Ex3 ]

r•3 a x 3 - m3  (2.2-5)

2)e o3r uEd i t3

we can directly evaluate the scalar random input describing func-
tions (ridf's) used in the quasi-linear representation for the

•: limiter f(x3),

b. I f(x3 ) A f + nr 3  (2.2-6)

as derived in Example 3 of Section 4.3:

n Pn-PT ( ma +m3 ( amxr3
(2.2-7)

fa 3 [G~aa+3 G (aain) m3

* IThe functions G(v) and PI(v) are defined in Eq. (4.3-13); they

are the standard functions used in quasi-linearizing piecewise-

linear elements (Ref. 6), Many computer scientific subroutine

2-5



THE ANALYTIC SCIENCES CORPORATION -

pa('kaLg(oH have avatlRblP the subroutine "EqRF(v)", in which
case. ii

PI(v) 1 + ERF

1(2.2-8)

G(v) - vPI(v) + e

permits direct calculation of f and n. Given the two constituents

of the quasi-linear representation of the limiter indicated in
Eqs. (2.2-6) and (2.2-7), we substitute into Eq. (2.2-4) to get

f Fm + df

N.0 1 0 (2.2-9)
S0 0 -n 1 i

N"

0/tgo 0 -1/T 0

0 0 0 _t

Finally, from the input statistics, b and q, the dif- [J
ferential equations and initial. conditions that approximately
govern the propagation of the state vector deterministic com- H
ponent ("mean") and covariance matrix are givetr by Eq.(1.2-7):

_ + g b; m(0) - MO

(2.2-10)

Te AETNP + PNT + q; P(C) - P0

The CADET methodology utilizes the preceding relations to deter-
mine the time histories of the mean vector, m, and covariance

matr.x, P, over the duration of an ensemble of engagements

(0 < t < r). Any standard numerical integration technique may
then be uccd to solve Eq. (2.2-10).' The structure of a computer

2-6
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ii program to (carry out the CADET analysis of tactical missile per-

formance is indicated in Fig. 2.2-2.

I The results of a CADET and monte carlo statistical anal-

ysis of the performance of the preceding missile guidance system

(obtained from Ref. 1) are depicted in Fig. 2.2-3. Since the rms

lateral separation between the missile and target is of primary

importance in assessing tne ability of the missile to intercept

the target, only that variable is portrayed. The white noise in-

put spectral density, q, was chosen to be a constant yielding anI 2
rms target lateral acceleration of 160 ft/svc , the bandwidth w

was assumed to be 1 rad/sec, and the autopilot time constant T

was taken to be 1 sec. All initial conditions (i 0 and P0 ) were

zero.

This missile performance study considered three levels

of "tirframe saturation. In Fig. 2.2-3a, the linear case cor-

responding to an infinite acceleration command limit is shown;

here, CADET reduces to the standard linear covariance analysis

(Section 1.1) which is exact, and the 200-trial monte carlo
analysis provides an adequate approximation to this result. For

I the study of Fig. 2.2-3b, the restriction that the missile lateral

acceleration cannot exceed 322 ft/sec 2 leads to a five-fold in-J crease in y at the terminal time, here taken to be 10 sec; theSy
CADET and monte carlo approximate solutions are in good agree-

I ment. Even in the case where the missile lateral acceleration

constraint is very severe (amax = 32.2 ft/sec 2 ), causing a further

1. ,rge decrease in missile capability as shown in Fig. 2.2-3c, the

CADET solution is verified by the monte carlo analysis.

Thus we observe that the direct statistical analysis via

CADET, implemented according to Fig. 2.2-2, quite accurately cap-

tures the effect of a significant nonlinearity in the missile-

target intercept problem. This investigation is performed with
an expenditure of computer time that is a small fraction

2
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Figure 2.2-2 Flow Chart for the Direct
Statistical Analysis of a
Continuous-Time System
via CADET
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Figure 2.2-3 Performance Projections for Various Levels
of Airframe Acceleration Saturation

(approximately 1/100) of that required for an accurate monte carlo

study. Furthermore, the effect of decreasi.og missile performance

caused by airframe saturation is completely beyond the scope of

linear covariance analysis, which requires the small-signal line-

arization of the saturation nonlinearity, i.e. replacing f(x 3 )
by a unity linear gain, regardless of the saturation level. Con-

sequently the small-signal linearization approach completely ob-
scures the nonlinear effect and leads to a quite over-optimistic

prediction of missile performance when compared to a more realistic

assumption -- e.g., that am cannot exceed 322 ft/sec 2 , as evident

in Figs. 2.2-3a and 2.2-3b.
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2.3 GUIDANCE SYSTEMS WITH DIGITAL DATA PROCESSING

In some guidance systems, discrete-time measurements of
certain system variables are made available to a computer for
data processing purposes; acceleration commands are then calcu-

lated (in an on-line mode by use of a suitable algorithm) which Ii
are used to control the missile. In this presentation, we assume

that the available signal is a noisy sampled measurement of LOS

angle, 0, so we have the sequence of values given by

Zk = ek + Vk, k = 1,2,... (2.3-1)

at the sampling instants, tk =kT, where is the sampling .1
period. The zero-mean white noise sequence, v k, is quantified i

by its variance

~2 - ~ 2] (2.3-2)V Lk

Generally, the random effects modeled by this sequence include

external inputs (e.g., jamming) and measurement error. In light

of the small angle conditions, we use the approximation

a y/r A xl/r (2.3-3) f

where r is deterministic, gJven by Eq. (2.1-1), and x 1 is the
state variable representing y, Fig. 2.2-1.

Based on the information prov±ded by the measurement

sequence zk, the computer algorithm is often of the form

Vd(tk) = Fdk ?d(tk) + kkZk (2.3-4)

2-10
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(cf. Section 3.5.2 for the design of a guidance modulo hisod on

the Kalman filter and optimal cotrt.'ol tlhory) wltl' %d i., (ho

vector of digital states, comprised of variables which are stored

in memory and up-dated according to Eq. (2.3-4) as each new mea-

surement zk is made and processed. The matrix Fd,k and vector

_k, which may vary from one digital operation to the next, are

specified by the filter algorithm. The difference equation,

Eq. (2.3-4), in combination with the initial condition Xdo deter-

mines the time-histories of xd"

j A typical control law (again, refer to Section 3.5.2)

then specifies an acceleration command, ac given in Eq. (2.1-3),

i that is a linear combination of the digital states,

T + +
ac ' -k xd(tk)' tk < t < ttk+1 (2.3-5)

This relation completes the des; iption of the overall system

j model, depicted in Fig. 2.3-1.

R-16229

DIGITAL GUIDANCE SYSTEM

E MEASUREMENTNOISE
S, --vk

i CONTINUOUS- TIME E 0. (2. -" "'))
STATE VARALES : _

/x3 a m ICONTROLSx4 - at I GAINS

Figure 2.3-1 Simplified ssile-Target Intercept
Model With Digital Guidance
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The mixed continuous/discrete-time system depicted in

Fig. 2.3-1 and represented by the total state vector

HeT - (2.3-6) L
satisfies a differential/difference equation of the form treated H
in Section 1.3. Corresponding to this division of state vari-

ables into continuous-time and digital states, we have U

rn= P - (2.3-7)

Pd , Pdd

The nonlinearity f(sm) given in Eq. (2.1-4) falls in

the continuous-time dynamics; its argument is a continuous state i
variable, x 3 . Thus quasi-linearization proceeds as in Eqs.(2.2-6)

through (2.2-8). We can then determine the matrix Nc and vector
fC required for the propagation of m and P during the continuous-
time phase (Eq. (1.3-2)):

"0 1 0 0 0 T

0 0 -n 1 0T
N 0 -1/T 0 1 cT H

T -k

L -

(2.3-8)
m2

(4-f)f T
- (m _m+ckT md)/T
-ctm

These quantities are all that are required for the propagation

of m and P between sample times according to Eq. (1.3-2),

2-..12
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Ib

~in[3, [~3b(2.3-9)

I +, -i N,,K 4--0] q

i where b and q are the deterministic component and the spectral

density of the random component of the random input, respectively,

as definod in Eq. (2.1-6), and g is given in Eq. (2.2-4).

In the present example, the digital operation taking

place in the infinitesimal interval (tk,tk) has been formulated

as a single linear time-varying difference equation, Eq. (2.3-4).

* Recalling that

zk = xl(tk)/r(tk) + vk (2.3-10)

we obtain

SI c(tk)

EI ( I I +

[,r.; k) k,_ , ,o Fd -k. k,[2i- /• k - -I -, - I '• /x (t ) -kk

(2.3-11)

d,k x(tk) + kkv

The change in m and P during the digital phase of operation (as

given in Eq. (1.3-8)) is then

P(tk) k Nk-P(tk N- k + ---- 1 2 Tkm( -)-0 10 k

S~2-13
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Implementation of the CADET equations giveii above (Eqs. (2.3J-9)

and (2.3-12)) is portrayed in computer flow-chart format in I
Fig. 2.3-2.

We observe that thiý difference equation satisfied by

the digita~l states is lineav time-varying, so the matrix Nd
(Eq. (2.3-11)) contains no describing functions. If it is neces-

sary to include nonlinear effects in the discrete-time portion of

the system model, one must evaluate appropriate random input

describing functions to be substituted in the vector fand

matrix Nd (Eq. (1.3-7)); some added complexity is entailed in

this case.

The examples 'liven in Sections 2.2 and 2.3 illustrate

the fundamentals involved in the application of CADET to pro-
vide assessments of the performance of a tactical missile repre-

sented by a simple low-order system model with one significant

nonlinear effect. CADET has been successfully applied to system

models of considerably higher order and complexity (refer, for

example, to Table 5.1-1). The flow charts sho~wn in Figs. 2.2-2 '

and 2.3-2 accurately reflect the methodology used in the more

complex problems.
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I

INITIAL
CONDITIONS
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IFigure 2. Flow Chart for the Direct
Statistical Analysis of a Mixed
Contitnuous/Discrete-..Time SystemI via CADET
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3. MODEL DEVELOPMENT FOR THE

MISSILE-TARGET INTERCEPT PROBLEM

This chapter presents mathematical models which describe

various subsystems required in treating the general missile-

target intercept problem. The material included here summarizes

the nonlinear effects that have been treated in past CADET appli-

r cations (Refs. 1 to 4). The aims of this presentation are to aid
I future users of CADET in analyzing tactical missile performance,

and to provide some guidance in modeling analogous phenomena that

may occur in the simulation of other nonlinear systems with ran-

31ELEMENTS OF THE MODEL

The overall interconnection of the subsj'stems which

~ [comprise the missile-target intercept model is indicated in
Fig. 3.1-1. The principal variables are shown as outputs of the

~~ appropriate blocks, and random disturbances are denoted w.

Detailed models underlying each input-output relationship are

~, 7 given in subsequent sections of the chapter. Observe that the

~ I models developed here are of considerably greater realism than

those used in t~ie illustrative examples of Chapter 2, alth~ough

~ the basic closed-loop guidance system is of the same structure.

3.2 THE MISSILE-TARGET KINEMATICS MODEL

The missile-target engagement presented here is restricted

~ to the terminal homing phase in a planar intercept configuration.

3-1
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L 0 A G E C E L R T INAU T O P IL O T C U L N
se~e •RATEq I GUIDANCE COTANOcL"inT "IAND

RANDAESEPENDENT RNWLWMEN 1A]oo

LOS ANGLE, A9 E AERL'KINEMATICS MISILE LATERAL ACCELEATlON.o LI
RANDGM eFeCS ISIE EARETr

MOTION MODEL OIN

Figure 3.1-1 Basic System Block Diagram

An inertial coordinate system is defined by the positions of the

missile and target at the initiation of the terminal homing phase l

(taken to occur at t - 0); the missile is at the origin and the [
line-of-sight (LOU') to the target defines the x-axis at t " 0 L
(see Fig. 3.2-1). The coordinate frame moves with the missile, p]
without rotation; by definition, we designate x and y, respectively, l
to be the instantaneous down-range and cross-range missile-target
separation. Expressing the separation in polar coordinates, the 11]
relations

W I xW 2 W3 y

-1,

W-2 W2-2 I
eMISStLE -T(y/x)

LO AGE. INMTIS MISLELTEA ACLEA2Oe
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I define the instantaneous range and LOS angle of the target. Tha
angles e0 (missile lead angle) and 8 (target aspect angle) spe-

cify the orientation of the missile and target velocity vectors
with respect to the x-axis, and eva defines the direction of the

i missile acceleration vector with respect to the velocity vector;
by convention, 80, 8a and eva are positive in the directions de-I fined in Fig. 3.2-1.

i y-AXiS R-'-"2

y -AXISS

v-AXIS (tat,)

_ (tIo) VELOCiTY
_•VELOCITY A(ELEUATION

ACCELERATION -'m °-s t

e---,,--, u- AXIS

m/MI$O1)RA •TO TARGET TRAJECTORY

-'... •- \ - -N
ORIG,,NAL OIGINAL LINE-OP.SIONT (Los) oRiGNAL. ( t.o)

MISIL TARGETt

[O POSITION POSITION

Fig~are Z.2-1 Target-Missile Planar[ Intercept Geometry

I In derivini the equations of motion, it can often be
assumed that the mi•.i•le and target velocity vector magnitudes

are constant, or, equivalently, that the missile and target
acceleration vectors are normal to the velocity vectors (e.g.,Ivais 90 degrees in Fig. 3.2-1). This •nidition, which neglects

heeffect of drag, is representative of many miE~ile-target3 engagement situations during the critical last few seconds.
Under this assumption, the lateral acceleration of either vehicle

-A I

9 3-3
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prodU(c,, it rotuation or tho corrosponding veloci'ty vector, given
by

£ Vm M
(3.2-1)

6a -t at

The equations describing the relative motion of the target are U
determined by projecting the velocity vectors onto the axes

shown in Fig. 3.2-1; in terms of the velocity magnitudes vm and vt, I.

-- V"m cos ( - vt cos (ea)
(3.2-2)I •--vm sin ( + Vt sin (8 a6

Equation (3.2-2) represents the essential nonlinearities inherent

to the missile-target kinematic relationship; the overall kine- U
matic equations are portrayed in block diagram form in Fig.3.2-2.

1-11593

ott.

Vt I ts6

,, ,o I.! '="• RANGE

Figure 3.2-2 Block Diagram Formulation of

Missile-Target Kinematics
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3 In situations where drag effects are not negligible, the

missile velocity vector magnitude will vary with time (according

Ito a nonlinear differential equation) due to the fact that a is

not normal to vM ( 9 va 0 90 deg). Thus vm must be treated as a

state variable and the velocity vectnr rotation is given by the

fl nonlinear relation

IaV - --sin (0va) (3.2-3)
m

SThis case is discussed in greater detail in Sectiotle 3.4.

3.3 THE TARGET MODEL

The model representing the target behavior is based on

the assumption that the target velocity has constant magnitude

with a direction described by the aspect angle, 0a, shown in Fig.

3.2-1. The aspect angle is determined by the target lateral

S[ accoleration, at, as indicat-d in Eq. (3.2-1). A commonly-used

target maneuver model represents target lateral acceleration as
a correlated gaussian process derived from a gaussian white roise
input by one stage of low-pass filtering. In differential equa-

S;tion formulation, we have*

it = -Wt at + w5  (3.3-1)

This relation and the equivalent low-pass filter representation

are depicted in Fig. 3.3-1

By adjusting the values of target maneuver bandwidth,

Wt, and rms level, oats a wide range of target maneuver charac-

p. I teristics can be represented. The instantaneous target maneuver

*The five white noise inputs to the system are simply denoted
wj, j - 1,2,...,5, to correspond with Fig. 3.1-1.

3-5



THE ANALYTIC 3CIENCEB CORPORATION

- --- i i3i--11 i_

(a ifforentiaI Equation Re~resntetion

"w- at

iii

1b) rransfw Function Fornmulallon

Figure 3.3-1 Band-Limited Gaussian Noise Model
for Target Lateral Acceleration

rms level is determined by the spectral density, q5, of the rar-

dom input w5 and the initial condition on Gat; for example, if

q5 is constant and

_.!5i

E [at(o)1 _ q (3.3-2)2 t

then the rms level of the target acceleration is constant through-

out the engagement,

Gat _ /2w (3.3-3)

It is important to note that the autocorrelation func-

tion and the corresponding power spectral density for a poisson

square wave -- i.e., a square wave that switches between ±Datft/sec2

with random poisson-distributed switching times having an average

of Wt/ 2 zero-crossings per second (Ref. 8) -- are identical to

those of the above gaussian process, although the associated proba-

bility density functions are quite different. The poisson model

3-6



THE ANALYTIC SCIENCES CORPORATION

is often used to represent target evasive or "jinking" maneuvers.
The poisson square wave can only take on values of ± Oat, so at

any given time its probability density function (pdf) consists of

impulses with a weighting of 0.5 at plus and minus Oat, whereas

the above markov process is assumed to have a gaussian amplitude

distribution. Therefore, the response of an amplitude dependent

nonlinear operator could be quite different whren driven by each

of these two signal forms. However, if the random square wave is

passed through a narrow-band filter or integrator, its pdf would

experience broadening due to the filter's finite bandwidth. In

the case of an integrator, for example, the resulting wave shape

would be a series of linear segments of constant slope. By appli-
cation of the central limit theorem, as discussed in Ref. 8, the

H1  distribution of the output of a linear subsystem approaches the

gaussian density function as the number of stages of filtering it

represents increases. In this case, the relative target position,

given by x and y in Fig. 3.2-2, are of particular interest in

assessing the performance of a tactical missile; these variables

are two integrations removed from at. Thus, although the poisson

square wave may in some situations be a more realistic target

maneuver model, we take advantage of the statistical similarity

of the gaussian process and the poisson square wave and the exis-

tance of kinematic dynamics to justify representing this random

effect by a band-'imited gaussian process, which simplifies

CADET analysis.

L l3.4 THE AUTOPILOT-AIRFRAME MODEL

K In accorda,%.cc with the assumption that the missile andS

target trajectories are confined to a plane, we describe the

missile airframe orientation by the variables depicted in Fig.

3.4-1. This figure establishes the sign convention of each quan-

tity; each variable is positive as shown. Note that we are

3-7
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parLicularizing the airframe model at this point by discussing the!

tail-controlled tactical missile; this is done to provide a con- [A

crete model for consideration, not to exclude other configura-

tions. The primary airframe variables are:

* Angle of attack, a H
* Control surface deflection, 6

9 Missile body angle, em

* Missile velocity vector, v

* Missile acceleration vector, a.

The velocity vector is specified by its normal and longitudinal

components, vn and v• respectively, or by its magnitude, vm, and

angular relation to the original line-of-sight (missile lead angle),

0 . Similarly, the acceleration vector is defined in terms of its
F normal and longitudinal components, an nd a respectively, or by

nd
its magnitude, am, and angular relation to the velocity vector,
0 va. We neglect gravity effects, tacitly assuming that the
intercept plane is horizontal or that the missile has perfect

gravity compensation.

y -AXIS 
R -16238

MISSILE
, CENTERLINE

-AXIS

Figure 3.4-1 Geometric Definition of Intercept-
Plane System Variables
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~fl 3.4.1 Linear Airframe Dynamics

In a general situation, the differential equations ex-

jjpressing the airframe dynamics are nonlinear and time-varying due
to the dependence of the airframe parameters on variations in

altitude, angle of attack, Mach number and other factors. How-

ever, we first con~ider a linearized model of the airframe dynamic

equations,

Om M q m + aa 6
(3.4-1)

where the constants M q#M aM6 L aand L6represent the airframe

stability derivatives. The latter are obtained from the nonlinearill airframe parameters by making the following assumptions:

IL * Missile velocity is constant (drag effectsI
are negligible over the period of time con-
sidered; am is normal to ym or Ova = 90 deg).

o Altitude remains nearly constant.

IFo The center of pressure, mass and inertia of
the missile are constant.

o Lift force and moments are lineftrly related
to changes in angle of attack about s3ome trim
condition and to control fin deflection.

e Fin effectiveness is independent of angleA of attack.

The output of the airframe model is the missile lateral accelera-

tion magnitude, which is given by

v[am v vm VM = 6 vM m-

(3.4-2)'I vm (L~ci + L66)

5 3-9
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where vm is the magnitude of the missile velocity vector. The

physical basis of the linear airframe dynamic equations is treated

in more detail in Section 3.4-2 (refer to Eq. (3.4-16)).

The missile treated here is steered by control fin de-

flection. Assuming that the actuator dynamics are linear and of

first order, we have

S= -p6 + pu(t) (3.4-3)

where u(t) represents a commanded fin deflection and 1/v is the

actuator time constant. For typical values of the stability

derivatives in Eq. (3.4-1), the missile airframe will exhibit an

underdamped or even an unstable response to a commanded fin de-

flection. Ac:eptable control is achieved by introducing feedback

compensation in tIhe fin deflection command,

u(t) k [kac k (am/vm) - (3.4-4)

where a is the commanded acceleration provided by the guidance Lc
module (see Section 3.5). The parameter k is chosen to give unity

steady state gain from ac to am, and Xb and k are chosen to give
an a

the desired transient response. A complete block diagram of the

compensated linear missile dynamic equations is shown in Fig.

3.4-2.

For ready assessment of the compensated missile airframe

dynamics in the linear case, it is convenient to use a transfer

function formulation of the model. Given two outputs, am and m'

we desire to obtain gl(s) and g 2 (s) to provide the input-output

relations indicated in Fig. 3.4-3. Utilization of standard block

diagram reduction techniques shows that the dynamics indicated

in Fig. 3.4-2 are equivalent to the transfer function formulation

depicted in Fig. 3.4-3, where

3-10
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hi • ' ,

i Figure 3.4-2 Compensated Missile Airframe Dynamics

S' i1-11S911

Figure 3.4-3 Transfer Function Definition
of the Compensated Missile
Airframe Dynamics

ii 2

e s + ess + ees) 3 + c 3 s 2 + c 2 s + c 1

I~~ I2(sds + dl

2 (s) c3 s 2  +c l (3.4-6)

I The indicated transfer function coefficients are given by

Il =J 1(k a+kb) (L 6 Ma LaM 6 )-M.- LgM q] (3.4-7)

' •3-11
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-(L M kb) - (Ma + LM) [q

c 3  w- (1L 6 k a )+ L ~Mq [
d, - Ikc(L 6Sa- L M6 )

d (3.4-7)(Cont.)

el - VImk c(L 6 M - LaM 6 )

I)

e2 - pVmLA Mqkc

e = -jv L k

The aerodynamic coefficients used in any given study are

chosen to correspond to the specified intercept conditions. For

example, if the engagement occurs at 35,000 ft., with a missile

velocity magnitude vm = 3000 ft/sec, airframe data taken from

Ref. 10, Vol. II, Appendix H serves as a typical case. The com-

pensating gains ka, kb and kc (Eq. (3.4-4)) are set to achieve a

suitable damped airframe response. These parameters and the

corresponding transfer funntion coefficients are given in Table

3.4-1. The fact that el, e 2 and e3 do not all have the same

algebraic sign demonstrates that gl(s) has a right half plane

zero, which is characteristic of the tail-controlled missile con-

figuration depicted in Fig. 3.4-1.

3.4.2 Nonlinear Airframe Dynamics

In scenarios requiring significant missile maneuvers,

nonlinear aerodynamic effects can have a considerable impact on

homing guidance system performance. In the most general case,

the differential equations of motion contain expressions that

3-12



THE ANALYTIC SCIENCES CORPORATION

5 TABLE 3.4-1

EXAMPLE OF COMPENSATED LINEAR MISSILE
AIRFRAME DATA IN THE TERMINAL HOMING PHASE

Parameter Symbol Value

Actuator Lag i/ 0.0533 sec

Time Consta~nt

Mq -0.462 nec-1

Aerdyi M -5.81 sec-2
Aerodynamioci -72,0 sec-2
Coefficients

La 0.379 sec-1
SL6 0.070 sec 1

ka 1.02 sec
Compensating kb 0.188 sac
Gains k 0.476x I0-3 sec2 /ft

ci 720.0 sec-3

C2 275.3 sec- 2

c3 18.3 sec- 1

Transfer dl 0.240 sec- 2 ft-1
Functi a d2 0.642 see-' ft-1
Coefficients 01 0.4 sec- t

20 -I70.06 gec"3

e3 -1.87 sec-1

Transfer a1 -3.16 sec- 1

Function 82 -7.56 + 13.0J sec"1

Poles3 -7.56 - 13.0J sec-1

I [involve nonlinear functions of the following fundamental param-
eters:

* angle of attack
* missile velocity and Mach number

control surface deflection
• air density

center of pressure for missile body
* missile mass3 * missile moment of inertia
e missile center of gravity location

S3-13
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The development of a nonlinear aerodynamic model requires

a somewhat greater degree of specificity than that needed for the

general discussion of the linear case given above. For this rea-

son, we confine our attention to a missile modeling problem that H
is similar to that detailed in Ref. 3. The resulting nonlinear

model is typical of tail-controlled cruciform missile airframe

dynamics under tha conditions noted below.

