HANDBOOK FOP THE DIRECT STATISTICAL RNALYSIS OF MISSILE GUIDANCE SYSTEMS VIA CADETM (CGVARIANCE ANALYSIS DESCRIBING FUNCTION TECHNIQUE)

James H. Taylor
Analytic Sciences Corporation

Prepared for:
Office of Naval Research

31 May 1975

DISTRIBUTED BY:

UNCLASSIFIED
EECUNITY CLASSIFICATION OF THIS PAOF (when Dell Intered)

REPORT DOCUMENTATION PAGE	REREAD INSTRUCTIONS
4. TiTle (mid sumito	- tree or nepont a pemioo coveneo
	Technical Report ${ }^{1} 1974$
analysis of missile guidance systems viA Cadet TM	March $1974-\frac{10}{}$
	TR-385-2
AUTHON(O)	STract or orant mumbit
James H. Taylor	N00014-73-C-0213
The Analytic Sciences Corporation 6 Jacob Way Reading Massachusetts 01867	
	ONR Task No. NR-215-214
	onto
	31 May 1975
Vehicle Technology Program Code 211	13. Numben or Pages
	218
	is. secunitr class. (oo hit momer) unclassified
Tis Bistribution of this Report is Unlimited.	
Aplementany notes	
;	
Missile Guidance SystemsCovariance Analysis	
Nonlinear Systems (Continuous/Discrete)	
This Handbook presents detailed instruciuons for the application of the Covariance Analysis DEscribing Function	
Technique (CADETTM) to the evaluation of tactical missile	
guidance systems (both analog and digital). Its contents	
include: CADET theory, simple illustrative exampies (with flowcharts), model development for the missile-target	

20. ABSTRACT (continued)

intercept problem, statistical inearization theory, discussions of the capabilities, limitations, and appilcation philosophy of CADET, and an extensive catalog of pertinent random input ciescribing functions. A detailed discussion of monte carlo analysis is appended, both to permit a comparison with CADET and to provide a background for the monte carlo procedures used to verify CADET.

HANDBOOK FOR THE DIRECT STATISTICAL ANALYSIS OF MISSILE GUIDANCE SYSTEMS VIA CADET ${ }^{\text {TM }}$

31 May 1975

Prepared Under:
Contract No. NOOO14-73-C-0213
(ONR Task No. NR-215-214)
for
'1YE OFFICE OF NAVAL RESEAPCH
Vehicle Techmology Program, Code 211
Arlington, Virginia 22217

Reproduction in whoie or in part is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.

Prepared by:
James H. Taylor
Apprcued by:
Cisuries F. Price
Arthur A. Sutherland, Jr.

FOREWORD

This handbook is the culmination of research performed on the Covariance Analysis DEscribing Function Techñique (CADETTM) during a twoyear period uñder contract N00014-73-C-0213, for the Office of Naval Research. The Scientific officer who monitored and encouraged this invistigation was Mr. David Siegel.

Abstract

The Covariance Analysis DEscribing Function Technique (CADETTM) -- a technique conceived and developed at rasc for the efficient direct statistical analysis of nonlinear systems with random inputs -- has heen proven to provice accurate tactical missile performance projections with a small fraction of the computer time expenditure required for a comparably reliable monte carlo analysis. This handbook is a self-contained, detailed exposition of the application of CADET to the missile-target intercept problem. The broad scope of this document is intended to permit the direct analysis of a wide variety of nonlinear and random effects in missile guidence systems, and to facilitate and encourgge the study of other nonlinear systems via CADET.

TABLE OF CONTENTS

Page
No.
FOREWORD 111
ABS'TRAC". v
LIST OF FIGURES $1 \times$
LIST OF TABLES xii
PROLOGUE AND READER'S GUIDE x111

1. THE COVARIANCE ANALYSIS DESCRIBING FUNCTION TECHNIQUE (CADET)
1.1 Covariance Analysis for Linear Systems 1-1
1.2 Covariance Analysis for Nonlinear Systems $1 . .4$
1.3 Continuous/Discrete-Time Systems 1-12
2. CADET APPLICATION: SIMPLE PYLUSTRATIONS
2.1 Missile-Target Equations of Motion 2-1
c. 2 The Continuous-Time Case: Proportional Guidance 2-3
2.3 Guidance Systems With Digital Data Processing 2-10
3
MODEL DEVELOPMENT FOR. THE MISSISE-TARGET INTERCEPT PROBLEM
3.1 Elements of the Model 3-1
3.2 The Missile-Target Kinematics Model 3-1
3.3 The Target Model 3-5
3.4 The Autopilot-Airframe Model 3-7
3.4.1 Linear Airframe Dynamics 3-9
3.4.2 Nonlinear Airframe Dynamics 3-12
3.5 The Guidance Subsystem Model 3-18
3.5.1 Proportional Guidance 3-20
S.5.a Modern Digital Guidance Systems 3-23
3.6 The Seeker Subsystem Model 3-34
3.6.1 Boresight Error Distortion 3-34
3.6.2 Disturbance and Conirol Torques 3-40
3.6.3 Transfer Function Representation of the Equivalent Lincar Seeker 3-44
3.7 System Mod』1 Summary 3-50

-

TABLE OF CONTENTS (Continced)

Page
No.

4-1
4.2 Princ aples of Quasi-Linesrization 4-3
4.3 Random Input Describing Function Calculations

4-12
4.3.1 Single-Input Nonlinearities 4-12
4.3.2 Multiple-Input Nonlinearities

4-18
4.4 Effects of Different Probability Density Functions 4-26
1.5 Describing Functions Not Existing in Closed Form Under the Gaussian Assumption

4-34
5. NVERVIEW AND ASSESSMENT OF CADET
5.1 Direct CADET-Monte Carlo Comparisons 5-1
5.1.1 Overview and CADET Mechanization

5-1
5.2 Other Factors and Philosophy of Application 5-6
5.3 CADET Development to Date: Summary and Conclusions

5-9 5.3.1 Summary

5-8
5-11
APPENDIX A A CATALOG OF RANDOM INPUT DESCRIBING FUNCTIONS A-1
APPENDIX B EXTENSIONS OF CADET B-1
APPENDIX C THE MONTE CARLO METHOD: APPLICATION AND RELIABILITY C-1
REFERENCES
R-1

LIST OF FIGURES

$\begin{gathered} \text { Figure } \\ \text { No. } \end{gathered}$		$\begin{gathered} \text { Page } \\ \text { No. } \end{gathered}$
1.1-1	Representation of the Continuous-Timo Linear Dynamic System Equations	1-2
1. 2-1	Nonlinear Syatem Rlock Diagram	1-4
1.2-2	Nonlinear Covariance Analysis -- CADET	1-10
1.2-3	Taylor Serier Linearization of $y=x^{3}$ About $m_{x}=1$	1-11
1.2-4	Quasi-Linearization of $y=x^{3}$ for Unity Input Mean	1-12
1. 3-1	An Example of a Mixed Continuous/Discrete System	1-13
2.1-1	Missile-Target Planar Intercept Geometry	2-2
2. 2-1	Simplified Missile-Target Intercept Model With Continuous-Time Guidance	2-4
2.2-2	Flow Chart for the Direct Statistical Analysis oi a Continuous-Tirio System via CADET	2-8
2.2-3	Performance Projections for Various Levels of Airframe Necoleration Saturation	2-9
2.3-1	Simplified Missile-Target Intercept Model With Digital Guidance	2-11
2.3-2	Flow Chart for the Direct Statistical Anaiysis of a Mixed Continuous/Discrete-Time System via CADET	2-15
3.1-1	Basic System Bluck Diagram	3-2
3.2-1	Target-Missile Planar Intercept Geometry	3-3
3.2-2	Block Diagram Formulation of Missile-raraget Kinematics	3-4
3.3-1	Band-Liwited Gaussian Noise Model for Target Lateral Acceleration	3-6
3.1-1	Geonctric Definition of Intercept-Plane System Variables	3-8
3.4-2	Compensated Missile Airframe Dynamics	3-11
3.1-4	Typical Nonlinear Representation of the Autopilot/ Airframe Module	3-19
3. 5-1	Deviation from the Collision Course Triangle	3-21
3.5-2	Proportional Guidance Law Model	3-23
3.5.-3	Missilo-Targei Intercept Mocicl for the Derivation of the Digital Guidance Module	3-25

LIST OF FIGURES (Continued)

Pigure Page
-NO .No.
3.5-1 Digital Guidance Module Based on Optimal Estimation anc Contros 332
3.5-5 Complete Digital Euidance Module Structure 3-34
3.6-1 Seeker System Configuration 3-35
3.6-2 Boresight Aberration Model -3-36
3.6-3 Nonlinear Angular Aberratioa Charactoristic lnvestigated in Ref. 3 3-33
3.6-4 Secker Noise Model 3-38
3.6-5 Receiver Boresight Error Distortion Effects 3-39
3.6-6 Final Boresight Error Measurement Model 3-40
3.6-7 External Disturbance Torque Models 3-42
3.6-8 Nominsl Seeker Track Loop (Neglecting All Nonlinear Effects) 3-44
3.S-9 Complete Seeker Model 3-45
3.6-10 Linear Seeker Model 3-47
3.6.11 Linear Seeker Model in Transier Function Form 3-48
3.7-1 A Complete Missile-Target Intercept Model 3-51
4.2.1 Example of a Nonlinear System With Desirable Separation of Nonlinearities by Linear Dynamics 4-8
4.4-1 Three Density Functions Comprised of Two Triangles 4-27
4.4-2 Random Input Describing Function Sensitivity for the Limiter 4-30
4.4-3 Random Input Describing Function Sensitivity for the Power Law Nonlinearity 4-31
4.4.4 Random Input Describing Function Sensitivity fc. the Sinusoidal Operato: 4-33
4.5-1 Comparison of A. proximations for the Expected Value of the Range 4-39
5.2-1 Illustration of (IDET and Monte Carlo Analysis in a Parameter Trade-Oif Study $5-3$

LIST OF FIGURES (Continued)

Figure PageNo.No.
5.2-2 rhilosophy of CADET Application 5-9
A.1-1 Basic Piecewise-Linear Characteristics A-3
A.1-2 Decompra: ion of Complicated Piecewise-Linear Characteristics $\mathrm{I}_{\mathrm{h}}+\mathrm{n}$ Iasic Components A-6
B. 2-1 A Product Nonlinearity Driven by Random Biases B-3
L. 3-1 Dynamic System With a Product-of-States Nonlineaity B. 8
B.3-2 Simulation Resuits for a System Containing a Product- of-States Nonsinearity B-10
B.3-3 Modified CADET Solution for the System Shown in Fig. B.3-1 With Only One State Assumed Nongaussian 13-12
C. 1-1 Nonlinear System Model C-2
C. 1-2 Schematic Characterization of the Monte Carlo Technique C-5
C.2-1 Typical Confidence Interval Multipliers for the Esti- mated Standard Deviation of a Gaussian Random Variable ($\lambda=3$) C-11
C. 2-2 Effect of Kurtosis on Confidence Interval Limits C-12
C. 3-1 Time History of rms Missile-Target Lateral Separation C-14
C. 3-2 Comparison of CADET und Sonte Carlo rms LateralSeparationC-15

ZIST OF TABLES

Table Page
No.No.
3.4-1 Example of Compensated Linear Missile Airframe Data in the Terminal Homing Fhase 3-13
3.6-1 Typical Nominal Seeker Specifications 3-49
3.6-2 Typical Nominal Compensated Seeker Specifications 3-49
5.1-1 Comparison of CADET and Monte Carlo Efficiency Based on 256-Trial Monte Carlo Analysis 5-5
C.2-1 Some Common Probability Density Functions C-7
C.2-2 Cumulative Probability Within n_{σ} Standard Deviations of the Mean for a Gaussian Random Variable C- 8
C.3-1 Estimated Standard Deviation and Kurtosis for Lateral Separation, $t=6 \mathrm{sec}$ C-17
C.4-1 90 Percent Confidence Interval Limits, Gaussian Random Variables, q Trials $\left(n_{\sigma}=1.645\right)$ C-20
C.4-2 95 Percent Confidence Interval Limits, Gaussian Random Variables, q Trials ($n_{\sigma}=1.960$) C-21
C. 4-3 99 Percent Confidence Interval Limits, Gaussian Random Variables, q Trials $\left(n_{\sigma}=2.576\right)$ C-22

PROLOGUE AND I'EADER'S GUIDE

The development of a complex weapon system with stringent performance specifications, such as a tactical missile, generally requires several phases, including preliminary design and feasibility studies, decisions conceraing implemeniation of various system functions, and compensation or design modi.ication to obtain the best possible system performance under realistic constraints. In the later stages of development, the mathematical system model used as a basis for generating system performance projections inevitably contains nonlinear effects and random inputs. Nonlinearity is generally associated with nonlinear relations inherent to the laws of physics, unavoidable hardware nonlinearities, and essential design nonlinearities; random effects may include noise (e.g., thermal effects), sensor measurcment errors, random inputs that contain inforiation required by the system, and random initial conditions. When random effects are significant, some statistical measure of system performance is required; for example, the root-mean-square (rms) miss distance achieved at the time of target interception may be of interest in assessing the capability of a tactical missile.

The traditional approach used for the statistical analysis of the performance of systems with significant nonlinearities has been the monte carlo method. In this technique, a large number of computer simulations (trials) are made using the required nonlinear model with different, randomly chosen, initial conditions and random forcing functions generated according to given statistics. The resulting ensemble of sinulations provides the basis for making estimates of the true system variable statistics. Associated with the monte carlo method is the problem that a large
number of trials is required to provide confidence in the accuracy of the results; an ensemble comprising as many as 1000 trials may be needed to obtain an accurate statistical analysis for a nonlinear system. Thus, while the monte carlo method may be useful for obtaining a few evaluations of a system's performance, it is not a very satisfactory tool for conducting extensive sensitivity and tradeoff studies for different values of the important system parameters, or for conducting detailed studies of nonlinear effects on system performance, due to the large expenditure in computer time required.

The limitations of the monte carlo approach for obtaining performance projections for realistic nonlinear models of tactical missiles strongly motivated the development of a more efficient analytic technique. The resulting methodology, conceived by the technical staff at TASC, has proven to be an exceptionally powerful means for directly evaluating the statistical behavior of nonlinear systems with random inputs (Refs. 1 to 4). For reasons that will become obvious, this method is referred to as the Covariance Analysis Dessribing function Technique (CADET ${ }^{T M}$). The purpose of this handbook is to present detailed instructions to facilitate the application of CADET in studies of weapon systems performance.

The scope and intent of this presentation is as follows: Chapter 1 gives the theoretical development of the basic equations of CADET, both for continuous-time and mixed continuous/ discrete-time systems. Chapter 2 provides a step-by-step exposition of the CADET procedure, accompanied with computer flow-charts. Chapter 3 is a comprehensive discussion of modeling nonlinear effects in the missile-target intercept problem; the purpose of this material is threefold: to provide the basis for the examples treated herein, to expedite future \cdot se of CADET in analyzing tacti.cal missile performance, and to provide some guidance in
modeling analogous phenomena that may occur in studying other systems having similar nonlinearities. The theory and praciical application of quasi-linearization is treated in Chapter 4; exact and approximate methods for calculating random input describing functions are presented, accuracy of the quasi-linear approximation is considered, and some sensitivity issues are discussed. Chapter 5 (blue pages) provides a broad overview of the application of CADET to general problems -- touching upon philosophy of application, assessments of the strong points and limitations of CADET, and a comparison of the computational efficiency of CADET versus the monte carlo method. Finally, thren appendices are included to facilitate the use and evaluation of the CADET methodology: a catalog of random input describing functions, a presentation of extensions of CADET that permit the analysis of some unusual nonlinear effects that cannot be treated accurately by the standard CADET methodology presented in Chapter 1, and a detailed discussion of the application and reliability of the monte carlo method.

The prerequisites for understanding this document are introductory modern control theory (including the state-space formulation of system models in terms of first-order vector differential or differential/difference equations, and the associated vector-matrix calculus), and elementary random process theory. The contents of this handbook have been chosen to satisfy the requirements of a somewhat diverse audience. For this reason, readers of differing backgrounds and interests will find that some sections are of greater utility than others. In the sinplest case, i.e., the $£ \mathfrak{p p l i c a t i o n ~ o f ~ C A D E T ~ t o ~ t h e ~ m i s s i l e - t a r g e t ~ i n t e r - ~}$ cept problem treating only those effects discussed in Chapter 3, the illustrative examples of Chapter 2 and the random input describing function catalog of Appendix A may suffice. For those interested in the theory of quasi-linearization and CADET, Chapters 1 and 4 should prove to be valuable adjuncts. In treating situations that require the quasi-linearization of nonlinearities
not listed in Appendix 4 , the examples und principles givיn in Chapter 4 establish the necessary starting point. Fnjnally, Appendix C on the monte carlo method provides discusstons of the theory and application of the technique (and of its potential pitfalls in the analysis of nonlinear systems), and establishes the context for comparisons between monte carlo simulation results arıd CADET.

While the primary thrust of CADET development thus far has been the extension and refinement of an efficient tool for the statistical evaluation of the performance of missile guidance systems, the overall scope of CADET is evidently much more general. The system model based on a nonlinear state vector differential' difference equation with random inputs is of broad generality, being descriptive of many continuous and discrete-time systems with random disturban'es. The specific nonlinear effects discussed herein are by no means restricted in occurrence to the missile-target intercept problem. It is hoped that the success of the research presented here and in Refs. 1 to 4 will encourage oiher applications of the CADET concept.

THE COVARIANCE ANALYSIS DESCRIBING FUNCTION TECHNIQUE (CADET)

The Covariance Analysis DEscribing function Technique (CADETTM) is a method for directl: determining the statistical properties of solutions of noniinear system with random inputs., recently conceived and developed at The Analytic Sciences Corporation (Refs. 1 to 4). The principal advantage of this technique is that it greatly reduces the need for monte carlo simulation, thereby achieving substantial sa:ings in computer processing time. We first motivate the discussion by reviewing the covariance analysis method for linear systems; then we develop an analogous procedure (CADET) for the nonlinear case.

1.1 COVARIANCE ANALYSIS FOR LINEAR SYSTEMS

The dynamics of a linear continuous-time stochastic system can be represented by a first-order vector differential equation in which $\underline{x}(t)$ is the system state vector and $\underline{w}(t)$ is a forcing function vector,

$$
\begin{equation*}
\underline{\dot{x}}(t)=F(t) \underline{x}(t)+G(t) \underline{w}(t) \tag{1.1-1}
\end{equation*}
$$

where we assume that $F(t)$ and $G(t)$ are continuous with respect to $t ;$ Fig. 1.1-1 illustrates the equation. The state vector is composed of any set of variables sufficient to describe the behavior of the system completely. The forcing function vector $w(t)$ represents disturbances as well as control inputs that may act upon the system. In what follows, the forcing function w(t) is

A-11882

Figure 1.1-1 Representation of the Continuous-Time Linear Dynamic System Equations
assumed to be composed of a mean or deterministic value $b(t)$ and a random component $\underline{u}(t)$, the latter being comprised of elements which are uncorrelated in time; that is, $\underline{u}(t)$ is a "white noise" process having the spectral density matrix $Q(t)$. Thus $w(t)$ is specified by*

$$
\begin{align*}
& \underline{w}(t)=\underline{b}(t)+\underline{u}(t) \\
& E[\underline{w}(t)]=\underline{b}(t) \tag{1.1-2}\\
& E\left[\underline{u}(t) \underline{u}^{T}(\tau)\right]=Q(t) \delta(t-\tau)
\end{align*}
$$

Similarly, the state vector has a deterministic component $m(t)$ and a random part $\underline{r}(t)$; for simplicity $\underline{m}(t)$ will generally be called the mean vector. The state vector $\underline{x}(t)$, then, is described statistically by its mean vectcr and coveriance matrix.

$$
\begin{align*}
& \underline{x}(t)=\underline{m}(t)+\underline{r}(t) \tag{1.1-3}\\
& \underline{m}(t)=E[\underline{x}(t)]
\end{align*}
$$

[^0]\[

$$
\begin{equation*}
P(t)=E\left\lfloor\underline{\mathbf{r}}(t) \underline{\mathbf{r}}^{\mathrm{M}}(\mathrm{t})\right\rfloor \tag{1.1-3}
\end{equation*}
$$

\]

Henceforth, the time dependence of the variables $\underline{w}, \underline{b}, \underline{u}, Q, \underline{x}$, $\underline{m}, \underline{r}$ and P will not be explicitly denoted by (t), unless required for clarity.