During the terminal intercept phase, the missile is as- H
sumed to be in a gli:, n,.•tt' of operation, corresponding to a thrust

force of zero. Consey,.i•'•y, missile mass, mome:_t of inertia, and

center of gravity ,4re constant and need not be considered as vari-

ables in the airframe equations. The assumption that the inter-

cept plane is nearly horizontal in the last few seconds of an

engagement implies that the free stream air density, p., and the

speed of sound, vs, are constants. The latter condition allows us

to use missile velocity, Vm, and Mach number, vm/vs, interchange-

ably. The variables of the required nonlinear airframe equations A

of motion are then defined in Fig. 3.4-1.
Li

The lateral component of missile acceleration, aV, results

from the lateral aerodynamic force which is assumed to be separable [

into contributions Ftaot and Ffd due to nonzero angle of attack i

and fin deflection, respectively. Similarly, the axial component

of missile acceleration, aa, is due to the axial force contributions

Faaot and Fafd due to a and 6. The positive sense of a, is chosen

to correspond to the sense of the lateral forces produced by posi-
tive a and 6, respectively, and the positive sense of aa corres-
ponds to positive drag. Letting m denote the mass of the missile

during the terminal intercept phase, the acceleration components

a• and aa can be expressed in terms of these force components as

at (F aot Fa• Faot fd)/

(3.4-8)

a a (Faaot a

at3fd -1Li1
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It is then a simple derivation (Ref. 3) to show that

&IE + (vF~ao + Ffd sin a - (Flaot + F

(3.4-9)

The differential equation for body angular rate, 6 M) is

obtained from the summation of the moments acting about the body

principal axis. The body lateral force Ftaot acting on the air-

I frame at the body center of pressure, and the control surface lateral

force FXfd acting at the center of pressure for the tail are primary

contributions to the moment equation. Other aerodynamic moments

l I: may also be significant; for example, rotation of the missile body

produces a moment m that is sometimes not negligible. Letting Ib
q q

! L denote the missile moment of inertia about the body axis and letting

d a and d6 denote the respective moment arms through which the forces

FXaot and FXfd act, the expression for the missile body angular
acceleiationi is

i Lk 6m = - (at + F, d6+ mq (3.4-10)

The rate of change of the magnitude of the velocity vec-

tor can be obtained from the projection of the body acceleration

components onto the velocity vector. This procedure, followed by

the substitution of Eq. (3.4-8), yields

1 mo aaot afd )cosa aot fd

(3.4-11)

The above lateral and axial forces are in themselves a

source of nonlinearity. For example, they are proportional to

I the dynamic pressure, q., given by
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1 2 (.-2
q= PDV m (34-2

The dependency of the forces on a and 6 is also nonlinear; how U
the relations are modeled would depend on the particular missile

under consideration and the range of a and 6 of interest. The

study in Ref. 3 obtained realistic results with the following

truncated double-power-series expansion formulation: ,

Ft at k k1vM (1 + k 11ca2)(1 + k12 VM)o [aaot [

I fd w 2vm ( 2 X k2)( vm)

Fa aot k3 (1 + k3  2)@ I k 32 v) 
(3.4-13)

2)[2F a k 4 1Vm + k 4 2 Vv)2 6uaid

These relations can be directly substituted into Eqs. (3.4-9) and

(3.4-11). The moment equation, Eq. (3.4-10), requires further U
consideration because while the moment arm da may be considered

constant (since the variation in the fin center of pressure is

small in comparison to its nominal magnitude), the moment arm d

is generally a function of a and v m; the combined nonlinear moment

term Ftaotda can be realistically modeled by (Ref. 3)

Faotda k5(1 + k5 1 vm )a + k(1 + kv) (3.4-14)

The body rate moment contribution to Eq. (3.4-10), mq, is gener-

ally small with respect to the force components, so it can often

be adequately represented by a linear term,

mq - bqm (3.4-15)

where Mq then corresponds to the stability derivative defined in

the body rate term in Eq. (3.4-1).
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A further simplification of the basic aerodynamic dif-

ferential equations, Eqs. (3.4-9) to (3.4-11), can be achieved

by making suitable small-angle approximations to the trigonometric

functions involved; this entails truncating the series

sin ai a- + 13 + ...

~~ lb cos a a~ci +..

at a point consistant with the range of a and the accuracy of the
nonlinear representation of the normal and longitudinal forces,

SrEq. (3.4-13). The basic equations then contain only terms of the

form ak 6 pvm for which quasi-linear gains may be derived directlym
using Cases 1 to 3 of Section 4.3.2; many results of this form

Sare given in Appendix A.

To relate the nonlinear model to the linear case given
in Eq. (3.4-1), we observe that the linear terms of Eqs. (3.4-9)

to (3.4-14) with vm taken to be constant are equivalent if

SL [ik(1 + k 1 2 v•)-k 3 (1 + k 3 2 V)]

kL• 2 • (1 + k22Vm)

SI ~i)(3.4-16)

Ma - (1 + k1v)I5 Mb

~k2K I M - (1 + kv) d

The nonlinear model of the autopilot-airframe module is
completed by deriving a formulation of the control fin actuator

3I
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dynamics and compensation. A simple linear model ror this func-
tion is given in Eqs. (3.4-3) and (3.4-4), viz.

- -�j6 + Pu(t) H
(3.4-17)

U k a k aa- kb

with typical parameter values given in Table 3.4-1. If there are
significant nonlinear effef ts to be modeled, such as actuator
saturation, hysteresis, nonlinear friction or the like, then it
may be necessary to develop a much more detailed representation.
An example of a complete autopilot/airframe model in which con-

trol fin actuator saturation is included is depicted in Fig.
3.4-4.

3.5 THE GUIDANCE SUBSYSTEM MODEL

The operation of the guidance module may be separated

into two cascaded functions: filtering of the signals obtained
from the seeker in order to reduce the effect of measurement noise,
and control of the missile lateral acceleration on the basis of
the filtered measurements. There are a number of filtering and
control schemes that can be used in tactical missile design, as
reported in Refs. 9 and 10. The systems that result may be di-
vided into analog guidance modules in which the missile accelera-
tion command is obtained by standard analog techniques which may
be modeled using continuous-time dynamic equations, and digital
guidauce modules in which filtering is accomplished using discrete-
time data processing techniques, including sophisticated algorithms
based on modern estimation theory (extended Kalman filters), and
the control function may be based on optimal control theory. In
this section, we treat the classical proportional guidance law as
an example of the first category, and discuss several alternative
digital guidance systeris based on the use of a Kalman filter.

3-18



THE ANALYTIC SCIENCES CORPORATION

r - - - - -FIN -AC, ,=ORA--

I ~AUTOPILOT COMPEN0SATAONI
I

I Ih ,;

I -.

$oAIUKAflON W O

9-L - - - - -. .

d. myI

iii

3-1ATE

VIUXI, TY

fl col a

L -. . . - --.. . .- - - - - NONLINEAR AIRFRAMEj,

S[Figure 3.4-4 Typical Nonlinear Representation of the
• Autopilot/Airframe Module

Jr 3-19



THE ANALYTIC SCIENCES CO•FPORATION

3.5.1 Proportional Guidance

The guidance signal available from the seeker (n in

Fig. 3.1-1) is typically a variable proportional to LOS angle i
rate, 6, corrupted by measurement noise. This signal is passed

through a single-stage low-pass noise filter, the output of which I
is thus a filtered estimate of LOS angle rate, 8 6. The pro-

portional guidance law is then implemented, which calls for the I
component of missile lateral acceleration that is normal to the

line-of-sight (LOS) to be proportional to the closing velocity
times the estimated LOS angle rate.

This guidance law is based on the concept of the missile- I
target co1V'sion triangle. In a simplified scenario in which the

target is following a straight line trajectory, with constant 1
aspect angle ea and velocity vector magnitude vt, the most effi-

cient intercept path for the missile (assuming its velocity, vml

is also constant) is a straight line specified by a constant lead

angle O•, chosen such that the cross-range components of the mis-

sile and target velocity vectors are equal: a
vm sin = v sin 0 (3.5-1)

If the missile lead angle is not equal to 0k, then there is a

nonzero heading error, 0 HE, given by

eri - - 0£ (3.6-2) i

We observe that flight along the collision triangle (along the

vector v*, Fig. 3.5-1) results in a nonrotating LOS, i.e.,b = 0.

Thus 6 can be considered the error signal for this guidance

strategy.

For the purpose at hand, we assume that the missile

acceleration vector 4n is normal to the velocity vector (6va is
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COLLISIONMENTRTCOURSE TRAJECTORY
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VELOCITY. ym VELOCITY, Vt

[ INITIAL LINE-OF-SIGHT

Figure 3.5-1 Deviation from the Collision
Course Triangle

* 90 degrees in Fig. 3.2-1); thus we desire to generate an accelera-

tion command to cause am to satisfy

am cos( -8) n'v.4 (3.5-3)

where the parameter n' is called the navigation ratio. The clos-

ing velocity i obtained by projecting th( -issile and target

velocity vectors onto the instantaneous line of sight; as shown
S~in Fig. 3.2-1,

v= V cos (6 - 0 ) + vt cos (6 +a0) (3.5-4),*-r Z= vm a,+e 35

In order to achieve a response that obeys Eq. (3.5-3), the ideal

acceleration command a' should be chosen to satisfy

nyc0

ac C (3.5-5)

where the incorporation of the factor 1/cos (0 -) as dictated

by Eq. (3.5-3) is known as secant compensation.

i
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rI

In mechanizing the guidance law, the value of the closing

velocity is never kiown exactly. If a radar homing seeker is used,

then a reasonable estimate of v can be obtained by doppler mea-

surements or by differencing range measurements. An infrared seek-

er system generally does not yield a good estimate of range, in

which case vc may be taken to be a prespecified constant. Any

uncertainty in the closing velocity is modeled by introducing a

variable e into Eq. (3.5-5) which represents either a band limitedv
noise, obtained by a single-stage low-pass filter with white noise

input, or a bias, denoted simply evb. Thus, for example,

"F + vt cos(ea + 0) + evl
ac n cos(e - e (3.5-6)

provides the final acceleration command used in Ref. 4, where e

is modeled by one of the differential equations

Random Uncertainty: ev = -•W4 ev + w,, E Lev(O)] = 0 3
(3.5-7)

Bias Uncertainty: e6 = 0, e v(0) evb

and w4 is white noise with spectral density q 4 " With this model

we can study either the effect of the noisy estimation of vc or

of a constant error in the assumed value of v C"

Finally, the guidance law must account for an important

nonlinear constraint on missile operation -- acceleration command

limiting. The act. U1 acceleration command ac that determines the

input to the fin deflection ictuator in Figs. 3.4-2 or 3.4-4 must

not exceed the structural capacity of the airframe and must not be

so large as to cause the missile to stall. Thus the above idealized

acceleration command a' must be limited in order to prevent exces-

sive lateral acceleration command levels or angle of attack; the

limiting procedure is represented by the saturation nonlinearity
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ac l'ac • c ' c1- amax
a' m (3.5-8)

ama sign (a,), Jac[ >max, > armax

The guidance law features described above are incorporated
,U in the system model illustrated in block diagram form in Fig.3.5-2.

1. to115,9 b

CLOSING VELOCITY
ERROR MODEL

W 2 1 V * V + " t C 0 5 ( 8 0 + 8 )

ESTIMATE rs

NOISE FILTER CLOSING VELOCITY WITH SECANT ACCELERATION
COMPENSATION AND UNCERTAINTY COMMANDS

1 [Figure 3.5-2 Proportional Guidance Law Modeli Fi
3.5.2 Modern Digital Guidance Systems

Recently-proposed high-accuracy guidance systems for tac-

tical missiles have been designed using digital data processing and
lb optima] estimation and control theory. The resulting combination
_• of Kalman filter and optimal control law that comprises the digital

guidance module is generally based on a linear system representa-

tion ("filter model") that is significantly less detailed than thez simulation model ("truth model") which strives to represent all
important dynamic effects. Quantities that can be assumed to be
available to the filter without measurement noise are treated as
deterministic inputs to the filter and thus need not be considered
in the model (Ref. 11). To obtain a filter model that is linear in

r3-23
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the variables of interest, all nonlivearities that occur in the {f
truth model are replaced by constant or time-varying gains derived

by small-signal or Taylor series linearization.

Kalman Filter Model - A basic 3-state Kalman filter can

be designed for the missile-target intercept problem using the
model depicted in Fig. 3.5-3. It is assumed that noisy measure-
ments of LOS angle, 0, are available to the filter in conjunction jj
with noise-free measurements of missile lateral acceleration and
missile-target range. The range information is required in the

filtering procedure because the LOS angle is assumed to be related
to the cross-range separation, y, by the time-varying gain 1/r, and
the measurement noise sequence vk (Fig. 3.5-3) is range dependent,
as detailed below; the Kalman filter algorithm makes use of know-
ledge of these dependencies in generating estimated values of the H
filter state variables, denoted f

In state-space formulation, the filter model is given by Li
the vector differential equation

;f = Ffxf(t) + Efw5 (t) + dfam(t) (3.5-9)

where

I 0 1 1 0- 0

xf Ff 0,0dff 0
-at- 0 0 J

(3.5-10)

and w5 is the white noise process which is the input to the tar-

get acceleration model (Section 3.3). The white noise process w5
is specified by its mean and spectral density,

E [w5 (t)] = (

E[w5 (t) w5 (T)] 6(t-)
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Figure 3.5-3 Missile-£arget Intercept Model for the
|L Derivation of the Digital Guidance Module

SI.
The vector xf is initially specified by the mean vector

mf(O) and covariance matrix Pf(O); observe that these may or may
Bf

not be directly related to the statistical initial conditions on

lb the truth model state vector, since the filter model variables

are not necessarily a subset of these states. In the kinematics

• Tsubsystem model, for example, k Is generally not a state variable;

rather the time derivative of the state y is a nonlinear function

of the states 0 X (missile lead angle) and 6a (target aspect angle)

as given in Eq. (3.2-2),

=-v sin G + v sin Oa
m +vt a

T 3-21r
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in which case

mf (0) - E [k(O)] - -vm E [sin 0 (0)] + vtE [sin ea(0)]

-ipex -*pea

=-vme sin m + ve asin m (3.5-12) 11m t SS~a

where me, and PO are the mean and variance of 6,, respectively,
mea and pea refer to the same statistics of ea' and use has been

made of the result

E [sin x] f e sin m x

(Ref. 3; see also Eq. (4.3-10)). The variance of k(0) can be
calculated from the statistics of a (0) and 0 (0) in a similar

a2manner. It is also possible to choose mf(O) and Pf(O) to beinconsistent with the truth model state initial statistics, to

determine the performance of the filter when its initialization Li
is in error.

The model shown in Fig. 3.5-3 can be derived directly from
the results given in other sections of this chapter under the sim- !
plifying assumptions that

e Missile and target acceleration vectors
(Fig. 3.2-1) are normal to the respective
velocity vectors (velocity vector magni-
tudes are constant).

9 Kinematic nonlinearities (Fig. 3.2-2) are
negligible.

* The target maneuver is represented by a
band-limited gaussian process (Fig. 3.3-1).

9 Seeker dynamics (Section 3.6) are negligible.
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,[ We then obtain the results
-1

0 s sin (y/rA

a y/r (3.5-13)

Sfrom Fig. 3.2-1, and

S1 () " Vt a Cos ea -vm 01 Cos C i

M a cos a - a cos0t a m Z

a a t - am (3.5-14)

from Eqs. (3.2-1) and (3.2-2). These relations in combination with

Eq. (3.3-1) complete the derivation of the dynamic equations de-

picted in Fig. 3.5-3.

The measurement to be processed by the Kalman filter is the

sampled LOS angle, 0 k, corrupted by additive independent samples of

SI noise vk. The latter have zero mean and range-dependent variance

given by

[v2] (t) + (o 2 r(tk)) + a2
k r(tk)2 k3

a v(2r(tk)) (3.5-15)i-"

where al' 02 and o3 represent the constant rms levels of noise

components defined in Section 3.6.1. In terms of the state vec-

tor xf in Eq. (3.5-9) and the approximation indicated in Eq.

(3.5-13), the LOS angle measurement is expressed as

Zk = hT(tk) )Cf(tk) + vk

k __ 00) (3.5-16)

ShT(tk)=[ir~tk) o]
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rho discrete Kalman filter providos an estimate, xr., of

the reduced-order state vector xf utilizing mechanization equa-

tions (Ref. 11) of the form

xf(t) - Ffxf(t) + dfam(t), tk_ < t < tk (3.5-17)

^ + T

xf(tk) - xf(tk) + k (_k-h(tk)xf), tk < < k t (3.5-18)

where _xf(tk) denotes the solution to Eq. (3.5-17) just before a

measurement is processed, and xf(tk) represents the state vector

estimate after the measurement and update take place*. The gain

vector kk is obtained recursively from the matrix covariance equa-

tion associated with the Kalman filter; the sequence of operations
is given by: (i) propagation of the filter covariance matrix

according to

+ •TP k - 0 P k-1 It +(3.5-19)

where P is the value of the filter covariance matrix after the

previous update, $, given by

SA exp (FfTs) (3.5-20)

is the transition matrix expressed in the usual matrix exponential

form, T. = tk- tk1 is the time interval between samples, and

T TS~s Ff(Ts-t)gfKT eFT(rs-t)

0q5 e e dt (3.5-21)

Refer to the footnote on page 1-15.
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is the noise covariance matrix; (ii) calculation of the Kalman

gain vector,

hk -Pkhk 4-k+o~rt)) (3.5-22)

"(iii) updating the filter covariance matrix (to represent the

effect of updating the state vector estimate)

P P T (2 )kT (3.5-23)

It is likely that tk.e range-dependent gain vector in this example

can be precomputed and stored as a function of range if range in-

formation is available in the guidance module. Otherwise, the

L implementation of Eqs. (3.5-22) and (3.5-23) would be responsible

! [A for most of the digital computational capability required by this

guidance system.

Equations (3.5-17) to (3.5-23) are a set of typical Kal-

man filter mechanization equations based on a simplified design

4, model. The filter state estimates y, y and at provide the basis

for the missile guidance law which generates the commanded missile

lateral acceleration, denoted ac in Fig. 3.4-2. An optimal control

approach to developing a guidance law is described below.

4.- Control Law Model - An optimal control policy is derived

by selecting the commanded acceleration time history to minimize

A an appropriate performance index. An index that is found useful

for the missile guidance problem is the so-called quadratic index,

I E Y2(tf) + Ytf%( )2 dt (3.5-24)

which effectively minimizes the expected value of the square of

the miss distance while imposing a penalty on the control level.

The quantities y(tf) and y are the terminal miss distance at
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inturcept time tf and the weighting on control effort, respec-
g n(a .nf ft
tively. The value of J is constrained by the equations of motion

i given in Eqs. (3.5-9) and (3.5-10) and the form of the autopilot

dynamics. The compensated missile airframe dynamics can be

modeled by the first order transfer function

am WI (3.5-25)
ac .1 + wjm

where we note that the higher-order autopilot dynamics, Eq.(3.4-5),

and airframe saturation are neglected in Eq. (3.5-25).

The solution to the above minimization problem is called

an optimal guidance law. By invoking the separation principle

(Ref. 12), it is known that the control is of the form

a. c= " + + a + c 4 am (3.5-26)

a' +1 c2 ~ C3 t (3.-26

The indicated control gains, ci, have been determined by Willems*

(Ref. 13) to be functions of tgo, the time until intercept:

=90

t Ig
C n

tgo

_[-Wte •ttgo _ (3.5-27)
St go+-

W [t go

C4  f-nf' 2 2]

•m go

The derivation cited above is based on the assumption of con-

tinuous control -- i.e., the sampled and held nature of the
control law is neglected.
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Thv Iimv--to-intr(-rcpl, tg. and optimal nnvigntlon ratio. n', are
given by go

K tgo - tf - t •clt.O -t (3.5-28)

[where vc is the closing velocity, Eq. (3.5-4), and

iI3t 2 Ft 1-e (-e m t g°o

n' = -o . m Igot

T 31  - -3 tm O+ 2e-(mtgo)/+ t 2 O ( 3go 5-29)

'The expression for n' is considerably simplified if the compen-

sated airframe dynamics are neglected entirely; from Eq. (3.5-25)0

Sm=a' if we permit wm to approach infinity, in which case

3
n' (3.5-30)

m go

If there is no constraint on acceleration, y is equal to zero andK 'the resulting navigation ratio from Eq. (3.5-30) is constant.

Finally, in implementing the control given in Eq. (3.5-26),

it is often advantageous to use an alternative formulation for tgo;

t - r (3.5-31)Igo vc r

Using the instantaneous value of range divided by closing velocity

is equivalent to Eq. (3.5-28) when range is nearly deterministic.

This expression is conveniently evaluated in the digital guidance

module using a discrete approximation to the derivative; at each

sampling instant

gok r (3.5-32)
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Given the above set of optimal linear control gains, H
various suboptimal approximations can be made to simplify the

computational requirements. If y, l/w m, c3 and c 4 are taken to H
be zero, for example, a digital version of classical proportional

guidance (based on optimal estimation theory) with n' - 3 is the

resulting control policy. Another common simplified guidance law

is obtained by including a component of target acceleration in

the formulation of the autopilot command by permitting c 3 to be 1)
nonzero. A complete digital guidance module having the latter

form is depicted In Fig. 3.5-4.

NOISY

LO S ANG LE 't rk ) (t, 'tl

MEASUREMENT

A R ACCELETATION

ACLRATINGE.'TM-O

L!

The digital guidance module must be correctly interfaced

with the overall t-uth model to permit simulation of the missile-

target intercept problem. At the input to the guidance subsystem,

noisy measurements of LOS angle must be made available to the
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mined by the specific seeker design and hardware considerations.

A variable which is often readily available as the seeker output

is n, shown in Fig. 3.6-9, which is an approximate noisy measure
of line-of-sight angular rate; to be more precise, it is demon-

I • strated in Saction 3.6.3 that n is related to the LOS angle 0 by

dynamics that can be approximately represented in transfer func-

[ tion form as

s " +(3.5-33)

where Td represents the dominant time constant of the overall

seeker track loop. Thus a direct method for obtaining the re-
-- quired filter input signal from the seeker output n is to inLer-

pose a prefilter of the form

hf(S) - Td + 1 (3.5-34)

* , to provide effective compensation for the dominant pole in the

seeker dynamic model.

Another factor in implementing the guidance law is that

the ideal acceleration command ac given in Eq. (3.5-26) is based

on the assumption that missile acceleration is normal to the LOS.
As in the previous section (cf. Eq. (3.5-3)), the fact that am is

I actually nearly normal to the velocity vector requires secant com-
pensation (division by cos (e -e)) to guarantee that the accel-

eration command leads to a suitable acceleration component normal
to the LOS.

I The guidance module design is completed by incorporating
an ideal limiter to prevent excessive acceleration command levels.

An overview of a typical digital guidance module based on the
foregoing discussion is shown in Fig. 3.5-5.

3
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Figure 3.5-5 Complete Digital Guidance Module Structure

3.6 TH1E SEEKER SUBSYSTEM MODEL

There are several effects inherent to the seeker which can

have a marked influence on overall missile performance. These in-

clude o I
.4t

* Boresight error distortion sources

Noise
Aberration
Receiver and signal processing characteristics

0 Disturbance torque sources

Seeker mass imbalance 'I

Seeker gimbal friction
Spring restoring forces on the seeker head

:3.6.1 Boresight Error Distortion

A fundamental variable in the seeker subsystem is the

true boresight errer, -true defined by the angle between the

antenna centerline and the instantaneous line-of-sight (LOS) to

the target; referring to Fig. 3.6-1,

tre = - h - = (3.6-1)
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Figure 3.6-1 Seeker System Configuration

The estimated or measur'ed value of the boresight er'ror will differ

from ctrue due to several factors; among the more important of

L these are aberration, noise, and nonlinear receiver characteristics.

The effect of aberration is very highly dependent upon the

geometry of the seeker-detector cover, the frequency and polarization

of the inc-dent energy and otner factors; furthermore, it is variable

due to manufacturing tolerances, possible erosion during flight, and

changes iu environmental parameters. This phenomenon can often be

represented by a nonlinear and possibly time-varying operation on

Sthe look angle, 0look = 6-0m, so that an effective boresight error,

i'eff' is obtained in the form

J eff Elook +ab - Eh (3.6-2)

I where the aberration angle e ab is a nonlinear function of 0 look'
as depicted in Fig. 3.6-2. A tactical missile with a radar track-

:'ng system that exhibits nonlinear aberration (caused 6y a protec-

K • tive radcme) is treated in Ref. 3. in that study, the radome aberra-

tion characteristi,: was modeled as a plecewise-linear relation with

odd symmetry and 5 linear segments, as depicted in Fig. 3.6-3.
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increases in effect as range approaches zero. Target angular scin-

[ tillation (caused by the apparent motion of the target due to the

change in position of the target controid of radiation) is a phenom-I enon of this sort. This effect can be modeled as a wide-band noise
L state,* xl, with constant rms level, a1 , multiplied by a gain 1/r.

Range proportional noise includes any noise source that yields an ef-

fective noise level that decreases as the missile approaches the tar-

get, i.e., as range approaches zero. This type of random disturbance may

, be represented by an equivalent noise with an rms level of the form

ab(r) = 2: (3.6-5)

which in turn can be modeled by a wide-baad nuise state x 2 with a

constant rms level of 02 passing through a gain r. Noise sources

that exhibit this property are the distant stand-off jammer and[receiver noise (generally due to thermal effects). Range independent

noise represents noise sources that have a constant effect on the
T'

signal-to-noise ratio; target amplitude scintillation (due to time-

varying effective target cross section, for example) and seeker

r servo noise are typical examples of noise sources that can be
3 2modeled by a noise state x 3 of constant vai_"nce a3. The complete

noise model is shown in Fig. 3.6-4 where wl, w2 , and w3 are gaus-

sian white noise processes.

All three types of noise described above have been treated

in previous studies (Refs. 2 to 4), in two forms. The most ele-

T mentary implementations of this model may be taken to be linear

I time-varying; i.e., r(t) is assumed to be deterministic in the

noise model. In a more recent treatment, Ref. 4, the nonlinear

I relation indicated in Fig. 3.6-4 is rigorously implemented by

Where no conventional state variable nomenclatiure is suggested,
arbitrary state numbers are assigned for convenient reference.
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R-116CL;
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Figure 3.6-4 Seeker Noise Model

"n = + x 2 /x2+y2 + x3 (3.6-6)x .

where xl, x 2 and x3 are the wide-band noise states mentioned above

and x and y are the cartesian components of missile-target separa-.

tion, respectively (see Fig. 3.2-1). The linear time-varying

formulation may be adequate in situations where range has a negli- H
gible random component (as is sometimes the case for the head-on

intercept where the mean missile lead angle and mean target aspect

angle are both zero), but Eq. (3.6-6) is generally significantly

more accurate when the range is appreciably nondeterministic. U
The receiver characteristic is a potentially complicated

effect, highly dependent upon the specific antenna design, type of

detector, and signal processing scheme. In order to avoid a very

specialized discussion based on a particular tactical missile, we

confine our attention to one basic phenomenon: the attenuation of

the received signal which occurs when the effective boresight error,

Ceff, becomes large, i.e., when c approaches cmax in Fig.3.6-5a.

The detector alone will have an output which is very nearly pro-

portional to its input for siaall values; however, as the effective

boresight error magnitude approaches cmax' we n.te i.n Fig. 3.6-5b
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L Figure 3.6-5 Receiver Boresight Error Distortion Effects

that the signal strength decreases to a null. If the antenna pattern

has appreciable sidelobe sensitivity, there may also be some response

for values of c greater than c The upper limit on the bore-
•.fo v lu s f eff g e t r h a m ax *

sight error, E, such that the detector characteristic is nearly

£linear for i 'effI less than £,is quite variable, depending on the

type of target tracking system under consideration. For monopulse

radar or infrared detectors, j could be as small as a fraction of a

degree (Ref. 14).

K £The undesirable detector null and possible spurious side-

lobe response can be circumvented in the signal processing scheme.

3-39
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As an example, some value c C may be chosen; a nonlinearity is

then introduced suich that whollnevel Iho (4l'lIIcl iv',, Iw,,r ',ilh , Irr

magnitude exceeds c lim, the output of the signal processor is held

at ± E lim. This provides a simple model, depicted in Fig. 3.6-5c,

which will capture the effect of a narrow antenna beamwidth and a

reasonable signal processing nonlinearity.

The combined effects of aberration, noise, and receiver/

signal processing characteristic are illustrated in the general

boresight error model shown in Fig. 3.6-6. We mention in passing

that a more exact noise model might divide noise sources into ex-

ternal, predetection and postdetection effects, i.e., noise sources

entering the boresight error model before aberration takes place,

and before, as well as after, the receiver characteristic. For the

present discussion, this categorization is excessively detailed.

R-16237

x 3  ZIw3

TOTAL
ABERRAi'ION RECEIVER ns SEEKER

MODEL MODEL ]NOISE

19 MOOS

LOS .1MEASUREDANGLE ,RE

BORESIGHT
ERROR

am 8

Figure 3.6-6 Final Boresight Error Measurement Mode[

3.6.2 Disturbance and Control Torque

The seeker model is completed by developing a suitable

tracking and stabilization control system including several imporlant
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Ssources of' disturbance torque inputs. In terms of the inertially-
* referenced angles f and i shown in Fig. 3.6-1, we can derive a

relation of the form

Ip I p =TC -Td (3.6-7)

p
where I is the moment of inertia of the sveker head about the
gimbal pivot, T is the external control torque (derived from an

F, electric servo motor, for example), and Td is the total disturb-

ance torque.* For the present discussion, consider three components,

T T + T + T (3.6-8)
d m f r (.8

where Tm is an effective torque due to seeker head mass imbalance,

and we include two external torque components, Tf due to nonlinear

friction in the gimbal and Tr due to nonlinear restoring torques.
Since the seeker head center of gravity is generally displaced

from the pivot point, as shown in Fig. 3.6-1 and specified by the
parameters r 0 and 00P the moment of inertia I is related to the

j corresponding moment of inertia referred to the center of gravity by

S.- Ip I I0+ mr0 (3.6-9)

where m is the mass of the seeker head.

* S. The Pxternal torques due to spring vrnd friction effects

are modeled by the relations

Restoring Torque: Tr L f (O( -

I Friction Torque: Tf = f20h)

I where 0 h is the angle between the seeker and missile center lines.
Often restoring torques are linear for small angle deflections,

a *The use of hydraulic actuators for mechanizing the seeker track-
ing function generally leads to a quite different model of the
seeker dynamics; we do not consider this case here.
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becoming nonlinear only as 0 increases in magnitude, as illus-

trased in Fig. 3.6-7a. This behavior correspoads to the symmetric

"hard spring" case (Ref. 15) where the elastic limit of a spring is

exceeded and Hooke's law for linear spring behavior becomes invalid;

often the nonlinear term is taken to be a power law relation,

fl(kh) - kl 0 h + k K sign (0h) (3.6-11)

where K is an integer greater than one, so that Tr exhibits a dis-

tinct departure from linearity as 16hi exceeds 0 lim, as is typical

of a symmetric nonlinear spring characteristic. A common type of

nonlinear friction is the dry or Coulomb effect depicted in Fig.

3.6-7b (Ref. 15), where

f2(6 h k 2 sign (6h (3.6-12)

i.e., the friction term of the disturbance torque has constant mag-

nitude with the algebraic sign or the gimbal angle rate.

R-11604Tr Tf

fk(86)k 2 sign 6 h

•'Gulm 6 h 9

-k2

Is) Nonlinear Restoring Torque, fl. h) (b) Nonlinear Friction Effect. f2(th)

Figure 3.6-7 External Disturbance Torque Models

The effective disturbance torque -omponent due to seeker

mass imbalance can readily be determined by application of the baslc
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1) r i it c i;)l, 1 s o I ' hanmo I (i (H l'. 16); theo I(,t.iti IIs utre g w I In !u[1(. 1.

Co(cmbin in ng I hv se ek er ma s I mba I atve tevrm wI th th cric tLion anid

spring disturl ince torque compolnen ts we W obtain the. complete dis-

Iturbanie torque conitrihution,

Td =rl(Oh) 2 '2-(h) + mro [r,6" cos (3.61m)

(3. 6-13•

+ (0) sin (q')-O) + Vm . e.-

T'lh' ('()n-.ro l tor(Ilo T i n lE:q. (3.6-7) is chosen t o make I. hoIV
ist-,,ke(r I rnck t.he target, i.e., I: o ma intain the mr, asured borvs ight.

orror at. a smal I value. The nominal seeker is designed under I h,
a sstim .i ion that there is. no frieLi on and that spring effects are

inegligil ie; thths, it is necessary t o include rate feedback in t-he

to.rqu, co''mrnand (0a feedhack term proportio nal to (1, which is menasirod

by ia rite, gyro) to provide suitable damplingl. Thus we write th,

nominal ('olt r.ol tor(que as

J6

('_ T = k 5 [? k(O + (3 '1)

T where i is the track loop time constant, k i.; the rate gyro gain,

and k is the torquo servo gain. The implementation of' this v'on-

T t r I .N depict-ed in Fig. 3.6-8.

I. Wb i lle the implementation o)I the seeker control Functi on

S Jeoui cted in Fig. 3.6-8 will provide an adequate response under ideal

condi tions, it can be shown (v 1'. Section 3.6.3) that the dynami c

i' t response of thme seeker is quite sensitive to sLeady-stat.e di.sit,|rb- I
anco torque inputs. Sin ice, a w. ' havwe alrready indid:a t.e(I, di.-

trhatice torques gýenera~llIy have at significant impact on the fec
i'¢on(,.s of' the soeker, compensation must be inc luded to ahiove

-ýatislacto(ry iperfori anee. A .simple and effect ive compensation

3 -"1
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4-16230
MISSILE IIODY

ANGULAR A( C II.IRATION

L O( R E . 0 : OH 0

Lo 1cn I
ANGLE ) 4

d
DISTkURBANCE

TORQUES

Ftigtre 3 .6-8 Nominal Seeker Track Loop (|Eogloct -

Ing All Nonlinoar E r .ects)

pro•edure is to insert proport it nI I pl ius in lt.egral 1 o ,isende cof)l1)Cen-

sat.ion berore the torque summing .jiunctio(n in Fig. 3.6-8. That I s,

we s.•c•fly the compensated control torque by(k"
Th' (,f•' ) mtlet , seoeker ,lniTiiA ation nOfol( dqI, r ,Iroc• n , i ng t h1

qyniti. hexis of 1he1 dynami(, equations dIvrivod in t.lhis soct. ion, I ,.

shown in Fig. 3. 6-9.

"1.6.3 Transfer Function Rep•,resentation ol' the
Equiv'alent Linoar Seeker

For a subsystem oft the comp) Iilexity oI' thl, s.ee-ker ias fidolo'(l

in Fig. 3.6-9, it is often helpl'ul ho dorive the I ri'nslktr fun, 1i411

Formulation of the linear system obtained by neglecting all n)n-

lI near it. I es. Several assertions made in thl preyviiil; .wsct.ji(n in

simplil'ying the seeker model are hased on this representt:it ioni, al(I
the procedure iise(I for the purpose oif designing tho c(•pvwlp'lI,:ii()nl

network (choice or ko) can best be treated in this way, Moro, d,-
tails may be found in Hef. 4.
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We derine four inputs (relor to FIK. :3.6-10), V

k12 • In (3.6-17)

The trannsrer It'inetions d (S) to (14(,) l'or the ,(,Iiiivaluni bl(ok

diagram representation depicted in Fig. 3.6-11 ca ne Rh,'wn 1.() hv

k 2 + (13s [ I) 1 ]

S 3 +
"ilZ3 + (12s + (I11

-k3 k 2 s 4 k1

i2 (s) 1 P[1 S . + (13,j2 + (12s + (ll] (:L.-18)

d, 1 (N) .- j dl(1S0)
• ~ka

3

k
3 s
d Is + q3s (12s + (1

wl yre the ntum ri•rt ()r and deniominator vco 1'l'i ci Ients.,- :ir(' g ivon by

k1 + ks kj k0 k, k:1I)1 -- I i+ _2 --- 31+ 1
- I I I

(3.6-19)
k s k 0 k 3 k 2 k ks k

The, no)minal seeker i s do li !ed by a chi), ()I' 1paramintvor:

that I *nds t o acLcoptab lIe dynam Ic behavior in (huli abs(en ce 4i
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R - 11610

21 -~ 2(s)

Fig'il 3 '~ i.6(-11 Li near Seeker Model lit
TIran s fer Fuanct.i on Fo~rm

d ist urb'aince t( )rq ueo- examipl d '(a ta and trantsfer I tineti. i arvIe' gi1vvn

inl Tabh ' 3. 6.-1. A seetond (I se I s t.he nominaI l I c )ljompesitted ,4vveker,

wh I~i ch has heii'l tIE's igfl('( to ('xhi bi t. a sigiti f (i cantI Iv het I or petl-

lorinant'' in the pres-ncev (J di sturbatnec IorqIivm, Il( de1s i gn hy rwil

oci s 0411 I 'tjj i uc.' I-, i 1 lld t 'cid inIti U ' I. 4 andi lilt Irl'l s ber Itam 'Iic itiu-

art, comiiiar i ed in Tabo 3 i.6(-2.

fit 1)0)th t~ht riiornil I nid the fltmfl)i l comp('nsate ('IsePkt't'

we noteI that. (I () ,0. Trhis dernonst ratos t hat Wili Im h oII I'inot

Irit'jt' in ) r spring restori-ng toriltes. tesveekox ia eret Ii

1)1 1 'at. ion , i e.,. the mceastred hor-sight. error is5 ufat rvetedi by

r, at.ion of' the missi le body.

For F requenc ies 'oniisIderab Iy leiss than 10 raid/svee, we ha vt

1i (Ic s, whitIch i s tI(he I ransle'vr Ilun('t in oil4 ' a dI i I ','r'ntI lat o )r.

11ence , I he as'r t io that I ii - s an 11'st ina Le of t1.he LOS a niu Iitr rn t e

(Qi) holds at. low i'e~ (~liQs.

The seeker c omp~ensatI.ion remove., steady state i s Lurzbatice

torqua'c sonsitiv iy dlue to the 7t't'( oI' tI,.I(s) at s 0. ats d is-

cussed in Ref. I.1
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[ TABLE 3.6-i

TYPICAL NOMINAL SEEKER SPECIFICATIONS

Parameters Transfer Functions

t -k I 2  0

100 88 100.

3 nl~)i 12(+10)s+50

dn 2 (a) 0

in-oz-sec
kd sad

Ip - 0.1 in-oz-sec
2  n3 ( - d 1(s)

S1000 1
dn 4 (s) - =0 (s+10)(s+59)1=0.12 sec

TABLE 3.6-2

TYPICAL NOMINAL COMPENSATED SEEKER SPECIFICATIONS

Parameters Transfer FunctionsK [ k 2 =0 2i = 0 i i2.k3 k I dcl(1008( lOss+60s+ 1200 )

kg I 12(s 4+60s+1700 S+1O,000)
t3

k0  - 20 see- dc 2 (s) 0

in-oz-secSka 6 radxi dc3 (a) d del(F;)

1 w 0.1 in-oz-sec
2

. dc 4 (s) 2
T r-0.12 see 12(s +60s +1700s+i.,000)

i[ Poles at a -7.71, s - -16.1 ±24.8j
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3.7 SYSTEM MODEL. SUMMARYy

An example of' a complete missil -tnrge,. Int.erc(,pt. modol
is portrayed in Fig. 3.7-1 with representations ,F all ol" 1.hev

subsystems described in the previous section:i npproprintoly

interconnected. This particular system model wns ext(insively

analysed in an investigation of the accuracy and efficacy or CAD)E'T

in evaluating the impact or variouis random and nonlinear eFrrects

on the performance of missile guidance syst(ems In Rel'. 4. As

indicated in previous sections, there are many assuinmp.ions behind

this I'ormulation; the system depicted in Fig. 3.7-1 Is intended

tu be demonstrative of the large class of problems that may be

considered in this realm, and not to be all inclusiv,.

All of the state variables aro depicled ,x(,(,cpt angle or

attack, t, control fin deflecti Ion, 6, and tIhe s•oeker state re-.
quired t~o implement proportional plus integral compo||sat.icon, F,,I.

(3.6-31); thes•e states are enco)mpass•ed in thf- litkent dynamics,

r:oprosnted by t~he transfer functions gl(s), 2 (Fig. 3.4-3),
and(I (+k0/s). For co)nvenient reference-., wo list t~he no)nlin,:ari-

ties incorp~orated in this particular system model t-nd indic'ate

their form:

•Seeke.r head restoring torque

fl1(0 h) k I 10 h I sign ( h)
ri-

* Seeker gimbal friction

2 = k 2 sign ( 6 h)

* Receiver/signal processing characteristic

(F'I,3(•) =
3Cli Sign(F:) , l'

I nim

3-50 J
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Rag deenen noises
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.. . . . lI I I l ,I v
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n + x 3X x +2

Seeker mass imbalance torque

STm mrO [rlUm (.o)s(I0h+00) + r, sin (0h+0O)
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* LOS angio ('aliUlation

In- tan (y/x)

* Range calculation

r /x + y2

* Velocity resolution

X = -V cos(0() v cVos (()a
mt a

Y Vm -gin (60z + Vt sin (0a)

* Acceleration command limiting

nd oning itc
~§2 max a(, J)"InX ~ at

" vt )s( V os ) +0)) + 0'
a . n .v +

This chapter presonts an overview or modeling it.k ,

a rise in conside(lring t hp missile-t.:.rgot. int.eree I. pr(l)hIem. RM") I-

ist ic, rI(-Ireen taions for a var i vt y of non 1 i near v rlevc ts have ben

given, both to provide f ready roe'(rence for futI. ure sti.dioes orI1

tactical missile performance and to fac i tirate model developiwmnt

in other ar.as. The material i.s intended to guit(Je Ihew Usor iII

developing mathematical models appropriate for annlyzing missi I

syst~ems using CADET.
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I

S4. JU ASI-LINEARIZATION: PRINCIPLES AND PROCEDURES

i 4.1 CADET AND STATISTICAL LINEARIZATION

[ To review the fundamental equations or CADET derived In

Section 1.2, Eqs. (1.2-6) and (1.2-7), the differential equntionm

_ = f + Gb

L P -NP + PNT + GQGT (4.1-1)

govern the approximate evolution of the mean vector and covari-

ance matrix of the state variables,

ITI r= E [ix] (4.1-2)

P = E [(x-m)(x-m)T]

where the state vector differential equation is nonlinear and time-

varyi ng,

x - f(x,t) + G(t)w (4.1-3)

I F.'quation (4.1.-I) involves the vector f and matrix N which are

de f i ned by

f E [ f(x,t)]

ri I"-x-e)T3P-1(4.1-4)

•I N = E [l(x.t)(x-m)T] (414

Analytic expressions for C and N in Eq.(4.l-,l) can be de-

termined only if the form of the joint probability density function

q 4-1
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(o Ihe st. at- variublb,- Is known or IamHmimedt. For mlany probI)rlems
(the present one Inc luded; Cf. Sectioton 1.2) It. is applropt-irl te i.)

ati.umv that the st.tates are Jointly normal , or niearly so. A I)t)wf'r'-

|'Il corol lary to the gausslIan nassuiml)t Ion Is tiha vt('ach scaalar tmi-

linear relat ion embedded in the state var iabl) I(lle_ .nt liii ( lii.-

t. ions may be treated in isolatIoni; th is I'niv l greal I I y Ia4'. I it t1,1.4

the evaluat tor or f and N in the appli c|it .ion or ('Ai)EI' . Anol. hrr

direet result ol' the normality ussurnpt ion i s Ihl I I and N iir, f'[inc,-

tions of m, P pand t ailIon; and areV not. dependvdn t ii jfn h i.ghe r-o i'df, r

momen I s.

It. was mentioned in Se.t.lton 1.2 that I' iuind N dflilned In

Eq. (4.1-4) have also been derived In the contelxt of applylng sita-

t~i, s (ca11 1 lnearI, at ion to arrIvrf atI a qu(si-I I nenr approxtinat io
to the vector nonlinearity _f(xt.). Thte form obtained I.s

'(x,t) C + Nir (4.1-5)

where

-r = x in,( 1 . - ;

Is Lhe randohim component ()o' the s tate., vecto.r x. Sinac * e the I.hery
o r random Inplut desc ribing l'unet ionos undor thhe gitussIan tiisnf-ip- V
titon is well developed (Ref. 6) and o1 (tirtact utt.i lity .n CADET

analysis, it behooves us to consider (In si-linearizat.orto in qonl(-

(teta 1I.

In Sect ion 4.2 we outl, lin the vterall .cont.xt. (I" des,'ih--

Ln.k function theory, the derivation ol' basic. results, and basif-

limitations of the technique. Sections 4.3 anid 4.4 tr(at some

rF-eciftc examples of ridf calcualtiton, giving a few general results
and some usefut I.approxLmation tcchniLou.e (Inc, I d I g disISS i (,; of

suitability and accuracy). In Section 4.5 we consider Ihe sonlsI-

tivity of rtdf calculation to departures from the gius-sian assump -

tion. The above sections treat a single nonlinearity, in ftccordance(,

4-2
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with the assertion that each nonlinear rlation van b1 trated

indoepndently, an mentioned in Section 1.2. For a proor or the

validity of this procedure, see Refs. 7 and 11.

4.2 PRINCIPLES OF QTIASI-LINEARIZATION

r In the discussion that follows, we consider the quasi-
linearization of the single nonlinearity, f(x). In some instances,
the nonlinearity may be a single function of one or two states, as

in the example treated in Chapter 2 where fix3) represents the ideal
limiter characteristic acting on the missile lateral acceleration,

x 3 (Fig. 2.2-1). In other cases, the nonlinearity may be a com-
plicated function of a number of states; as an example, combining
Eq. (3.4-2) and the last term of Eq. (3.6-13) with o - 0 leads to
a seeker mass imbalance torque term of the form

- 0 mroVm6  cos(*-e-) I mr 0 vm(L M +L 5 6) cos(eh+OM-0g)

whiLh involves the variables a,6,6 h)(mIe which may, for example,

be state variables % to x., respectively. The complexity of this

formulation tend& to obscure the basic form of the nonlinearity,
i.e., v1 Cos v2' where v 1 and v 2 are simply linear combinations

h[ of the indicated state variables,

V -

Since the input variable statistics are immediately obtainable

from the state statistics, Eq. (4.1-2),

I- Hm 
(4.2-2)

I v -HPH3

t 4-3
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ii

we simply treat nonlinearitles as functions of one or smveral .iAut

variables, v or v, where the statistics of v are given by Eq.

(4.2-2). From this point on, we omit the subscript 11v" to simplify

our notation; m and P always refer to the nonlinearity input eta-

titices, and r denotes the random component of v. The fact that

only a few Input variables need to be connidered simplifies the

rubsequent development.

The essence underlying all quasi-linear analysis is the

substitution of one or more approximate, input-amplitude-seni.tive

linear gain(s) for each system nonlinearity. The analytic form of

the resulting quasi-linear gains (describing functions) is deter-

mined by three factors:

* The nonlinearity

* The assumed nonlinearity input form

o The error criterion used (th, measure
of approximation error to be minimized)

The number of describing functions required to represent each non-
linearity in determined by the number of input, variables and the,

number of input signal components specified by the assume input

form; each input variable component has its own independent mea-

sure of amplitude and requires a quasi-linear gain.

hereafter taken to be the sum of a gaussian random variable and

a deterministic signal ("mean"), we desire to express the non-

linearity output as a linear combination of each input signal

component plus an error or distortion term. Cons.dering the gen-

era] case of a nonlinearity with k inputs, we have

z f(vl,v 2 ,... ,vk,t) (4.2-q)

4-4
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S[ for which we seek an approximation of the form

z t z0 + bTr (4.2-4)

where z and b (a vector of dimension k) are to be determined.*

Based on the desired form if the quasi-linear approxi-

mation, Eq. (4.2-4), we consider the mean square error,

E E[ z - z0 o biri} (4.2-5

Setting the partial derivatives of the mean square approximation
error with respect to z and bj equal to zero gives us the set of

necessary conditions for minimization,

ao 2E f -zo bjrj(-l) 0
0 TI.

2Ef. b r4l(-rj)] M 0, j W-,,.,
I [b 0 Jul

(4.2-6

Taking the indicated expected values term-by-term reduces Eq.

(4.2-6) to

Szo M E [f

(4.2-7)

bI bTP - E [f r T]

I IThe first term in Eq. (4.2-4) could be expressed as aTm, i.e., a
linear combination of the means; however, we note that the elements
of a can only rarely be found explicitly, as can be appreciated in
the example of Eq. (4.3-34).
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where we have expressed the results in their more compact vector- fl
matrix form.

Comparing Sq.. (4.2-2) and (4.2-7), we have

f(v,t) 8 E If] + E f r P1

A + n r (4.2-8)

which is identical to the scalar case of Eqs. (4.1-4) and (4.1-5).

To see that the above solutions do indeed lead to mini-
mum mean square error, we observe that H4

S22
- 2 > 0

*az 
0

a-Cb2 - 2 F r2] > 0, j - 1,2,...,k

which are sufficient conditions for the existence of a local mini-

mum.

In evaluating the expected values needed in Eq. (4.2-8)
we invoke th3 assumption of joint normality to write (Ref. 11) L

- [(2 )klpl] oxp r' Pr (4.2-9)

By definition, then

(2r kA f(v~t) exp- 1 (X-m) T1(V-M)?

dv 1 dv 2 ''" dvk (4.2-10)

4-6
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To aid in evaluating Ln, we form

A

(if

,, /,)T f•. k ]'•' S rpI
_kp A '~ af 1 -x -

_m {32 [ (21n IPIJJ... f(v't) exp - r P rT P r

dv~dv 2 -, dv k

Lmki
P- E lf(v,t) r] (4.2-11)

which demonstrates that tho second relation In Eq. (4.2-7) under

the gaussian assumption is identical to*

n -=--f (4.2-12)

which is the scalar version of Eq. (1.2-10). After f is calcu-

lated according to Eq. (4.2-10) for utilization in Eq. (4.2-8),

the random component describing function vector n usually may be
6. P

obtained much more easily using Eq. (4.2-11), than by direct solu-

tion ot Eq. (4.2-8).

From the development outlined nbove, we nult that the

use of describing functions provides an approximation to nonlinear
phenomena that retains input-amplitude sensitivity through the

T dependence of ? and n on m and P. In CADET, the usefulness of the
quasi-linear approximation, Eq. (4.2-8), lepends on the validity

of the gaussian assumption on x. The accuracy question is a very

complex issue -- probably, an unresolvable one in a general,

N()tt, that by convention the derivative of a scalar by a column
vector is a row vector, and, by extension, the derivative of a

column vector by a column vector is a matrix.

4-7
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rigorous nense. The following paragraphs provide some insight Ii
into the problem, however.

An important factor is that it is generally beneficial 11
to have a system of the form indicated in Fig. 4.2-1 where there

in a significant preponderance of linear dynamics over nonlinea.

elements -- especially if the linear parts, represented in trans-

fer function form by Wj(s), are "low-pass", in which case the

central limit theorem indicateE 'hat the outputs v are quite

nearly gaussian, despite nongaussian inputs u . We observe, how-

ever, that this condition is not in itself completely decisive,

since the CADET equations are based on the assumption that all

states must be nearly jointly normal. The examples considered In j]
Appendix B are situations in which the nonlInearity inputs are L!

given to be gaussian, yet the nongaussian nature of state vari-

ables after the nonlinearity leads to inaccurate CADET results.