The differential equations that govern the propagation of the mean vector and covariance matrix for the system described by Eq. (1.1-1) can be derived directly, as demonstrated in Ref. 5, to be

$$
\begin{align*}
& \dot{\underline{m}}=F(t) \underline{m}+G(t) \underline{b} \tag{1.1-4}\\
& \dot{p}=F(t) P+P F^{T}(t)+G(t) Q G^{T}(t)
\end{align*}
$$

The firsi and second momeats of the system response are completely determined by integrating the above vector and matrix differ"ntial equations, Eq. (1.1-4), when the initial conditions, $m(0)$ and $P(0)^{*}$, are specified. The elements of \underline{m} represent the effects of deterministic initial conditions and biases due to deterministic system inputs ($b \neq 0$). The diagonal elements of P are the mean square values of the random components of the state variables, and the off-diagonal slements represent the degree of correlation between the randem components of the various state variables.

Equation (1.1-4) provides a direct method for analyzing the statistical properties of x. This is to be contrasted with the monte carlo method, where many sample trajectories of x are calculated from computer-generated random noise and initial conditions, using Eq. (1.1-1). The moments \underline{m} and P are then estimated by averaging over the ensemble of trajectories generated in the monte carlo procedure. Note that Eq. (1.1-4) leads to exact

[^1]solutions for m aid p, to within computer integration accuracy, whereas the monte carlo method yields approximate solutions for any finite number of simulations. Furthermore, the mean and covariance equations need be solved only once over the time interval of interest, whereas Eq. (1.1-1) must be solved repeatedly using the monte carlo technique; consequently the direct analytical method is not only exact, but is also generally the most afficient technique for analyzing linear systems. With this observation as motivation, we proceed to describe a methodology wiereby the statistics of a nonlinear syste.i can be computed approximately using recursive relationships similar in form to those of linear covariance analysis, Eq. (1.1-4); the monte carlo method is treated in greater depth in Appendix C.

1.2 COVARIANCE ANALYSIS FOR NONLINEAR SYSTEMS

Tise ionlinear counterpart of Eq. (1.1-1) treated in this presentation is

$$
\begin{equation*}
\underline{\dot{x}}=\underline{f}(\underline{x}, t)+G(t) \underline{w} \tag{1.2-1}
\end{equation*}
$$

Figure 1.2-1 depicts this equation. The input and state vectors are again characterized by the quantities \underline{b}, Q and m, P, respectively, given in Eqs. (1.1-2) and (1.1-3).

Figure 1.2-1
Nonlinear System Block Diagram

It may seem restrictive to have the random inputs enter the system differential equation linearly as in Eq. (1.2-1). However, if a system is of the form

$$
\begin{equation*}
\underline{\dot{x}}=\underline{f}(\underline{x}, \underline{y}, t) \tag{1.2-2}
\end{equation*}
$$

and y is a correlated random process that can be represented as a random vector satisfying

$$
\begin{equation*}
\dot{y}=\underline{f}_{n}(y, t)+G_{n}(t) \underline{w} \tag{1.2-3}
\end{equation*}
$$

where w is the sum of suitable vectors of deterministic variables, \underline{b}, and white noise processes, \underline{u}, we can rewrite Eq. (1.2-2) using the augmented state vector \underline{x}_{a},

$$
\underline{x}_{a} \triangleq\left[\begin{array}{c}
\underline{x} \\
\hdashline \underset{y}{y}
\end{array}\right]
$$

as

$$
\dot{\underline{x}}_{a}=\left[\begin{array}{c}
\underline{f}\left(\underline{x}_{a}, t\right) \tag{1.2-4}\\
\underline{f}_{n}(y, t)
\end{array}\right]+\left[\begin{array}{c}
0 \\
-G_{n}(t)
\end{array}\right] \underline{w}
$$

Obscrie trat y is thus considered to be a component of the state vector, comprised of "noise states". Th's procedure places the apparent]y more general problem of Eqs. (1.2-2) and (1.2-3) in the format guven in Eq. (1.2-1); since all physically realizable random processes arc correiated, the assumption that y is described by Eq. ($1<3$) is not particularly restrictive. For convenience we thus consider Eq. (1.2-1) to be the basic system model, with no significant loss in generality.

The statistical differential equations that correspond to Eq. (1.1-4) can be shown to be (Ref. 5)

$$
\begin{align*}
& \underset{\sim}{m}=E \underline{\underline{t}}(\underline{x}, t)]+G(t) \underline{b} \\
& \Delta \hat{e}+G(t) \underline{b} \tag{2,2-5}\\
& P=E\left[\underline{\underline{r}} \underline{\underline{r}}^{\mathbf{T}}\right]+E\left[\underline{\underline{r}} \underline{\underline{f}}^{T}\right]+G(t) \not \mathcal{G}^{T}(\mathrm{t} ;
\end{align*}
$$

The first equation is the direct analog of the mean differential equation of Eq. (1.1-4), since we observe that \hat{f} is simply $F(t) \underline{m}$ In the linear case. The nonlinear covariance equation can be represented in the same format as indicated in Eq. (1.1-4) by defining the auxiliary matrix N,

$$
\begin{equation*}
N P \triangleq E\left[\underline{f}(\underline{x}, t) \underline{r}^{T}\right] \tag{1.2-6}
\end{equation*}
$$

Then Eq. (1.:-5) may be written as

$$
\begin{align*}
& \underline{\mathrm{m}}=\underline{\hat{l}}+G(t) \underline{b} \tag{1.2-7}\\
& \dot{\mathrm{P}} \times N P+\mathrm{PN}^{T}+G(t) Q G^{T}(t)
\end{align*}
$$

The relation in Eq. (1.2-6) generally provides an explicit definition of N,

$$
\begin{equation*}
N=E\left[\underline{f}(\underline{x}, \zeta) \underline{r}^{T}\right] \mathbf{p}^{-1} \tag{1,2-8}
\end{equation*}
$$

since p is usually positive definite* and thus a unique p^{-1} exists.

The derivation of Eq. (1.2-5) is based directly on the principles of covariance analysis, Ref. 5. We observe, however, Often the initial condition $P(0)$ is only positive semi.definite, in which case the pseudoinverse of $P(0)$ could be used in Eq. (1.2-8). As shall be shown subsequently, Eq. (1.2-8) is only formal, in the sense that it is almost never used to evaluate N (refer to sq. (1.2-10) and Section 4.1).
that the vector \hat{i} and matrix N defined in Eqs. (1.2-5) and (1.2-6) ure identical to the quantities which provide a minimum mean aquare rrror guasi-1inear approximation to the nonjinearity $f(x, t)$. It can be shown (refer to Section 4.i) that the approximation

$$
\underline{f}(\underline{x}, t) \cong \underline{\hat{p}}+N(\underline{x}-\underline{m})
$$

with \hat{f} and N specified by Eqs. (1.2-5) and (1.2-6) yields the best lincur approximetion in the sense that

$$
\underline{e} \Delta \underline{f}(\underline{x}, t)-\underline{\hat{e}}-N(\underline{x}-\underline{m})
$$

satisfies the condition
$E\left[\underline{e}^{T} \underline{s}\right]=$ minimum
for any positive semi-definite matrix S. The intimate relation between the well-established describing function theory (Ref. 6) and Eq. (1.2-6) has perinitted the rapid development of an approximate nonlinear covariance analysis technique based on Eq. (1.2-7) callod CADET -- the Covariance Analysis DEscribing Function Technique. Henceforth, we shall refer to $\underset{f}{f}$ as the expectation vector and N as the quasi-linear system dynamics matrix.

The quantities \hat{f} and N defined in Eqs. (1.2-5) and (1.2-6) must be detesmined before we can procesd to solve Eq. (1.2-7). Evaluating the indicated expected values requires knowledge of the joint probability density function (joint pdf) of the state variables. While it is possible, in principle, to evolve the $n-$ dimensional joint pdf $p(x, t)$ for a nonlinear system with random inputs by solving a set of partial differential equations known as the Fokker-Planck equation or the forward equation of Kolmogorov (Rei. 5), this procedure is generally not practically feasible. The fact that $p(\underline{x}, \mathrm{t})$ is not available precludes the exrct solution of Eq. (1.2-7).

One procedure for obiairing an approximato solution to Fig. (1.2-7) is to ussume the form of the jotit prohability density function of the state variablea $i r$. order to evaluate \hat{f} and N according to Eqs. (1.2-5) and (1.2-6). Altiough it is possible to use any joint pdf, all of CADET development to date has beon bared on the assumption that the state variables are jointly normal; this choice was made because it is both reasonable and convenient.

While the above assumption is strictly true only for linear systems driven by gaussian inputs, it is often approximately valid in nonlinea: systems with nongaussian inputs. Although the output of a nonlineailty with a gaussian input is gencrally nongaussiari, it is known from the central limit theorem that random processes tend to be made gaussian when passed through low-pass linear dynamics ("filtered"). Thus, we rely on the linear part of the system to insure that nongaussian noinlinearity outputs result in nearly gaussian system variables as jignals propagate through the system. By the same token, if there are nongaussian system inputs which are passed through low-pass linear dynamics, the central limit theorem can again be invoked to justify the assumption that the state varlables are approximately jointly normal. The validity of the gaussian assumption for nonlinear systems with gaussian inputs has been extensively studied and verified; nongaussian random inputs have not been considered.

From a pragmatic viewpoint, the gaussian hypothesis serves to simplify the mechanization of CADET significantly by permitting each scalar nonlinear relation in $\underline{f}(\underline{x}, t)$ to be treated in isolation, with \hat{f} and N formed from the individual random input describing functions (ridf's) for each nonlinearity. Since ridf's have been catalogued in Ref. 6 for several classes of nonlinearities encountered in a broad spectrum of practical problems, the

Implomentation of CADET is a straikhtforward procedure for the analysis of many nonlinear systems. We also note that, under the fausian assumption, the random input describing functions can bo calculated directly from the mean vector, m, and the covarianco matrix. P, of the system state vector, Thus, we write \hat{f} and N in the form

$$
\begin{align*}
& \hat{\hat{f}}=\hat{\underline{f}}(\underline{m}, p, t) \tag{1,2-9}\\
& \hat{N}=\hat{N}(\underline{m}, p, t)
\end{align*}
$$

As a corollary to the above observations, we have the rosult (Rof. 7) that

$$
\begin{equation*}
N(\underline{m}, P, t)=\frac{d}{d \underline{m}} \hat{\mathbf{f}} \tag{1.2-10}
\end{equation*}
$$

Since calculating \hat{f} is required for the propasation of the mean ($\mathrm{Eq} .(1.2-7)$), it is generally much easier to employ Eq. (1.2-10) than to evaluate N directly using Eq.(1.2-6). Quasi-linearization and the random input describing function are treated in some dotail in Chapter 1.

Relations of the form indicated in Eq. (1.2-9) permit the direct evaluation of \hat{f} and N at each integration step in the proparation of m and P, as fllustrated in Fig. 1.2-2. We note that tho dependence of \hat{f} and N on the statistics of the state vector is due to the existence of nonlinearities in the system. Without nonlinear effects, the propagation of the mean and covariance is "uncoupled," as in Eq. (1.1-4).

To demonstrate the ease with rhich CADET can be mechanized under the gaussian assumption, we consider a low-order system model for the missile-target intercept problem having a singe nonlinearity in Section 2. 2 . All of the steps involved in performing statistical analysis via CADET are illustrated in detail.

Figure 1.2-2 Nonlinear Covariance Analysis -- CADET

A comparison of quasi-linearization with the classical Taylor series or small-signal linearization technique provides a great deal of insight into the success of the ricf in capturing the essence of nonlinear effects. Small-signal linearization for a scalar nonlinear element $f(x)$ is based on the identification of a nominal operating point (in this context, the mean value of x, denoted m_{x}) and the evaluation of the slope of the nonlinearity at that value; then the approximation is made that

$$
\begin{equation*}
f(x) \cong f^{\prime}\left(m_{x}\right)+f^{\prime}\left(m_{x}\right)\left(x-m_{x}\right) \tag{1.2-11}
\end{equation*}
$$

which represents the first two terms of a Taylor series expansion about the given operating point, as illustrated in Fig. 1.2-3 for the example, $y=x^{3}$. While this is a useful approach if excursions from the nominal are small, the validity of the Taylor series approximation is questionable when x is a random variable which can exhibit large variations about its mean value.

R-10230

Figure 1.2-3
Taylor Series Linearization of
$y=x^{3}$ about $m_{x}=1$

By contrast, the quasi-linear representation of a nonlinearity is sensitive to the input amplitude in some sense; in the case of random inputs, the statistics $m_{x}=E[x]$ and $p_{x}=F\left[\left(x-m_{x}\right)^{2}\right]$ provide the measure of input amplitude. For the example $y=x^{3}$, where x is a gaussian random process, we calculate the describing functions in Section 4.3 (Eq. (4.3-7)) to be

$$
\begin{aligned}
& \hat{\mathrm{f}}=\left(3 p_{\mathrm{x}}+\mathrm{m}_{\mathrm{x}}^{2}\right) \mathrm{m}_{\mathrm{x}} \\
& \mathrm{n}=3\left(\mathrm{p}_{\mathrm{x}}+\mathrm{m}_{\mathrm{x}}^{2}\right)
\end{aligned}
$$

so the nonlinearity is approximated by

$$
\begin{equation*}
x^{3} \cong\left(3 p_{x}+m_{x}^{2}\right) m_{x}+3\left(p_{x}+m_{x}^{2}\right)\left(x-m_{x}\right) \tag{1.2-12}
\end{equation*}
$$

Comparing Eqs. (1.2-11) and (1.2-12), we see that the describing function gains* depend on both the mean and variance of x, as indicated in Fig. 1.2-4, while the coefficients in the Taylor series approximation do not.

[^2]

Figure 1.2-4
Quasi-Linearization of $y=x^{3}$ for Unity Input Mean

1.3 CONTINUOUS/DISCRETE-TIME SYSTEMS

Preceding sections of this chapter have treated continuoustime nonlinear systems; i.e., those that are governed by differential equations. However, in many practical applications, the system may include a digital computer whose operations are expressed in terms of difference equations, as illustrated in Fig. 1.3-1. Such a structure arises in missile guidance systems when digital control laws are used to generate acceleration commands, for example. In this section, equations are briefly developed for propagating the mean and covariance of a nonlinear, mixed continuous/ discrete system. Systems which are wholly d.screte can be treated as special cases of the following discussion.

The equations of motion for a system of the type shown in Fig. 1.3-1 are expressed in mixed differential/difference equation format. In the continuous-time phase (between sampling instants, $\mathrm{t}_{\mathrm{k}}, \mathrm{k}=1,2, \ldots$) the digital computer is inactive, and the state variables of the system satisfy an equation of the form

Figure 1.3-1
An Example of a Mixed Continucus/
Discrete System

$$
\underline{\dot{x}} \triangleq\left[\begin{array}{c}
\dot{\underline{x}}_{c} \tag{1.3-1}\\
\hdashline-\underline{\dot{x}}_{d}
\end{array}\right]=\left[\begin{array}{c}
\underline{f}_{c}(\underline{x}, t)+G_{c}(t) \underline{w}_{c}(t) \\
\hdashline \underline{0}
\end{array}\right], \quad t_{k}<t \leq t_{k+1}
$$

where $\underline{x}_{c}(t)$ refers to the continuously-varying states in the system, and $\underline{x}_{d}(t)$ is a collection of discrete-time states (e.g., states in the digital computer) which remain unchanged between the sampling times. Under the assumption that the state variables are jointly normal, the statistics between sampling instants can be propagated using a straightforward extension of the standard CADE'T equations (Eq. (1.2-7)) as follows:

$$
\begin{aligned}
& \dot{\underline{m}}=\left[\begin{array}{c}
\hat{\mathbf{f}}_{c}(\underline{m}, P, t) \\
\hdashline \underline{0}
\end{array}\right]+\left[\begin{array}{c}
G_{c}(t) \underline{b} \\
\hdashline \underline{c}
\end{array}\right] \\
& \dot{p}=\left[\begin{array}{c:c}
N_{c}(\underline{m}, P, t) \\
\hdashline 0
\end{array}\right] p+P\left[N_{c}^{T}(\underline{m}, P, t): 0\right]+\left[\begin{array}{c:c}
G_{c} Q_{c} G_{c}^{T} & 0 \\
\hdashline 0 & 0
\end{array}\right], \\
& t_{k}<t \leq t_{k+1}
\end{aligned}
$$

where $N_{\text {e }}$ is the quasi-linear system dynamies matrix for the contimuous-time stald varialloles, dolined by

$$
N_{c} \triangleq E\left[\underline{f}_{c}(\underline{x}, t) \underline{r}^{T}\right]
$$

which is of dimension ($n_{c} \times n$); n is the total number of state variables and n_{c} is the number of continuously-varying states. The continuous-time vector of white noise processes $\underline{w}_{c}(t)$ is described statistically by the mear vector b_{c} and spectral density matrix Q_{C} as before (refer to Eq. (1.1-2)).

Observe that describing functions for a nonlinear timeinvariant function or gaussian discrete-time states alone need not be evaluated continuously since the statistics of the discrete-time states are constant in the interval $t_{k}<t \leq t_{k+1}$. As a special case, if

$$
\begin{equation*}
\underline{f}_{c}(\underline{x}, t)=\underline{f}_{1}\left(\underline{x}_{c}, t\right)+\underline{f}_{2}\left(\underline{x}_{d}\right) \tag{1.3-3}
\end{equation*}
$$

then N_{c} may be partitioned into two parts,

$$
\begin{equation*}
N_{c}(\underline{m}, p, t)=\left[N_{c_{1}}\left(\underline{m}_{c}, P_{c c}, t\right)!N_{c_{2}}\left(\underline{m}_{d}, p_{d d}\right)\right] \tag{1.3-4}
\end{equation*}
$$

where \underline{m} and P are correspondingly partitioned into

$$
\underline{m}=\left[\begin{array}{c}
\underline{m}_{c} \tag{1.3-5}\\
\hdashline \underline{m}_{d}
\end{array}\right], \quad p=\left[\begin{array}{c:c}
p_{c c} & p_{c d} \\
\hdashline \mathrm{p}_{c d} & \mathrm{p}_{\mathrm{dd}}
\end{array}\right]
$$

Since \underline{m}_{d} and $F_{d d}$ are constant during the continuous-time phase, the matrix $\mathrm{N}_{\mathrm{c}_{2}}$ is also constant.