R- 16243

Figure 4.2-1 Example of a Nonlinear System With 11
Desirable Separation of Nonlineari-
ties by Linear Dynamics

Another issue that may have considerable impact on the

accuracy of quasi-linearization is the nature of each nonlinearty.

with regard to being odd of even in its input variables with I
respect to the input mean. To illustrate this terminology, a

function f(vlv 2 ) is odd in v 1 with respect to m, and even in v 2

with respect to m2 if

f(m l-r lv 2 ) = f(ml+rlv 2 ) for all r,

f(vl,m2 -r 2 ) - f(vl,m2 +r 2 ) for all r2

4-8
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For the rest of this discussion, we conpider the zero-mean case,

and refer only to oddness and evenness since the extension tc

non-zero means is obvious.

It is beneficial to have single-input nonlinearities

which are odd functions of their inputs. (Section A.1 contains

a comprehensive catalogue of ridf's for this basic type of non-
linearity,) In contrast, even nonlinearities must be considered

with caution. It is simple to demonstrate that the random com-

ponent gain, n, is identically equal to zero when f(v) is an

even function of a zero-mean input v; this condition generally

provides an inadequate approximation.

T-
I In treating multiple-input nonlinearities, the situation

becomes mere complicated. Let us consider a few examples: first,

f(vl,v 2 ) = VfVl + nlrl + n2 r2

Sf=mm2 P 2 2

n1 =m 2

n 2 =m 1

where the indicated quasi-linear approximation has been derived in
Ref. 3. In a zero-mean situation, the quasi-linear representation

degenerates to a single mean component* given by P 1 2 ' the cross

correlation of v 1 and v 2 . By extension, any two-input relation

of the form
"' ,V2) f~f(vl ,od(l 2

,v2) = flodd(vl) f2,odd(v 2 )
will have zero random component describing functions when vI and
S2 have zero means, which will generally lead to unsatisfactory

. results. Next, we consider

f(vlv 2 ) = V f + nr + nr

L *We observe that the quasi-linear approximation, Eq. (4.2-8),
always conveys the mean input-output relation correctly.

4-9
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-[im+P 2 2) + 2m2P12 )]

n 1 W M2 + p22

n 2 -f Lm1m 2 + P1 2 )

which can be derived using the general result given in Eqs.(4.3-22),
(4.3-32), and (4.3-33). Here, in the zero-mean input case, we have

no output mean and non-zeru random component gains for both r1 and

r 2 , provided p1 2 and P2 2 are non-zero. Thus in general it would

seem that two-input relations of the form

f(vl,v 2 ) = fl,odd(vl) f2,even(v2)

are advantageous from the point of view of describing function ap-

proximation accuracy in the zero mean case. Finally, using the

result in Eqs. (4.3-39) and (4.3-40),

f(vl,v 2 ) = v1v 2 . f + nlr 1 + n2 r 2

A= 2 2f = (m1+p1 1 )(m2 +r 2 2 )+2p 1 2 (P 1 2 +2mlm2 )

n = 2ml(m2+P2 2 )+4m 2 P1 2

2n2 = 2m2 (m1 +P 1 1 )+4mlP 1 2

Again, there is no random-component transmission (nfnfin=) in thj

zero mean case, so the nonlinearity form

f(vl,v 2 ) = fl,even (v1 ) f 2 ,even(v 2 )

is apt to give poor results in this situation. As in the discus-

sion of single-input nonlinearities, these comments may be di-

rectly extended to the non-zero mean case.

The preceding paragraphs considcA bhe accuracy of quasi-
linear approximation for a number of nonlinearity types. The

problem that often arises is "zero transmission" of one or more ran-

dom component(s); the basis of this phenomenon is that the random in- V,
put describing function n in the quasi-linear approximation, Eq.
(4.2-8), only captures that random component of the nonlinearity out-

put, z,which is correlated with the input variables, in the sense that

4-10
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IE C~rjz] 0

I How serious this effect is on the overall accuracy of CADET Is
highly dependent upon the complete system model; it may be that

if the random effect which is neglected by the quasi-linearization pro-

5 cedure is truly insignificant, in the sense that other linear or

nonlinear dynamics may dominate. In this eventuality, the useful-

.1 ness of CADET is unimpaired. On the other hand, it is a straight-

* forward exercise to fabricate simple examples where a CADET analysisL ~would be totally incorrect -- cf. Appendix B. A loose but useful
analogy can be drawn between the relation of describing function

r accuracy to the validity of the complete quasi-linear system model
- (in particular, to the accuracy of CADET analysis) and the parameter
r sensitivity problem in linear systems theory (in particular, the re-

r lation between the accuracy of standard covariance analysis, Sec-

r tion 1.1, and imprecision in knowledge of -the linear gains of the
Ii system model). In the parameter sensitivity problem, an inaccurate

ally no effect on the overall system performance (in the low sensi-

tivity case), or it may make the model behave in a completely dif-

~ ferent manner than the system (in the high sensitivity case), ren-
dering the model meaningless. Thus in assessing the usefulness ofPiE CADET in a given situation, one must use insight and experience in
order to evaluate the approximate accuracy of the describing func-
tions used and the relative importance of their inaccuracy.

The preceding comments on the significance of oddness and
evenness should provide some useful guidelines in estimating the

accuracy of various ridf's. The results outlined in Section 4.4
r also provide a good qualitative "feel" for the inaccuracy in de-
L scribing function calculations that arise from the departure of theIL[ nonlinearity input from the gaussian assumption. We emphasize that,

because CADET is an approximate technique, it should be compared
with monte carlo simulations in a few selected cases, to verify
that CADET accurately captures the nonlinear effects under con-
sideration (refer to Fig. 5.2-2).

4-11
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4.3 RANDOM INPUT DESCRIBING FUNCTION CALCULATIONS

4.3.1 Single-Input Nonlinearities

In obtaining a quasi-linear representation of a nonlinear
function of one variable (v) under the gaussian assumption, we

have

f(v) - f + nr (4.3-1)

where Iii

mm E IV]

r v -m

p = o2 = E [r 2 ]

2(4.3-2)
A 1 2(v_ )

f( f(v) e dv

2
podm n2-0 3 (v--) f(v) e dv

Since the catalog of random input describing functions (ridft s)
provided in Appendix A is not exhaustive, the following detailed

sights into the development of describing functions for other non-
lineerities. F•

As a general observation, it is often advantageous to i
use a linear transformation to simplify the exponential function
in Eq. (4.3-2); the change of variable

4-12



m
THE ANALYTIC SCIENCES CORPORATION

yields

A 1 u2
I if m .1 _ f(au+m)e du (4.3-3)

Further simplification may result by eliminating all terms in f

that are odd in u; for example

n[a0+a1u+a2u2 +---] e• du - 0 +a2u2+au 4+...] - f <, du

11 ~ ~ G 1 2 u(43)

Sfoau+m~e du - SO00 f ev(au+m)e 2 du(434

where the even part is given by

fe v(u+m) -1 [f<au+m- + f(,<au+m)] (4.3-5)

After this procedure has been carried out, the following integral

C evaluations often prove to be useful:

1u2

o e- du = 1!/2 -Tr - ,,

--u2

S • ST u< 1 ,,, 2 ,, . • • °

S1 u2ko 2

S_ k du = (1)(3)(5)...(2k-1), k > 1
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2
These results and others involving the integrand factor e- u

may be found in any complete tables of definite integrals; cf.

Ref. 16.

Example 1: Using the above relations, we can obtain the
quasi-linear representation of the nonlinearity v3 by inspection.
From Eq. (4.3-3)

A M E [v3] %. (au+m) 3e- Vdufh
/2-ir

Dropping terms that are odd in u yields

f 1 . m3 +3mo2u2 e du

so application of Eqs. (4.3-6) and (4.3-2) results in

f =rm + 3mo 2

(4.3-7)
Bf m2 02".n= -= 3(m + 2)

Example 2: Trigonometric nonlinearities may be treated

conveniently using the above techniques in conjunction with com- '

plex variable notation: recall that the complex function eiv is

of the form

f(v) = eiv

= cos v + i sin v (4.3-8)

so we have

1 (_7m)2exp iýd
2_ a - ( )

Adding and subtracting (- a2+ im) in the argument of the ex-

ponential function permits us to complete a square;

4-14
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2+ im

I The final result is obtained by transforming as in Eq. (4.3-3);

£~ 12
(con m + i sin m) (4.3-9)

I Taking the real and imaginary parts of Eq. (4.3-9) yields the

mean component of the quasi-linear approximations of coo v and

sin v, respectively; the random component ridf is obtained by

taking the partial derivative with respect to the mean. We thus

obtain

cos v E [cos v] + (v -m)

K i e- ecos m (sin m) r]

(4.3-10)

sin v 9 E Esin v] + n(v - m)

1 2

-e [sin m + (cos m)r]

Example 3: Piecewise-linear characteristics comreionly

occur in models of systems with saturation, quantization, dead-
zone, and other similar phenomena. Consider the ideal limiter

(saturation element):

f(v) = V a (4.3-11)

vmax sign(v), IvI > vmax

Direct application of Eq. (4.3-3) leads to

4-15



THE ANALYTIC SCIENCES CORPORATION

a1  12 a 12
S- I e xdu + (ou+m)e du

4.--max e- du (4.3-12)

where

Vmax

a 2 max
S°Li]

Since some of the limits of these integrals are finite,

the direct evaluation of f in terms of eietnentary functions is not
possible. We require two auxiliary functions based on the normal
density function, here denoted PF(w):

1.2A 1 •Pr(w) - e •

/-wf

P1(W) PF(w) dw

(4.3-13)
G(w) A=IoPI GO dw

'-00

= w PI(w) + PF(w)

Some useful properties of these functions are

PF(-w) = PF(w)

PI(-w) 1 - PI(w) (4.3-14)

G(-w) = G(w) - w

4-16
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lim PF(w) - 0

1im PI(w) - 0, l1m P1(w) - 1 (4.3-15)

Inm G(w)-O, 1im G(w) lim w-o

The mean ridf term f (Eq. (4.3-12)) can be manipulated directly

to obtain

f -a G i (4.3-16)

From Eq. (4.3-13) we have that

S~dG
WG - PI(w)

iiso by inspection the random component gain is

ak vmax +m (mxm(.-7

1 1 L1 nn -P (--17)2 -
n - P- - aPl + P 1 1 (4 .3 - 7

E The functions in Eqs. (4.3-13), (4.3-16) and (4.3-17) are

standard in several works (cf. Refs. 6 and 18). Other references

[ (cf. Refs. 15, 17) use the error function,

Serf(w) e- 2 du (4.3-18)

which is related to the probability integral PI(w) by

I erf(w) - 2PI(/2w) - 1 (4.3-19)

Since the error function is available in some computer scientific

subroutine packages, it may be advantageous to use

4-17
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" e1 1 +..(... (.1.3-20)

This result and many other descrtbtng function representations

for a variety of piecewise-linear functions may be found in

Ref. 6; basic examples are given in Appendix A.

4.3.2 Multiple-Input Nonlinearities

As might be anticipated, the describing function deriva-

tion for functions with multiple inputs becomes more involved

than for the single-input ci,.se. In general, for two variables

"we seek
'' f(vv2) - + nlr 1 + n2 &2  + JTr

where

L U

P"1 J 2  02 E
A2

L 1 2 2

1 f (v,v 2 ) e- dvldv2 (.2

•,• (4.3-21)

A
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I To demonstrate evaluation of integrals of this form, we

consider the following general form of two-input nonlinearity for

i which we derive a useful new result:

Cae 1: For a nonlinearity that has a linear factor in

one variable,

f(vlv 2 ) - Vlg(V2 ) (4.3-22)

we write Eq. (4.3-21) out fully to obtain

f dva vdv2 2ex

, zml\/v%-m2\ v2 =m 2)2]1 dl (4.3-23)

r It would be possible to integrate this equation with respect to

v 1 directly, making use of the relation

, u exp (-vuu2 +2vu) du =/ev (4.3-24)

(Ref. 17). However, a more systematic approach, explained below,
S~reduces the possibility of error in the manipulations and algebra

involved in evaluating f. (The same technique is indispensable

for three or more variables.)
Ccnsider the argument of the exponential factor, rTP-1r;

we seek a linear transformation w - R-r which simplifies the

integrations of Eq. (4.3-23), Choose the matrix R to be

... . R 2 (4.3-25)

40 2

S~4-19
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.o Ii
so) by clef inition 1

P - RR T (4.3-26) [
Defining w to be given by

W -1

vi-mr v2-m2a, /1_- " P
(4.3-27)

v 2 -m2

a 2

we obtain :I
(r)T P(-1 n w- (4.3-28)

This change of variables in Eq. (4.3-23) leads to

A_ 1 - l2 lii
27r L , .,tn+ 1 &'1--P" Wl+PW2)( g (c'2w2+m2) 1'W+2 d~d2'"

(4.3-29)

The matrix R in Eq. (4.3-25) is specifically chosen to be lower 1
triangular, i.e., zero below the diagonal, in order to make v2 a
linear function of w2 alone, so that integration with respect to

wI can be carried out irrespective of the form of g. Discarding
the odd terms in wI, we use Eq. (4.3-6) to arrive at

12

gra__on (M +01"2) g("2w2+m 2 )ew2 dw2  (4.3-30)

which has reduced the evaluation of I in Eq. (4.3-23) to an inte-
gration in one variable.
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3 The result in Eq. (4.3-30) can be further internreted to

obtain a fundamental form for nonlinearitie" which arv, tant'ar In

one variable. First, consider the ridf approximation of g(v 2 )

alone: from Eqs. (4.3-1) to (4.3-3) we have

I g(v 2 ) M ý(m2 ,( 2 )+n,(m 2 ,a 2 )(v 2 - m2 )

where

1 2

[ 2 - g(0 2w2 +m2 )e dw2  (4.3-31)

012
)e 1

r ng~ - a~w2 g(02w2+m2)dw
1~ 2

We then recognize that Eq. (4.3-30) is simply

f " mA 1 + 00102 ng (4.3-32)

r and that the two random component ridf's are

a? n

n2 In+ a am: (4.3-33)

I; 1m 1 ~ 2 am2

Consequently, given that the nonlinearity g(v 2 ) is readily quasi-

linearized, it is a direct matter of differentiation to evaluate

ridf's for the multiple input nonlinearity v g(v 2 ).

:7 4-21
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Example 4: AR a special ca~o, for the stngle-input

nontinearity

f(v) - vg(v)

where g(v) his the quasi-linear approximation

g(v) g + n g (v - m)

we obtain

f Mg + a~l [19
n - + mng + a1 3e

This result permits the direct evaluation of ridf's for nonline-

arities that are related to simpler forms 1g(v)J by multiplicative

powers of v, provided the quasi-linear approximation of the simpler

form is available. I
Expamle 5: For the nonlinearity
f(v 1v 2) - v1 cos v2

we apply the relations given in Eqs. (4.3-32) and (4.3-33) to the

ridf's given in Eq. (4.3-10) to obtain

f [ cos m2 P1 2 sin m2 7e 2 2

11

2 - mIsinm 2 + P 1 2 cos m2 ]e P22

4-22
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[This result wats obtained in Ref. 3 by the more tedious direct
evaluation of Eq. (4.3-21).

Case 2: By using similar transformation techniques (refer

to Eqs. (4.3-25) and (4.3-26)),the three-variable case

* f(v 1 ,v 2 ,v 3 ) = vlg(v 2 ,v 3 ) (4.3-35)

has been proven to lead to a mean component quasi-linear term of

the form

f 19 m Pg +P2 m + P13 a
2 3

- ml+ P1 2 ng 2 + P1 3 ng3  (4.3-36)

where g(v 2 ,v 3 ) is represented in quasi-linear form by

Sg(v 2 ,v 3 ) flg + ng(v 2 -m2 ) + ng 3 (V3 -m3 ) (4.3-37)

.. This result should greatly expedite the evaluation of ridf's for

; ""three-input nonlinearities that are linear in one variable.

"Case 3: Based on the above results, Eqs. (4.3-32) andr(4.3-36), it is a matter of direct extension to prove a general

direct quasi-linear approximation for the nonlinearity class

kf(vl,v 2 ) v g(v 2 ), k = 1,2,... (4.3-38)

• .First, we treat the case

f(v 1 ,v 2 ) =vg 2 (v 2 ) (4.3-39)

I as a special case of Eqs. (4.3-35) and (4.3-36) with g given by
vlg2 (v 2 ); applying Eq. (4.3-32),. we obtain

I
'1 4-23
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A 2a2 2 a 2
2 +•+ 2m1 p1 2  (4.3-40)1-i 1g012 T_ 12 _3m.2

We can then proceed by induction to show that the general form U
of the mean component ridf is

k] A [v-1"22 ai,-] 2 ,
f -E vil 9+-kp1 Ev] - + 1 k(k...)p~2 S [vk-2]

k-lA k^
.. k- g k a g (4.3-41)

3m2  Dm2 [3
or, to use the more compact binomial coefficient notation (Ref.1B),

(k) A k(k-1) .. (k-j+1) (4.3-42)

j-o 2 E 1--1-[!1

The random component ridf's are directly obtained by differentia-

tion according to Eq. (4.2-11). This simple and powerful expres-
sion for ? reduces the ridf evaluation to a ralatively easy task

for a broad class of two-variable functions.

Various techniques exist for manipulating nonlinearities
into forms that are directly treated by the above developments.
A particularly fruitful approach is the use of trigonometric iden-
tities to reformulate nonlinearities, as the following case demon-
strates. V

Example 6: For a nonlinear function with multiple trigo-

ncmetric factors, e.g.

f(vlv 2 ,v 3 ) ' 1 sin v2 cos v3  (4.3-44)
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[wt- ;-an use I.h(! .- ur-and-d I I'r(Žnc l'ormulae (ci. Ref. 19) to

obtain

g-sinv 2  3 =1 L (v 2 +v 3 ) sin(v2-v3)

and proceed as follows: From Eq. (4.3-10),

-1 2
[sin = e sin (mw)

where w = v 2 ± v 3 . In the two cases w = v 2 ± v3 , Eq. (4.2-2)

y i yields

+ 2
w=v2 +V3 -- +Wm3, 9 0w =P 2 2+P33 +2p 23

-w=v 2 -v 3  =zn 2 -m3 , a3 = p 2 2 +P 3 3 -2 P2 3

Thus

= E [sin v2 cos v3]

1 (22+P33) [P23 P23si

,2e e sin(m2 +m3 ) + e sin(m2 -m3 )

and the direct application of Eq. (4.3-36) leads to

m1  + -e (P22+P23) -p2 32 •P12 3 cos(m2 +m 3 )I
+ (P 1 2 -P 1 3 ) e23 cos(a 2 _m 3 )J (4.3-45)

I
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Obtaining this result by the direct application of Eq. (4.2-10)

would be very tedious.

With the tools developed in this section of the handbook [1
and the cata'.ogue of single-variable ridf's provided in Appendix A,

a broad class of nonlinearities can be treated in a straightfor-

ward manner (with little or no analysis of the sort illustrated in

this chapter). Thus these contributions significantly enhance the

direct usefulness of CADET. SIi

4.4 EFFECTS OF DIFFERENT PROBABILITY DENSITY FUNCTIONS

An important issue that must be investigated in order to

assess the potential accuracy of CADET is the effect of deviations

from the assumed joint normality of the state variables on the

evaluation of random input describing functions (ridf's). The

gaussian hypothesis is the only approximation made in the appli-

cation of CADET, so any inaccuracy in performance projections ob-

tained via CADET is due to the nongaussian nature of the actual

state variable joint probability density function (pdf). Li

In this section, we present results of an investigation F
of the sensitivity of quasi-linearization to changes in the pdf of

the nonlinearity input (Ref. 4). We compare the ridf's correspond- f
ing to three common nonlinearities -- the limiter, the sinusoidal

operator, and a power law nonlinearity -- computed for a variety

of density functions. Seven probability density functions with I
quite different functional forms are considered. Four of these
are given in Table C.2-1, viz., the exponential, gaussian, tri- i

angular, and uniform distributions. Three additional densities

are special cases of the sum of two symmetrical triangular func-

tions, defined in general by
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3p A (4.4-1)

0 o xi- x.j > A

which has a zero mean, a variance given by

a 2 = X2 + IA2 (4.4-2)

[i and a kurtosis (ratio of fourth moment to variance squared) of

S4 + A2x2 + _ A4

)14 x0 +A 0  15-3
a4 X4 + • a 4 (443)

LThe three cases of Eq. (4.4-1) chosen for the comparison cor-

respond to A = i x0 , x0 and 2x 0 ; the associated pdf's are por-

trayed in Fig. 4.4-1. Note that two of these densities are bi-

modal; i.e., they have two distinct peaks.

Ell P P WR-11952
S~~~~p(x) x)-.s

*1_

. X 1M 0 Ix. x  -2xo "xo xo 2xo"-XI0 x*0 2X.

-K o(b) A: Xo

.3 x ° .X o X o 3 x o x

(c) A: 2 xo

Figure 4.4-1 Three Density Functions Comprised of Two Triangles
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It is shown in the discussion of confidence intervals for

the estimated standard deviation obtained via the monte carlo method

(Section C.2) that the kurtosis has a significant impact on the [1
confidence we have in the accuracy of the estimate. Here it is

observed that the value of the random input describing function

calculated for various pdf's seems to be directly related to the

kurtosis. Thus we order the seven pdf's under consideration

according to the value of A:

11
VIL(X) a 0 li)* (exponential)

p2 (x) - A- -3 (gaucalan)

t P(x) " ( 1 ( •i .) - 3  -2.4 (triangular)

1 1 ) - 2x ; A4 " 2.14 (Fig. 4.4-io)

P ) I - I A5 - 1. (uniform)
11 -

P6(x) " 21 0 A 1.52 (Fig. 4.4-1b)

a 0

-A -21111-x 0 ; - -X ~4x; A 1.16 (Fig. 4.4-la)

(4.4-4)

While these density functions are not exhaustive in a formal
sense, they dc? represent a variety of situations. All of the

densities given in Eq. (4.4-4) have even symmetry; we note that

skew densities can be disregarded in this context with no loss

in generality. For a skew density ps(x) we can define its even

part by
F\

Pev(x) = 1 (Ps(X) + ps(-x))
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5 Since the three nonlinearities considered are symmetric (odd) and

the moan values of their inputs are zero, only the even part of5the pdf contributes to the describing function calculation.

Limiter - The ideal limiter or saturation operator,

| ~x , xl ~)" 44

3f(x) 1 sign (x) , Ixi > 6 (4.4-5)

is a common piecewise-linear function used to model nonlinear

phenomena. In Fig. 4.4-2, we portray the various describing func-

tion gains for this nonlinearity, corresponding to the pdf t s de-
fined in Eq. (4.4-4), as functions of the ratio of the input rms

level, a, to the saturation point, 6. As would be expected, all

seven quasi-linear gains capture the fact that the effective gain

starts to decrease from unity whenever a significant portion of

the assumed input pdf lies beyond the saturation point, i.e.,

whenever there is a significant probability that lxi is greater

than S. As has been pointed out previously, this effect is the
key to the success of quasi-linearization techniques in reflect-

ing nonlinear system behavior that is beyond the scope of small-

signal (Taylor series) linearization.

It is interesting to observe that the relative positions
of the curves in Fig. 4.4-2 exhibit a monotonic relation to the

value of X. The greater the difference between X for a particu-

lar pdf and the value for the gaussian case (X = 3), the greater

the difference between that density function's ridf curve and the

curve for a gaussian distribution. This behavior holds in all the

cases considered here, and is indicative of the fact that the value
of X is one quantitative measure of how "close" the density func-

tion is to being gaussian. The variation of the ridf's with X is

about at its maximum (on a percentage basis) for the case a 26;

the ridf decreases 13% as X increases from 3 to 6, and increases

28% as X decreases from 3 to 1.16.
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SIMALL SIGNAL LINEARIZAItON

. • LIMITIR

"UNIFORM ,,ijk

0.4 pTIN L

0 0. 1.0 1.6 o0 2. 30 31 4,0

RATIO OF INPUT STANOARO OIVIATION TO SATURATION POINT. a/&

Figure 4.4-2 Random Input Describing Function V
Sensitivity for the Limiter

__Pk _ Laww- A similar study was performed for a power-

law characte 'stic,

f(x) = x sign (x) (4.4-6)

This type of nonlinearity is often used to model effects such as

the "hard spri,._' characteristic (Ref. 15) discussed in consider-

ing nonlinear restoring torques acting on the missile seeker head,

Section 3.6. For the power law, the ridf's calculated for the

same density func.tions considered previously have the form (Ref.4)

ni = "ia (4.4-7)

where a is the input rms level and p are coefficients determined

by the input pdf's, pi(x). Thus the describing function gain for

f(x) increases linearly with the input rms level, in direct con-

trast to the small-signal linear gain which is identically equal
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0to zero, as shown in Fig. 4.4-3. It is again observed that there

is a monotonic relation between Xi and the ridf curves. In this

0 case, an increase in X leads to an increase in the describing

function gain, which is contrary to the behavior shown for the

limiter. This is a result of the fact that the power law output

increases more rapidly with increasing input than a linear charac-

teristic, whereas the opposite is true for saturation. For the

power law nonlinearity, the ridf sensitivity is independent of a,

i.e., the ratio of ridf's calculated foir pj(x) and pjfx) is simply

1i/3j. For f(x) in Eq. (4.4-6), the describing function gain n

varies from + 33% for the exponentially distributed case, to -34%

for the pdf P 7 (x", compared to the gaussian input ridf, which
shows that this nonlinearity is somewhat more sensitive to vari-

[1ations in X than the limiter.

C ms

POWER LAW NONLINEARITY EXPONENTIAL

~2.0

GAUSSIAN

is TRIANGULAR
/000ý_P4

UNIFORM

PC

-!5

'•' [ • SMALL SIGNAL LINEARIZATION

I0

0 0.2 0.4 0.6 0.8 1.0 1.2
INPUT STANDARD DEVIATION, a

Figure 4.4-3 Random Input Describing Function
Sensitivity for the Power Law
Nonlinearity

4-31



tA
THE ANALYTIC SCIENCEB CORPORATION

Sinusoidal Operator - The third nonlinearity considered [1
i n thevsv svns it. lvi t.y studivs Is th, I.h, si n ida I.r I opraitor,

f(x) - sin x

which is needed to resolve the missile and target velocity vec-
tors in the missile-target intercept model, for example. A po- t
tential source of difficulty with this function is that the non-

linearity output periodically changes sign with increasing or II
decreasing values of its input. This leads to quasi-linear gains

that, for large values of rms input, u, may even differ in sign
for different input pdf's. This problem is not unique to CADET;
in many modeling and simulation studies, care must be exercised

when the input to a sinusoidal operator (or any other trigono-

metric nonlinearity) can exceed ± 90 deg (t n/2 rad), since in
some sense the "gain" can change sign in some situations. Bear-

ing this in mind, we have calculated the random input describing

functions for values of a as large as 3 rad to indicate where

such effects become important, as shown in Fig. 4.4-4.

The quasi-linear gains for a < n/2 rad show some simi-
larily to those obtained for the limiter; this is a reasonable

mode of behavior, since the sine function shows a definite satu-
ration effect of the range lxi K ir/2 rad. As expected, the ridf's

are inversely related to X for u < Tr/2 rad, i.e., as X increases,
n decreases. However, as the input rms level approaches 3 rad,

the describing functions for all of the pdf's except pl(x) and
P2 (x) become negative, and the monotonic relationship between X

and n appears to be lost.

The preceding studies 4ndicate that the sensitivity of

random input describing fune-t.ion calculations to variations in
input probability density function is slight for small values of

input rms level; as a approaches zero, the quasi-linear gains
approach unity for the limiter and sinusoidal operator, and zero
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SII

g - p g w

ALL SIGNAL LINEARIZATION SINUSOIDAL r h OeRAn

Ikrth oer 0aolnaiy Teelmtn assaetesm

~~ 04 OIVO4NTIAL

-0.1 ! 13 2 *21*50

INPUT STANDARD OEVIATION. U 0,101

Figure 4.4-4 Random Input Describing Function
~ Sensitivity for the Sinusoidal

L Operator

[ [ for the power law nonlinearity. These limiting cases are che same
values of gain that would be obtained by the traditional small-

signal linearization approach -- viz., by replacing f(x) with a

linear gain equal to the slope of the function at the origin

(Section 1.2). As a general result, Jt has been shown (Ref. 6)

that quasi-linearization subsumes small-signal linearization,

i.e., for small signal.• the two are equivalent. This, in turn,

proves that CADET provides nearly exact statistical analyses when

the random variables have a small rrms value in relation to the sys-

tem nonlinearities, i.e., when most of each nonlinearity input

probability density function lies in the linear region of its non-

linearity. As the rms levels of system variables increase so that

the nonlinearities are being exercised significantly, the describ-

ing function sensitivity to the input pdf can be appreciable; then

T 4-33
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it must be ascertained how sensitive the system performance is to

variations in gain at each point in the system model where a non- 11
linearity occurs. No general answer can be given to this question;

the verification of CADET for particular applications must be 13
accomplished by direct comparison with monte carlo results, as has

been done in Chapter 4 of Ref. 4 for the missile homing guidance

system.

4.5 DESCRIBING FUNCTIONS NOT EXISTING IN CLOSED
FORM UNDER THE GAUSSIAN ASSUMPTION

For certain nonlinearities, random input describing func-

tions cannot be obtained in closed form under the assumption that

the inputs are jointly normal. In this section we indicate some

approximate methods for computing ridf's that involve either ap-

proximations to the input probability density function, or approxi-

mations to the nonlinearity, and discuss their usefulness.

An example of interest in the missile-target intercept

problem is the nonlinearity

f(xy) - (4.5-1)

which defines the missile-to-target range in terms of the cartesian

components of the separation, x and y. This problem is considered

in some detail to provide a focus for the discussion of several

ridf approximation techniques. We compare the accuracy of each

approach for the nonlinearity given in Eq. (4.5-1), and point out

some pitfalls that may be encountered if care is not taken.

In order to simplify the discussion, we assume that y

does not have a mean component, and x has a negligible random

component. This approximation is valid in many missile-target

intercept situations except at the very end of the engagement

(refer to Section 4.1 of Ref. 4). With these assumptions, there

4-34



m
THE ANALYTIC SCIENCEB CORPORATION

are only two ridf's, f and ny, needed for a quasi-linear repro-

sentation of the range. Thus from Eq. (4.1-), we seek to evaluate

f x [A Ti' * p.(y)/' y- dy

n yp(y) /-:
y

l Under the assumption that y is a gaussian random variable, the

second of these integrals can be evaluated analytically; however,

the first, which is of the form

A~ 11m 0 2
f a /smx + y 2e L ]~ dy (4.5-2)

w•y

C cannot generally be solved in closed form unless mx - 0, in which

case we have

f =EEIyI /2;WO'a (4.5-3)
S~y

For the more general situation given by Eq. (4.5-2) with mf 0,
!it is desirable to use some approximate technique to obtain a

I. closed form expression for f that is convenient for use in a CADET

r analysis.*

A Taylor series expansion of a function of a random vari-

able, f(y), about the mean of that variable, m, results in

Idf r + .1 d I 2÷ 2+ <•
f(y) f f(m) + r -f). y-m

dy-Mr 2 df - mj r+... (4.5-4

While f in Eq. (4.5-2) fr given values of mx and oy can be cal-
culated by numerical integration, a less time-consuming approach
is desired for repeated evaluation in a CADET analysis.
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where r y-m. We desire to determine the expcte.('d value of the

abov, function, which is given by

Ic~ 2 +d 3 fl I!Ef(y)] f(m) + 1--:-•l- y-m ] +

(4.5-5)

where use is made of the fact that E Cr] is zero to eliminute

the second term in Eq. (4.5-4); all other odd central moment

terms (E Er 3 . etc.) are also zero for symmetric pdf's. Truncat- .

ing the series given in Eq. (4.5-5) at the second term, we obtain

S1 d 2f 2L

E [f(y)]~ f(m) 1 d 2  2T (4.5-6)
d y

which is an approximation suggested in Ref. 8. We note that this

result is independent of the particular density function of y. If
more terms are desired, the higher-order central moments can be

evaluated using a specified pdf. If y is gaussian, all odd cen-

tral moments are zero and even central moments are given by

(Re 1. 8)

2kja Ik~11 2k E [r"' (1 ((3) (5). . .(2k - 2

as can be inferred from Eq. (4.3-6). Thus the full expansion is

E Ef(y)- f(m) + 1 d 2 fj 2 + (1)(3)2 d4 fl 4+
2 2?Y 4! d 4I m (157

E E~y• "f~)+ y Y =--, M dy4 Y'"

(4.5-7)

The use of the first term alone in Eq. (4.5-7) corres-

ponds to small signal linearization; taking two terms as indicated

in Eq. (4.5-6) results in a quasi-linear gain that is often use-

ful. We observe that the existence of a well-behaved (i.e.,
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exhibits the same behavior.

In the present case, the series expansion approach is

* effective for evaluating f only in situations where mx is con-

siderably larger in magnitude than ay, due to the singularities

of the derivatives of /m2 at the origin (mx = 0). To demon-

strate this difficulty, we write the series expansion for the

nonlinearity under consideration (Ref. 19),

f(y) = +//; -Y7 Im2l (4.5-8)tX X r x 2" m - 8 X) + . . 4 5 8

from which we obtain

' f lmxlI I + ½1 (ay rx

_ Z + (4.5-9)

as an approximate describing function to represent the mean com-

ponent of the range. For mx considerably larger than uy, the

first few terms of this expansion yield acceptable accuracy.*

I. IHowever, since mx approaches zero as range goes to zero in the

missile-target intercept problem, using Eq. (4.5-9) is generally

not suitable.

r TA second method for approximating the integral in Eq.

(4.5-2) is the substitution of a nongaussian pdf for which the

integral can be obtained in closed form. As in previous sensi-

tivity studies (Section 4.4), the best result is obtained using

the triangular pdf. Substituting this distribution into

K We note that the expansion indicated in Eq. (4.5-9) never con-
verges formally, i.e., for any value of ay/mx, no matter how
small, the series will eventually diverge as more terms are
evaluated. This is a standard property of asymptotic expansions
which are useful only when truncated after a finite number of terms.
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Equation (4.5-1) leads to an integral that is evaluated in closed

form to be

f m+V log + (3(1+V2)/)]Lf x 1+v 2+2)

(4.5-10)

where the auxiliary variable v is given by V
m

v - (4.5-11)
ray

The accuracy of Eq. (4.5-10) is quite good, especially when com-

pared with the poor approximation given by the series expansion
in Eq. (4.5-9) when ImxI is less than or equal to ay. The error

y
between Eq. (4.5-10) and the exact result specified 'n Eq. (4.5-2),
as shown in Fig. 4.5-1, is less than 3%, which is adequate for. ,!

most applications.

We note that the conclusion that the series expansion
technique is not useful for computing the ridf in the case treated

above should not be taken as universally true. When series ap-
proximations for an ridf can be obtained which are accurate over
the entire range of the input statistics, they will generally f}
yield good results. Another important consideration is that the
series expansion technique is generally feasible for highly nom-
plicated nonlinearities, as demonstrated in Section A.4, while

evaluating f by integration with any approximate pdf p(y) may be
impractical or impossible. The cases treated in Section A.4 thus
illustrate the power of the series expansion technique, given in
Eqs. (4.5-6) and (4.5-7), while the above presentation indicates

the care that must be exercised to avoid convergence problems.

This chapter presents a detailed outline of the theory
and application of statistical linearization. Guidance in
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STAYLOR SERIES EXPANSION
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Figure 4.5-1 Comparison of Approximations for

the Expected Value of the Range

deriving random input describing functions is supplled in a

variety of examples, and a comprehensive discussion of the sen-
; .sitivity of ridf calculation to deviations from the assumption

of joint normality is provided. These contributions should aid
- future users of CADET in performing statistical analyses of non-

linear systems with random inputs, and in assessing the accuracy

of their results.

I
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53.1 DIftiCT CAflBT-MOT CARLO COMPARI3QSI

S.uce CADET and the monte carlo method are tba Obly tools

available for the statistical analysis of the perform~ce of nsa-

U linear system with random inputs, tho ultimate value of C6T coz

only be established by comparing the relative efficacy of the tv.)
approachea. In ibis section, we will touch on utilit., o

Spplicatio e udure ocomuter e, and our Baeg
on these factors, znd on other characteristicm if the two tech.

Sniques, we will outline the philosophy for th. a,,-pli1cmtion of MADET
that has been developed at TASC, and summarize the strong and wo"
points of this methodology. The conclusions, while bgwed chiefly

on extensive experience gained in treating the missile-target

tiin-'pp pr.hi-a , a 1,4l pro4da us. _L gu4ila o rae

W •applications of CADET.

A
5.1.1 Overview and CADET Mechanization

In Chapter 1 we have derived differential equatious gov-

[erning the approximate evolution of the mean vector and covwr ance

matrix of non]inear time-varying systems with random inputs, Lav-

ing the form

. f (L,,t) + G _;) w(t)

Swhere x(t) and w(t) are vectorFý comp<ssd of the system states gid

random inputs, respectively. (Refer to Section 1,2 for further

details.) Btifore the CADET equations can bc iatplemeated, it is

necessary to have the random input describing functions (ritfds)

required for a quasi-Linear representation of every system

5-1
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nonlinearity. The ridf's for a broad set of single-input non- 4
linearities are directly available from Ref. 6 (see also Appen-

dix A). In addition, Chapter 4 of this handbook providss ridf's 7)

for a number of common multiple-input nonlinearity formt Con-

sequeatly, use of CADET is often a matter of direct substitution

of knrt.n ridf's in the mean and covariance equations, as demon-

strated iur Chapter 2. If a matrix computer language is available

to the analyst, the construction of a computer program for apply-

ing CADET is no more difficult than the programming required for

using the monte carlo method. As an added benefit, CADET does

not necessitate use of a raqdom number generator; a common source

of concern in the monte carlo method is the question of what con-

stitutes a "good" random number sequence and how such a sequence

can be generated.

Thus from the point of view of utility and mechaniza-

tion, the two techniques appear to be quite comparable -- there

is no clear-cut reason to state that one technique is superior

to the other based on these considerations.

5.1.2 Accuracy and Efficiency

One of the main arguments that can be advanced for the

use of CADET in obtaining projectiois of nonlinear system per-

formance is the significant reduction in computer central pro-

cessing unit (CPU) time achieved by using CADET instead of the

monte carlo method. In making this comparison, two issues must

be addressed: the number of monte carlo trials that must be per-

formed in order to obtai comparably accurate results, ant the

practical limitation imposed by computer costs. From the stand--

point of accuracy, a decision regarding the required number of

monte carlo trials is somewhat arbitrary, because the error

mechanisms of CADET and the monte carlo method are dissimilar.

5--



i • Referring to Fig. C.3-2b, we note that, in a situation where the

statistics are quite nongaussian, the CADET computation of the

rmms value of a system variable appears to be at least as accurate

as the value estimated with 400 monte carlo trials, in the sense

L.. that the 95% confidence band for 400 trials brackets the CADET re-

sult. Where the statistics are more nearly gaussian, e.g. as in

Fig. C.3-2a, it would seem that CADET accuracy is comparable to

Ii |•"that achicved by more than 50C monte carlo trials.* On the other

hand, a pragmatic evaluation of the efficiency of CADET should take

E: |in.o account the fact that most monte carlo studies must be limited

in scope by computer budget constraints. A reasonable upper bound

[ fis thusv 256 trials since, in the gaussian case, this results in

93% confidence that an accuracy of 10% can be achieved (Section ?.2);

r f'or high-order systems, even this number of trials may require an

It.nordinate amount of computer time. For the present discussion,

we therefore compare the relative efficiency of the monte carlo

L and CADET approaches on the basis of 256 trials, recognizing that

the estimated -ms values of the system variables obtained for this

Snumber of mo-nte carlo experiments may be Less aceurate than theL
CADET results.

In piist studies, Refs. 1 to 4, the savings in computer

CPU time achieved by the application of CADET has always been

[ significant in comparison with 256-trial monte carlo studies, even

though the system treated in &:ome cases has been of high order

(with up to 42 system states) and very nonlinear (having up to

26 nonlinearities). We discuss below how both of these factors

tend to reduce the relative fficiency of CADET.

Monte carlo simulation for a system with n states requires

the integration of an n-vector differential equation (repeated q

times where q is the number of tr!.als), while CADET involve& the

Recall that CADET is exact in the linear gaussian case,
Section 1.1.

Ii 5-3' j
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propagation of the n-element mean vector, m, and the nxn symmetric

covariance matrix, P -- a total of n(n+3)/2 elements. Thus the
2computational burden for CADET can increase as fast as n /2 while

the CPU time for monte ct~rlo analysis only varies as n, demonstrat-

ing that an increase in the number of states may reduce the ad-

vantage of CADET in efficiency. This factor can be mitigated to a

large extent when there is little dynamic cross-coupling in the

system; in the quasi-linear system model, Eq. (4.1-4), this cor-

responds to N having few non-zero elements (N being sparse). In

many practical problems, N is sparse and a considerable increase ")

in the computational efficiency of CADET can be realized by the

application of techniques which circumvent multiplications in-

volving zero elements, thus streamlining the evaluation of p .1

(Eq. (1.2-7)). Such an approach has proven to be valuable in the

studies presented in Ref. 3.

The number of nonlinearities may also increase the com- "

putation time required by CADET, since the calculation of a ran--

4 A~a%.4 XUU fultu L-- 7 nLI requuires mor iowicai and

numerical operations than evaluating the corresponding nonlinear

function in the monte carlo program (refer to Appendix A, for

example). The investigation treated in Ref. 4 was exceptional in

having nearly as many nonlinearities as state variables; more

typical applications of CADET would focus on a few principal non-

linear uffects, leading to a still more favorable comparison of

CADET with the monte carlo method in terms of computatioi it burden

per performance evaluation.

Using the •same integration method in performing the monte

carlo ensemble of simulations as was used in prcpagating the sys-

ter mean vector a: d ecvariance matrix via CA)ET, and assuming that

the same integration step size is required in each procedure, the

results summarized in Table 5.1-1 indicate the effect of the sys-

tem dimensionality (number of states) and degree of nonlinearity

(number of nonlinearitiee) in typical studies of the mi.ssile-target

,5-4



TA3LE 5.1-1

COWMARISOI OF CADET AND MONTF CARLO EI"CIENCYI BASED ON 266-TRIAL MONTE CARLO ANALYSIS

Nast" Number of Ratio of Computer Time Costs.,

of 8tateu*n oalinearitl* Monte Carlo/CADXT

R V2 1 30

Rot. 3 17 5 15-20

Rief. 4 22 22 10

23. 42 26 20-30**

*Coatinuous- ano discrete-tims dynamic states ')nly; bias
S[7 states 06ittod.

Optimized, usiag fast sparse-matrix-mltiplication

intercept problem. Ccpwaring the InvestfiitinnR od' Ref• R 2 and 4, I

I ..• we note a considerable decrease in relative CADET efficiency caused

by increased s-' 3mp ity; in the analysis of the system

model given in '. 3, an intermediate degree of complexity and

corresponding efxiciency is noted. The study of Ref. 23, also

indicated in Table 5.1-1, shows the significant iwprovement that

can be achieved by careful CADET program optimization, using the

fast sparse-matrix.-multiplioat ion subroutine approach mentioned

above.

[ We should also point out that in some circumstances the

monte carlo approach may require a reduced integration step size

to avoid failure of the numerice" '-tegration technique (refer to

Section 4.4 of Ref. 4, for examr .. In such cases the monte

Id[ carlo/CADET CPU time ratio will be even higher,

r
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5.2 OTHER FACTORS AND PRILOSW OF APPLICATION

In comparing GAUST and the monte cario uethod for use ix

obtaining performsace project'ons for nonlinear systeam witb rma-

dom iuputs, we have observed that there are several significant

similarities. Both techniques are applicable to nonlinear sys-

tem models with an arbitrary number of states and nonlinearities,

and we often rely on the gausslan assumption in enosseing tie

accuracy of the performance statistics obtained (refer to Sec-

tions 1.2 and C.2). In either case, departure from normalL1y

can be compensated for to a certain extent; in CADW?, nongaussian

probability density functions can be used in calculating de-

scribing functions, while in monte carlo simulation the fact that

the confidence band linits may increase for nongaussian random vari.

ables (Fig. C.2-2) can be counteracted by increasing the number

of trials performed. The princilpe trade-off between the two

methods is in elfic:Leucy versus versatililt.

statc, trajectories (Eq. (C.1-4)) can be used not only as a data

base for calculating estimated performance statistics m"() and

P(t) at instant-s of time of interest, but also for estiamting

highe- order moments, and for generating histograms whiLcb are ap-

roximate density functions for the variables undmr considera-

tion. however, -he versatility of the monte carlo method can only

be exploited with a further tgnificant increase in computer time

expenditure over that indicated in Table 5.1-"; while the esti-

wation of ni and P may require several hundred trials or mire, it

is generally necessary to perform thousands ef trials in order to

obtain an accurate estimate of the pdf of a random variable (and,

cf course, what constitutes an "accurate estimate" is generally a

subjective value judgment in a nongaussian case). In the sense

that one can always obtain a, better estimate of the statistics

of a rardom vaitable by running more trials (compýter budget per-

DJ~tting), t!,e monte carlo method is a "self-checking" procedure.

5-_6-E
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, •CADRT, on the other hand, provides approximate valuea for m(t)

and P(t) in a single numerical integration of the quasi-linear

covartance equations (Eq. (1.2-7)), usually in a small fraction

K of the computer processing time required for an accurate monte

carlo analysis.

One of the primary purposes of the statistical analysisr of nonlinear system performance is the evaluation of the change in

system effectiveness due to variations in random input levels,

initial condition statistics, system parameter values and second-

ary nonlinear effects. The multiplicity of factors such as these

implies that the analysis will generally be C )ne repeatedly, and

computational efficiency is thus an important consideration. This

point is a strong argument in favor of CADET. On the other hand,

the versatility of monte carlo simulation (with its self-check

capability) permits us to assess the accuracy of the monte carlo

analysis. This is a feature lacking in CADET which makes it

advisable to utilize monte carlo simulation in a monitoring capa-

city, since it is always possible to obtain reasonably accurate

performance projections by increasing the number of trials suffi-

ciently.

I. The effective use of CADET and monte carlo analysis in

concert can be demonstrated in a hypothetical trade-off study where
two parameters, say a, and a are to be varied over ertain ranges

to obtain optimal performance in some sense (to minimize rms

1. terminal miss distance in the missile-target intercept problem, for

example). As shown in Fig. 5.2-1, a few points in the parameter

[ plane are chosen for careful CADET-monte carlo comparison (verifi-

cation of CADET); then extensive performance curves are generated

using CADET, from which the optimal values of and a2 are chosen.

If desired, the vicinity of the pctnt of optimality can be studieC

Susing a few selected values of aI and a 2 and performing the required

mo~te carlo simulations. Similar i~pprov.ches can be used in study-

ing sensitivity to nonlinear and random effects.

5-7
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Figure 5.2-1 Illustration zaf CADST and Monte Carlo
Analysis in a Parameter Trade-Off Study

The overptl philosophy of CADET usagei, based on the atri

I '/ prcdr s/ nrklud

points of both- CA IuT and monte caflo simulation, is illustrated
Fig. 5.2-2. The initial verification procedure is generally undf

taken for the "nominal systom," i.e., for the gaystem with nomtna'

parameter values, and is of necessity quite meticulous, Thus

several hundred monte carlo trials .aay be performed, and if theri

is reason to believe that the system is highly nonlinear -- so

that the system variables may be quite nongausstan -,- it may be

necessary to investigate higher order moments or histograoms to

decide whether more trials are needed in order to obtain a re-

liable statistical analysis. Once this phase has been complete&,

satisfactorily, the CADET parameter sensitivity studies can then

be performed. Observe that the preliminary careful but time-

consuming monte carlo study is always required if accurate per-

formance statist.cs are to be obtained from monte carlo simulatic

5-8
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with high confidence. The use of these• statistics to verifyU CADET paves the way for efficiently performing a wide variety of
sen~itivity studies. In the latter analyses, it may be advisable

I" to make comp~arisons with monte carlo results in selected cases to

reverify CADET accuracy. This approach mirrors that used in the

"[ studies described in Refs. 1 to 4.

" 5.3 CAL)ET DEVELOPMENT TO DATE: SUMMARY AND CONCIUSIONS

5-3.111 SESIIVTYSTDIS

A major goal of the studies described in Refs. 1 to 4[ was to extend tbe proven c~apability of thc C ovartancc, Anaiys.•s
DEcribiWg Function Technique -- CADET -- to provide accurTte

Ti-r 5.-5,--3ohy 1-MLLfyi~~~v
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performance projectionr for tactical mtsalle guidance system

models that are quite realist'c -- i.e., that incorporate a nuam-

ber of significant nonlninar anA random effects. The approach

used to achieve this objective has entailed

9 Verification of CALDrr performance projections
by the use of selected montc carlo perform-
ance studies

o Investigation of the sensitivity of CADET
analysis to deviat.ion from the assumption that
the state variables are jointly normal.

In these investigations, the following effects were treated:

Sources of Nonlinearity

a Guidance law

o Acceleration command limiting

o Aerodynamic effects (nonlinear airframe)

* Missile-target intercept geometry

o Range-dependent seeker noise sources

o Receiver/signal processing characteristics

* Seeker radome aberration
e Seeker mass imbalance

# Seeker gimbal Coulomb friction I
* Seeker head restoring torques (n',nlinear

spring effects)

Random Effects

* Tracking sensor noise and measurement errors

o Range rate measurement error

*Target maneuvers

*Deviation of initial conditions firoi
nominal values

Two aspects of the sensitivity probiem, hnve been considered

in Chap',er 4: the Penoitivity of random input descrit-ing func,ýiom

5-10
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5 calculations Lo tiLe probability density function of ! he nonl inearity

inpuit, and the calculation of approximate random input dosecrbing

funclions when It is inconvonAent to use the oxact. rosuI t for the

gauesian case.

5.3.2 Conclusions

aThe investigations describod in Refs, 1 to 4 have indeed
•• shown tnat CADET 14. an accurate and efficient tool for condu!ýtini

stat ist:ica):_±nae.jve th er fmance of a tactical misle
I- ~s_.tstm ,ncludi_.U tLhe el"ffcts of a niunber of significant nonlinear,

1.~a~nd random _phenomTena. T(he• •o,.l--ions drawn, from these studies

can he suilnmrized as foullows:

* L CADET has the demonstrated abA.Lity to capture

tho aiapact of a.ll. of the nonlinear of ects
Slisted above on gitidaitce system perfoimance.

I * lix all cases stud'.ed, CADET results are close
to or within the 95'9, confidenc+. ilmit.s of the
monte cario an-.lvf. s for up to 500 trials.
.LTi s d"Kree or' L it • jt w . 0i I. n1ra.3 y aL ln--
t:rined even in the numerous -inst.ances where the

- nonlineo•rtiees werLe sihowa to have a marked

delett-rlous effect on rirs miss distance.

* Even in cases where ',he number of system states
a'd nonlinearities is large, CADET shows
significant computacional advantago over the
no)nte carlo method: Between 10 and 30 CADET per-
fo'marce proje.,,tions Anve been ottained for the
same ain,:)unc of computler time required by one
accurate monte carlo study.

* There are certain highly nonlinear cases in
which C,•DET anasly:is may be inadequate. Typic-
ally, theFe are s:tuatotion in which a non-
linearity input is unc'orrelated with its output;
for a more compi.ete discussion , refer to Sea-
tion 4.2 and Appendix B. The Modified CADET
methodology presa-nte.-l in Appendix B appears to
offer A solution to flits problem.