At a sampling time, t_{k+1}, the digital computer performs a calculation which can be represented as a difference equation,

$$
\left[\begin{array}{c}
\underline{x}_{c}\left(t_{k+1}^{+}\right) \tag{1.3-6}\\
\hdashline \underline{x}_{d}\left(t_{k+1}^{+}\right)
\end{array}\right]=\left[\begin{array}{c}
\underline{x}_{c}\left(t_{k+1}\right) \\
\hdashline \underline{f}_{d}\left(\underline{x}_{\left.\left(t_{k+1}\right), t_{k+1}\right)}\right.
\end{array}\right]+\left[\begin{array}{c}
v \\
\hdashline \hat{c}_{k+1} \underline{w}_{k+1}
\end{array}\right]
$$

where the superscript (+) denotes the new values of the state variables just after a sampling instant.* The vector ${\underset{w}{k}+1}$ represents a discrete-time random quantity that can enter the digital calculation as a result of sensor measurement noise,quantization, etc. It is assumed that \underline{w}_{k+1} has a mean of \underline{b}_{k+1} and a covariance matrix $Q_{i k+1}$. Observe that in Eq. (1.3-6) \underline{x}_{c} remains unchanged, since variables that satisfy differential equations cannot change instantaneously in time. Situations where it is reasonable to assume that a continuous-time variable can change "almost instantaneously" as a result of a digital operation can be treated by decomposing that variahle into components that are strictly continuous (an element of \underline{x}_{c}) and digital (an element of $\left.\underline{x}_{d}\right)$, so the condition that $\underline{x}_{c}\left(t_{k+1}^{+}\right)=\underline{x}_{c}\left({ }^{+}{ }_{k+1}\right)$ represents no loss in generality.

Because the mean and covariance of \underline{x}_{c} and \underline{x}_{d} at t_{k+1} are known from Eq. (1.3-2), the expectation vector $\hat{\mathrm{f}}_{\mathrm{d}}$ and quasi-linear system dynamics matrix N_{d} corresponding to ${\underset{\sim}{d}}^{f}$ in Eq. (1.3-5) can be evaiuated. Thus we can rewrite the discrete-time part of Eq. (1.3-6) approximately as

$$
\begin{equation*}
\left.\underline{x}_{d}\left(t_{k+1}^{+}\right) \cong \hat{\underline{f}}_{d}+N_{d}\left[\underline{x}^{\left(t_{k+1}\right.}\right)-\underline{m}\left(t_{k+1}\right)\right]+G_{k+1} \underline{w}_{k+1} \tag{1.3-7}
\end{equation*}
$$

From Eq. (1.3-7) it follows that the mean and covariance of the system states just after the discrete-time caiculation are given by

[^3]\[

$$
\begin{align*}
& \underline{m}_{c}\left(t_{k+1}^{+}\right)=-n_{c}\left(t_{k+1}\right) \\
& \underline{m}_{d}\left(t_{k+1}^{+}\right)=\hat{f}_{d} \\
& \left.\mu_{\left(t_{k+1}\right.}^{+}\right)=\left[\begin{array}{c:c}
1 & 0 \\
-\frac{1}{2}
\end{array}\right] P\left(t_{k+1}\right)\left[\begin{array}{c:c}
1 & T \\
\hdashline 0 & d
\end{array}\right]+\left[\begin{array}{c:c}
0 & 0 \\
\hdashline 0 & G_{k+1} Q_{k+1} G_{k+1}^{T}
\end{array}\right] \tag{1.3-8}
\end{align*}
$$
\]

After evaluating Eq. (1.3-8), $\underline{m}\left(\mathrm{t}_{\mathrm{k}+1}^{+}\right)$and $\mathrm{P}\left(\mathrm{t}_{\mathrm{k}+1}^{+}\right)$are the initial conditions for propagating the mean vector and covariance matrix ovor the next continuous-time phase using Eq. (1.3-2). Thus by alternately implementing the continuous-time and digital mean vector and covariance matrix propagation equations, Eqs. (1.3-2) and (1.3-8), the performance of a nonlinear system described by a mixed differential/difference equation can be evaluated.

The developments discussed in this chapier provide the nocresiary tools for analyzing the performance of a broad class of nonlincar systems with random inputs. The efficiency realized by CADFI has made it an attractive technique for performing sensitivity studies and investigations of the impact of nonlinear eflects on the accuracy of tactical missile guidance systems; it is anticipated that CADET will prove to be equally powerful in treating other nonlinear systems.

CADET APPLICATION: SIMPLE ILLUSTRATIONS

In this chapter we demonstrate many of the details that are involved in the application of CADET to a practical problem involving the statistical evaluation of the performance of a nonlinear system with random inputs. Simplified formulations of the missile-target intercept problem are treated, with guidance mudules that are either analog or digital; the corresponding CADET equations are obtained; and their solution -- to establish the evolution of the system variable statistics during a given scenario -is outlined in computer flow-chart format.

2.1 MISSILE-TARGET EQUATIONS OF MOTION

This secticn treats , he basic differential equations describing the motion of a tactical missile and a target to be intercepted. In subsequent sections, examples of two types of guidance modules are considered -- continuous-time (analog) and discrete-time (digital) -- to provide the basis for detailing the (DET methodology, both for systems represented entirely by dif'erential equations and for systems describca by mixed differential/ difference equations. In order to obtain a system model which is simple enough to permit a clear presentation of the step-by-step procedure entailed in the use of CADET, we reduce the planar missile-target intercept problem to its bare essentials. Chapter 3 provides a more detailed discussion on modeling the missile-target intercept problem; here we present only a summary of the required dynamic equations.

The ccordinate frame and the basic variables are portrayed in Fig. 2.1-1. Here we consider variations about a head-or

Figure 2.1-1
Missile-Target Planar Intercept Geometry
intercept, i.e., the missile lead angle, θ_{ℓ}, and target aspect angle, θ_{a}, are assumed to be small. For the purpose of illustrating the mechanization of CADET, we make the following approximations based on small-angle assumptions:

- The down-range separation, x, and missiletarget range, r, are deterministic, given approximately by

$$
\begin{align*}
x(t) \cong r(t) & \doteq\left(v_{m}+v_{t}\right)(T-t) \tag{2.1-1}\\
& \triangleq\left(v_{m}+v_{t}\right) t_{g o}
\end{align*}
$$

where T is the nominal terminal time (time of intercept), $t_{g o}$ is the time-to-go, and v_{m} and v_{t} are the constant missile and target velocity magnitudes, respectively.

- The lateral or cross-range separation, y, is determined by the missile and target lateral accelerations, a_{m} and at respectively, as in Eq. (3.5-14)
$\ddot{y} \simeq a_{t}{ }^{-a} m$
- The autopilot and airframe dynamics are represented by a linear plant, modeled by a transfer function with a single dominant pole at $s=-1 / \tau$,
followed by an ideal 1 imiter, to model the airframe saturation effect. Thus the unlimited missile lateral acceleration \tilde{a}_{m} satisfies the differential equation

$$
\begin{equation*}
\tilde{a}_{m}+\frac{1}{\tau} \tilde{a}_{m}=\frac{1}{\tau} a_{c} \tag{2.1-3}
\end{equation*}
$$

where a_{c} is the accelcration command generated by the guidance module, and the limited value, am, is given by

$$
a_{m}=f\left(\tilde{a}_{m}\right)= \begin{cases}\tilde{a}_{m} & \left|\tilde{a}_{m}\right| \leq a_{\max } \tag{2.1-4}\\ a_{\max } \operatorname{sign}\left(\tilde{a}_{m}\right), & \left|\tilde{a}_{m}\right|>a_{\max }\end{cases}
$$

- The target acceleration, a_{t}, is the sum of a deterministic variable and a band-limited gaussian process satisfying

$$
\begin{equation*}
\dot{a}_{t}+w_{t} a_{t}=w(t) \tag{2.1-5}
\end{equation*}
$$

where ω_{t} is the target inaneuver bandwidth. The random input w is described by
$E[w(t)]=b(t)$
$E[(w(t)-b(t))(w(\tau)-b(\tau))]=q(t) \delta(t-\tau)$
where b is the deterministic component of the input and q is the spectral density of the white noise process, w - b.

Given the preceding simplified equations of motion, we complete the missile-target intercept model by considering simple examples of the two basic classes of guidance modules: continuous-time and digital.

2.2 THE CONTINUOUS-TIME CASE: PROPORTIONAL GUIDANCE

The acceleration command dictated by the classical proportional guidance law (refer to Section 3.5.1) is given by

$$
\begin{equation*}
a_{c}=n^{\prime} v_{c} \dot{\theta} \tag{2.2-1}
\end{equation*}
$$

where n^{\prime} is the navigation ratio (a constant, here taken to be 3), v_{c} is the closing velocity, which in the prosent scenario is approximately given by the sum of the missile and tarcet velocities,

$$
\begin{equation*}
v_{c} \triangleq r(t) / t_{g o} \cong v_{m}+v_{t} \tag{2.2-2}
\end{equation*}
$$

and $\dot{\theta}$ is the angular rate of the line-of-sight (LOS)(Fig. 2.1-1). Using the assumptions made in Section 2.1, Eq. (2.2-1) can be reformulated to yield the approximation

$$
\begin{equation*}
\frac{1}{\tau} a_{c} \cong \frac{n^{\prime}}{t_{g O}^{\tau}}\left(\dot{y}+\frac{y}{t_{g O}}\right) \triangleq \beta\left(\dot{y}+\frac{y}{t_{g o}}\right) \tag{2.2-3}
\end{equation*}
$$

where β denotes $n^{\prime} / \tau t$ for notational simplicity. The complete system model based on the foregoing assumptions and development is portrayed in Fig. 2.2-1.

Figure 2.2-1
Simplified Missile-Target Intercept Model With Continuous-Time Guidance

The state vector differential equation associated with Fig. 2.2-1 is given by

$$
\begin{align*}
& \underline{\dot{x}}=\left[\begin{array}{l}
x_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & +1 \\
\beta / t_{g o} & \beta & -1 / \tau & 0 \\
0 & 0 & 0 & -\omega_{t}
\end{array}\right] \underline{x}+\left[\begin{array}{c}
0 \\
-1 \\
0 \\
0
\end{array}\right] f\left(x_{3}\right)+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] w(t) \\
& \Delta F \underline{x}+\underline{d f}\left(x_{3}\right)+g w(t) \tag{2.2-4}
\end{align*}
$$

From the statistics of the input to the limiter,

$$
\begin{align*}
& m_{3}=E\left[x_{3}\right] \\
& r_{3}=x_{3}-m_{3} \tag{2.2-5}\\
& \sigma_{3}^{2}=E\left[r_{3}^{2}\right]
\end{align*}
$$

we can directly evaluate the scalar random input describing functions (ridf's) used in the quasi-linear representation for the limiter $f\left(x_{3}\right)$,

$$
\begin{equation*}
f\left(x_{3}\right) \cong \hat{f}+n r_{3} \tag{2.2-6}
\end{equation*}
$$

as derived in Example 3 of Section 4.3:

$$
\begin{align*}
& n=P I\left(\frac{a_{\max }+m_{3}}{\sigma_{3}}\right)+P I\left(\frac{a_{\max ^{-m}}}{\sigma_{3}}\right)-1 \\
& \hat{f}=\sigma_{3}\left[G\left(\frac{a_{\text {max }}+m_{3}}{{ }^{\sigma} 3}\right)-G\left(\frac{\left.\left.a_{\max ^{-m_{3}}}^{\sigma_{3}}\right)\right]-m_{3}}{}\right.\right. \tag{2.2-7}
\end{align*}
$$

The functions $G(v)$ and PI(v) are defined in Eq. (4.3-13); they are the standard functions used in quasi-linearizing piecewiselinear elements (Ref. 6). Many computer scientific subroutine
puckugue have available the subroutine "FRF(v)". In which case

$$
\begin{align*}
& \operatorname{PI}(v)=\frac{1}{2}\left(1+\operatorname{ERF}\left(\frac{v}{\sqrt{2}}\right)\right) \\
& G(v)=v P I(v)+\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} v^{2}} \tag{2.2-8}
\end{align*}
$$

permits direct calculation of \hat{f} and n. Given the two constituents of the quasi-linear representation of the limiter indicated in Eqs. (2.2-6) and (2.2-7), we substitute into Eq. (2.2-4) to get

$$
\begin{align*}
& \hat{\underline{i}}=F \underline{m}+\underline{d} \hat{\mathrm{P}} \\
& N=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & -n & 1 \\
\beta / t_{g o} & \beta & -1 / \tau & 0 \\
0 & 0 & 0 & -\omega_{t}
\end{array}\right] \tag{2.2-9}
\end{align*}
$$

Finally, from the input statistics, b and q, the differential equations and initial conditions that approximately govern the propagation of the state vector deterministic component ("mean") and covariance matrix are given by Eq.(1.2-7):

$$
\begin{align*}
& \underline{\underline{m}}=\underline{\hat{p}}+\mathbf{g} \mathbf{b} ; \quad \underline{m}(0)=\underline{m}_{0} \\
& \dot{p}=N P+P N^{T}+\underline{g} \mathbf{g}^{T} q ; \quad P(C)=P_{0} \tag{2.2-10}
\end{align*}
$$

The CADET methodology utilizes the preceding relations to determine the time histories of the mean vector, m, and covariance matrix, p, over the duration of an ensemble of engagements ($0 \leq t \leq T$). Any standard numerical integration technique may then be $u=\approx d$ to solve Eq. (2.2-10).' The structure of a computer
prokram to carry out the CADET analysis of tactical missile performance is indicated in fig. 2.2-2.

The results of a CADET and monte carlo statistical analysis of the performance of the preceding missile guidance system (obtained from Ref. 1) are depicted in Fig. 2.2-3. Since the rms lateral separation between the missile and target is of primary importance in assessing tne ability of the missile to intercept the target, only that variable is portrayed. The white noise input spectral density, q, was chosen to be a constant yielding an rms target lateral acceleration of $160 \mathrm{ft} / \mathrm{sec}^{2}$, the bandwidih ω_{L} was assumed to be $1 \mathrm{rad} / \mathrm{sec}$, and the autopilot time constant τ was taken to be 1 sec. All initial conditions (\underline{m}_{0} and P_{0}) were zero.

This missile performance study considered three levels of ilffrume saturation. In Fig. 2.2-3a, the linear case corresponding to an infinite acceleration command limit is shown; here, CADET reduces to the standard linear covariance analysis (Section 1.1) which is exact, and the 200-trial monte carlo analysis provides an adequate approximation to this result. For the study of Fig. 2.2-3b, the restriction that the missile lateral acceleration cannot exceed $322 \mathrm{ft} / \mathrm{sec}^{2}$ leads to a five-fold increase in σ_{y} at the terminal time, here taken to be 10 sec ; the CADFT and monte carlo approximate solutions are in good agreement. Fien in the case where the missile lateral acceleration constraint is very severe ($a_{\text {max }}=32.2 \mathrm{ft} / \mathrm{sec}^{2}$), causing a further l r re decrease in missile capability as shown in Fig. 2.2-3c, the CADFT solution is verified by the monte carlo analysis.

Thus we observe that the direct statistical analysis via CADET, implemented according to Fig. 2.2-2, quite accurately captures the effect of a significant nonlinearity in the missiletaryet intercept problem. This investigation is performed with an expenditure of computer time that is a small fraction

Figure 2.2-2
Flow Chart for the Direct Statistical Analysis of a Continuous-Time System via CADET

Figure 2.2-3

Performance Projections for Various Levels of Airframe Acceleration Saturation

(approximately $1 / 100$) of that required for an accurate monte carlo study. Furthermore, the effect of decreasi.ig missile performance caused by airframe saturation is completely beyond the scope of linear covariance analysis, which requires the small-signal linearization of the saturation nonlinearity, i.e., replacing f(x_{3}) by a unity linear gain, regardless of the saturation level. Consequently the small-signal linearization approach completely obscures the nonlinear effect and leads to a quite over-optimistic prediction of missile performance when compared to a more realistic assumption -- e.g., that a_{m} cannot exceed $322 \mathrm{ft} / \mathrm{sec}^{2}$, as evident in Figs. 2.2-3a and 2.2-3b.

2.3 GUIDANCE SYSTEMS WITH DIGITAL DATA PROCESSING

In some guidance systems, discrete-time measurements of certain system variables are made available to a computer for data processing purposes; acceleration commands are then calculated (in an on-line mode by use of a suitable algorithm) which are used to control the missile. In this presentation, we assume that the available signal is a noisy sampled measurement of LOS angle, θ, so we have the sequence of values given by

$$
\begin{equation*}
\mathbf{z}_{\mathbf{k}}=\theta_{\mathbf{k}}+\dot{\mathbf{v}}_{\mathbf{k}}, \quad \mathbf{k}=1,2, \ldots \tag{2.3-1}
\end{equation*}
$$

at the sampling instants, $t_{k}=k \tau_{s}$, where τ_{s} is the sampling period. The zero-mean white noise sequence, v_{k}, is quantified by its variance

$$
\begin{equation*}
\sigma_{v}^{2}=E\left[v_{k}^{2}\right] \tag{2.3-2}
\end{equation*}
$$

Generally, the random effects modeled by this sequence include external inputs (e.g., jamming) and measurement error. In light of the small angle conditions, we use the approximation

$$
\begin{equation*}
\theta \cong y / r \triangleq x_{1} / r \tag{2.3-3}
\end{equation*}
$$

where r is deterministic, given by Fq. (2.1-1), and x_{1} is the state variable representing y, Fig. 2.2-1.

Based on the information provided by the measurement sequence z_{k}, the computer algorithm is often of the form

$$
\begin{equation*}
\underline{x}_{d}\left(t_{k}^{+}\right)=F_{d, k} \underline{x}_{d}\left(t_{k}\right)+\underline{k}_{k} z_{k} \tag{2.3-4}
\end{equation*}
$$

(cf. Section 3.5.2 for the design of a Ruidance modilichasid on
 vector of digital states, comprised of variables which are stored in memory and up-dated according to Eq. (2.3-4) as each new measurement z_{k} is made and processed. The matrix $F_{d, k}$ and vector \underline{k}_{k}, which may vary from one digital operation to the next, are specified by the filter algorithm. The difference equation, Eq. (2.3-4), in combination with the initial condition \underline{x}_{0} determines the $t i m e-h i s t o r i e s ~ o f ~ x_{d}$.

A typical control law (again, refer to Section 3.5.2) then specifies an acceleration command, a_{c} given in Eq. (2.1-3), that is a linear combination of the digital states,

$$
\begin{equation*}
a_{c}=\underline{c}_{k}^{T} \underline{x}_{d}\left(t_{k}^{+}\right), \quad t_{k}^{+} \leq t \leq t_{k+1} \tag{2.3-5}
\end{equation*}
$$

This relation completes the des: 1 iption of the overall system model, depicted in Fig. 2.3-1.

The mixed continuous/discrete-time system depicted in Fig. 2.3-1 and represented by the total state vector

$$
\underline{x}^{T}=\left[\begin{array}{l:l}
\underline{x}_{c}^{T} & \underline{x}_{d}^{T} \tag{2.3-6}
\end{array}\right]
$$

satisfies a differential/difference equation of the form treated in Section 1.3. Corresponding to this division of state variables into continuous-time and digital states, we have

$$
\underline{m}=\left[\begin{array}{c}
\underline{m}_{c} \tag{2.3-7}\\
\hdashline \underline{m}_{d}
\end{array}\right], \quad p=\left[\begin{array}{c:c}
p_{c c} & F_{c d} \\
\hdashline \mathbf{p}_{c d} & P_{d d}
\end{array}\right]
$$

The nonlinearity $f\left(\widetilde{a}_{m}\right)$ given in Eq. (2.1-4) falls in the continuous-time dynamics; its argument is a continuous state variable, x_{3}. Thus quasi-linearization proceeds as in Eqs.(2.2-6) through (2.2-8). We can then determine the matrix N_{c} and vector \hat{f}_{c} required for the propagation of m and P during the continuoustime phase (Eq. (1.3-2)):

$$
\begin{align*}
& N_{c}=\left[\begin{array}{cccc:c}
0 & 1 & 0 & 0 & \underline{0}^{T} \\
0 & 0 & -n & 1 & \underline{0}^{T} \\
0 & 0 & -1 / \tau & 0 & \frac{1}{T} \\
0 & 0 & 0 & -\omega_{t} & \underline{c}^{T}
\end{array}\right] \tag{2,3-8}\\
& \underline{\underline{f}}_{c}=\left[\begin{array}{c}
m_{2} \\
\left(m_{4}-\hat{f}\right) \\
\left(-m_{3}+c_{k}^{T} \underline{m}_{d}\right) / \tau \\
-\omega_{t} m_{4}
\end{array}\right]
\end{align*}
$$

These quantities are all that are required for the propagation of \underline{m} and P between sample times according to Eq. (1.3-2),

$$
\begin{align*}
& \left.\dot{\underline{m}}=\left[\begin{array}{c}
\underline{\mathrm{l}} \mathrm{c} \\
\hdashline \underline{0}
\end{array}\right] \dot{[}\right]\left[\begin{array}{c}
\underline{\mathrm{r}} \\
\hdashline \underline{0}
\end{array}\right] \mathbf{b} \tag{2.3-9}\\
& \dot{\mathbf{p}}=\left[\begin{array}{c}
\mathrm{N}_{\mathrm{c}} \\
\hdashline 0
\end{array}\right] \mathbf{p}+\mathbf{p}\left[\begin{array}{l:l}
\mathbf{N}^{T} & 0 \\
&
\end{array}\right]+\left[\begin{array}{c:c}
\underline{g} \mathbf{g}^{T} & 0 \\
\hdashline 0 & 0
\end{array}\right] \mathbf{q}
\end{align*}
$$

where b and q are the determinjstic component and the spectrai density of the random component of the random input, respectively, as defined in Eq. (2.1-6), and g is given in Eq. (2.2-4).