1 fl--ll
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* Highly nougaussian system variablea not only
lead to inaccuracy in the CADET analysis, but
also make the monte carlo method less reliable
and reduce the meaningfulness of the basic
statistical measures of system performance, the
mean vector and covariance matrix.

a The value of the kurtosis, X, (the fourth cen-
tral moment of a density function divided by
the variance squared) is a useful measure of
the departure of the Jensity of a random vari-
able from the gaussian case It would thus be
valuable to estimate this parameter for each
nonlinearity input in the monte carlo analysis Tf
to help in appraising the accuracy of the monte
carlo method and CADET.

In light of these and related Findings, it is felt that

confidence in the ability of CADET toroivide accurate statistical

analyses of .omplex nonlinear missile guidance systems with a

number of .Landom disturbances has been ouite well established.

Based on the diversity and complexity of the effects studied so

far, it seems reasonable to anticipate that similar results will
be ootai~ned 4.n- applying CADET to a broad spectrum of problems

modeled by nonlinear systems with random inputs. It is hoped

that this handbook will facilitate the further extension of the -

usefulness of CADET, as well as permitting the direct applicatior, A
of the technique to the missile-target intercept problem.

-4
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'I APPENDIX A

A CATALOG OF RANDOM INPUT

DESCRIBING FUNCTIONS

In this appendix, we provide random input describing

r functions (ridf's) required for quasi-linear representations of

El a number of nonlinearities that are commonly associated with

effects that may be incorporated in a realistic missile-target

intercept model. The material is organized in order of increas-

ing complexity; single-input nonlinearities are listed first,

followed by two-input characteristics, and finally, selected

three-input nonlinearities are considered. Two highly nonlinear

guidance laws are also treated, to demonstrate results that have
been successfully used in the CADET analysis of missile guidance

system performance. For those results without explanatory notes,

Sridf's have been taken from Ref. 6 or directly obtained using

the formulae given in Cases 1 to 3 of Section 4.3. The back-

ground and notation of this appendix and a number of useful

examples are given in Chapter 4.

A.1 RIDF'S FOR SINGLE-INPUT NONLINEARITIES

General case: y = f(v), E [v] = m, E [(v-m) 2 ] p = a2

Quasi-linear representation: y f + nr, r = v-m

Sf~v) 
v

Definition of ridf's: f^ E f(v) 1= f(v) e dvA Cv

I n
SI am

S T A-I
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A.1.1 Simple Analytic Nonlinearities

y = sin(v) jj
f e- sin m

(A.1-1)
n -e p cos m

y = cos(v) HI
-A cos m

(A.1-2)
n -e-ip sin m

y =v2

2 A
f n, + p

(A.1-3)21

f= m(3p + m2 )

(A.1-4)

n 3(p+m2 )

y =V
4

f = m + 6m2 p4- 3p 2  
A1

(A. 1-5)

n = 4m(m 2 + 3 p)
Ti

y =V5

f, = M5 + 10M p + 15p m

(A.1-6)
n = 5m4 +6m2 p + 3p2

Results for higher powers can be obtained directly using the

relations given in Example 4 of Section 4.3.

A-2
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A.1.2 Nonlinearities Involving Sign (v) and
Piecewise-Linear Characteristics

Nonlinearities in this group require evaluations of
PF(w), PI(w) and G(w) given by

PF(w) = 1e-w

-2e

r[PI(w) = PF(w) dw (A.1-7)

[ Sw
G(w) - PI(w) dw = wPI(w) + PF(w)

S-(For more details, see Example 3 of Section 4.3.) For convenient

reference, the piecewise-linear gains listed below are depicted

S[in Fig. A.1-1.

BR-16240

y f(v) y f(v)

Ia) Ideal Relay M Ideal Limiter

y f(V) y FMv y f(V)

--- I 182- )

-2 8 -_ ' 2_81 |

0c) Linear Gain With Dsado one (d) Relay With Deadzone to) Limiter With Deadzono

Figure A.1-1 Basic Piecewise-Linear Characteristics

A-3
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Ideal Relay y = sign (v) j

f 2PI - 1 ((A. 1- 8)

=2 PF "F )

Ideal Limiter V, IvI_< '

6 sign(v), Ivf > 6 -7

So(6+m)- 7•]- 1
n =PI + PI -1)

Linear Gain 0, ,vI < 6 -6

With Deadzone y = ( vf "

(A.1-10)

n = 2 P(-PIa) -I

Relay With 0v _< -
Deadzone 1, IvI > 6

P(6+M-P -P)

(A.1I-1)
SF+A-4

n 1 [- pF(-T , + PF ( -

A-4
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_o0 , <vi _<6

Limiter With
Deadzone y (Ivl-61) sign(v) , 61 < lvi 62

1(62-61.) sign(v) , +2 < Ivl

f m G(2]o (G~ m (G -tL L -G[-) ( -6:--
(6 2+m) 62-r m6-

P1 na )I -- + PI -_ PI -PI\ + /

We observe that ridf's for a large number of more con°-

plicated piecewise-linear characteristics can be obtained by

decomposing them into a linear combination of the basic nonline-

I arities shown in Fig. A.1-1. To cite two examples, a multi-level

ideal symmetric quantizer can be expressed as the sum of several

r • characteristics of the type portrayed in Fig. A.1-ld, and a

change from unity gain to a gain of k at breakpoints L 6 can be

I represented by a linear unity gain plus the characteristic of

Fig. A.1-lc multiplied by (k-i). These procedures are demonstra-

-l ted in Fig. A.1-2. From decompositions of this sort, the asso-
ciated ridf's can be obtained from the results given in Eqs.

(A.1-8) to (A.1-12) by simple addition; for the above examples,

we obtain:

Five-level Symmetric Quantizer (Fig. A.1-2a)

p (++-pm + P1 /36+2m+ -P (P6-23
PI ---+ -- - 2m •+ P • ' • • ? P - 2m

( +•.o2 -cr• (M)= 2c 2cr+ +
n -1PF16+2m +PF /6-2m + PF 36+2m + PF (36-2m

2/2o 2a 2a

(A.1-13)

A-5
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R- 16239

y f(v) f 1 (v) fY(v)

-38/2 -8/2 V-81/2 -38/ FSj ,8/2

(a) Decomposition of a Five-Level Symmetric Quantizer

f, ): v f2 )-,

-s .! I sk+ ..p•,
j "

SLOPE'.. Z ---

(b) Decomposition of a Gain-Changing Nonlinearity

Figure A.1-2 Decomposition of Complicated Piecewise-
Linear Characteristics into Basic Components

Gain-Changing Nonlinearity (Fig. A.i-2b)

f = m + (k-1) 2m- a G- 6-rn H) G( a

(A.1-14)

n = 1 + (k-i) 2 - Pi(Q--•) -PI('-M)

The functions PF, PI and G (Eq. (A.1-7)) also occur in

quasi-linearizing nonlinearities having the factor sign(v). Three

~nwwti e-x:iniple- of this ty.'pe of characor. -J. Ij,: :y-r.

Absolute Valie Function y v sign(v)

f = 2 o -m 2aG(~ - 1(A. 1-1.5)

n = 2pI()-

A-6
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i Odd Square Law y v 2 sign(v)

I . 2mPF(,) + ,(m2+a2) [2Pi ( _)-j]

(A. 1-16)

[ n 2 4aPF() + 2m [2PI(!!)-1]

Exponential Saturation y 1-es (v)

*a2

m 1
n+=e2e [,_r, + -L PF(c nr+a

F A-71

I. These results complete the catalog of ridf's for single-input
A nonlinearities.

A.2 RIDF'S FOR TWO-INPUT NONLINEARITIES

General case: y = f(vl3 v2 ), E Evil] mi, ri vi- mfi

Tj p11  p1 2  1~ PC1a2

L1 UP12  P22 1  [1 2 0 2

Quasi-linear representation: y +_

I A-7
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Definition of ridf'Is:

I' = E f(vl,v 2 )] 2 f(v, v2 )exp _ 1 2
27t al12(1-p2 ] -= - 2(1-p )

r 2 _ r Ir2 + (r2, 2

2(f) i22] dv dv2

ama

3m2

A.2. 1 Simpl.e Analytic Nonlinearities

Most of the results of Eqs. (A.2-1) to (A.2-8) were re-

ported in Ref. 3.

Lii",y=V LV2

M m

M (A.2-1) "

n2 M1 2
n 2 = m1

2
y = vlV2

1 2 + P 2 2 ) + 2m2 P 1 2

n (Mi + P2 2 ) (A.2-2)

n = 2(m 1 m2 + P12)

A-8
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I YV 1 V 2  u

_ 2 2f - 3m1 m2 (m 2 +3P 2 2 ) + 3p1 2 (m2 +P2 2 )

2=M 3 (A. 2-3)
1 2 (m2  2 2

= 2
n2 3m1,(m 2+p 22) + m2pl2

[y VV2

( 2 _( 22+ 2 p+2
-(mI pll )(m 2 +p 2 2 ) + 2P 1 2(2mlm2 +P 1 2 )

]n 2ml(m+P 2 2 ) + 4m2 P1 2  (A.2-4)

n 2m 2 + 4

n 2 = 2m2 (m2÷p 1 1 ) + 41iP 1 2

Iiy v I Cos 2 -•P22

ji f e (mi cos m2 -P 1 2 sin i 2 )

Sn =e '22 cos m2  (A.2-5)

22
•- -iP22

n = -e (m 1 sin mi2 + P 1 2 cos mi2 )

y v sin v2

f e-4P22(m1 sin m + p1 2 cos m2 )1 -2 22

n= e sin mi2  (A.2-6)

I 2= e&P22 (mI1 cos m 2 - P1 2 sin mi2 )

A-
V A-9
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2 V COS V

e1 2 [( 2) Cos m2-2mIp12 sni 2 ]

n = e (2m 1 cos m2 -2p 1 2 sin In2 ) (A.2-7)

2 e-P 2 2  sin m +2m Cs2

2 -e[(mP11-P12) 12os m2]

v1 sin v 2

fe 2m:P12 Cos m2 + 1+P11-P12) siIn 2]

•, -'P22 ( A.2-8) -
SnI = e ~2pl2csm+m sin m2 .

12 co
n e-'P22 -2mP2 sin m2+ +p -P2Cos m2

1P1 =2(1P1P2 2]-

Results for nonlinearities involving higher powers of input vari-

ables can be obtained directly using the relations of Case 2 of

Section 4.3. For powers or products of trigonometric functions,

e.g., vI sin 2 v 2 , the use of trigonometric identities, as

sin 2 v (1-cos 2v 2 )

permit the direct use of results given in Eqs. (A.2-5) to

(A.2-8).

A-10
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i [ A.2.2 Analytic Nonlinearities Without Closed-Form
Gaussian ridf's

j The quasi-linearization of the range,

.7 .. 2

is treated in detail in Section 4.5. Note that it was assumed

1. that x a m x, i.e., the down-range component of the missile-target

separation is essentially deterministic, as is true for head-on

Ji intercepts (Fig. 3.5-1). In this case, the range is a function

of one random variable, y. We further noted that the most effec-

tive approximate ridf for this nonlinearity was obtained by using

the triangular distribution for y (Table C.2-1); this result is

given in Eq. (4.5-10).

In the seeker noise model, Sect±on 3.6-I, related non-

linearities arise in the range-dependent components of the noise.

Thus approximate ridf's for the following two nonlinearities were

obtained in Ref. 4, based on the triangular distribution for y:

Range Proportional Noise y Mv
1vx 2

1.
"~M ml~v I++)•+2 33,2)]

f • -- sign(mx) 1 log + -- + 3

.nI 1 m-• (A.2-9)

n n2 P1 2 [(1+4v2)/j77 -4V+-3V log

where v is an auxiliary parameter given by

I (A.2-10)

A-1i
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[I
Inverse Range ')roportio'nal Noise Y -'x.... 2[

I 2i

f a A• a2 log V + V - lv~

AI

n1 fl (A. 2-11) [

coordinate representation e1 the missile-target separation, viz.
[1

n lo +~1 , 2  2 a'(i A -22 v2

The approximate ridf's for this nonlinearity were also derived

inRf 4 sngtetruncated epnintcnqedemonstrated •
in Section 4.4, as follows: t

coordinae repre y = mini(vl/V2 )

loin the- tan•/ e expansionl2(P2-technique1 '!

ta = 2 1 2 (A.2-12)

-m1

2 2
mt +m2

A-12
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I
These results conclude the presentation of ridf's for two-input

nonlinearities.

I A.3 RIDF'S FOR SELECTED THREE-INPUT NONLINEARITIES

I The following results are useful for nonlinear airframe

models as described in Section 3.4; many of these ridf's were

first reported in Ref. 3.

y VlV 2 V3

1 f = m1 m2 m 3 +mP 2 3 +m 2 P 1 3 +m 3 P 1 2

n 1 M 2 m 3+P23

m-n (A.3-1)
, |,~n2 m mlm + l

I nl3 1mm2 +P 1 2

2
v =V 2 V 3

. • 2 (m3+P: 3 3 ) (mlm2 p 1 92)+2m3 (nilP2 3 +rn 13)1 2P3P

-,nI m2 (m2+P 3 3 )+2m 3 P2 3 (A32

.. ~ 2A 3-2

2
-. , n2 = m2(m 3 +P 3 3 )+2m 3 P 1 3

n 3 = 2(m 1 m2 +P 1 2 )m 3 +2(m1 P23 +m 2P13)

3
y = vv2v3

2"f m = m 3 (m 3 +P 3 3 )(mm 2 +p )+3(m3+p) )(mlp 2 3 +m 2 p 1 3 )+(m 3 P 1 3 p 2 3

n m2 m3 (m3+3p3) +3p,,)(m +p ) (A.3-3)
23 -3 3 33

S~A-13
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2 2n2 = mIm3 (m3 +3p 3 3 )+3P 1 3 (m3 +p 3 3 )

n= 3( +
3 3+P33)(mlm2+P12 (m1m3P23+2m3P13+P13P23

(A.3-3)(Cont.)

2 22y V VlV2V

S 2 (m2 )233(m2 ,

f= m1 (m 2 +P 2 2)+2m 2 P 1 2  (m 3 +P 3 3 )m 3P1 3( 2+P 2 2 ) H

+2m 1 P 2 3 (2m 2 m3 +P 2 3 )+4P 2 3 (m 2 P 1 3 +m 3 P 1 2 )

2 2
n1 (m 2 +P 2 2 )(m 3 +P3 3 )+2P2 3 (2m2 m3 +P 2 3 )

(A.3-4)

nf2  2(m m2 +P 1 2 )(m +P 3 3 )+4(m 2 m3 P 1 3 +m1 m3 P 2 3 +P 1 3 P 2 3 )

n3 = 2(mlm3 +pl 3 )(m2+P 2 2)+4( 2m3 P1 2+m m2 P 23 ÷P"1 2 P 2 3 )

Expressions for still higher powers of v., v 2 and v 3 can be ob-

tained by extending the techniques given in Sec.ion 4.3.

The following nonlinearities are required for 3-dimensional

"coordinate transformations:

y V 1 sin v2 sin v 3

f 1 i P22"33)[ P 3 mi p3mcos(m 2-M 3)-(Pl2-Pl3 )sin (m2-m3) '

-e _e-P 2  3{])(P12+P13)sin(m2+M34

1!eRP22"~33) [P 23  P23co~ 3 m)
[nl 1 e e cos(M 2-m 3)-e cos(m 3+m 3)

(A.3-5)
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n2  e~ si~ -

3 2 ~p 22 p33 )[eP3{mlin~ 2m. 3)+(P 1 2-PI3 )cos(m2-m34ý

*~P3(isil~ 2m 3 )+(pl2+Pl3)cos(m2+m 3 )

(A. 3-5) (Cont.)

y em y 1 Cos v Cos v

-'(P 2 2 +p 3 3 ) 230.
ILIe 2e-mcos(m2 -M )-(pl2 .Pl3 ) sin(m 2M )}

+P23{m1 ccs(m +m )(i+i)sin(m +m))

n 1 ~( 22+ 33)[ P23  -p231 2 L os(m 2-M 3 )+e cos(m 2+m 3 )]

1 -A(p22 +p33 )P3

+e m 1msin(m 2+mn)+(pl+Pl,)cos(m2+m) 1
22 33) 233m

n 3  e n~

-e {msin(m 2 +m 3 )+'(PI+pl)cos( m +m)ý]

(A.3-6)
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y =v sin v2 Cos v

)_P23"S= [ +e 2 mlsin(m2 -m3 )+(Pl 2 -Pl 3 )Cos(m 2 -m3 )

+eP23m1sin(m 2+m 3 )+(P1 2+P1 3 )cos(m 2 +m 3 )•]

1 -(P22+P33)[ eP23 sin(mm)+e23Ili= 2 ee3im2-m3)+ si 2+m3)

n = ý e(P 2 2  +P 3 3 )[3}
-2 2 e eP23mlcos(m2-m 3 )-(P12-P13)sin(m2-m 3 )]

3-P23

+e {cos(m2+m3- + P1) sin~m+3l

-3 2 1 ep3-lo~2-m3)+(P12-P13)si(m2-m3)1

+e-P23 rmlos(m 2 +m3 )-(P 1 2 +P 1 3 )sin(m 2 +m3 )'J

(A 3-7)

The last result is obtained in Example 6 of Section 4.3; the

first two nonlinearities may be quasi-linearized by the same

technique illustrated in that example.

A.4 RIDF'S FOR GUIDANCE LAW NONLINEARITIES

A.4.1 Proportional Guidance

Referring to Eqs. (3.L-6) and (3.5-8), the a1 eceleraticI

command is the output of a limiter whose input is a highly

A-16
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nonlinear function of six system variables, viz.

ac = f(al'a2f2+a3v½)4 f') (A.4-1)

where the components 41 and are given by

(A.4-2)
cos(v 2 +0)

1= V cos(v 3 -0)

I:The latter equation can be expressed in terms of system state

variables by substituting the LOS angle relation,

0= tan v v4
kv

"to obtain

v5 cos(v 2 )-v 4 sin(v 2 )
i (A.4-3)I =1 v 55 cs0( v 3 )+v 4 sin(v 3

2

Assuming that the input to the limiter, 4' in Eq.(A.4-1),
is nearly gaussian, we quasi-linearize the acceleration command

"using Eq. (A.1-9),

a --- f + nr (A.4-4)
S I.

where r is the random component of 4', and

f = 2m - a G~ ma) - G amax

(max n )-2 - P1 -m

where m and a are the mean and standard deviation of ý', respectively.

'A..7
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Next, we must obtain the statistics ol' , i.e., m and

:, For use in Eq. (A.4-5); to do this, consider the three con-

stituents given in Eq. (A.4-1): The third term is linear, thus

presenting no problem, and for the product of variablos, 1 of

Eq. (A.4-2), we use Eq. (A.2-1) to obtain

1 = n6 16

n1) = m6  (A.4-6)

(1)

The second term, 2 in Eq. (A.4-2), is impossible to quasi-

linearize exactly in closed form under the gaussian assumption;

thus we use a genera]izat:ion of the truncated series expansion

approach discussed in Section 4.5 (Eq. (4.5-3)):

5 3

'2 1 , 2'..' 5 ) + p. (A.4-7)

(2) 2 ( 2'l ' m . . .m5)
(2) = ,i = 1,2,... ,5 (A.4-8)n. )m."" "

I,is ting the partial derivatives called for in Eq. (A.,-8) re-

quires the introduction of some auxiliary notation:

S S(1()s rn2 - s m in m
1~ o 5 2 - 1 2

P9 = m COs m3 + in sin m11

2 5 3 1 3 (A. 4-9)
'13 = -m 5 sin m9 - m4C('OS m2 2

,l,4 = -m 5 sin m3 + m Cos m3i

In terms of these expressions, the quantities re(quired to evaluate

Eq. (A.4-8) can be shown to be

A-18
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3 *2 (m1 ,m 2 ,... ,m 5 ) m1

I a.2 n (2)

V @2 (2)

a3 2  @1@4 (2)

3 @2

2 mim 5  (2)
', -am - i2 sin(m2 +m 3 ) n4

4 I

2c m m4 (2)
"1. 214 sin(m2 +m3 ) •n (A.4-10)

5 0I 2

• . mla2 ý3)[mlam 1  22ý

Smam m2

1 23 @
22

m lam3  @2 2 3

22
2a_ m 5

j a2 • 2  m4

2 2- sin(m2 +m3 )
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S2~

amm

22 2U
- -2 m 1~ m 5

am 2am 42

a2 m m~.

2 1 m~ 4

______ -cos (m +m3
2 5 ?1

3 2 ý2 
1 m1 (~22)

2 3 2 24

amm
2 2 (A41)Cn .

2

2 14 (5 4s in(m 2+m 3)-ýi)

22

22i
ý2 3 4 i(m)snm+)

2

ý 2 -

2 23 i2m3cosi(m 3 ) i~2 +m3 )

2
2 -1 -mm

)(I M '3 s(ý2m3 c)si(u+m3 )sm2 M3

A-2
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I Returning to Eq. (A.4-1), we have

m a1 + a -+ a~m (A.4-11)

where 1 and 02 are given in Eqs. (A.4-7) and (A.4-8). The ran-

dom component of *' can be expressed in terms of the quasi-linear

gains in the same equations to be

hE. an '+a n 2 +a

11 2 21

i a 2 n( 2 )

ir r 1r r9. 2 r ']Ca~(2

! a2n 4)

2 5

SrTb (A.4-12)

Since r is a quasi-linear combination of the random components

of the six variables vi, the variance is approximately

a2 E[r2] Q [bTr rTb]

i b~Tp
bPb (A.4.-13)

Given the statistics m and o required in Eq. (A.4-5),

the quasi-linearization of Eq. (A.4-1) is completed as follows:

We express a c as a mean f plus the inner product of a vector of

ridf's with the random vector,

IT
a r,= f + n ar (A.4-14)

T A-21
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i1ii

The quantity f is specified in Eqs. (A.4-6) and (A.4-11) to

(A.4-13), and by i .•lpection

n =nb (A.4-15)
!!a

where n is given in Eq. (A.4-6). The foregoing describing func-

tion development was originally performed and verified in Ref. 4;

a more complete discussion of its basis is given in that work.

The approach outlined above in Eqs. (A.4-1) to (A.4-15)

considers a nonlinearity of the form '1

ac = f(V(VlV2...v6))

i.e., a nonlinear function of a nonlinearity. Because it is

essentially impossible to quasi-linearize this relation as a

whole, we have first quasi-linearized ý' to obtain the statistics -I
m and a necessary to calculate the ridf's for f(f'), Eq. (A.4-6),

then "cascaded the ridf's" for the random part in arriving at

Eq. (A.4-14). While this is not a completely rigorous procedure,

we must rely on a priori knowledge that in the guidance law, ¢'

can reasonably be assumed to be nearly gaussian. In this situa-

tion, the above technique adequately represents the guidance law

nonlinear effects. -•

A.4.2 Digital. Guidance

A major source of nonlinearity in the estimation algo-

rithm of the guidance module is embodied in the range dependence

of the Kalman filter gain vector. Referring to the development

of Section 3.5.2, we combine Eqs. (3.5-15), (3.5-16), (3.5-18)

and (3.5-22) to arrive at the nonlinear difference equation

SXfl (tk)l

Xf(t+) 4(k) + p p(r) Z(tk)- (A.4-16)

A-22
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The time-varying vector p is comprised of the first column of the
filter covariance matrix Pf (Eqs. (3.5-19) and (3.5-23)), q) is

given by

rp(r) 2 2 + 2r4 (A.4-17)

(Pfilu~ 3- 2T

with Pfll the first diagonal element of Pf and 01,G2,o3 speci-

fying the r..as seeker noise levels, and r is the present range,

N" r = 2tk) + 2tk) (A.4-18)

Thus from Eq. (A.4-16) we 3ee that the first nonlinearity

which must be quasi-lineariz( i in order to study the nonlinear

implementation of the filtering algorithm is of the form

v1  v+v '
f(vv = vq)(r) 2 2 2 2 2 2 (A.4-19)

1 +a 2( v 2 +v 3 )+ot 3 (v 2 +v 3 )

where v 1 represents the measurement z (which is typically a linear

combination of system state variables; cf. Fig. 3.5-5), v 2 and v3

correspond to x and y, and the parameters ai correspond to the coef-

ficients in the denominator of * (Eq.(A.4-17)) in the obvious way.

As in the preceeding case (the proportional guidance law,

Eq. (A.4-1)), the nonlinearity in Eq. (A.4-19) is too complicated

to permit the derivation of exact ridf's. We thus again resort

to the truncated series expansion technique derived in Section 4.5:

2
f FA f(m)+k amam Pjk

~J=1ik-1 j k

af(m) 
(A.4-20)

n. =- i = 1,2,3mj

The details required to complete the quasi-linearization of f

j are the partial derivatives indicated in Eq. (A.4-20):
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J-2- 2 mm

in 3 +mr mm
+=2 2 2 3 . 2 2 (A.4-21)

~1+(12 m2 +m3 )+ 2 3 (+m2+m 3 ) d(ni+r)

m r r
"1 d(mr)

m m2( .. t 2 m2 3t ~4

n 14 2 ('1.'2 mr =' in 4) (A.4-22)
mrd 2 mr)

mnm 3 (11(ct,-.m 2- m3 r)

mrd (mr)

r_ r2-- = 0

2 2 3 m) 21

am m d 2 (ma II
2 2 4 2

2f, mi (cxi-c 2 mr-3ca3 mr) mlm2

Ti'2md 2 (m

am2  mrd2 (mr) mrd3 (in) )

[cm+6cmlc 2 m2+ 3( 6c• 1 (•3 -c2 )m4r-1O2 m6-15ct2m8]

r r)H

2 f mm 2 m3  2 r 2 2 4

am2 -m re3 3 ( L' )Cl+6Ctl 2mr+ 3 ( 6 al•- )rH

11(m3 Ind 2'r -lctcmr 3(A.4-23)

-lo~am6-1532m8]

2_ 4 2

a 2 f IM m1(a 1-ct2 m r3a 3m)r 1 3

2 3•3
am2 mrd2(mr) mrId (m)

cx 2 +6ot a m 2r+ 3 (6 6(X -a 3- 2 ) mr 4_1Oa I _ 5 2 m"
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"j IThese relations complete the quasi-linearization of Eq. (A.4-19)

according to Eq. (A.4-20).