In the present example, the digital operation taking place in the infinitesimal interval (t_{k}, t_{k}^{+}) has been formulated as a single linear time-varying difference equation, Eq. (2.3-4). Recalling that

$$
\begin{equation*}
z_{k}=x_{1}\left(t_{k}\right) / r\left(t_{k}\right)+v_{k} \tag{2.3-10}
\end{equation*}
$$

we obtain

$$
\begin{align*}
\underline{x}_{d}\left(t_{k}^{+}\right) & =\left[\begin{array}{l:l:l:l}
\frac{1}{r\left(t_{k}\right)} & \underline{k}_{k} & 0 & 0 \\
0 & F_{d, k}
\end{array}\right]\left[\begin{array}{c}
\underline{x}_{c}\left(t_{k}\right) \\
\hdashline \underline{x}_{d}\left(t_{k}\right)
\end{array}\right]+\underline{k}_{k} v_{k} \\
& \triangleq N_{d, k} \underline{x}\left(t_{k}\right)+\underline{k}_{k} v_{k} \tag{2.3-11}
\end{align*}
$$

The change in m and P during the digital phase of operation (as given in Eq. (1.3-8)) is then

$$
\begin{align*}
& \underline{m}\left(t_{k}^{+}\right)=\left[\begin{array}{c:c}
I & 0 \\
\hdashline N_{d, k}
\end{array}\right] \underline{m}\left(t_{k}\right) \triangleq N_{k} \underline{m}\left(t_{k}\right) \\
& P\left(t_{k}^{+}\right)=N_{k} P\left(t_{k}\right) N_{k}^{T}+\left[\begin{array}{c:c}
0 & 0 \\
\hdashline 0 & \sigma_{v} \underline{k}_{k}-\frac{k}{T}
\end{array}\right] \tag{2.i-:22}
\end{align*}
$$

Implementation oi the CADET equations fivon abovo (Eqs. (2.3-9) and (2.3-12)) is portrayed in computer flow-chart format in Fig. 2.3-2.

We observe that $t h \geq d i f f e r e n c e ~ e q u a t i o n ~ s a t i s f i e d ~ b y ~$ the digitul states is linear time-varying, so the matrix N_{d} (Fq. (2.3-11)) contains no describing functions. If it is necessary to include nonlinear effects in the discrete-time portion of the system model, one must evaluate appropriate random input describing functions to be substituted in the vector \hat{f}_{d} and matrix $N_{d}(E q .(1.3-7))$; some added complexity is entailed in this case.

The examples riven in Sections 2.2 and 2.3 illustrate the fundamentals involved in the application of CADET to provide assessments of the performance of a tactical missile represented by a simple low-order system model with one significant nonlinear effect. CADET has been successfully applied to system models of considerably higher order and complexity (refer, for example, to Table 5.1-1). The flow charts shown in Figs. 2.2-2 and $2.3-2$ accurately reflect the methodology used in the more complex problems.

Figure 2,
Flow Chart for the Direct Statistical Analysis of a Mixed Continuous/Discrete-Time System via CADET

MODEL DEVELOPMENT FOR THE
MISSILE-TARGET INTERCEPT PROBLEM

This chapter presents mathematical models which describe various subsystems required in treating the gereral missiletarget intercept problem. The material included here summarizes the nonlinear effects that have been treated in past CADET applications (Refs. 1 to 4). The aims of this presentation are to aid future users of CADET in analyzing tactical missile performance, and to provide some guidance in modeling analogous phenomena that may occur in the simulation of other nonlinear systems with random inputs.

3.1 ELEMENTS OF THE MODEL

The overall interconnection of the subsistems which comprise the missile-target intercept model is indicated in Fig. 3.1-1. The principal variables are shown as outputs of the appropriate blocks, and random disturbances are denoted w_{i}. Detailed models underlying each input-output relationship are given in subsequent sections of the chapter. Observe that the models developed here are of considerably greater realism than those used in the illustrative examples of Chapter 2, although the basic closed-loop guidance system is of the same structure.
3.2 THE MISSILE-TARGET KINEMATICS MODEL

The missile-target engagement presented here is restricted to the terminal homing phase in a planar intercept configuration.

Figure 3.1-1
Basic System Block Diagram

An inertial coordinate system is defined by the positions of the missile and target at the initiation of the terminal homing phase (taken to occur at $t=0$); the missile is at the origin and the line-of-sight (LOSS) to the target defines the x-axis at $t=0$ (see Fig. 3.2-1). The coordinate frame moves with the missile, without rotation; by definition, we designate x and $y, ~ r e s p e c t i v e l y$, to be the instantaneous down-range and cross-range missile-target. separation. Expressing the separation in polar coordinates, the relations

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& \theta=\tan ^{-1}(y / x)
\end{aligned}
$$

define the instantaneous range and LOS angle of the target. The angles θ_{ℓ} (missile lead angle) and θ_{a} (target aspect angle) specify the orientation of the missile and target velocity vectors with respect to the $x-a x i s$, and $\theta_{\text {va }}$ dafines the direction of the missile acceleration vector with respect to the velocity vector; by convention, $\theta^{\prime}{ }^{\prime} \theta_{a}$ and $\theta_{\text {va }}$ are positive in the directions defined in Fig. 3.2-1.

In deriving the equations of motion, it can often be assumed that the misisile and target velocity vector magnitudes are constant, or, equivalently, that the missile and target acceleration vectors are normal to the velocity vectors (e.g., $\theta_{\text {va }}$ is 90 degrees in Fig. 3.2-1). This candition, which neglects the effect of drag, is representative of many missile-target engagement situations during the critical last few seconds. Under this assumption, the lateral acceleration of either vehicle
producos a rotation of the corrosponding velocity vector, given by

$$
\begin{align*}
& \dot{\theta}_{\ell}=\frac{1}{v_{m}} \quad a_{m} \tag{3.2-1}\\
& \dot{\theta}_{a}=\frac{1}{v_{t}} \quad a_{t}
\end{align*}
$$

The equations describing the relative motion of the target are determined by projecting the velocity vectors onto the axes shown in Fig. 3.2-1; in terms of the velocity magnitudes v_{m} and v_{t},

$$
\begin{align*}
& \dot{x}=-v_{m} \cos \left(\theta_{\ell}\right)-v_{t} \cos \left(\theta_{Q}\right) \tag{3.2-2}\\
& \dot{y}=-v_{m} \sin \left(\theta_{\ell}\right)+v_{t} \sin \left(\theta_{\Omega}\right)
\end{align*}
$$

Equation (3.2-2) represents the essential nonlinearities inherent to the missile-target kinematic relationship; the overall kinematic equations are portrayed in block diagram form in Fig.3.2-2.

In situations where drag effects are not negiigible, the missile velocity vector magnitude will vary with time (according to a nonlinear differential equation) due to the fact that a is not normal to ${\underset{v}{m}}\left(\theta_{\mathrm{va}} \neq 90\right.$ deg). Thus v_{m} must be treated as a state variable and the velocity vector rotation is given by the nonlinear relation

$$
\begin{equation*}
\dot{\theta}_{\ell}=\frac{a_{m}}{v_{m}} \sin \left(\theta_{v a}\right) \tag{3.2-3}
\end{equation*}
$$

This case is discussed in greater detail in Sectio: 3.4.

3.3 THE TARGET MODEL

The model representing the target behavior is based on the assumption that the target velocity has constant magnitude with a direction described by the aspect angle, θ_{a}, shown in fig. 3.2-1. The aspect angle is determined by the target lateral accoleration, a_{t}, as indicat, d in Eq. (3.2-1). A commonly-used target maneuver model represents target lateral acceleration as a correlated gaussian process derived from a gaussian white roise input by one stage of low-pass filtering. In differential equation formulation, we have*

$$
\begin{equation*}
\dot{a}_{t}=-\omega_{t} a_{t}+w_{5} \tag{3.3-1}
\end{equation*}
$$

This relation and the equivalent low-pass filter representation are depicted in Fig. 3.3-1

By adjusting the values of target maneuver bandwidth, ω_{t}, and rms level, $\sigma_{a_{t}}$ a wide range of target maneuver characteristics can be represented. The instantaneous target maneuver

[^4]
(a) Dilferential Equation Reprementation

(b) Transier Function Formulation

R-11807

Band-Limited Gaussian Noise Model for Target Lateral Acceleration
rms level is determined by the spectral density, q_{5}, of the rardom input w_{5} and the initial condition on $\sigma_{a_{t}}$; for example, if 4_{5} is constant and

$$
\begin{equation*}
E\left[a_{t}(0)^{2}\right]=\frac{q_{5}}{2 v_{t}} \tag{3.3-2}
\end{equation*}
$$

then the rms level of the target acceleration is constant throughout the engagement,

$$
\begin{equation*}
\sigma_{a_{t}} \equiv \sqrt{q_{5} / 2 \omega_{t}} \tag{3.3-3}
\end{equation*}
$$

It is important to note that the autocorrelation function and the corresponding power spectral density for a poisson square wave -- i.e., a square wave that switches between $t_{a} \mathrm{at}_{\mathrm{f}} / \mathrm{sec}^{2}$ with random poisson-distributed switching times having an average of $\omega_{t} / 2$ zero-crossings per second (Ref. 8) -- are identical to those of the above gaussian process, although the associated probability density functions are quite different. The poisson model
is often used to represent target evasive or "jinking" maneuvers. The poisson square wave can only take on values of $\pm \sigma_{t}$, so at any given time its probability density function (pdf) consists of impulses with a weighting of 0.5 at plus and minus $\sigma_{a_{t}}$, whereas the above markov process is assumed to have a gaussian amplitude distribution. Therefore, the response of an amplitude dependent nonlinear operator could be quite different whon driven by each of these two signal forms. However, if the random square wave is passed through a narrow-band filter or integrator, its pdf would experience broadening due to the filter's finite bandwidth. In the case of an integrator, for example, the resulting wave shape would we a series of linear segments of constant slope. By application of the central limit theorem, as discussed in Ref. 8 , the distribution of the output of a linear subsystem approaches the gaussian density function as the number of stages of filtering it represents increases. In this case, the relative target position, given by x and y in Fig. 3.2-2, are of particular interest in assessing the performance of a tactical missile; these variables are two integrations removed from a_{t}. Thus, although the poisson square wave may in some situations be a more realistic target maneuver model, we take advantage of the statistical similarity of the gaussian process and the poisson square wave and the existance of kinematic dynamics to justify representing this random effect by a band-iimited gaussian process, which simplifies CADET analysis.

3.4 THE AUTOPILOT-AIRFRAME MODEL

In accordarce with the assumption that the missile and target trajectories are confined to a plane, we describe the missile airframe orientation by the variables depicted in Fig. 3.4-1. This figure establishes the sign convention of each quantity; each variable is positive as shown. Note that we are
particularizing the airframe model at this point by discussing the: tail-controlled tactical missile; this is done to provide a concrete model for consideration, not to exclude other configurations. The primary airframe variables are:

- Angle of attack, α
- Control surface deflection, δ
- Missile body angle, θ_{m}
- Missile velocity vector, v_{m}
- Missile acceleration vector, ${\underset{m}{m}}^{m}$

The velocity vector is specified by its normal and longitudinal components, v_{n} and v_{ℓ} respectively, or by its magnitude, v_{m}, and angular relation to the original line-of-sight (missile lead angle), θ_{ℓ}. Similarly, the acceleration vector is defined in terms of its normal and longitudinal components, a_{n} and a_{ℓ} respectively, or by its magnitude, a_{m}, and angular relation to the velocity vector, $\theta_{v a}$. We neglect gravity effects, tacitly assuming that the intercept plane is horizontal or that the missile has perfect gravity compensation.

Figure 3.4-1
Geometric Definition of InterceptPlane System Variables

3.4.1 Linear Airframe Dynamics

In a general situation, the differential equations expressing the airframe dynamics are nonlinear and time-varying due to the dependence of the airframe parameters on variations in altitude, angle of attack, Mach number and other factors. However, we first consider a linearized model of the airframe dynamic equations,

$$
\begin{align*}
& \ddot{\theta}_{m}=M_{q} \dot{\theta}_{m}+M_{\alpha} \alpha+M_{\delta} \delta \tag{3.4-1}\\
& \dot{\alpha}=\dot{\theta}_{m}-L_{\alpha} \alpha-L_{\delta} \delta
\end{align*}
$$

where the constants $M_{q}, M_{\alpha}, M_{\delta}, L_{\alpha}$ and L_{δ} represent the airframe stability derivatives. The latter are obtained from the nonlinear airframe parameters by making the following assumptions:

> Missile velocity is constant (drag effects are negligible over the period of time considered; a_{m} is normal to v_{m} or $\theta_{\text {va }}=90$ deg).
> - Altitude remains neariy constant.
> - The center of pressure, mass and inertia of the missile are constant.
> - Lift force and moments are linearly related to changes in angle of attack about some trim condition and to control fin deflection.

- Fin effectiveness is independent of angle of attack.

The output of the airframe model is the missile lateral acceleration magnitude, which is given by

$$
\begin{align*}
a_{m}=v_{m} \dot{\theta}_{\ell} & =v_{m}\left(\dot{\theta}_{m}-\dot{\alpha}\right) \tag{3.4-2}\\
& =v_{m}\left(L_{\alpha} \alpha+L_{\delta} \delta\right)
\end{align*}
$$

where v_{m} is the magnitude of the missile velocity vector. The physical basis of the linear airframe dynamic equations is treated in more detail in Section 3.4-2 (refer to Eq. (3.4-16)).

The missile treated here is steered by control fin deflection. Assuming that the actuator dynamics are linear and of first order, we have

$$
\begin{equation*}
\dot{\delta}=-\mu \delta+\mu u(t) \tag{3.4-3}
\end{equation*}
$$

where $u(t)$ represents a commanded fin deflection and $1 / \mu$ is the actuator time constant. For typical values of the stability derivatives in Eq. (3.4-1), the missile airframe will exhibit an underdamped or even an unstable response to a commanded fin deflection. Ačeptable control is achieved by introducing feedback compensation in tre fin deflection command,

$$
\begin{equation*}
u(t)=-\left[k_{c} a_{c}-k_{a}\left(a_{m} / v_{m}\right)-k_{b} \dot{\theta}_{m}\right] \tag{3.4-4}
\end{equation*}
$$

where a_{c} is the commanded acceleration provided by the guidance module (see Section 3.5). The parameter k_{c} is chosen to give unity steady state gain from a_{c} to a_{m}, and k_{b} and k_{a} are chosen to give the desired transient response. A complete block diagram of the compensated linear missile dynamic equations is shown in Fig. 3.4-2.

For ready assessment of the compensated missile airframe dynamics in the linear case, it is convenient to use a transfer function formulation of the model. Given two outputs, a_{m} and $\dot{\theta}_{m}$, we desire to obtain $g_{1}(s)$ and $g_{2}(s)$ to provide the input-output relations indicated in Fig. 3.4-3. Utilization of standard block diagram reduction techniques shows that the dynamics indicated in Fig. 3.4-2 are equivalent to the transfer function formulation depicted in Fig. 3.4-3, where

The indicated transfer function coefficients are given by

$$
\begin{equation*}
c_{1}=\mu\left[\left(k_{a}+k_{b}\right)\left(L_{\delta} M_{\alpha}-L_{\alpha} M_{\delta}\right)-M_{\alpha}-L_{\alpha} M_{q}\right] \tag{3.4-7}
\end{equation*}
$$

$$
\begin{aligned}
& c_{2}=\mu\left(L_{\alpha}+L_{\delta} M_{q} k_{a}-M_{q}-M_{\delta} k_{b}\right)-\left(M_{\alpha}+L_{\alpha} M_{q}\right) \\
& c_{3}=\mu\left(1-L_{\delta} k_{a}\right)+L_{\alpha}-M_{q} \\
& d_{1}=\mu k_{c}\left(L_{\delta} M_{\alpha}-L_{\alpha} M_{\delta}\right) \\
& d_{2}=-\mu M_{\delta} k_{c} \\
& e_{1}=\mu v_{m} k_{c}\left(L_{\delta} M_{\alpha}-L_{\alpha} M_{\delta}\right) \\
& e_{2}=\mu v_{m} L_{\delta} M_{q} k_{c} \\
& e_{3}=-\mu v_{m} L_{\delta} k_{c}
\end{aligned}
$$

The aerodynamic coefficients used in any given study are chosen to correspond to the specified intercept conditions. For example, if the engagement occurs at $35,000 \mathrm{ft}$., with a inissile velocity magnitude $v_{m}=3000 \mathrm{ft} / \mathrm{sec}$, airframe data taken fron Ref. 10, Vol. II, Appendix H serves as a typical case. The compensating gains k_{a}, k_{b} and k_{c} (Eq. (3.4-4)) are set to achieve a suitable damped airframe response. These parameters and the corresponding transfer function coefficients are given in Table 3.4-1. The fact that e_{1}, e_{2} and e_{3} do not all have the same alyebraic sign demonstrates that $g_{1}(s)$ has a right half plane zero, which is characteristic of the tail-controlled missile configuration depicted in Fig. 3.4-1.