The second nonlinearity in Eq. (A.4-16) is of the form

1' • (r) v
- f(v,v 2 ,v 3 )2 r Vl - 2  1 2 22 (A.4-24)1 la2( 2 3 3 2 -2

where v 1 now represents the first filter state, xfl. As above,

SmI m11 1(A.4-25)

a +a m2++a m4  d(mr)
1 2 r 3 r r

1. _

1.1
.. nI 1 d(mr)

2zlm2 (a a+2a m 2)

2" n2 " 1 2  2  r (A.4-26)J, d2 (mr)I

"2 2m2m3 (ct 2 -2ctm2 )

d 2(mr

"A 2

a f

"am12

.. • 2 f2m 2 (a 2+ 2 a 3m 2 )
2m 2

am Ilam2  d 2(mr)

32m3(a2+2a m (A.4-27)

am-am3 d 2 (mr)

S2 f _ 2 ml(a 2 + 2 otm2 + 8m1 m2  r 2__ ,r [(a2_al )+3 ~m ra2+0Lmr)

am2d2 (m3 2 1a3 UIa3 r 2 -&3I

2  d(mr) d (M
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a__2_f 8m 1 m2 m3  [ 2 2] 2
am am = (a 2 -_.(% 1iQ 3 + +3a 3 mr (a• 2+0L 3 )am 2 m3  d 3 (mr)

222 2m 3 r 8M m
2 +m(2+

2 a 3 mr 1m 3  (A.4-27)(Cont.)

2+
am" d (mr) d (mr)

(a2_a a )+3a m 2r( 2a 32) I

[2( 13  m2r 2+0t 3mr

complete the requirements for a quasi-linear representation of p
the second basic Kalman filter nonlinearity specified in Eq.

(A.4-24), in accordance with Eq. (A.4-20).

A second important source of nonlinearity in the digital

guidance module is the t go-dependence of the optimal control gains,

and the acceleration command limiter. The latter is of the same

form as indicated in Eq. (A.4-1),

a= f(c 1 vI+Cav 2 +2c3 v 3 ) f() (A.4-28)

where v1 ,v 2 and v3 represent the Kalman filter estimates of
missile-target lateral separation, y, lateral separation rate, V, -,

and missile acceleration, at, as discussed in Section 3.5.2. The ,

gains c. considered here are those given in Eqs. (3.5-27) to

(3.5-30), under th, assumptions that the missile dynamics are -,

neglocth'd (by permitting wm to approach infinity) and that the

control effort weighting, in the performance index, Eq.(3.5-24),

is zvro:

3
el 1 2

t
go

3c 2 -t (A.4-29)
go

Pa 3 3atg) e- g°+a t tgo- 1
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The gain 1 can reasonably be simplified by taking the, first 5
3 I-Wttgterms of the expansion of - ,ti.e.,

c a 3 1[ -2 ttgo + (Wt (A.4-30)

T

is a good approximation until the last fraction of a second of

an engagement and is more readily implemented in the guidance

module.

In order to estimate t, th- diigital system may hold

the range from the previous measurement, rk-l, and difference

it with the present value, as indicated in Eq. (3.5-32), viz.

so V 2+-V2 (A.4-31)

I. where v 6 represents the digital state holding rkl and v2+v26 - 4 5
is the present rangc in cartesian coordinates in the state vec-

tor formulation.

Combining Eqs. (A.4-27) to (A.4-30) yields the complete
nonlinear representation of the acceleration command limiter

input:

3v1 [ /-2v+~ 2 3 2 [-~~

222( + 22!T('v 4 +v 5  v 2+v2v
4s +

2_ 2 2
+3 45 + T A 5

S~(A.4-32)

A-27
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JI
A

W4 t'rs (A. 4-33).-

Since the basic form given in Eqs. (A.4-28) and (A.4-32) is
exactly analogous to that treated in the proportional guidance i

law, qection A.4-1, we can abbreviate the previous presentation
as follows: First, the variance of ¢' is giveon approximately

by Eq. (A.4-13),

SbT Pb

where b is the vector of first partial derivatives of ý'(m), viz.

S/_-l_72-
mm ni' m 3(m+nInJ2

,( 3 mA 3(m 6 -m)
b I Din 2 2 2) 2

(m4 +m 5 ) (smr

3 (rn6rn)_ 6-r)
3 rnT mn

s r
hm2--

F 2 2
b~ +23 - 3 6 m6-rn 24 (m 6 mr) 2j

3 6- r

rn 1 .fl 6 )3m ~(A.4-34)

b4 - bi1-m4 [cmrn6 26"

6min rn - 23mi

M 4 63r6 a 4 m3 m6 2.

2mr(m-m)2 4(m rn-m)3j

I5 Din5 m 4
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6m (m -M 3m

b6 = 6 m(m 6 -mr) 2b6 an6 (Tsmr)2 Tsmr

2
a m [ _ mr m

+ 4 3 2 r 3 (A.4-34)(Corxt.)

Then we evaluate m using the approximation of Eq. (A.4-7), forT
which we require the following second partial derivatives:

2'

2'

3m1 ~m2

S2 '

a 2
.. 3lm

2' 6m4 m6 (mr -m6 )
"mm 4  ( rn2 ) 2

1~~ 4 s mr)

""2'2 - 6 m5 m6 (mr-mr6 ) (4.4-35)
. m am 2 2(.4-5

1 5 ( mr)

2' 6(m 6 -mr)
16 (mr)

s r

2' _- 0o
2

.2
2 0

am am2 3

_ 23 4116
am2 am 4  m3

s r
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S2' _ 3m m6i

m 5 56
am Dn325 T M

2'a)m2 am6  sm mi
"SS •

am 2
m3

2 3 mm 6

1+ - m -m

am 3 am4 2mr(m 6 -m) 3  6]

2' cxm M, I 1

m 2r 6-m) 1+ mr-m

a23 €m 
2(mmr) m-! r (A.4-3£)(Cont.,) Ai3m3Dm5 2m(m6mr)3 2

2Am 45 3 2 5

4m 2 m(4 m5 D i4n m 5,

2 m m5 [ -6m lm6 (f4m6 - 3m. ) 9m2m6 (X 4 m3 m6 i

am4 Din5 4 (T m3r 2 TM5 2(m6_mr 3-
S star 6-

i 3mr-m 6  3_4 1
m2 (m.. -.

r 2(m 6-mr) r)

2 ' [6m (m-2m6 ) 3m2  a4 M 3 (m 6 +mr)

I 3,D11 4 01116  4 (T in2 ) 2r in 2mn (m -m 3

2
a 4 m23 (2m 6 +m)

4(m 6 -Mrn) 4
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Sa2 ' b4 m5  a2•b'
124b + -5

a 2 m am amm5  4 4 4 5

a2.435m5 a21tn.
am5 am 6  m4  34am (A.4-35)(Cont.)

1.
0 6m 0 m m

m 2 2 T 2 4r 4 mr+ -m6

Sam sm (m 6 -mr)

F 2With these results, we have the vector required to evaluate a
(Eq. (A.4-13)) and the second partial derivatives needed to ob-

tain m according to

6 6 2

m= = am(amJ Pj (A.4-36)

F oThese statistics permit the calculation of the limiter ridf's,

Eq. (A.4-6); f is then the required mean component of the limited

digital acceleration command and the random component ridf vector

is simply

n = nb (A.4-37)
-a -

as before (Eq. (A.4-15)). This completes the quasi-linear repre-
sentation of the Kalman filter gains and optimal control. gains in

the digital guidance module.

The random input describing functions catalogued in this

Sappendix should be sufficiently inclusive to permit the direct
quasi-linearization of a quite broad variety of system models

"representing the missile-target intercept problem. The examples

and new results given in Chapter 4 (especially Cases 1 to 3 of
-, Section 4.3) allow ridf's to be calculated for a nunber of other

nonlinearities with a relatively modest analytic effort,. A
majority of the nonlinearities treated in this handbook are also

A-31
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of common occurrence in other nonlinear system models, so it is

our hope that Chapter 4 and this appendix will facil-itate the

use of CADET in other applications as well. 3

T

A

-r

4
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[, APPENDIX B

EXTENSIONS OF CADET

1]- B.1 INTRODUCTION

We have indicated that there are situations in which the

"j basic CADET methodology is inadequate. As discussed in Section

4.2, the most common difficulty that arises is that the random
- component of a nonlinearity input, vi, has zero correlation with

the output, z = f(vi). For example,

are cases for which

EE vi] O

where vi is a gaussian random variable. In this event, the ran-

dom input describing functions (ridf's) for the random compo-

nent -- which by definition only capture the nonlinearity input-

* output relations for the correlated components of the output --

are identically zero. If this problem occurs in a primary trans-

mission path of the system model, a statistical analysis using

the basic CADET approach may be significantly in error.

A practical resolution of the difficulty described above

has been proposed in Ref. 20. It is based on the selective

SB-i
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relaxation of the assumption that all of' the state variables are

jointly normal; in this way it is possible to propagate the first-

and second-order statistics, m and P, accurately using modified

CADET methodology if some of the higher-order moments (cor-

responding to the states that are not assumed to be gaussian) are

propagated as well.*

We present the essentials of' Modified CADET via treat-

ment of a simple low-order example. This material is directly

based on the research documented in Ref. 20.

B.2 BASIC CADET FAILURE

In this section, we analyze an example using both the

basic CADET approach and a direct solution technique (which is

too cumbersome to use in all but. the simplest situations) to

demonstrate the need for extension of CADET in some circumstances.

Consider the nonlinear system depicted in Fig. B.2-1, which has

an output that is the integral of a simple product nonlinearity

driven by twc random biases. We assume that the corresponding

state vector differential equation and initial condiLions are

given by

x = f(x) = (B.2-0)
XlX2

[M10

E [x(O)J 0 = in2 0  (B.2-2)

Lm3

If all stat-, variables are jointly normal, then m and P com-
pletely characterize the statistical properties of the system
variables and higher-order moments are redundant.

B-2
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I Rt-16226

X KI• X2 l

Figure B.2-1 A Product Nonlinearity Driven
by Random Biases

.P10 P12 0  0

]L E [(•(0)-mO)(x(0)-)T] A P0 = [P120  P22 0  0 (B.2-3)

0 0 P330i

]I Equation (B.2-3) indicates that the initial condition on x3 is
independent of those on the first two states. Since thore are

no random inputs (w = 0), the evolution of the state variables is

"completely determined by the random initial conditions.

First, we indicate the exact solution, which can be

obtained by direct integration. For any initial. conditions Xlo

and x 2 0 , the first t.o states remain constant, by Eq. (B.2-.1).

The solution for the third state is then given by

- x3 (t) = x 3 0 + x 1 0 x 2 0 t (B.2-4)

I . Taking the mean and variance of this solution, using the statis-

•. tics specified in Eqs. (B.2-2) and (B.2-3), we obtain

m3 (t) = m3 0 + (rnl 0m2 0 +Pl 2 0 )t

P 3 3 (t) = P3 3 0 + [m1 0 (m1 0 P2 2 0 +m2 0 P1 2 0 )

+m2 0 (m2oPll+ml0 P1 2 0 )1Pll 0 P2 2 0 +Pi 2 0 ] t 2

B-3
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In applying basic "ADET, Eqs. (1.2-6) ;ind (1 .-- 7). w"
require the ridf'l, given by

0 0

0

L' E L M..2 +p 1 2

N2- t~~r]0 0 (13.2-6)

LE Ex1 , 2 r1 J E [x 1 .-2 r 2 ] E [x',x2r 3 ]J 
-

0 0 01
S0 0 0

rnlP12" 112 1+ 1 -'Jr2 ] m 1P 22 +m2 P 1 2+E[rlr] m P1 2 3 1 2P 1 3+E [rir 2 r 3 ]

Under the assumption that all of the states are jointly normal, the.,
exp,'cted values of the form E [rlr 2 rj], j 1,2,3, given in the

third row of NP in Eq. (8.2-6) are all zero. We can then evaluate
the time derivatives of m3 (t) and P 3 3 (t) using Eq. (1.2-7), and
integrate directly to obtain

m3 (t) = m3  + (m1 m2 +m0 (o20 P10

(B.2-7)

P 3 3 (t) P330 + [t 1 0(m21 201 m2 0P01 )+P20 (mi2 0PI1 +m1 oP 1 2 )] t 20

On 1-omparing Eqs. (8.2-5) and (B.2-7) we observe that themean i:i propagated correctly by basic CADET in the above example.

In the variance equation, however, we note that the terms p4ioP220t2

and (Plot)2 a.'e absent in the CADET result. If mlo0 and 11120 arezero, CADET indictates that P 3 3 (t) is identically equal to ils
initial value P33 0 , while the exact result increases with time,

B-4
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P33(tIMi =0 2 + P + P 2 2

I In the general case (nonzero means and correlated states driving

the product nonlinearity), then, CADET will do relatively well

L in estimating the variance of x 3 if

2 2 2
2m 1 0m2 0P 1 2 0 + m2 0Pl0 + M 1 0P 2 2 0 > P1 1 0P2 2 0 + p12 '(B.2-9)

This is a quite restrictive condition.

"As demonstrated in Section 1.2, CADET will propagate the

mean and covariance of the nonlinear system exactly if the ex-

pected values appearing in Eq. (B.2-6) are correctly evaluated.

Basic CADET does not evaluate these expectations appropriately

for the product nonlinearity just considered, because the proba-

bility density function of the product of two gaussian random

variables is clearly nongaussian. Thus x 3 cannot be assumed to

be jointly normal with x and x 2 without causing CADET accuracy

deterioration, except in cases that satisfy Eq. (B.2-9). An

approach for modifying CADET, which tends to eliminate this source

of error, is introduced and explained in the next section.

-i .B.3 TWO GENERALIZATIONS OF CADET

B.3.1 Exact Solutions via Higher Moment Propagation

Having motivated the need for generalizing basic CADET

by demonstrating its breakdown for a system having a product non-

lincarity, a technique for extending CADET is introduced using the

J sane example. Consider the problem originally posed in Section

B.2 -- the nonlinear system of Fig. B.2-1 driven by two random

.V
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bias states. Since x is not jointly gausslan with x and x2 ,

no assumptions are made regarding the density function o(f x 3 .

The states driving the nonlinearit~y are still given to be joint IN

normal. Referring to Eq. (B.2-6), lack of knowledge of the joint.

density p(xl,x 2 ,x 3 ) implies that the term E [r r 2 r 3 ] cannot be

immediately evaluated. In order to obtain this otherwise unknown

higher-order moment, consider its propagation in time, in the

same sense that basic CADET consid-ers, the propagation of the

mean and covariance. Making use of the chain rule and the com-

mutativity of differentiation and expectation, we obtain the tol-

lowing expression for the derivation of the higher-order moment:

12^~E~~~~ dtd r"lE~~~ 1  +E rriK1
A123 = = 2 + 3rJ + L[ J

The first two terms are zero since r 1 and r2 are constant; the

last term is evaluated using

x1 -m m x + )3,, 1 03•: 2 X~ 0 - (mlom2 0+12 0)

t o 1)e * 2

123 = l po 2 2 0 + p 1 2  (13.3-1)
0 0 0

Integrating Eq. (B.3-1), and substituting into Eq. (B.2-6), we
have

F 0 0 0

\P"0"0 0 o

B-6
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i i
If Evaluating P according to Eq. (1.2-7) and integrating, we obtain

the result given in Eq. (B.2-5) which is the exact solution to

the problem.

To summarize this methodology, the lack of knowledge about

the joint probability density function of the system states is com-
pensated by introducing additional differential equations that

T govern the propagation of selected higher-order moments of the
state variables. Initially, the components of the state vector
may be assumed to be jointly gaussian in distribution; this

establishes the initial values of the higher-order moments. As

these moments propagate, however, the normal relation between m,

P and the higher-order moments disappears, due to the evolving
nongaussian nature of the system states caused by the existence

of the nonlinearity in the system.

B.3.2 A Further Application of Exact Higher Moment
Propagation

"A more complicated dynamic system containing the product
"nonlinearity is shown in Fig. B.3-1. The two nonlinearity input
states are assumed to be band-limited gaussian processes with cor-
relation determined by the parameter a, and the output of the mul-

tiplier is passed through two stages of low-pass linear dynamics.
The state vector differential equation formulation of this sys-

tem model is given by1 [ 0 0 01 0 1 0[ i
- =0 -1 0 0 [ + (0 1 (B.3-3)

0 0 -0.1 0 0.1oXl1x 2 00
[o 0 00.1 -0.1 L 0  J L 0 ]

where x and w are the state vector and the input vector of gaussian
white noise processes, respectively. Note that the correlation

between x 1 and x 2 is given by

B-7
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. i

Figure B.3-1 Dynamic Sys t.in Wit h i Product-
o t-Stai•(, Nonl inearity

2 ~t

12 = (0 (B. 3-4b)

so the degree of' correlation is directly proportional to 'FilTe,

state variable initial conditions were chosen to be zvtro; theF.n

given the constanr nt in means, byi and spynctral dnAities, (oi

(refer to Eq. (1.1-2)), the. statistics of the sdtatles drivind the

multiplier c0an be directly oibtained to be

- 2t

-t-

In2 )2 + ab 1)(1 e- t

P 22 = ((12 + .*qj)(1 -e "')!

The• stattistical analys•is of' the, y• (, ,lopictodl ii) Fij!.

B.3-1 waý, varried out in Ref. 20 by applying ha.si( CADET, oxa,-L

high er m o)m ent p r'opagrat i(n (h erea ft e-r design at e•d Ml l') . and th e,

m()nt e, car l o m e'thod (200 tr ia ls ). in th e, va~ w.-(' p rose; nt o~d |l ,r o,,

B-8
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!
a is taken to be 0.1, and the input white noise processes were

chosen ir have means and spectral densities given by bi = 0.01,

qi = 1.0 respectively. Consequently, from Eq. (B.3-5) we observe

that the means are much less than the rms values, so, as indicated

in Eq. (B.2-9), it would be anticipated that CADET would be quite

inaccurate in this circumstance. The results are portrayed in

Fig. B.3-2; since the driving states, xI and x 2 , are jointly

gaussian, we confine our attention to the evolution of a3 and 04

with time. Observe that the HMP result is exact, as verified by

the monte carlo dala, while the basic CADET analysis is completely

inadequate in its projection of o3 and i4 versus time.

For the above example the HMP analysis only entailed the

propagation of two higher-order moments, E [r 1 r 2 r 3 ] and E Er 1 r 2 r 4 ].

, i'he computer time expenditure was thus nearly identical with that

"of basic CADET; the monte carlo analysis required 26 times the

CADET computational expense.

A question of some importance regarding the general prac-

ticality of HMP concerns the impact of increasing the complexity

of the system before and after the nonlinearity. As demonstrated

in Ref. 20, simply introducing coupling between states 1 and 2,

e.g. replacing the first two state variable differential equations

in 2q. (B.3-3) with

"A I alx 1 + a 1 2 x2 4 WI

"k2 a 2 2 x2 + W2

ircreases the number of higher order moments that muLst be propa-

gated from 2 to 4. A similar increase in computatic.nal complexity

occurs when the system is made more complicated foilowing the non-

linearity. Thus the analysis of high-order closed-loop systems

via HMP may be impractical.

I
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0.12 It.1 , 300

x0.08 MONTE CARLO, 200 TRIALS

L-
0

> 0.n4 
'0f4EXACT HIGHER

SMOMENT PROPAGATION
BASIC CADET

0
0 10 20 30 40

TIME, t (sec)

(a) The rms Value of x3

0.12

EXACT HIGHER
MOMENT PROPAGATION

"• 0.08

0
w

S0.04 O, 200 TRIALS

0
0 10 20 30 40

TIME, t (sec)

(b) The rms Value of x4

Figure B.3-2 Simulation Results for a System Containing
a Product-of-States Nonlinearity
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J B.3.3 Modified CADET

The Modified CADET methodology suggested in Ref. 20

serves the purpose of providing a significant increase in the

accuracy of CADET without the great increase in computational

* burden that may be necessitated in using HMP to treat high-order

systems, especially those in a closed-loop configuration where

I all or nearly all of the system state variables may be nongaussian.

The application of Modified CADET to the simple system

treated in the preceding section (Fig. b.3-1), containing a pro-

duct nonlinearity followed by two stages of linear dynamics, is

summarized by the following basic steps:

- Relax the gaussian assumption only on that
& •; component of the state vector "nearest" the

output of the nonlinearity (i.e., x3 in

Fig. B.3-1); retain the assumption of joint
normality on all other states.

•Develop expressions for the derivatives of
all resulting unknown higher-order moments

ýJ appearing in the evaluation of the expected
values in f and NP, Eq. (1.2-6) (as in
Eq. (B.2-6)).

a Integrate these derivatives along with the
derivatives of the system mean and covari-
ance from assumed initial values.

The rationale behind this selective assumption of joint normality

is states more than a few integrations from the

nonlinearity (e.g., x4 in Fig. B.3-1) can be assumed to be jointly

normal with respect to other gaussian states (e.g., x 1 and x 2 in

the same figure), for reasons discussed in Section 1.2.

To demonstrate the usefulness of Modified CADET, we treat

the same example as above (Figs. B.3-1 and B.3-2) under the assump-

tion that x 4 is gaussian. Then E [r 1 r 2 r 4 ] is identically zero, and

only one higher-order moment is propagated. The corresponding time

I
S~B-li



THE ANALVTIC SCIENCES CORPORATICN

history of 04 is compared with the HMP result in Fig. B.3-3;

clearly it provides a close approximation to the exact solution.

It-| (,i'99

0.10

EXACT HIGHER

MOMEN7 PROPAGATION
0.08 (Figure B.3-2)

X 0.06
U.
0

UiMOIFIED CADET

> 0.04

0.02

10 20 0 40

TIME, t (sec)

Figure B.3-3 Modified CADET Solution For the
System Shown in Fig. B.3-1 With
Only One State Assumed Nongaussian

Modified CADET represents a methodology which potentially

broadens the usefulness of the CADET concept, permitting Its

applicability to a wider class of nonlinear systems. For the low-
order examples presented in this appendix, Modilied CADET has

clear-cut advantages, and we anticipate that it will be a useful

method for improving the accuracy of statistical analyses for more

complex systems.
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- APPENDIX C

THE MONTE CARLO METHOD: APPLICATION AND RELIABILITY

-i:[ C.I DESCRIPTION OF TIE TECHNIQUE

SI"The monte carlo method provides an approach for the

statistical analysis of the performance of a nonlinear system

with random inputs, based on direct simulation. t entails de-

termining the system response to a finite number of "typical"

initial conditions and noise input functions which are gener-

L4 ated according to their specified statistics. Thus, the infor-

mation required for monte carlo analysis includes the system

* model, initial condition statistics, and random input statistics.

The system model can be given in the form of a state

"vector differential equation,

I. = f( t)1)

where x is the vector of system states, • is a vector of random

inputs, and f(x,y,t) represents the nonlinear time-varying dy-

namic relationships in the system. We assume at the outset that

the elements of y are correlated random processes with deter-

ministic components that may be nonzero; in this case, a system

model of the form

-. = �f(x,t) + G(t) w(t) (C.1-2)

where w is the sum of a vector of white noise processes and a

j deterministic vector can generally be obtained that is equiva-

lent to Eq. (C.1-i), as discussed in Section 1.2. Henceforth,

I ...
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we treat E 1. (C.1-2) as the basic system model; it. is por-

traved in blo)ck diagram no )at.ion in F'ig. ( .-1

R-11802 .4

+ +

++1!(.~t). 
.

NONLINEAR

FUNCTION].

Figure C.1-i Nonlinear System Model

The initial condition of the state vector is specified

by assuming that the state variables are ,joint lv normal. Thus,

gi\'en an initial mean vector and (1covarianco matrix*,

E [x(O)] 
(C. 1-3)

E' : [(x (O ) - 10 )(x ( 0) - 11)1 ] = P0

tho initial condition specificat iion is complete. As stated

above , the input vector w is assumed to be composed of eleme, ts

that are white noise processes, plus an additive deterministi . "c

component or mean; thus

E [w(t)] = b(t) 
(C.1-4)S1; E (w( t)-b(t)) (w(T)-b(i)) T] Q(t) 6 ( 1 t"- )T

*E [ ] denotes the expected value of the bracketed variable.

C-2
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where Q(t) is the input spectral density matrix and the impulse

function 6(t-T) indicates that the input vector random components

have zero autocorrelation for t ý T; i.e., the quantity u(t) -

w(t)-b(t) is "white noise", as stated.

Given the above information, monte carlo analysis re-

quires a large number, say q, of representative simulations of

jthe system response, viz., the q-fold repetition of the following

procedure: First, an initial condition vector is chosen according

to the statistics indicated above; i.e., a random number genera-
tor calculates the elements of a random vector x(O) based on Eq.

(C.1-3). Then a random initial input vector, w(O), is generated,

lb using the statistics given in Eq. (C.1-4)*. These vectors pro-

d vide the data for evaluation of i(O) in Eq.(C.1-2) which in turn

is used to propagate the solution from t-0 to t-h according to

any standard technique for the digital integration of a state

vector differential equation. Then, given x(h), simulation con-

tinues by the generation of a new value of the input noise vector
W(h), evaluation of k(h), numerical integration to obtain x(2h)

and so on, to the specified terminal time tf.

*We simulate white noise with spectral density matrix Q(t) by
"using a random number generator to obtain an independent sequence
of random vectors u(kh), k-O,1,2,... satisfying

I.E[u(kh)] - 0

r~l 1
E[R(kh)uT(kh)•J E Q(kh)

. Then we define u(t) by

A u(t) - u(kh), kh < t < (k+l)h

i where h is a small time increment. For h small (1/h much larger
than the bandwidth of the system in question), u(t) is an accu-
rate approximation to a white noise process.

C-3
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PerfIorming (I imhependelnt simulationfs yields an ensemble

of state trajectories, each denoted x U) (t':xki)(O), wM i'(t)) to

stress the dc,)(ndence ol' the trajectory on the random initial

condition and noise Jnpa t sample function:

x(1 (t; x (1)( ), w(1) t)

x(2 (t; x (2)( ), w M()t) ; O<t--t (C.1-5)

x((])(t; x(0(), w(q)(t))

Each satisfies the state vector differential equation (Eq.

(C.1-2)) to within the accuracy of' the numerical integration

method used, and the ensembles of initial conditions, x (0),

anrd random inputs, w(i)(t), obey the statistical conditions

given in Eqs. (C.1-3) and (C.1-4), subject to the limitations

of' the random number generator employed. The mean m(t) and

covariance P(t) of the state vector are estimated by averaging

over the ensemble of trajectoris using the relations

A} 1 (i) ]

1=1si j' I
(C,.1-6)

P(t) (x i) ( ) t)-n(t

whore r((t) and P(t,) denote the estimate(d vnilue,. 'Tao, essence

of the monto carl,) technique is illustrated in Fig. C.1-2.

In estimating P, we obsorve that it is necssary to divide by

((1-1), since the sample variance,
q

is biased (Ref'. 8), i.e.,

E [11)] = -q q

C-.
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~ SWI1~ TRMAL -19
Ne. II 

3 si shi 1 II I

0 U

i iTRIAL

STATISTICS 4NMATIM I )

IUITSI III INITMi.. PO10 IANDOM IC.,g
CONDITION CIC Lh51S3 sPTstics

I7 -rý MNIC%

Figure C.1-2 Schematic Characterization of the
Monte Carlo Technique

C.2 ASSESSMENT OF P'ICURACY -- CONFIDENCL INTERVALS

In order to assess the accuracy of the approximate sta-
tistics given in Eq. (C.1-6), it is necessary to consider the

statistical properties of the estimates m(t) and P(t). To sim-

plify the notation, consider a scalar random variable y (e.g.,

the value of some system state variable at some time of interest),

and let m and p represent the true values of the mean and vari-

ance of y,

m - E [y]

"E yi)(C.2-1)-. p E p[y -m)•23

By performing one set of q monte carlo trials, we obtain a single

estimate of m and p, which we denote m and p. These estimates

are also randomr variables; that is, if another set of q monte

C
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carlo trials were performed independently of the first set., but

with the same statistics foIr the initial conditions and noise!

inputs, then a different ensemble of simulations results, and

different estimates for the mean and variance would bc obtained.

If q is sufficiently large, then we can invoke the central limit

theorem to Justify the assumption that the random variables m

and p are gaussian*, a..d thus that their distributions are

asymptotically specifi(ed by the following statisties for large

q (Ref. 21):

E[iii a rE~p] - p ..

(C.2-2)
0 E[(_ii-m) 2 ] £mq ,

2 E[(p - p) 2 ] 11 4 p
p qC

where p4 is the fourth central moment,

W4 a E [(y - M) 4 ] (C.2-3)

For many common probability density functions (pdf's), a con-
st nt I o-xjst:x •,,h lh,

2

114  = ýP (C.2-4)

Table C.2-1 gives a summary of values of X, known :.s the kily'to-
sis or excess of the. d.nfsi ty, I,,r ¾,,,l(' (O,,jf,,,t j Ir . Hi I ',

For q<20, it is necessary to assume that p has the chi square
distribution if y is a gaussian variable (Ref. 22); if y is
significantly fnongaussian, the validity of the gaussian as-
sumptJon for In and • may require considerably more than t wenty
trials.

C-6
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TABLE C.2-1

SOME COMMON PROBABILITY DENSITY FUNCTIONS
San,14179gl

DESIGNATION FUNCTIONAL GRAPHICAL
REPRESENWATON RWSENTATIONI

EXPONENTIAL .w) 6

-co << ( CO

•' ~~-OD < K< * COi • :-

TRIANGULAR 760 W1- 2.
#n - /6,: x: f

01)

UNIFORM /iia, -,
i - /3a m */3I

BIPOLAR 1/2 1.0j (€ ,ret). (-,n...) .-j

OFormula~ed to hove mean m oad stondord dovioaion a

of this type, we can express both of the standard deviations of

4. the estimated statistics given in Eq. (C.2-2) in terms of the

true variance, p, to obtain

(C.2-5)

The above discussion of the s•atistics of the gaussian
random variable p provides the basis fcr determining a range in

the vicinity of P such that the true value of p is guaranteed to

7 C-7
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lit, within that rang, with it speci ied probability. q,. This is.

dom, hy de|termining the numlber, n , of' si an(Iar(I (flfviaft i•qs•, t(1 I) '-

such that

Prot) [0< l-f:l, no(C-2-6)

Sinnev p is approximately gaussiann, n Is the sol ut. iOIn to

n xp . 2 )d:. , (C.2-7) '

For example, if" the desired prohah i I ity is 0.95, Eq. (C.2-7) e (is

n 1,96. Other values of n corresponding to ditrorrent values o)I

4 can be obtained from probability integral tableNs (Ihf. 18);

several representative valuos are given in Table (,.2-2.

TABLE C.2-2

CUMULATIVE PROBABILITY WITHIN n
STANDARD DEVIATIONS OF THlE .MEAN

FOR A GAUSSIAN RANDOM VARI1ABILE

n o 4)

1.0 0.6827

1 . 6,5 0. 9000

1.9co 0, 9500

2.576 0.9900

To reformulate Eq. (C.2-6) iito an inequalit f()r p,
%%, substitute for 3 from Eq (C,2-5) into Eq. (C.2-6) toh otain

p

Prob4 - p X n

(('.2-8)

('-8
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!
that is, the true value of p lies between the values p and p indi-

3cted in Eq. (C.2-8) with probability ý. Alternatively, in terms

of the estimated rms value of the variable. 3, we have the com-

I parable result

1*

"where o and • are given by

S..c

(C.?-9)

' -no q

The quantities a_ and • are referred to as lower and upper confi-

dcncc limits; the value of ý,• expressed as a percent is the degree

of confidence. Equation (C.2-9) demonstrates that the stand'rd

"deviation confidence limits can be obtained from u simply by using

"the multipliers p and P. The latter are fun-tiua' i only of the

kurtosis, X, the number of monte carlo trials, q, and the ntmber

A of standard deviations, n., required to achieve the desired de-

* gree of confidence.

The problem of miaking a reasonable choice ol A, which dE-

Spends upon the statistics of the random variable y, must be faced

before the confidence limit multipliers can be calculated. One

IJ option is to determine an approximate value of A by estimating

the fourth central moment using the q sample values of the vari-

able y, and calculating

S,4/ C-
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The value of X need not be kniown exactly, since the confidence limits
(! and 0 are not extremely sensitive to errors in this parameter. Un- i
fortunately, as we note in a subsequent example, a meaningful esti-

mate of A can often require several hundred trials. In the absence of •

reliable information about the higher central moments, it is fre-

quently assumed that y is gaussian; i.e., that X = 3. However, if H
-there is any reason to believe that the pdf for y has abnormally

heavily weighted tails -- as in the case of the exponential dis-

tribution in Table C.2-1, for example -- then a larger value of X

may be required in order to arrive at a realistic assessment of

the accuracy of an estimated rms value obtained via the monte

carlo technique.

Values of p and p for X= 3 are indicated as functions of

the number of monte carlo trials in Fig C.2-1, for two typical

values of confidence. As an example of the significance of the

confidence interval, if we desire to have 99% certainty that a is

within 10% of the estimated value, 0; i.e.,

Prob [0.90a< a < 1.1 5] 0.99 (C.2-10)

then Fig. C.2-1 demonstrates that it is necessary to perform 440

trials; 256 trials suffice for 95% confidence.*

Figure C.2-2 shows the deterioration that occurs in the

accuracy of the monte carlo estimated standard deviation, for a

given level of confidence, if the kurtosis of the random variable

is greater than 3 due to y being nongaussian. We discuss an in-

stance where A 15 in Section C.3; in this case, even for 256

trials, the upper 95% confidence limit is 36% greater than the

estimated value of a.

Note that the bounds, p and p-• are not symmetric with respect to
one; thus the point at which p crosses 1.1 determines the value of
q for which Eq. (C.2-10) is satisfied.

-- 10
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2.0 -_____

3Le

Uu

z

z Vowr Wmit.
8 99% Confidenc.

Z 99%. Confidence

0

q 440

i< 1.0

for Lo-er Lima' r,
95.'/Co.ndence

.I 99% Confidence

L100 300 500
NUMBER OF MONWE CARLO TRIALS, c;

Figure C.2-1 Typical Confidence Interval Multipliers
for the Estimated Standard Deviation of
"a Gaussian Random Variable (0 = 3)

The confidence interval calculation for the estimated

maan is quite direct, since Cf (Eq. (C.2-5)) is not a function of
m

the mean. The same value of n is obtained for the desired de-

gree of confidence (e.g., from Eq. (C.2-7), na = 1.96 for ý =

0.95 corresponding to 95% confidence), and the value* of p given

in Eq. (C.2-8) is used in deriving the result that for m and

m given by

3 While Crjj is given by /p/q in Eq. (C.2-5), the true value of p

is unknown. Thus a conservative (large) value of oam is ob-
tained by using 1.

C-l1
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q ;256 Monte Carlo trio!t performied

14 ii

Degree of confidence s95%S1.4-

-J [3
p

L 1.2
z
LU

o
0

z
0

0510 15 0I

:(URTOSIS, ,X

Figure 0.2-2 Effect of Kurtosis on Confidence i

Interval Limits

Ui,
C 1.0

0.8i

(C.2-11) C si

m = m + n

one can assert that

C-12
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Prob [m < m < ] (C 2-12)

Here, we see that m and m cannot be readily expressed in terms
A-

of a multiple of m.

The confidence limit concept developed above provides a
statistical measure of the accuracy of the estimated mean and

standard deviation of a random variable obtained by using the

monte carlo method. It is only possible to assess the accuracy

of such estimates in a probabilistic sense; e.g., for 256 trials,

we can assert, for example, that an estimated standard deviation

oi (rms value) of a gaussian random variable is within 10% of the
true value, with probability 0.95 (with 95% confidence). We note

below that even this assessment may be open '_o question if kur-

tosis is not known at least approximately, however.

2.

C.3 ILLUSTRATIVE EXAMPLES

Considerable practical experience has been gained in ap-I. plying the monte carlo method in studies undertaken to validate the

use of CADET to provide, accurate and efficient performance evalua-

tions for tactical missile guidance systems (Refs. 1, 2 and 4). The
significance of the confidence interval concept and the important

role played by kurtosis have been graphically demonstrated by the

results obtained, as the following example shows (Ref.4).

yA variable of particular interest in the planar missile-

target intercept problem during the terminal homing phase is the

cross-range (lateral) separation between the missile and target,
denoted y (refer to Fig. 3.2-1). In a typical analysis, y (and

all other system variables) is assumed to be gaussian at the
initiation of the terminal homing phase, and y remains quite

C
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INTERVALS BASXD ON ESTIMATEDA .
•,15

S22.9 ft

123 4 5 6 kTIME, t (c)-

Figure C.3-1 Time History of rms Missile-Target
Lateral Separation *iI

gaussian until the last few seconds of the engagement. Fig. C.3-1

shows the variation of o with time during a six-second engage- TI

ment, where a quite highly nonlinear system model of the type

developed in Chapter 3 with 17 state variables, 9 nonlinearities

and 5 random inputs has been used for simulation purposes. The

solid curve is obtained by CADET, and the results of a 500-trial

monte carlo study are indicated with circled data points to indi-

cate a and vertical I-bars to indicate the 95% confidence inter-Y

val. The estimated value of kurtosis is also indicated near each

data point; as observed above, A is nearly 3 until the last second,

while at the final time, t=6 sec, X is 15, which is indicative of

the quite highly nongaussian character of the final lateral separ-

ation (miss distance).

Figure C.3-2 gives a more detailed view of the CADET and

monte carlo analysis depicted in Fig. C.3-1; for two values of

time the estimated a is shown as a function of the number of trials

Y
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Figure C.3-2 Comparison of CADET and Monte Carlo
rms Lateral Separation
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ii
performed, q. We note in Fig. C.3-2a that the estimated value of

G at t=4 appears to "settle" to about 145 ft after a few hundredy
trials; after 500 trials we have the result that

Prob [138 ft < oy(4) < 156 ft] = 0.95 (C.3-1)

which indicates that the monte carlo estimate of a has nearly

converged to its true value with high probability. The situation

at six seconds is quite different, as demonstrated in Fig. C.3-2b.

For A = 15 the result of 500 trials is

Prob [24.7 < Oy(6) < 33.9 ft] = 0.95 (Cý3-2)

which indicate a considerable margin for error in the monte carlo .2

estimate of ay, on a percentage basis.

A synopsis of a part of the data portrayed in Fig. C.3-2b

is provided in Table C.3-1, broken down into five sets of 100 trials
(set 1 corresponding to the first 100 trials, set 2 including trials
101 to 200, etc.). The data demonstrates that in this case the re-

sult of 100 trials is highly random -- with & (6) varying between
y

19.72 ft and 35.88 ft; the variation exhibited by ^ is even more
dramatic. We also observe that there exists a clear relation be-

AA tiA A

twen A and a ; a is small if X is small and a is large if X is
y y y

large. This phenomenon is a direct result of the basic signifi-
cance of kurtosis" if X is appreciably larger than 3, then the

"tails" of the density function are abnormally heavily weighted --

implying that there is an unusually high probability of the occur-

rence of very large values of the randolw variable in comparison

with a gaussian random variable having the same standard deviation.
(To cite an example, given two random variables with unity vari-

ance, yl normally distributed and y2 exponentially distributed

(A = 6; Table C.2-1), the probability that 1ylj > 3 is only 0.0027,

compared with the probability of 0.0144 that >y2 > 3.) Thus the

C-16



THE ANALYTIC SCIENCES CORPORATION

TABLE C.3-1

ESTIMATED STANDARD DEVIATION AND KURTOSIS
FOR LATERAL SEPARATION, t - 6 sec

100-Trial A (ft)

Set Number G y (f t)

1 19.72 4

2 32.08 15

3 22.25 6

1 4 25.67 4

5 35.88 23

Aggregate* 2.7 15
[ L (500 Trials) 27.78 15

i To obtain aggregated values for a and X,
it is necessary to average tne coyresponding
values 3f variance and fourth central moment
(Eqs. (C.2-2) and (C.2-3)).

F incidence of several large values of y I in the space of a few

1.trials results in a sudden jump in the estimated aOy as evident in

the vicinity of 160 and 440 trials in Fig. C.3-2b, while it is

probable that the "settling" observed during the third and fourth

sets of trials is due to the untypically benign character of these

trials (an abnormally small number of trials occurred in which

IYt is large). Table C.3-1 thus demonstrates a fundamental pro-

blem with the monte carlo method applied to nonlinear systems:
Analysis based on a modest but seemingly reasonable number of

trials (say 100) may be quite inconclusive unless the value of

X is known quite accurately in advance. Thus the analyst should

be extremely cautious in assessing the reliability of monte carlo

estimated statistics, even if the estimated kurtosis is monitored.

In the preceding example, the importance of a few large values of
j ' miss distance that occur in a set of trials in characterizing the

tails of the pdf, and thus in determining the kurtosis of a non-

gaussian random variable, also demonstrates that the common

T C-17
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practice of "discarding the pathological trials" can lead to

very misleading r(sults. I2

C.4 CONFIDENCE INTERVAL LIMIT TABLES

The confidence interval limits of an estimated standard

deviation a can be expressed as multiples of o, viz., ii

(C.4-1)
aP a

where p and P are determined only by the desired degree of con-

fidence, the kurtosis of the random variable, X, and the number

of trials performed, q. These multiples, p and p, have the form .

p 1 
-*-

+7 n,, /"_qJ

(C.4-2)
- 1

1 - n

where n is determined by the confidence p expressed as a decimal

fraction,

1 n 1 2-I exp (- • )dt - (C.4-3)/2- -n•

This formulation, Eq. (C.4-1), makes it particularly convenient.

to present the confidence interval multipliers in tabular form.

Thus we include Tables C.4-1 to C.4-3 for easy reference, giving

C-18
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3' confidence interval multipliers p and • for 90% confidence (0 -

0.90), 95% confidence and 99% confidence. This data is directly

applicable to gaussian variables, or any other case where A - 3;

for other values of kurtosis, the confidence interval multipliers

can be determined by use of the gaussian equivalent number of

trials, derived as follows: for a specified degree of confidence

(or, equivalently, a given value of n.) the multipliers p and

(Eq. (C.4-2)) are determined solely by the ratio (A - 1)/q. Thus

given a set of monte carlo trials typified by the parameters (q,
X), the confidence interval multipliers are identical to those

for (q 3) whqre q is chosen to satisfy
eq' eq

3 - 1 A. - 1. (C.4-4)

qeq q

or

eq - (C.4-5)

IIAV The desiied multi-liers p and p may ther be obtained from the

approprikte table of con T.4 dence interval ',,ultlpliers for gaussian

L, random v&riables under qeq"

Examile: Tr the preceding section we discussed a study of 506

trials where X - 15; to obtai" p aud T use

1000Sq~~eq •I

as given in Eq. (C.4-5). From Table C.4-2, umder the entry for 70

1 trials, we see that the 95% confidence interval limit multipliers

are p - 0.866, - - 1.225.

! 1
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'IABLEY C.4-1

90 P)ERCENT CONF~IDENCE INTERVAL LIMITS,
GAUSSIAN RANDOM VARIABLES, q TRIALS

(n0  1.645)

20 040074487 1.446443644 1'0 11QP3? 02.8144433 1 !:25 1I 20 tj;f~

?8 O.811t?2 1614d55i5 240 003~2315 10as

34 o8M3669 1,?96336 270 11163 .07'bu7
36 0.8447216 1.283735 280 0.93A6e88PAý

Is OAn5I l?748290 0q*Q7A89 1,076~34A

40 OIRS35I4 Ilpp? S 3 0.QJk#143 .414Z 0,85651 1,?25322 32v 0olnu~bpl UIiiI2
0.8OI61696 16237273 0 06Q75 16lb

48 0,864409a 1.230269 0 09417 jeq0

s0 0.866358 1.221806 4400 o0q44Aguo Imi
51 OM757 4296S420 00947605 1.Oe217360 00876161 16197662 ago 0,9448721 1,060667

65s 0.880165 111874427 '460 00944767 l.159151

75 0.887213 181707442 So0 0,9st676 1,05657?
80 0.890?65 16161626 520 00952550 1,055309
85 0.893068 141576442 5~40 0,953378 l.0544?07
g0 0,89S655 16152072 560 0.95441h3 18C531449
95 0.89A053 1,1'47023 580 0.,7544Q0. 105214~9

100 0.9002844 IoIU24420 600 00955617 1.0St2c3
105 00~02367 1.138202 650 0.9572S1 1.04"640
110 0.904318 1,1344324 700 10958713 1.6447116
115 0.906150 1.130131 750 0.960032 1.0t'ous5
120 0,907876 1$1274402 600 09961230 1,0's38744

125 0.909506 1,124303 850 0.96?3244 1,04P?478
130 0.911048 1.1~12409 900 0.963.%29 1,0442205
135 0.912S09 t.118699 950 Q,964?57 1,0'b0039
1440 0,913898 191161S4 1000 0.965116 1,038963
1445 0.915220 16113760 1100 0,966660 1.0370446

ISO 0.9164480 1,111501 1200 0.968013 1,035182
160 0.91AS31 let073'43 1300 0.969212 1103392?
170 019?09 90 1,403600 14400 0,970283 10PP
180 100922977 1.100208 1500 0.9712448 1.0314466
too 0,924481S 1.097117 2000 0.97449S9 1.027075
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j 1. TABLE C.4-2

95 PERCENT CONFIDENCE INTERVAL LIMITS,
GAUSSIAN RANDOM VARIABLES, q TRIALS

(n0 - 1.960)

•q £ - q £ -

20 0.7A1948 t.A'wja 100 0,914210 1.115S86
P2 nA•49172 l5osqnp ItO 0016033 11Uli99

?4 ,7401 'rlgal220 0.917740 1,109165
?6 0600poga 1,4q?979 230 0,919302 191064S3
?a 0007596 1,464009 240 0,92050 1,103840

30 Ot?92a 1.o435490 2S0 0.922274 16101402
32 0IOA?7 l141156 160 0,9236k0 1,099121
30 0.821299 1.390109 IT0 00924896 1,096962
36 0,M6n 1,371643 280 0,926107 1,094970
38 0,828832 10359420 290 009272s9 1,093076

40 fl. 0p??3 I'langly 300 0.9263%8 1,0912A3
12 00935400 1,3278qS 320 0.930007 1,007980
44 06836346 1.316127 340 0.932284 , 1,08999
46 0dttog 1.309430 360 00934012 1.082293
48 0,A03856 1029s6s 380 0.935610 190790pa

so 0,846373 1.286683 400 0.937094 10O7?SS7
55 0.85123 1,267136 620 0,938476 1,075S13
60 0.657222 10250839 40 0,939769 1.073527
6. 0,861789 1,236999 460 0.940960 1,071729
70 066,i9tt 10225069 480 0.901120 1,0700S3

7S 0.669659 12184659 5S0 0,943193 1.068465
80 0873087 1,205•78 SRO 0.944208 1°067016
85 .876240 1.197306 50 0.945169 11065634
90 0,079153 1,919940 560 0,946080 1,064333
95 00861857 1#183362 S0o 0,96946 1.063104

100 0,864375 1,177346 600 0.947770 1,061940

10S 0.686729 1.171836 650 0,949670 16059286
t110 0.8•936 10166813 700 0,951372 1t056938

115 0,491011 16162165 7S0 0,952908 1,050843
120 0,892967 1.1S7863 600 0,95305 1,052958

12S 0,594815 1,15366? 650o O9sSqet 1,os1251
130 0,896566 1,1501E3 900 O09s67?s 1,069696
13S 009822? 1.186662 950 0.95837 1,044271
140 0,899606 1,143400 1000 0o956840 1,o46960
145 00901309 1,140335 1100 0696068# t,048624

ISO 0,902704 1.137445 1200 0.962229 1,042600
160 0190542S 1,132145 1300 0,963632 19040823
170 0.907o6S 1,127385 1800 0,964887 1,039248
too8 Oq0*10S4 1412306! tSO0 009660t0 10037800
190 0,91•226 19119167 200 0,990373 lo032517
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99 PERCENT CONFIDENCE INTERVAL IAMITS,
GAUSSIAN RANDOM VARIABLIES, q TRIAL.S

(n. 2.576)

pa 0.73PO71 4 6~7131 2110 I.A140'~7 111A
?2 0074610"t P.208IM9 ec .032 1 0pI
241 0.7i3870 ?,(13941I7 220 0,A95.306 1 tb 1
26 0.7b(~6' 9,9193#09 230 0'"97lbs 114hl

30 0,777334i 117SM631 250 60.01358 1.141'Q36
32 ý9777496 to700693 ah 2,0310I0l1

34 07APP71 1,653232 270 * V)904S~m ,~i3IMP~7
16 0.7iAhC9 11613199 280 )l9otboba 140"91
IS 017;08d9 14578906 290 019074A67 14106'109

M0 OvTQ472S 1*495 300 neq06A3u0 is245ý
412 067,08365 1,5230418 320 00911370 l.1?0ol

O.60001794 10490936 3410 0.913"90 eitl
416 0.605031l 1,4179303 360 0091SA3O ,1ph

53 ,A7h~ 1401914 0.O921371 161029'4s
60 09823597 1,5791414 4140 0.??979 1.10fl2041
65s 0,a82928 1.355002 4160 0.9241488 1,097h62
70 0.631757 1034'56S 4180 60295409 1,095298

75 0.83R160 1.31,003 5a0 0,927249 W.93091
80 0.Rg?19q 1*301717 520 0.928517 1009102a1
A5 6,A49,922 1.288269 5410 09924718 1,089085
g0 0.M419371 10?76330 560 0.,'30e8s 10C672A0
95, OI65P579 192656MM Sa0 0.931942 loli?

100 0.8ssi72 1.256012 600 0.932976 1,083913
105 0.656376 l.2417278 650 0,935359 1.0610208
110 0.661009 1,239313 700 0*137498 :00 7&Q'4 0115 0,A63489 1.2320144 750 0.9394131 1.0741030
120 0.86503l 1.225295 S00 0.9411191 1,0714118

125 0.6680417 1.210087 850 0,9412801 1.069057
130 00870118 1*?13S26 g00 0,9u"'282 11064i909
135 010721415 1,207969 950 09941q6SI 1,06419415
1410 008741046 10202966 1000 0.9416920 1,063139
1415 09475858 1,190283 1100 0,9419208 1.059929

ISO 0,877S49 1.193888 1200 0.951216 1.05712
160 0.880630 11168556 1300 0,952999 1,052L720
170 00AM3410 1.178686 14100 019SiU595 1,052569
IS0 0.086363 1.172236 1500 00956,35 1,0506417
190 0.689118 101664102 2000 0.9615941 1,0413410
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