3.4.2 Nonlinear Airframe Dynamics

In scenarios requiring significant missile maneuvers, nonlinear aerodynamic effects can have a considerable impact on homing guidance system performance. In the most general case, the differential equations of motion contain expressions that

TABLE 3.4-1
EXAMPLE OF COMPENSATED LINEAR MISSILE AIRFRAME DATA IN THE TERMINAL HOMING PHASE

Parameter	Bymbol	Value
Actuator Lag Time Constant	1/H	0.0533 sec
Aerodynamic Coefficiente	$\begin{aligned} & u_{q} \\ & \mathbf{u}_{a} \\ & u_{8} \\ & L_{a} \\ & L_{8} \\ & \hline \end{aligned}$	$-0.462 \mathrm{sec}^{-1}$ -6.81 sec-2 -72.0 sec-2 $0.379 \mathrm{sec}^{-1}$ $0.070 \mathrm{sec}^{-1}$
Compensating Gains	$\begin{aligned} & \mathbf{k}_{\mathbf{a}} \\ & \mathbf{k}_{\mathrm{b}} \\ & \mathbf{k}_{\mathrm{c}} \end{aligned}$	$\begin{aligned} & 1.02 \mathrm{sec} \\ & 0.188 \mathrm{sec} \\ & 0.476 \times 10^{-3} \mathrm{sec}^{2} / \mathrm{ft} \end{aligned}$
Trangfer Functi a Coofiiciente	$\begin{aligned} & c_{1} \\ & c_{2} \\ & c_{3} \\ & d_{1} \\ & d_{2} \\ & e_{1} \\ & e_{2} \\ & e_{3} \end{aligned}$	$\begin{aligned} & 720.0 \mathrm{sec}^{-3} \\ & 275.3 \mathrm{sec}^{-2} \\ & 18.3 \mathrm{sec}^{-1} \\ & 0.240 \mathrm{sec}^{-2} \mathrm{ft}^{-1} \\ & 0.642 \mathrm{sec}^{-1} \mathrm{ft}^{-1} \\ & 720.0 \mathrm{sec}^{-3} \\ & -0.865 \mathrm{sec}^{-2} \\ & -1.87 \mathrm{sec}^{-1} \end{aligned}$
Transfer Function Poles	$\begin{aligned} & z_{1} \\ & s_{2} \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & -3.16 \mathrm{sec}^{-1} \\ & -7.56+13.0 \mathrm{j} \mathrm{sec}-1 \\ & -7.56-13.0 \mathrm{j} \mathrm{sec} \end{aligned}$

involve nonlinear functions of the following fundamental parameters:

- angle of attack
- missile velocity and Mach number
- control surface deflection
- air density
- center of pressure for missile body
- missile mass
- missile moment of inertia
- missile center of gravity location

The development of a nonlinear aerodynamic model requires a somewhat greater degree of specificity than that needed for the general discussion of the linear case given above. For this reason, we confine our attention to a missile modeling problem that is similar to that detailed in Ref. 3. The resulting nonlinear model is typical of tail-controlled cruciform missile airframe dynamics under the conditions noted below.

During the termingl intercept phase, the missile is assumed to be in a gli:t nest of operation, corresponding to a thrust force of zero. Consegrifly, missile mass, momet of inertia, and center of gravity ire constant and need not be considered as variables in the airframe equations. The assumption that the intercept plane is nearly horizontal in the last few seconds of an engagement implies that the free stream air density, ρ_{∞}, and the speed of sound, v_{s}, are constants. The latter condition allows us to use missile velocity, v_{m}, and Mach number, v_{m} / v_{s}, interchangeably. The variables of the required nonlinear airframe equations of motion are then defined in Fig. 3.4-1.

The lateral coraponent of missile acceleration, a_{ℓ}, results from the lateral aercdynamic force which is assumed to be separable into contributions $F_{\ell_{\text {aot }}}$ and $F_{\ell f d}$ due to nonzero angle of attack and fin deflection, respectively. Similarly, the axial component of missile acceleration, a_{a}, is due to the axial force contributions $F_{a_{a o t}}$ and $F_{a_{f d}}$ due to α and δ. The positive sense of a_{ℓ} is chosen to correspond to the sense of the lateral forces produced by positive α and δ, respectively, and the positive sense of a corresponds to positive drag. Letting m denote the mass of the missile during the terminal intercept phase, the acceleration components a_{ℓ} and a_{a} can be expressed in terms of these force components as

$$
\begin{align*}
& a_{\ell}=\left(F_{\ell_{a o t}}+F_{\ell f d}\right) / m \\
& a_{a}=\left(F_{a_{a o t}}+F_{a_{f d}}\right) / m \tag{3.4-8}
\end{align*}
$$

It is then a simple derivation (Ref. 3) to show that

$$
\begin{equation*}
\alpha=\dot{\theta}_{m}+\frac{1}{m v_{m}}\left[\left(F_{a_{a o t}}+F_{a_{f d}}\right) \sin \alpha-\left(F_{\ell} \quad+F_{\ell o t}\right) \cos \alpha\right] \tag{3.4-9}
\end{equation*}
$$

The differential equation for body angular rate, ${ }^{\prime}{ }_{m}$, is obtained from the summation of the moments acting about the body principal axis. The body lateral force $F_{\ell_{\text {aot }}}$ acting on the airframe at the body center of pressure, and the control surface lateral force $F_{\ell f d}$ acting at the center of pressure for the tail are primary contributions to the moment equation. Other aerodynamic moments may also be significant; for example, rotation of the missile body produces a moment m_{q} that is sometimes not negligible. Letting I_{b} denote the missile moment of inertia about the body axis and letting d_{α} and d_{δ} denote the respective moment arms through which the forces $F_{\ell_{a o t}}$ and $F_{\ell_{f d}}$ act, the expression for the missile body angular accelenation is

$$
\begin{equation*}
\ddot{\theta}_{m}=-\frac{1}{I_{b}}\left(F_{\ell_{a o t}} d_{\alpha}+F_{\ell_{f d}} d_{\delta}+m_{q}\right) \tag{3.4-10}
\end{equation*}
$$

The rate of change of the maignitude of the velocity vector can be obtained from the piojection of the body acceleration components onto the velocity vector. This procedure, followed by the substitution of Eq. (3.4-8), yields

$$
\begin{equation*}
\dot{v}_{m}=-\frac{1}{m_{o}}\left[\left(F_{a_{a o t}}+F_{a_{f d}}\right) \cos \alpha+\left(F_{\ell_{a o t}}+F_{\ell_{f d}}\right) \sin \alpha\right] \tag{3.4-11}
\end{equation*}
$$

The above lateral and axial forces are in themselves a source of nonlinearity. For example, they are proportional to the dynamic pressure, q_{∞}, given by

$$
\begin{equation*}
q_{\infty}=\frac{1}{2} \rho_{\infty} v_{m}^{2} \tag{3.4-12}
\end{equation*}
$$

The dependency of the forces on α and δ is also nonlinear; how the relations are modeled would depend on the particular missile under consideration and the range of α and δ of interest. The study in Ref. 3 obtained realistic results with the following truncated double-power-series expansion formulation:

$$
\begin{align*}
F_{\ell} & =k_{1} v_{m}\left(1+k_{11} \alpha^{2}\right)\left(1+k_{12} v_{m}\right) \alpha \\
F_{\ell} & =k_{2} v_{m}\left(1+k_{21} \alpha^{2}\right)\left(1+k_{22} v_{m}\right) \delta \\
F_{a_{\text {aot }}} & =k_{3} v_{m}\left(1+k_{s 1} \alpha^{2}\right)\left(1+k_{32} v_{m}\right) \tag{3.4-13}\\
F_{a_{f d}} & =k_{4} v_{m}\left(1+k_{41} v_{m}+k_{42} v_{m}^{2}\right) \delta^{2}
\end{align*}
$$

These relations can be directly substituted into Eqs. (3.4-9) and (3.4-11). The moment equation, Eq. (3.4-10), requires further consideration because while the moment arm d_{δ} may be considered constant (since the variation in the fin center of pressure is small in comparison to its nominal magnitude), the moment arm d_{α} is generally a function of α and v_{m}; the combined nonlinear moment term $F_{\ell o t}{ }^{d_{\alpha}}$ can be realistically modeled by (Ref. 3)

$$
\begin{equation*}
F_{\ell, t} d_{\alpha}=k_{5}\left(1+k_{51} v_{m}\right) \alpha+k_{6}\left(1+k_{61} v_{m}\right) \alpha^{3} \tag{3.4-14}
\end{equation*}
$$

The body rate moment contribution to Eq. (3.4-10), m_{q}, is generally small with respect to the force components, so it can often be adequately represented by a linear term,

$$
\begin{equation*}
m_{q}=-I_{b} M_{q} \dot{\theta}_{m} \tag{3.4-15}
\end{equation*}
$$

where M_{q} then corresponds to the stability derivative defined in the body rate term in Eq. (3.4-1).

A further simplification of the basic aerodynamic differential equations, Eqs. (3.4-9) to (3.4-11), can be achieved by making suitable small-angle approximations to the trigonometric functions involved; this entails truncating the series

$$
\begin{aligned}
& \sin \alpha=\alpha+\frac{1}{6} \alpha^{3}+\ldots \\
& \cos \alpha=1-\frac{1}{2} \alpha^{2}+\ldots
\end{aligned}
$$

at a point consistant with the range of α anc the accuracy of the nonlinear representation of the normal and longitudinal forces, Eq. (3.4-13). The basic equations then contain only terms of the form $\alpha^{k} \delta^{\ell} v_{m}^{m}$ for which quasi-linear gains may be derived directly using Cases 1 to 3 of Section 4.3.2; many results of this form are given in Appendix A.

To relate the nonlinear model to the linear case given in Eq. (3.4-1), we observe that the linear terms of Eqs. (3.4-9) to (3.4-14) with v_{m} taken to be constant are equivalent if

$$
\begin{aligned}
& L_{\alpha}=\frac{1}{m}\left[k_{1}\left(1+k_{12} v_{m}\right)-k_{3}\left(1+k_{32} v_{m}\right)\right] \\
& L_{\delta}=\frac{k_{2}}{m}\left(1+k_{22} v_{m}\right) \\
& M_{\alpha}=-\frac{k_{5}}{I_{b}}\left(1+k_{51} v_{m}\right) \\
& M_{\delta}=-\frac{k_{2}}{I_{b}}\left(1+k_{22} v_{m}\right) d_{\delta}
\end{aligned}
$$

The nonlinear model of the autopilot-airframe module is completed by deriving a formulation of the control fin actuator
dynamics and compensation. A simple linear model ror this function is given in Eqs. (3.4-3) and (3.4-4), viz.

$$
\begin{align*}
& \dot{\delta}=-\mu \delta+\mu u(t) \\
& u=-\left[k_{c}^{a_{c}}-k_{a}^{a_{l}}-k_{b} \dot{\theta}_{m}\right] \tag{3.4-17}
\end{align*}
$$

with typical parameter values given in Table 3.4-1. If there are significant nonlinear efferts to be modeled, such as actuator saturation, hysteresis, nonlinear friction or the like, then it may be necessary to develop a much more detailed representation. An example of a complete autopilot/airframe model in which control fin actuator saturation is included is depicted in Fig. 3.4-4.

3.5 THE GUIDANCE SUBSYSTEM MODEL

The operation of the guidance module may be separated into two cascaded functions: filtering of the signals obtained from the seeker in order to reduce the effect of measurement noise, and control of the missile lateral acceleration on the basis of the filtered measurements. There are a number of filtering and control schemes that can be used in tactical missile design, as reporiced in Refs. 9 and 10. The systems that result may be divided into analog guidance modules in which the missile acceleration command is obtained by standard analog techniques which may be modeled using continuous-time dynamic equations, and digital guidaice modules in which filtering is accomplished using discretetime data processing techniques, including sophisticated algorithms based on modern estimation theory (extended Kalman filters), and the control function may be based on optimal control theory. In this section, we treat the classical proportional guidance law as an example of the first category, and discuss several alternative digital guidance systems based on the use of a Kalman filter.

Figure 3.4-4
Typical Nonlinear Representation of the Autopilot/Airframe Module

3.5.1 Proportional Guidance

The guidance signal available from the seeker (n in Fig. 3.1-1) is typically a variable proportional to LOS angle rate, $\dot{\theta}$, corrupted by measurement noise. This signal is passed through a single-stage low-pass noise filter, the output of which is thus a filtered ostimate of LOS angle rate, $\hat{\theta} \approx \dot{\theta}$. The proportional guidance law is then implemented, which calls for the component of missile lateral acceleration that is normal to the line-of-sight (LOS) to be proportional to the closing velocity times the estimated LOS angle rate.

This guidance law is based on the concept of the missiletarget collision triangle. In a simplified scenario in which the target is following a straight line trajectory, with constant aspect angle θ_{a}^{*} and velocity vector magnitude v_{t}, the most efficient intercept path for the missile (assuming its velocity, v_{m}, is also constant) is a straight line specified by a constant lead angle θ_{ℓ}^{*}, chosen such that the cross-range components of the missile and target velocity vectors are equal:

$$
\begin{equation*}
v_{m} \sin \theta_{l}^{*}=v_{t} \sin \theta_{a}^{*} \tag{3.5-1}
\end{equation*}
$$

If the missile lead angle is not equal to θ_{l}^{*}, then there is a nonzero heading error, ${ }^{\theta}$ HE, given by

$$
\begin{equation*}
\theta_{H E} \triangleq \theta_{\ell}^{*}-\theta_{\ell} \tag{3.5-2}
\end{equation*}
$$

We observe that flight along the collision triangle (along the vector \underline{y}_{m}^{*}, Fig. 3.5-1) results in a nonrotating LOS, i.e., $\dot{\theta} \equiv 0$. Thus $\dot{\theta}$ can be considered the error signal for this guidance strategy.

For the purpose at hand, we assume that the missile acceleration vector a_{m} is normal to the velocity vector ($\theta_{v a}$ is

Figure 3.5-1 Deviation from the Collision

90 degrees in Fig. 3.2-1); thus we desire to generate an acceleration command to cause a_{m} to satisfy

$$
\begin{equation*}
a_{m} \cos \left(\theta_{\ell}-\theta\right)=n^{\prime} v_{c} \hat{\theta} \tag{3.5-3}
\end{equation*}
$$

where the parameter n^{\prime} is called the navigation ratio. The closing velocity i - obtained by projecting the issile and target velocity vectors onto the instantaneous line of sight; as shown in Fig. 3.2-1,

$$
\begin{equation*}
v_{c}=v_{m} \cos \left(\theta_{\ell}-\theta\right)+v_{t} \cos \left(\theta_{a}+\theta\right) \tag{3.5-4}
\end{equation*}
$$

In order to achieve a response that obeys Eq. (3.5-3), the ideal acceleration command a_{c}^{\prime} should be chosen to satisfy

$$
\begin{equation*}
a_{c}^{\prime}=\frac{n^{\prime} v_{c} \hat{\theta}}{\cos \left(\theta_{\ell}-\theta\right)} \tag{3.5-5}
\end{equation*}
$$

where the incorporation of the factor $1 / \cos \left(\theta_{\ell}-\theta\right)$ as dictated by Eq. (3.5-3) is known as secant compensation.

In mechanizing the guidance law, the value of the closing velocity is never known exactly. If a radar homing seeker is used, then a reasonable estimate of v_{c} can be obtained by doppler measurements or by differencing range measurements. An infrared seeker system generally does not yield a good estimate of range, in which case v_{c} may be taken to be a prespecified constant. Any uncertainty in the closing velocity is modeled by introducing a variable e_{v} into Eq. (3.5-5) which represents either a band limited noise, obtained by a single-stage low-pass filter with white noise input, or a bias, denoted simply $e_{v b}$. Thus, for example,

$$
\begin{equation*}
a_{c}^{\prime}=n^{\prime} \hat{\theta}\left[v_{m}+\frac{v_{t} \cos \left(\theta_{a}+\theta\right)+e_{v}}{\cos \left(\theta_{\ell}-\theta\right)}\right] \tag{3.5-6}
\end{equation*}
$$

provides the final acceleration command used in Ref. 4 , where e_{v} is modeled by one of the differential equations

$$
\begin{equation*}
\text { Random Uncertainty: } \dot{e}_{v}=-\omega_{4} e_{v}+w_{4}, E\left[e_{v}(0)\right]=0 \tag{3.5-7}
\end{equation*}
$$

Bias Uncertainty: $\quad \dot{e}_{v}=0, \quad e_{v}(0)=e_{v b}$
and w_{4} is white noise with spectral density q_{4}. With this model we can study either the effect of the noisy estimation of v_{c} or of a constant error in the assumed value of v_{c}.

Finally, the guidance law must account for an important nonlinear constraint on missile operation -- acceleration command limiting. The act: $\imath l$ acceleration command a_{c} that determines the input to the fin deflection zctuator in Figs. 3.4-2 or 3.4-4 must not exceed the structural capacity of the airframe and must not be so large as to cause the missile to stall. Thus the above idealized acceleration command ác must be limited in order to prevent excessive lateral acceleration command levels or angle of attack; the limiting procedure is represented by the saturation nonlinearity

$$
a_{c}=f\left(a_{c}^{\prime}\right) \Leftrightarrow\left\{\begin{array}{l}
a_{c}^{\prime} \tag{3.5-8}\\
a_{\max } \operatorname{sign}\left(a_{c}^{\prime}\right), \quad\left|a_{c}^{\prime}\right| \leq a_{\max } \mid>a_{\max }
\end{array}\right.
$$

The guidance law features described above are incorporated in the system model illustrated in block diagram form in Fig.3.5-2.

Recently-proposed high-accuracy guidance systems for tactical missiles have been designed using digital data processing and optimal estimation and control theory. The resulting combination of Kalman filter and optimal control law that comprises the digital guidance module is generally based on a linear system representation ("filter model") that is significantly less detailed than the simulation model ("truth model") which strives to represent all important dynamic effects. Quantities that can be assumed to be available to the filter without measurement noise are treated as deterministic inputs to the filter and thus need not be considered in the model (Ref. 11). To obtain a filter model that is linear in
the variables of interest, all nonlinearities that occur in the truth model are replaced by constant or time-varying gains derived by small-signal or Taylor series linearization.

Kalman Filter Model - A basic 3-state Kalman iller can be designed for the missile-target intercept problem using the model depicted in Fig. 3.5-3. It is assumed that noisy measurements of LOS angle, θ, are available to the filter in conjunction with noise-free measurements of missile lateral acceleration and missile-target range. The range information is required in the filtering procedure because the LOS angle is assumed to be related to the cross-range separation, y, by the time-varying gain $1 / r$, and the measurement noise sequence v_{k} (Fig. 3.5-3) is range dependent, as detailed below; the Kalman filter algorithm makes use of knowledge of these dependencies in generating estimated values of the filter state variables, denoted $\hat{\underline{x}}_{f}$.

In state-space formulation, the filter model is given by the vector differential equation

$$
\begin{equation*}
\dot{\underline{x}}_{f}=F_{f} \underline{x}_{f}(t)+\underline{\underline{g}}_{f} w_{5}(t)+\underline{d}_{f} a_{m}(t) \tag{3.5-9}
\end{equation*}
$$

where

$$
\underline{x}_{f}=\left[\begin{array}{l}
y \tag{3.5-10}\\
\dot{y} \\
a_{t}
\end{array}\right], \quad F_{f}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & -\omega_{t}
\end{array}\right], g_{f}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad \underline{d}_{f}=\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]
$$

and w_{5} is the white noise process which is the input to the target acceleration model (Section 3.3). The white noise process w_{5} is specified by its mean and spectral density,

$$
\begin{align*}
& E\left[w_{5}(t)\right]=0 \\
& E\left[w_{5}(t) w_{5}(\tau)\right]=q_{5} \delta(t-\tau) \tag{3.5-11}
\end{align*}
$$

The vector \underline{x}_{f} is initially specified by the mean vector $\underline{m}_{f}(0)$ and covariance matrix $P_{f}(0)$; observe that these may or may not be directly related to the statistical initial conditions on the truth model state vector, since the filter model variables are not necessarily a subset of these states. In the kinematics subsystem model, for example, \dot{y} is generally not a state variable; rather the time derivative of the state y is a nonlinear function of the states θ_{ℓ} (missile lead angle) and θ_{a} (target aspect angle) as given in Eq. (3.2-2),

$$
\dot{y}=-v_{m} \sin \theta_{\ell}+v_{t} \sin \theta_{a}
$$

in which case

$$
\begin{align*}
m_{f_{2}}(0) & =E[\dot{y}(0)]=-v_{m} E\left[\sin \theta_{\ell}(0)\right]+v_{t} E\left[\sin \theta_{a}(0)\right] \\
& =-v_{m} e^{-\frac{1}{2} p_{\theta_{\ell}}} \sin _{m_{\ell}}+v_{t} e^{-\frac{1}{2} p_{\theta^{\prime}}} a_{\sin } m_{\theta_{a}} \tag{3.5-12}
\end{align*}
$$

where m_{ℓ} and $p_{\theta_{\ell}}$ are the mean and variance of θ_{ℓ}, respectively, $m_{\theta_{a}}$ and $p_{\theta_{a}}$ refer to the same statistics of θ_{a}, and use has been made of the restit

$$
E[\sin x]=e^{-\frac{1}{2} p x} \sin m_{x}
$$

(Ref. 3; see also Eq. (4.3-10)). The variance of $\dot{y}(0)$ can be calculated from the statistics of $\theta_{a}(0)$ and $\theta_{\ell}(0)$ in a similar manner. It is also possible to choose $\underline{m}_{f}(0)$ and $P_{f}(0)$ to be inconsistent with the truth model state initial statistics, to determine the performance of the filter when its initialization is in error.

The model shown in Fig. 3.5-3 can be derived directly from the results given in other sections of this chapter under the simplifying assumptions that

- Missile and target acceleration vectors (Fig. 3.2-1) are normal to the respective velocity vectors (velocity vector magnitudes are constant).
- Kinematic nonlinearities (Fig. 3.2-2) are negligible.
- The target maneuver is represented by a band-limited gaussian process (Fig. 3.3-1).
- Seeker dynamics (Section 3.6) are negligible.

We then obtain the results

$$
\begin{align*}
\theta & =\sin ^{-1}(y / r \\
& \cong y / r \tag{3.5-13}
\end{align*}
$$

from Fig. 3.2-1, and

$$
\begin{align*}
\frac{d}{d t}(\dot{y}) & =v_{t} \dot{\theta}_{a} \cos \theta_{a}-v_{m} \dot{\theta}_{\ell} \cos \theta_{\ell} \\
& =a_{t} \cos \theta_{a}-a_{m} \cos \theta_{\ell} \\
& \cong a_{t}-a_{m} \tag{3.5-14}
\end{align*}
$$

from Eqs. (3.2-1) and (3.2-2). These relations in combination with Eq. (3.3-1) complete the derivation of the dynamic equations depitted in Fig. 3.5-3.

The measurement to be processed by the Kalman filter is the sampled LOS angle, θ_{k}, corrupted by additive independent samples of noise v_{k}. The latter have zero mean and range-dependent variance given by

$$
\begin{align*}
E\left[v_{k}^{2}\right] & =\left(\frac{\sigma_{1}}{r\left(t_{k}\right)}\right)^{2}+\left(\sigma_{2} r\left(t_{k}\right)\right)^{2}+\sigma_{3}^{2} \\
& \triangleq \sigma_{v}^{2}\left(r\left(t_{k}\right)\right) \tag{3.5-15}
\end{align*}
$$

where σ_{1}, σ_{2} and σ_{3} represent the constant rms levels of noise components defined in Section 3.6.1. In terms of the state ventor \underline{x}_{f} in Eq. (3.5-9) and the approximation indicated in Eq. (3.5-13), the LOS angle measurement is expressed as

$$
\begin{align*}
& z_{k}=\underline{h}^{T}\left(t_{k}\right) \underline{x}_{f}\left(t_{k}\right)+v_{k} \\
& \underline{h}^{T}\left(t_{k}\right)=\left[\frac{1}{r\left(t_{k}\right)} \quad 0 \quad 0\right. \tag{3.5-16}
\end{align*}
$$

The discrete Kalman filter provides an astimate, \hat{x}_{j}, of the reduced-order state vector \underline{x}_{f} utilizing mechanization equations (Ref. 11) of the form

$$
\begin{array}{ll}
\underline{\underline{x}}_{f}(t)=F_{f} \hat{\underline{x}}_{f}(t)+\underline{d}_{f} a_{m}(t), & t_{k-1}<t \leq t_{k} \\
\underline{\hat{x}}_{f}\left(t_{k}^{+}\right)=\underline{\hat{x}}_{f}\left(t_{k}\right)+\underline{k}_{k}\left(\underline{z}_{k}-\underline{h}^{T}\left(t_{k}\right) \hat{\underline{x}}_{f}\right), & t_{k}<t \leq t_{k}+\varepsilon \triangleq t_{k}^{+}(3.5-18)
\end{array}
$$

where $\hat{\underline{x}}_{f}\left(t_{k}\right)$ denotes the solution to Eq. (3.5-17) Just before a measurement is processed, and $\hat{\underline{x}}_{f}\left(t_{k}^{+}\right)$represents the state vector estimate after the measurement and update take place*. The gain vector \underline{k}_{k} is obtained recursively from the matrix covariance equation assnciated with the Kalman filter; the sequence of operations is given by: (i) propagation of the filter covariance matrix according to

$$
\begin{equation*}
P_{k}=\Phi P_{k-1}^{+} \Phi^{T}+Q \tag{3.5-19}
\end{equation*}
$$

where P_{k-1}^{+}is the value of the filter covariance matrix after the previous update, Φ, given by

$$
\begin{equation*}
\Phi \triangleq \exp \left(F_{f} \tau_{s}\right) \tag{3.5-20}
\end{equation*}
$$

is the transition matrix expressed in the usual matrix exponential form, $\tau_{s}=t_{k}-t_{k-1}$ is the time interval between samples, and

$$
\begin{equation*}
Q \triangleq q_{5} \int_{0}^{T} s e^{F_{f}\left(\tau_{s}-t\right)} g_{f} g_{f}^{T} e^{F_{f}^{T}\left(\tau_{s}-t\right)} d t \tag{3.5-21}
\end{equation*}
$$

[^5]is the noise covariance matrix; (ii) calculation of the Kalman grin vector,
\[

$$
\begin{equation*}
\underline{k}_{k}={\underset{p}{k}}^{\underline{h}_{k}}\left(\underline{h}_{k}^{T} p_{k} \underline{h}_{k}+\sigma_{v}^{2}\left(r\left(t_{k}\right)\right)\right)^{-1} \tag{3.5-22}
\end{equation*}
$$

\]

(iii) updating the filter covariance matrix (to represent the effect of updating the state vector estimate)

$$
\begin{equation*}
\mathbf{P}_{k}^{+}=\mathbf{P}_{k}-\underline{k}_{k}\left(\underline{h}_{k}^{T} \mathbf{p}_{k} \underline{h}_{k}+\sigma_{v}^{2}\right) \underline{k}_{k}^{T} \tag{3.5-23}
\end{equation*}
$$

It is likely that tre range-dependent gain vector in this example can be precomputer and stored as a function of range if range information is available in the guidance module. Otherwise, the implementation of Eqs. (3.5-22) and (3.5-23) would be responsible for most of the digital computational capability required by this guidance system.

Equations (3.5-17) to (3.5-23) are a set of typical Kalman filter mechanization equations based on a simplified design model. The filter state estimates $\hat{y}, \hat{\dot{y}}$ and \hat{a}_{t} provide the basis for the missile guidance law which generates the commanded missile lateral acceleration, denoted a_{c} in Fig. 3.4-2. An optimal control approach to developing a guidance law is described below.

Control Law Model - An optimal control policy is derived by selecting the commanded acceleration time history to minimize an appropriate performance index. An index that is found useful for the missile guidance problem is the so-called quadratic index,

$$
\begin{equation*}
J=E\left[y^{2}\left(t_{f}\right)+\gamma \int_{0}^{t_{f}} a_{c}^{\prime}(t)^{2} d t\right] \tag{3,5-24}
\end{equation*}
$$

which effectively minimizes the expected value of the square of the miss distance while imposing a penalty on the control level. The quantities $y\left(t_{f}\right)$ and γ are the terminal miss distance at
intercept time t_{p} and the weighting on control effort, respectively. The value of J is constrained by the equations of motion given in Eqs. (3.5-9) and (3.5-10) and the form of the autopilot dynamics. The compensated missile airframe dynamics can be modeled by the first order transfer function

$$
\begin{equation*}
\frac{a_{m}}{a_{c}^{1}}=\frac{\omega_{m}}{s+\omega_{m}} \tag{3.5-25}
\end{equation*}
$$

where we note that the higher-order autopilot dynamics, Eq.(3.4-5), and airframe saturation are neglected in Eq. (3.5-25).

The solution to the above minimization problem is called an optimal guidance law. By invoking the separation principle (Ref. 12), it is known that the control is of the form

$$
\begin{equation*}
a_{c}^{\prime}=c_{1} \hat{j}+c_{2} \hat{y}+c_{3} \hat{a}_{t}+c_{4} a_{m} \tag{3.5-26}
\end{equation*}
$$

The indicated control gains, c_{i}, have been determined by willems* (Ref. 13) to be functions of $t_{\text {go }}$, the time until intercept:

$$
\begin{align*}
& c_{1}=\frac{n^{\prime}}{t_{g o}^{2}} \\
& c_{2}=\frac{n^{\prime}}{t_{g o}} \\
& c_{3}=n^{\prime}\left[\frac{e^{-\omega^{\prime} t_{g o}}+\omega_{t} t_{g o}-1}{\omega_{t}^{2} t_{g o}^{2}}\right] \tag{3.5-27}\\
& c_{4}=-n^{\prime}\left[\frac{e^{-\omega_{m} t_{g o}+\omega_{m} t_{g o}-1}}{\omega_{m}^{2} t_{g o}^{2}}\right]
\end{align*}
$$

[^6]The timo..lo-intorcont, tgo and optimal navigntion ratio. n', are given by

$$
\begin{equation*}
t_{g o}=t_{f}-\left.t \Delta \frac{r}{v_{c}}\right|_{t=0}-t \tag{3.5-28}
\end{equation*}
$$

where v_{c} is the closing velocity, Eq. (3.5-4), and

$$
\begin{equation*}
n^{\prime}=\frac{3 t_{g O}^{2}\left[t_{10}-\left(1-e^{-\omega_{m} t_{g O}}\right) / \omega_{m}\right]}{3 \gamma+\frac{3}{2 \omega_{m}^{3}}\left(1-e^{-2 \omega_{m} t_{g O}}\right)+\frac{3 t_{g O}}{\omega_{m}^{2}}\left(1-2 e^{-\omega_{m} t_{g o}}\right)+t_{g O}^{2}\left(t_{g O^{-}}^{-\frac{3}{\omega_{m}}}\right)} \tag{3.5-29}
\end{equation*}
$$

The expression for $n '$ is considerably simplified if the compensated airframe dynamics are neglected entirely; from Eq. (3.5-25), $a_{m}=a_{c}$ if we permit ω_{m} to approach infinity, in which case

$$
\begin{equation*}
\left.n \cdot\right|_{\omega_{m} \rightarrow \infty}=\frac{3}{1+3 \gamma / t_{g o}^{3}} \tag{3.5-30}
\end{equation*}
$$

If there is no constraint on acceleration, γ is equal to zero and the resulting navigation ratio from Eq. (3.5-30) is constant.

Finally, in implementing the control given in Eq. (3.5-26), it is often advantageous to use an alternative formulation for $t_{g o}$;

$$
\begin{equation*}
t_{g o}=\frac{r}{v_{c}}=-\frac{r}{\dot{r}} \tag{3.5-31}
\end{equation*}
$$

Using the instantaneous value of range divided by closing velocity is equivalent to Eq. (3.5-28) when range is nearly deterministic. This expression is conveniently evaluated in the digital guidance module using a discrete approximation to the derivative; at each sampling instant

$$
\begin{equation*}
t_{g o, k} \cong \frac{\tau_{s} r_{k}}{r_{k-1}-r_{k}} \tag{3.5-32}
\end{equation*}
$$

Given the above set of optimal linear control gains, various suboptimal approximations can be made to simplify the computational requirements. If $\gamma, 1 / \omega_{m}, c_{3}$ and c_{4} are taken to be zero, for example, a digital version of classical proportional guidance (based on optimal estimation theory) with n ' $=3$ is the resulting control policy. Another common simplified guidance law is obtained by including a component of target acceleration in the formulation of the autopilot command by permitting c_{3} to be nonzero. A complete digital guidance module having the latter form is depicted in Fig. 3.5-4.

Figure 3.5-4 Digital Guidance Module Based on Optimal Estimation and Control

The digital guidance module must be correctly interfaced with the overall truth model to permit simulation of the missiletarget intercept problem. At the input to the guidance subsystem, noisy measurements of LOS angle must be made available to the
 mined by the specific seeker design and hardware considerations. A variable which is often readily available as the seeker output is η, shown in Fig. 3.6-9, which is an approximate noisy measure of line-of-sight angular rate; to be more precise, it is demonstrated in Section 3.6 .3 that η is related to the LOS angle θ by dynamice that can be approximately represented in transfer function form as

$$
\begin{equation*}
\frac{\eta(s)}{\theta(s)}=I+\frac{s}{\tau_{d} s} \tag{3.5-33}
\end{equation*}
$$

where τ_{d} represents the dominant time constant of the overall seeker track loop. Thus a direct mathod for obtaining the required filter input signal from the seeker output n is to interpose a prefilter of the form

$$
\begin{equation*}
h_{f}(s)=\tau_{d}+\frac{1}{s} \tag{3,5-34}
\end{equation*}
$$

to provide effective compensation for the dominant pole in the seeker dynamic model.

Another factor in implementing the guidance law is that the ideal acceleration command áciven in Eq. (3.5-26) is based on the assumption that missile acceleration is normal to the LOS. As in the previous section (cf. Eq. (3.5-3)), the fact that am is actually nearly normal to the velocity vector requires secant compensation (division by $\cos \left(\theta_{\ell}-\theta\right)$) to guarantee that the acceleration command leads to a suitable acceleration component normal to the LOS.

The guidance module design is completed by incorporating an ideal limiter to prevent excessive acceleration command levels. An overview of a typical digital guidance module based on the foregoing discussion is shown in Fig. 3.5-5.

Figure 3.5-5 Complete Digital Guidance Module Siructure

3.6 THE SEEKER SUBSYSTEM MODEL

There are several effects inherent to the seeker which can have a marked influence on overall missile performance. These include

- Boresight error distortion sources

Noise
Aberration
Receiver and signal processing characteristics

- Disturbance torque sources

Seeker mass imbalance
Seeker gimbal friction
Spring restoring forces on the seeker head

3.6.1 Boresight Error Distortion

A fundamental variable in the seeker subsystem is the true boresight error, $\varepsilon_{\text {true }}$ defined by the angle between the antenna centerline and the instantaneous line-of-sight (LOS) to the target; referring to Fig. 3.6-1,

$$
{ }^{E_{\text {true }}}=0-0_{\mathrm{h}}-0_{\mathrm{m}}=\theta-\phi
$$

The estimated or measured value of the boresight error will differ from $E_{\text {true }}$ due to several factors; among the more important of these are aberration, noise, and nonlinear receiver characteristics.

The effect of aberration is very highly dependent upon the geometry of the seeker-detector cover, the frequency and polarization of the incioient energy, and otner factors; furthermore, it is variable due to manufacturing tolerances, possible erosion during flight, and changes iu environmental parameters. This phenomenon can often be represented by a nonlinear and possibly time-varying operation on the look angle, $\theta_{\text {look }}=\theta-\theta_{m}$, so that an effective boresight error, eeff, is obtained in the form

$$
\begin{equation*}
\varepsilon_{\mathrm{e} \hat{\mathrm{ff}}}=\theta_{\text {look }}+\theta_{\mathrm{ab}}-\theta_{\mathrm{h}} \tag{3.6-2}
\end{equation*}
$$

where the aberration angle $\theta_{a b}$ is a nonlinear function of $\theta_{\text {look }}$, as depicted in Fig. 3.6-2. A tactical missile with a radar tracking system that exhibits nonlinear aberration (caused L_{j} a protective radcme) is treater in Ref. 3. In that study, the radome aberration characteristi: was modeled as a piecewise-linear relation with odd symmetry and 5 linear segments, as depicted in Fig. 3.6-3.

Figure 3.6-2 Boresight Aberration Model

Figure 3.6-3 Nonlinear Angular Aberration Characteristic Investigated in Ref. 3

In considering the degzading effects of noise. we include three fundamental categories of effects. Inverse range proportional noise, which has an effective rms level of the form

$$
\begin{equation*}
\left.\sigma_{a}, r\right)=\frac{1}{r} \tag{3.6-4}
\end{equation*}
$$

where o_{1} is a constant, is representatio or \because wise sourod that increases in effect as range approaches zero. Target angular scintillation (caused by the apparent motion of the target due to the change in position of the target controid of radiation) is a phenomenon of this sort. This effect can be modeled as a wide-band noise state, * x_{1}, with constant rms level, σ_{1}, multiplied by a gain $1 / r$. Range proportional noise includes any noise source that yields an effective noise level that decreases as the missile approaches the target, i.e., as range approaches zero. This type of random disturbance may be represented by an equivalent noise with an rms level of the form

$$
\begin{equation*}
\sigma_{b}(r)=\sigma_{2} \tag{3.6-5}
\end{equation*}
$$

which in turn can be modeled by a wide-ba.ld nuise state x_{2} with a constant rms level of σ_{2} passing through a gain r. Noise sources that exhibit this property are the distant stand-cff jammer and receiver noise (generally due to thermal effects). Range independent noise represents noise sources that have a constant effect on the signal-to-noise ratio; target amplitude scintillation (due to timevarying effective target cross section, for example) and seeker servo noise are typical examples of noise sources that can be modeled by a noise state x_{3} of constant var_ance σ_{3}^{2}. The complete noise model is shown in Fig. 3.6-4 where w_{1}, w_{2}, and w_{3} are gaussian white noise processes.

All three types of noise described above have been treated in previous studies (Refs. 2 to 4), in two forms. The most elementary implementations of this model may be taken to be linear time-varying; i.e., $r(t)$ is assumed to be deterministic in the noise model. In a more recent treatment, Ref. 4, the nonlinear relation indicated in Fig. 3.6-4 is rigorously implemented by

[^7]
$R-11602$

Figure 3.6-4
Seeker Noise Model

$$
\begin{equation*}
n_{s}=\frac{x_{1}}{\sqrt{x^{2}+y^{2}}}+x_{2} \sqrt{x^{2}+y^{2}}+x_{3} \tag{3.6-6}
\end{equation*}
$$

where x_{1}, x_{2} and x_{3} are the wide-band noise states mentioned above and x and y are the cartesian components of missile-target separation, respectively (see Fig. 3.2-1). The linear time-varying formulation may be adequate in situations where range has a negligible random component (as is sometimes the case for the head-on intercept where the mean missile lead angle and mean target aspect angle are both zero), but Eq. (3.6-6) is generally significantly more accurate when the range is appreciably nondeterministic.

The receiver characteristic is a potentially complicated effect, highly dependent upon the specific antenna design, type of detector, and signal processing scheme. In order to avoid a very specialized discussion based on a particular tactical missile, we confine our attention to one basic phenomenon: the attenuation of the received signal which occurs when the effective boresight error, $\varepsilon_{\text {eff }}$, becomes large, i.e., when $\varepsilon_{\text {eff }}$ approaches $\varepsilon_{\text {max }}$ in Fig.3.6-5a. The detector alone will have an output which is very nearly proportional to its input for sinall values; however, as the effective boresight error magnitude approaches $\varepsilon_{\text {max }}$, we notr in Fig. 3.6-5b

(a) Antenna Beem Pattern

(b) Antenna-Detector Characteristic

(c) Signal Processing Nonlinserity

Figure 3.6-5 Receiver Boresight Error Distortion Effects
that the signal strength decreases to a null. If the antenna pattern has appreciable sidelobe sensitivity, there may also be some response for values of $\varepsilon_{\text {eff }}$ greater than $\varepsilon_{\text {max. }}$. The upper limit on the boresight error, \bar{E}, such that the detector characteristic is nearly linear for $\mid \varepsilon$ eff \mid less than $\bar{\varepsilon}$, is quite variable, depending on the type of target tracking system under consideration. For monopulse radar or infrared detectors, $\bar{\varepsilon}$ could be as small as a fraction of a degree (Ref. 14).

The undesirable detector null and possible spurious sidelobe response can be circumvented in the signal processing scheme.

As an example, some value $\varepsilon_{1 i m} \leq \bar{\varepsilon}$ may be chosen; a nonlinearity is
 magnitude exceeds $\varepsilon_{1 i m}$, the output of the signal processor is held at $\pm \varepsilon_{j i m}$. This provides a simple model, depicted in Fig. 3.6-5c, which will capture the effect of a narrow antenna beamwidth and a reasonable signal processing nonlinearity.

The combined effects of aberration, noise, and receiver/ signal processing characteristic are illustrated in the general boresight error model shown in Fig. 3.6-6. We mention in passing that a more exact noise model might divide noise sources into external, predetection and postdetection effects, i.e., noise sources entering the boresight error model before aberration takes place, and before, as well as after, the receiver characteristic. For the present discussion, this categorization is excessively detailed.

Figure 3.6-6
Final Boresight Error Measurement Model

3.6.2 Disturbance and Control Torques

The seeker model is completed by developing a suitable tracking and stabilization control system including several important
sources of disturbance torque inputs. In terms of the inertiallyreferenced angles ϕ and ψ shown in Fig. 3.6-1, we can derive a relation of the form

$$
\begin{equation*}
I_{p} \ddot{\phi}=I_{p} \ddot{\psi}=T_{c}-T_{d} \tag{3.6-7}
\end{equation*}
$$

where I_{p} is the moment of inertia of the socker head about the gimbal pivot, T_{c} is the external control torque (derived from an electric servo motor, for example), and T_{d} is the total disturbance torque.* For the present discussion, consider three components,

$$
\begin{equation*}
T_{d}=T_{m}+T_{f}+T_{r} \tag{3.6-8}
\end{equation*}
$$

where T_{m} is an effective torque due to seeker head mass imbalance, and we include two external torque components, T_{f} due to nonlinear friction in the gimbal and T_{r} due to nonlinear restoring torques. Since the seeker head center of gravity is generally displaced from the pivot point, as shown in Fig. 3.6-1 and specified by the parameters r_{0} and θ_{0}, the moment of ineritia I_{p} is related to the corresponding moment of inertia referred to the center of gravity by

$$
\begin{equation*}
I_{p}=I_{0}+m r_{0}^{2} \tag{3.6-9}
\end{equation*}
$$

where m is the mass of the seeker head.

The external torques due to spring and friction effects are modeled by the relations

$$
\begin{array}{ll}
\text { Restoring Torque: } & \mathrm{T}_{\mathrm{r}}=\mathrm{f}_{1}\left(\theta_{\mathrm{h}}\right) \tag{3.6-10}\\
\text { Friction Torque: } & \mathrm{T}_{\mathrm{f}}=\mathrm{f}_{2}\left(\dot{\theta}_{\mathrm{h}}\right)
\end{array}
$$

where ${ }^{\prime} h$ is the angle between the seeker and missile center lines.
Often restoring torques are linear for small ungle deflections,

[^8]becoming nonlinear only as θ_{h} increases in magnitude, as illustraicd in Fig. 3.6-7a. This behavior corresponds to the symmetric "hard spring" case (Ref. 15) where the elastic limit of a spring is exceeded and Hooke's law for linear spring behavior becomes invalid; of ten the nonlinear term is taken to be a power law relation,
\[

$$
\begin{equation*}
f_{1}\left(\theta_{h}\right)=k_{1} \theta_{h}+k_{k}\left|\frac{\theta_{h}}{\theta_{1 i m}}\right|^{k} \operatorname{sign}\left(\theta_{h}\right) \tag{3.6-11}
\end{equation*}
$$

\]

where k is an integer greater than one, so that T_{r} exhibits a distinct departure from linearity as $\left|\theta_{h}\right|$ exceeds $\theta_{\text {lim }}$, as is typical of a symmetric nonlinear spring characteristic. A common type of nonlinear friction is the dry or Coulomb effect depicted in Fig. 3.6-7b (Ref. 15), where

$$
\begin{equation*}
f_{2}\left(\dot{\theta}_{h}\right)=k_{2} \operatorname{sign}\left(\dot{\theta}_{h}\right) \tag{3.6-12}
\end{equation*}
$$

i.e., the friction term of the disturbance torque has constant magnitude with the algebraic sign of the gimbal angle rate.

(a) Nonlinea: Restoring Torque, $f_{1}\left({ }_{h}\right)$

R-11604

(b) Nonlinaar Frietion Elfoct, $\mathbf{I}_{\mathbf{2}}\left(\boldsymbol{\lambda}_{n}\right)$

Figure 3.6-7 External Disturbance Torque Models

The effective disturbance torque :omponent due to seeker mass imbalance can readily be determined by application of the basle
principles of meohanios (Rot. 16) ; the dotailis uregiven in Ref. 1. Combining the seeker mass imbalance torm with the friction and spring disturl ince torque components, we obtain the complete dislurbance torque contribution.

$$
\begin{align*}
T_{d}= & r_{1}\left(\theta_{h}\right)+r_{2}\left(\dot{\theta}_{h}\right)+m r_{G}\left[r_{1} \ddot{\theta}_{m} \cos \left(\psi-\theta_{m}\right)\right. \tag{3.6-13}\\
& \left.+r_{1}\left(\dot{\theta}_{m}\right)^{2} \sin \left(\psi-\theta_{m}\right)+v_{m} \dot{\theta}_{Q} \cos \left(\psi-\theta_{\ell}\right)\right]
\end{align*}
$$

 sowkor leack the target, i.e., tor mantain the measured boresight. orror at a small value. The nominal seeker is designed under iho assumption that there is no friction and that spring effects are negligilsto; thus, it is necossary lo include rate ferdback in the torqua command (a feedback term proportional to ϕ which is measurod by a rate pyro) to provide suitablo damplink. Thus we write the nominal control torque as

$$
\begin{equation*}
r_{r n}=k_{s}\left[\frac{\xi_{1}}{1}-k_{g}\left(\dot{n}_{m}+\dot{i}_{h}\right)\right] \tag{3.6-11}
\end{equation*}
$$

where ${ }_{1}$ is the track loop time constant, k_{ξ} i: $\begin{aligned} & \text { the rate gyro gran }, ~\end{aligned}$ and k_{s} is the torque servo gain. The implementation of this control is depicted in Fig. 3.6-8.

While the implementation of the seeker control function depictod in Fig. 3.6-8 will provide an adequate response under ideal conditions, it can be shown (cf. Section 3.6.3) that the dynamic response of the seeker is quite sensitive to steady-state disturbanco torque inputs. Since, as wo have already indicatod, disturbance torques frenerally have a significant impact on the offer1. ivencess of the seeker, compensation must be included lo achieve satistactory performance. A simple and effective compensation

procedure is to insert proporibonal plus infogral cascade componsation before the 1 orque summing junction in Fig. $\mathbf{3 . 6 - 8}$. That is. we specify the compensated control torque by

$$
\begin{equation*}
\mathrm{T}_{\mathrm{cc}}=\left(1+\frac{\mathrm{k}_{0}}{\mathrm{~s}}\right) \mathrm{T}_{\mathrm{cn}} \tag{i.-15}
\end{equation*}
$$

The rompleto soeker simulation modrl, reprosenting tho synthesis of tho dynamic equations derived in this section, is shown in Fig. 3.6-9.

3.6.3 Transfer Function Representation of the Equivalent Lincar Seeker

For a subsystem of the complexity of the soekor as modolod in Fig. 3.6-9, it is of ten helplul lo dorive the lransfer funcilon Cormulation of the linear system obtained by neglorting all nonlinearities. Several assertions made in the previons section in simplifying the seeker model are based on this reprosentation, and the proceedure usod for the purpose of designing the compen:ation network (choice of k_{0}) can best be treated in this way. More dutails may be found in Ref. 4.

Figure 3.6.9
Complote Seeker Model

We define four inputs (refer to fig. 3.6-10).

$$
\begin{align*}
& u_{1}=0 \\
& u_{2}=0_{\mathrm{m}} \tag{3.6-17}\\
& u_{3}=n_{\mathrm{s}}(\mathrm{t}) \\
& \mathrm{u}_{1}=\mathrm{r}_{\mathrm{m}}
\end{align*}
$$

The transfer functions $d_{1}(s)$ to $d_{4}(s)$ for the "equivalent block diagram representation depicted in Fig. 3.6-11 ran be shawn to be

$$
\begin{align*}
& d_{1}(s)=\frac{k_{3}}{{ }_{1}} \frac{s\left[s^{2}+q_{3} s+\eta_{1}\right]}{s^{3}+q_{3} s^{2}+q_{2} s+q_{1}} \\
& d_{2}(s)=\frac{-k_{3}}{I_{p} \frac{q_{1}}{1}-\frac{k_{2} s+k_{1}}{\left.s s^{3}+q_{3} s^{2}+q_{2} s+q_{1}\right]}} \tag{3.6-18}\\
& d_{3}(s)=\frac{1}{k_{3}} d_{1}(s) \\
& d_{1}(s)=\frac{k_{3}}{1_{n} \frac{k_{1}}{s^{3}+q_{3} s^{2}+q_{2} s+q_{1}}}
\end{align*}
$$

whore the numerator and denominator coefficients are given by

The nominal seeker is defined by a choice of parameter: that leads to acceptable dynamic behavior in the absence wi
\square

Firure 3.6-10
Linoiar Sewker Morlol
i

$R-11610$

Figure 3.6-911
Lifnear Seoker Model in Transfer Function Form
disturbance torques: example data and transfor functions arorivan in 'rahla 3.6-1. A second ense is the nominal componsated soeker, whirh has bern designed Lo exhibit a significantly hol for porformanco in the presence of disturbance torques; foredifn by rowt
 aro summari\%ad in 'abla 3.G-2.

In both the nominal and the nomilal compensatod seoker. we note that $l_{2}(s)$ o. This demonstratos that with me limear frielion wr spring rostoring torques, tho seekor has prefect siat biligation, i.e., the moasured boresight orror is unaffocted by rotation of the missile body.

For frequencies eonsidorably less than 10 rad/sce, we have
 Henco, the assortion that II is an erstimate of the los antrular dato (i) holds at low trequencies.

The seeker compensalion removes stoady state disturbanco torgur sonsitivity, due to the pero of lifg(s) at $s=0$, as dis. russod in Rer. 1.

TABLE 3.6-1

TYPICAL NOMINAL SEEKER SPECIFICATIONS

Parameters	Transfer Functions
$k_{0}=k_{1}=k_{2}=0$	
$k_{3}=1$	$d_{n 1}(s)=\frac{100}{12} \frac{s(s+60)}{(s+10)(s+50)}$
$k_{g}=1$	$d_{n 2}(s) \equiv 0$
$k_{s}=6 \frac{1 n-0 z-s e c}{r a d}$	$d_{n 3}(s)=d_{n 1}(s)$
$I_{p}=0.1 \mathrm{in-oz-s}^{2}{ }^{2}$	$d_{n 4}(s)=\frac{1000}{12} \frac{1}{(s+10)(s+50)}$
$\tau_{1}=0.12 \mathrm{sec}$	

TABLE 3.6-2
TYPICAL NOMINAL COMPENSATED SEEKER SPECIFICATIONS

Parameters	Transfer Functions
$k_{1}=k_{2}=0$	$d_{c 1}(s)=\frac{100 s\left(s^{2}+60 s+1200\right)}{12\left(s^{3}+60 s^{2}+1700 s+10,000\right)}$
$k_{3}=k_{g}=1$	
$\mathrm{k}_{0}=20 \mathrm{sec}^{-1}$	$\mathrm{d}_{\mathrm{c} 2}(\mathrm{~s}) \equiv 0$
$k_{\mathrm{a}}=6 \frac{\mathrm{in-oz-sec}}{\text { rad }}$	$\mathrm{d}_{\mathrm{c} 3}(\mathrm{~s})=\mathrm{d}_{\mathrm{c} 1}(\mathrm{~s})$
$\mathrm{I}_{\mathrm{p}}=0.1{\mathrm{in}-\mathrm{oz}-\mathrm{sec}^{2}}^{2}$	
$\mathrm{T}_{1}=0.12 \mathrm{sec}$	$d_{c 4}(s)=\frac{1000 s}{12\left(s^{3}+60 s^{2}+1700 s+10,000\right)}$
Poles at $\mathrm{s}=-7.71, \mathrm{~s}=-16.1 \pm 24.8 \mathrm{j}$	

3.7 SYSTEM MODFI, SUMMARY

An example of a complote missilo-largot intercept motal is portriyed in Fig. 3.7-1 with ropresentations of all of tho subsystems described in the previous sections appropriatoly interconnected. This particular system model was oxtensively analysed in an investigation of the accuracy and efficacy of CADFIT in evaluating the impact of various random and nonlincar effects on the porformance of missile guidance systoms in Rof. 4. As indicated in previous sections, there are many assumptions behind this formulation; the system depicted in Fig. 3.7-1 is intended to be demonstrative of the large class of problems that may be considered in this realm, and not to be all inclusivo.

All of the state variables are depicted oxcopt angle or attack,,$~ c o n t r o l$ fin deflection, δ, and the sooker state required to implement proportional plus integral componsalion, bif. (3.6-31); these states are encompassed in the linear dynimics roprosonted by the transfer functions $\mathrm{g}_{1}(\mathrm{~s})$, $\mathrm{g}_{2}(\mathrm{~s})$ (fig. 3.4-3), and $\left(1+k_{0} / s\right)$. For convenient reference, wo list the nonlinealities incorporated in this particular system model and indicate their form:

- Sceker head restoring torque

$$
f_{1}\left(\theta_{h}\right)=k_{1}\left|\frac{\theta_{h}}{\theta_{1 i m}}\right|^{k} \operatorname{sign}\left(\theta_{h}\right)
$$

- Seeker gimbal friction

$$
r_{2}\left(\dot{\theta}_{h}\right)=k_{2} \operatorname{sign}\left(\dot{\theta}_{h}\right)
$$

- Receiver/signal processing characteristic

$$
f_{3}(\varepsilon)= \begin{cases}\varepsilon_{1} & ,|\varepsilon| \therefore \varepsilon_{1 \mathrm{im}} \\ \varepsilon_{1 \mathrm{im}} \operatorname{sign}(\varepsilon), & |\varepsilon|>\varepsilon_{1 \mathrm{im}}\end{cases}
$$

Figure 3.7-1 A Complete Missile-Target Intercept Model

- Range dependent noises

$$
n_{s}=\frac{x_{1}}{\sqrt{x^{2}+y^{2}}}+x_{2} \sqrt{x^{2}+y^{2}}+x_{3}
$$

- Seeker mass imbalance torque

$$
\begin{aligned}
T_{m}= & m r_{0}\left[r_{1} \ddot{\theta}_{m} \cos \left(\theta_{h}+\theta_{0}\right)+r_{1}\left(\dot{\theta}_{m}\right)^{2} \sin \left(\theta_{h}+\theta_{0}\right)\right. \\
& \left.+v_{m} \dot{\theta}_{\ell} \cos \left(\theta_{\ell}-\theta_{m}-\theta_{h}-\theta_{0}\right)\right]
\end{aligned}
$$

- LoS angla calculation

$$
0=\tan ^{-1}(y / x)
$$

- Range calculation

$$
r=\sqrt{x^{2}+y^{2}}
$$

- Velocity resolution

$$
\begin{aligned}
& \dot{x}=-v_{m} \cos \left(\theta_{\ell}\right)-v_{t} \cos \left(\theta_{n}\right) \\
& \dot{y}=-v_{m} \sin \left(\theta_{\ell}\right)+v_{t} \sin \left(0_{a}\right)
\end{aligned}
$$

- Acceleration command limiting

$$
a_{c}= \begin{cases}u_{c}^{\prime}, & \left|a_{c}^{\prime}\right| \leq a_{\max } \\ a_{\max } \operatorname{sign}\left(a_{c}^{\prime}\right), & \left|a_{c}^{\prime}\right|>a_{\max }\end{cases}
$$

- Proportional guidance law with socant compensation and closing velocity error model

$$
a_{c}^{\prime}=n^{\prime} \hat{\hat{A}}\left[v_{m}+\frac{\left.v_{t} \cos (1) \frac{n}{n}\right)+c_{v}}{\cos \left(\hat{n}_{\ell}-0\right)}\right]
$$

This chapter presents an overview of modeling tasks that arise in considering the missile-target interoopl prohlem. Realistic representations for a variety of nonlincar effocts have boon fiven, both to provide a ready reference for future stadies of tactical inissile performance and to facilitate model development in other areas. The material is intended to guide the user in developing mathematical models appropriate for analyying missild systems using CADET.
4.

QUASI-LINEARIZATION: PRINCIPLES AND PROCEDURES
4.1 CADET AND STATISTICAL LINEARIZATION

To review the fundamental equations of CADFT derived in Section 1.2, Eqs. (1.2-6) and (1.2-7), the differential equations

$$
\begin{align*}
& \dot{\underline{m}}=\underline{\hat{\mathbf{q}}}+\mathrm{Gb} \\
& \dot{\mathrm{p}}=\mathrm{NP}+\mathrm{PN}^{T}+\mathrm{GQG}^{T} \tag{4.1-1}
\end{align*}
$$

govern the approximate evolution of the mean vector and covariance matrix of the state variables.

$$
\begin{align*}
& \underline{m}=E[\underline{x}] \\
& P=E\left[(\underline{x}-\underline{m})(\underline{x}-\underline{m})^{T}\right] \tag{4.1-2}
\end{align*}
$$

where the state vector differential equation is nonlinear and imevarying,

$$
\begin{equation*}
\underline{\mathbf{x}}=\underline{f}(\underline{x}, \mathrm{t})+\mathrm{G}(\mathrm{t}) \underline{\mathbf{w}} \tag{4.1-3}
\end{equation*}
$$

Fquation (4.1-1) involves the vector \hat{f} and matrix N which are defined by

$$
\begin{align*}
& \hat{\underline{\underline{f}}}=E[\underline{f}(\underline{x}, t)] \\
& N=F\left[\underline{f}(\underline{x}, t)(\underline{x}-\underline{m})^{T}\right] p^{-1} \tag{4.1-4}
\end{align*}
$$

Analytic expressions for $\hat{\hat{f}}$ and N in Eq. (4.1-1) can be determined only if the form of the joint probability density function
of the state variables is known or nsamed. For many problems (the present one included; ef. Section 1.2) it is appropriato in hssume lhat the states ure fointly normal, or nearly so. A powerfill coroliary to the gaussian assumption is that each scalar nome linear relation embedded in the state variable diterential equations may be treated in isolationt thts lurl preatly farititatoss the evaluatior of \hat{f} and N in the application or caberr. Another direct result of the normality assumption is that i and N are functhons of m. Pand t alone and are not dependent upon higher-orior moments.

It was mentioned in Section 1.2 that f and N delined in Eq. (4.1-4) have also been derived in the conloxt or applying statistical lineariation to arrive at a quasi-linoar approximation to the vector nonlinearity $[(x, t)$. The rorm obtained is

$$
\underline{r}(\underline{x}, t)=\hat{\underline{r}}+N \underline{r}
$$

where

$$
\begin{equation*}
\underline{r}=\underline{x}-\underline{m} \tag{1.1-6}
\end{equation*}
$$

is the random component of the stato vector x. Sime the theory of random input deseribing lunctions undor the gaussian assamption is well developed (Ref. 6) and of direct ulility n (:ADET analysis. it behooves us to consider quasi-linoarigntior in some detail.

In Section 4.2 we oulitir the ovorull context of deseribing function theory, the derivation of basic results, und basic: limitations of the technique. Sections 4.3 and 4.4 troat some coecific examples of ridf calculation, givinf a fow general results and some useful approximation techniques (including discussions of suitability and accuracy). In Section 4.5 we consider the sensitivity of ridf calculation to departures from the gaussian assump. tion. The above sections treat a single nonlinearily, in acoordancor
with the aseertion that each nonlinear rolation can be tronted indopendently, mentioned in Section 1.2. For a prool of the validity of this procedure, see Refs. 7 and 11.

4.2 PRINCIPLES OF QIIASI-LINEARIZATION

In the discussion that follows, we consider the quasilinearization of the single nonlinearity, $f(\underline{x})$. In some instances, the nonlinearity may be a single function of one or two states, as in the example treated in Chapter 2 where $f\left(x_{3}\right)$ represents the ideal limiter characteristic acting on the missile lateral acceleration, x_{3} (Fig. 2.2-1). In other cases, the nonlinearity may be a complicated function of a number of states; as an example, combining Eq. (3.4-2) and the last term of Eq. (3.6-13) with $\sigma_{0}=0$ leads to a seeker mass imbalance torque term of the form

$$
m r_{0} v_{m} \dot{\theta}_{\ell} \cos \left(\psi-\theta_{\ell}\right)=m r_{0} v_{m}\left(L_{\alpha} \alpha+L_{f} \delta\right) \cos \left(\theta_{h}+\theta_{m}-\theta_{\ell}\right)
$$

which involves the variables $\alpha, \delta, \theta_{h}, \theta_{m}, \theta_{\ell}$ which may, for example, be state variables x_{1} to x_{5}, respectively. The complexity of this formulation tends to obscure the basic form of the nonlinearity, i.e., $v_{1} \cos v_{2}$, where v_{1} and v_{2} are simply linear combinations of the indicated state variables,

$$
\underline{v} \Delta\left[\begin{array}{l}
v_{1} \tag{4,2-1}\\
v_{2}
\end{array}\right]=\left[\begin{array}{ccccc}
m r_{0} v_{m} L_{\alpha} & m r_{0} v_{m} L_{\delta} & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & -1
\end{array}\right] \underline{x}
$$

\wedge_{Hx}
Since the input variable statistics are immediately obtainable from the state statistics, Eq. (4.1-2),

$$
\begin{align*}
& \underline{m}_{v}=H m \tag{4.2-2}\\
& P_{v}=H P_{H} T
\end{align*}
$$

we amply treat nonlinearitiea an functions of one or meveral input variables, vor \underline{v}, where the statintice of \underline{v} are given by Eif. (4.2-2). From this point on, we omit the aubscript "v" to simplify our nutation; m and P always refer to the nonlinearity input statistics, and \underline{r} denotes the random component of \underline{v}. The fact that only a few input variables need to be considered simplifies the aubsequent development.

The easence underlying all quasi-linear analysis is the substitution of one or more approximate, input-amplitude-sensiuive linear gain(a) for each system nonlinearity. The analytic form of the resulting quasi-linear gains (describing functions) is determined by three factors:

- The nondinearity

- The assumed nonlinearity input form
- The error criterion used (the meazure of approximation error t. 0 be minimized)

The number of describing functions required to represent each nonlinearity is determined by the number of input variables and the number of input signal components specified by the assume input form; each input variable component has its own independent measure of amplitude and requiree a quasi-linear gain.

Given a nonlinearity and an assumed input variable form, hereafter taken to be the sum of a gaussian random variable and a deterministic signal ("mean"), we desire to express the nonlinearity output as a linear combination of each input signal component plus an error or distortion term. Constdering the general case of a nonlinearity with k inputa, we have

$$
\begin{equation*}
z=f\left(v_{1}, v_{2}, \ldots, v_{k}, t\right) \tag{4,2-3}
\end{equation*}
$$

for which we seek an approximution of the form

$$
\begin{equation*}
z=z_{0}+\underline{b}^{T} \underline{r} \tag{4,2-4}
\end{equation*}
$$

where z_{0} and $b(a$ vector of dimension k) are to be determined.* Based on the desired form if the quasi-linear approximation, Eq. (4.2-4), we consider the mean square error,

$$
\begin{equation*}
\hat{\varepsilon}^{2}=E\left[\left\{z-z_{0}-\sum_{j=1}^{k} b_{j} r_{j}\right\}^{2}\right] \tag{4.2-5}
\end{equation*}
$$

Setting the partial derivatives of the mean square approximation error with respect to z_{0} and b_{j} equal to zero gives us the set of necessary conditions for minimization,

$$
\begin{align*}
& \frac{\partial \hat{\varepsilon}^{2}}{\partial z_{0}}=2 E\left[\left\{f-z_{0}-\sum_{j=1}^{k} b_{j} r_{j}\right\}(-1)\right]=0 \\
& \frac{\partial \hat{\varepsilon}^{2}}{\partial b_{j}}=2 E\left[\left\{f-z_{0}-\sum_{j=1}^{k} b_{j} r_{j}\right\}\left(-r_{j}\right)\right]=0, \quad j=1,2, \ldots, k \tag{4.2-6}
\end{align*}
$$

Taking the indicated expected values term-by-term reduces Eq. (4.2-6) to

$$
\begin{align*}
z_{0} & =E[f] \\
\underline{b}^{T} p & =E\left[f \underline{r}^{T}\right] \tag{4.2-7}
\end{align*}
$$

[^9]where we have expreased the resulte in thair more compuct vectormatrix form.

Comparing EqE. (4.3-2) and (4.2-7), we have

$$
\begin{gather*}
f(\underline{v}, t) \cong E[f]+E\left[f \underline{r}^{T}\right] p^{-1} \underline{r} \\
\triangleq \hat{f}+\underline{n}^{T} \underline{r} \tag{4,2-8}
\end{gather*}
$$

which is identical to the scalar case of Eqs. (4.1-4) and (4.1-5).
To see that the above solutions do indeed lead to minimum mean square error, we observe that

$$
\begin{aligned}
& \frac{\partial^{2} \hat{\varepsilon}^{2}}{\partial z_{0}^{2}}=2>0 \\
& \frac{\partial^{2} \hat{\varepsilon}^{2}}{\partial b_{j}^{2}}=2 r\left[r_{j}^{2}\right]>0, \quad J=1,2, \ldots, k
\end{aligned}
$$

which are sufficient conditions for the existence of a local minimum.

In evaluating the expected values needed in Eq. (4.2-8) we invoke ths assumption of joint normality to write (Ref. 11)

$$
\begin{equation*}
p(\underline{v})=\left[(2 \pi)^{k}|p|\right]^{-\frac{1}{2}} \operatorname{oxp}\left\{-\frac{1}{2} \underline{\underline{r}}^{T} p^{-1} \underline{r}\right\} \tag{4.2-9}
\end{equation*}
$$

By definition, then

$$
\begin{align*}
\hat{f} \wedge & {\left[(2 \pi)^{k}|p|\right]^{-\frac{1}{2}} \int_{-\infty}^{\infty} \cdots \int_{\infty}^{\infty} f(\underline{v}, t) \exp \left\{-\frac{1}{2}(\underline{v}-\underline{m})^{T} p^{-1}(\underline{v}-\underline{m})\right\} } \\
& d v_{1} d v_{2} \cdots d v_{k} \tag{4.2-10}
\end{align*}
$$

To uid in evaluatink m , wo form

$$
\left(\frac{\partial \hat{f}}{\partial \underline{m}}\right)^{T} \triangleq\left[\begin{array}{c}
\frac{\partial \hat{f}}{\partial m_{1}} \\
\frac{\partial \hat{r}}{\partial m_{2}} \\
\vdots \\
\vdots
\end{array}\right]=\left[(2 \pi)^{k}|P|\right]^{-1} \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f(\underline{y}, t) \exp \left\{-\frac{1}{2} \underline{r}^{T} p^{-1} \underline{\underline{r}}!^{\prime} p^{-1} \underline{r}\right.
$$

[.

$$
\begin{equation*}
\underline{n}^{T}=\frac{\partial \hat{f}}{\partial \underline{m}} \tag{4.2-12}
\end{equation*}
$$

which is the scalar version of Eq. (1,2-10). After \hat{f} is calculated according to Eq. (4.2-10) for utilization in Eq. (4.2-8), the random component describing function vector \underline{n} usually may be obtained much more easily using Eq. (4.2-1.1), than by direct solution of Eq. (4,2-8).

From the development outlined above, we note that the use of describing functions provides an approximation to nonlinear phenomena that retains inpui-amplitude sensitivity through the dependence of \hat{f} and \underline{n} on \underline{m} and P. In CADET, the usefulness of the quasi-linear approximation, Eq. (4.2-8), tepends on the validity of the gaussian assumption on x. The accuracy question is a very complex issue -- probably, an unresolvable onc in a general.

[^10]rigorous sense. The following paragraphs provide some insight into the problem, however.

An important factor is that it is fenerally beneficial to have a system of the form indicated in Fin. 4.2-1 where there is a sipnificant proponderance of 1 inear dynamics over nonlinea. elementa - especially if the linear parta, represented in transfer function form by $W_{j}(s)$, are "low-pass", in which case the central limit theorem indicates that the outputs v_{j} are quite nearly gauseian, despite nongaussian inputs u_{j}. We observe, however, that this condition is not in itself completely deciaive, since the CADET equations are based on the assumption that all states must be nearly jointly normal. The examples considered in Appendix B are situations in which the nonlinearity inputs are Eiven to be gaussian, yet the nongaussian nature of state variables after the nonlinearity leads to inaccurate CADET results.

$1-10243$

Figure 4.2-1
Example of a Nonlinear System With Desirable Separation of Nonlinearities by Linear Dynamics
Another issue that may have considerable impact on the accuracy of quasi-linearization is the nature of each nonlinearity with rerard to being odd of even in its input variables with respect to the input mean. To illustrate this terminology, a function $f\left(v_{1}, v_{2}\right)$ is odd in v_{1} with respect to m_{1} and even in v_{2} with respect to m_{2} if

$$
\begin{aligned}
& f\left(m_{1}-r_{1}, v_{2}\right)=f\left(m_{1}+r_{1}, v_{2}\right) \text { for all } r_{1} \\
& f\left(v_{1}, m_{2}-r_{2}\right)=f\left(v_{1}, m_{2}+r_{2}\right) \text { for all } r_{2}
\end{aligned}
$$

For the rest of this discussion, we consider the zero-mean case, and refer only to oddness and evenness since the extension tc non-zero means is obvicus.

It is beneficial to have single-input nonlinearities which are odd functions of their inputs. (Section A. 1 contains a comprehensive catalogue of ridf's for this basic type of nonlinearity.) In contrast, even nonlinearities must be considered with caution. It is simple to demonstrace that the random component gain, n, is identically equal to zero when $f(v)$ is an even function of a zero-mean input v; this condition generally provides an inadequate approximation.

In treating multiple-input nonlinearities, the situation becomes mrae complicated. Let us consider a few examples: first, we inarect

$$
\begin{aligned}
f\left(v_{1}, v_{2}\right) & =v_{1} v_{1} \cong \hat{f}+n_{1} r_{1}+n_{2} r_{2} \\
\hat{f} & =m_{1} m_{2}+p_{22} \\
n_{1} & =m_{2} \\
n_{2} & =m_{1}
\end{aligned}
$$

where the indicated quasi-linear approximation has been derived in Ref. 3. In a zero-mean situation, the quasi-linear representation degenerates to a single mean component* given by p_{12}, the cross correlation of v_{1} and v_{2}. By extension, any two-input relation of the form

$$
f\left(v_{1}, v_{2}\right)=f_{1, \text { odd }}\left(v_{1}\right) f_{2, \text { odd }}\left(v_{2}\right)
$$

will have zero random component describing functions when v_{1} and v_{2} have zero means, which will generally lead to unsatisfactory results. Next, we consider

$$
f\left(v_{1}, v_{2}\right)=v_{1} v_{2}^{2} \cong \hat{f}+n_{1} r_{1}+n_{2} r_{2}
$$

[^11]$$
4-9
$$
\[

$$
\begin{aligned}
\hat{f} & \left.=\left[m_{1}\left(m_{2}^{2}+p_{22}\right)+2 m_{2} p_{12}\right)\right] \\
n_{1} & =m_{2}^{2}+p_{22} \\
n_{2} & \left.=\dot{i} m_{1} m_{2}+p_{12}\right)
\end{aligned}
$$
\]

which can be derived using the general result given in Eqs.(4.3-22), (4.3-32), and (4.3-33). Here, in the zero-mean input case, we have no output mean and non-zeru random component gains for both r_{1} and r_{2}, provided p_{12} and p_{22} are non-zero. Thus in general it would seem that two-input relations of the form

$$
f\left(v_{1}, v_{2}\right)=f_{1, \text { odd }}\left(v_{1}\right) f_{2, \text { even }}\left(v_{2}\right)
$$

are advantageous from the point of view of describing function approximation accuracy in the zero mean case. Finally, using the result in Eqs. (4.3-39) and (4.3-40),

$$
\begin{aligned}
f\left(v_{1}, v_{2}\right) & =v_{1}^{2} v_{2}^{2} \cong \hat{f}+n_{1} r_{1}+n_{2} r_{2} \\
\hat{\mathrm{f}} & =\left(m_{1}^{2}+p_{11}\right)\left(m_{2}^{2}+r_{22}\right)+2 p_{12}\left(p_{12}+2 m_{1} m_{2}\right) \\
n_{1} & =2 m_{1}\left(m_{2}^{2}+p_{22}\right)+4 m_{2} p_{12} \\
n_{2} & =2 m_{2}\left(m_{1}^{2}+p_{11}\right)+4 m_{1} p_{12}
\end{aligned}
$$

Again, there is no random-component transmission ($n_{1}=n_{2}=0$) in this zero mean case, so the nonlinearity form

$$
f\left(v_{1}, v_{2}\right)=f_{1, \text { even }}\left(v_{1}\right) f_{2, \text { even }}\left(v_{2}\right)
$$

is apt to give poor results in this situation. As in the discussion of single-input nonlinearities, these comments may be directiy extended to the non-zero mean case.

The preceding paragraphs consider ihe accuracy of quasilinear approximation for a number of nonlinearity types. The problem that often arises is "zero transmission" of one or more random component(s); the basis of this phenomenon is that the random input describing function n in the quasi-linear approximation, Eq. (4.2-8), only captures that random component of the nonlinearity output, z, which is correlated with the input variables, in the sense that

$$
E\left[r_{j} \eta\right] \neq 0
$$

How serious this effect is on the overall accuracy of CADET is highly dependent upon the complete system model; it may be that the random effect which is neglected by the quasi-linearization procedure is truly insignificant, in the sense that other linear or nonlinear dynamics may dominate. In this eventuality, the usefulness of CADET is unimpaired. On the other hand, it is a straightforward exercise to fabricate simple examples where a CADET analysis would be totally incorrect --cf. Appendix B. A loose but useful analogy can be drawn between the relation of describing function accuracy to the validity of the complete quasi-linear system model (in particular, to the accuracy of CADET analysis) and the parameter sensitivity problem in linear systems theory (in particular, the relation between the accuracy of standard covariance analysis, Section 1.1, and imprecision in knowledge of the linear gains of the system model). In the parameter sensitivity problem, an inaccurate value for a specific gain in the model of a system may have virtually no effect on the overall system performance (in the low sensitivity case), or it may make the model behave in a completely different manner than the system (in the high sensitivity case), rendering the model meaningless. Thus in assessing the usefulness of CADET in a given situation, one must use insight and experience in order to evaluate the approximate accuracy of the describing functions used and the relative importance of their inaccuracy.

The preceding comments on the significance of oddness and evenness should provide some useful guidelines in estimating the accuracy of various ridf's. The results outlined in Section 4.4 also provide a good qualitative "feel" for the inaccuracy in describing function calculations that arise from the departure of the nonlinearity input from the gaussian assumption. We emphasize that, because CADET is an approximate technique, it should be compared with monte carlo simulations in a few selected cases, to verify that CADET accurately captures the nonlinear effects under consideration (refer to Fig. 5.2-2).

4.3 RANDOM INPUT DESCRIBING FUNCTION CALCULATIONS

4.3.1 Siagle-Input Nonlinearities

In obtaining a quasi-linear representation of a nonlinear function of one variable (v) under the gaussian assumption, we have

$$
\begin{equation*}
\mathbf{f}(v) \cong \hat{\mathbf{f}}+\mathbf{n r} \tag{4.3-1}
\end{equation*}
$$

where

$$
\begin{aligned}
& m=E[v] \\
& r=v-m \\
& p=\sigma^{2}=E\left[r^{2}\right] \\
& \hat{f}=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} f(v) e^{-\frac{1}{2}\left(\frac{v-m}{\sigma}\right)^{2}} d v \\
& n=\frac{\partial \hat{f}}{\partial m}=\frac{1}{\sqrt{2 \pi} \sigma^{3}} \int_{-\infty}^{\infty}(v-m) f(v) e^{-\frac{1}{2}\left(\frac{v-m}{\sigma}\right)^{2}} d v
\end{aligned}
$$

$$
(4.3-2)
$$

Since the catalog of random input describing functions (ridf's) provided in Appendix A is not exhaustive, the following detailed examples will provide future users of CADET with some useful insights into the development of describing functions for other nonlinearities.

As a general observation, it is often advantageous to use a linear transformation to simplify the exponential function in Eq. (4.3-2); the change of variable

$$
u=\frac{v-m}{\sigma}
$$

yields

$$
\begin{equation*}
\hat{f}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(\sigma u+m) e^{-\frac{1}{2} u^{2}} d u \tag{4.3-3}
\end{equation*}
$$

Further simplification may result by eliminating all terms in f that are odd in u; for example

$$
\int_{-\infty}^{\infty}\left[a_{0}+a_{1} u+a_{2} u^{2}+\cdots\right] e^{-\frac{1}{2} u^{2}} d u=\int_{-\infty}^{\infty}\left[a_{0}+a_{2} u^{2}+a_{4} u^{4}+\cdots\right] e^{-\frac{1}{2} u^{2}} d u
$$

In general,

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(\sigma u+m) e^{-\frac{1}{2} u^{2}} d u=\int_{-\infty}^{\infty} f_{e v}(\sigma u+m) e^{-\frac{1}{2} u^{2}} d u \tag{4.3-4}
\end{equation*}
$$

where the even part is given by

$$
\begin{equation*}
f_{e v}(\sigma u+m)=\frac{1}{2}[f(\sigma u+m)+f(-\sigma u+m)] \tag{4.3-5}
\end{equation*}
$$

After this procedure has been carried out, the following integral evaluations often prove to be useful:

$$
\begin{align*}
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2} u^{2}} d u=1 \\
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u^{2} e^{-\frac{1}{2} u^{2}} d u=1 \\
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u^{4} e^{-\frac{1}{2} u^{2}} d u=3 \tag{4.3-6}\\
& \cdot \\
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u^{2 k} e^{-\frac{1}{2} u^{2}} d u=(1)(3)(5) \cdots(2 k-1), \quad k \geq 1
\end{align*}
$$

These results and others involving the integrand factor $e^{-\frac{1}{2}} u^{2}$ may be found in any complete tables of definite integrals; of. Ref. 16.

Example 1: Using the above relations, we can obtain the quasi-linear representation of the nonlinearity v^{3} by inspection. From Eq. (4.3-3)

$$
\hat{f}=E\left[v^{3}\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}(\sigma u+m)^{3} e^{-\frac{1}{2} u^{2}} d u
$$

Dropping terms that are odd in u yields

$$
\hat{f}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left[m^{3}+3 m \sigma^{2} u^{2}\right] e^{-\frac{1}{2} u^{2}} d u
$$

so application of Eqs. (4.3-6) and (4.3-2) results in

$$
\begin{align*}
& \hat{f}=m^{3}+3 m \sigma^{2} \tag{4.3-7}\\
& n=\frac{\partial \hat{f}}{\partial m}=3\left(m^{2}+\sigma^{2}\right)
\end{align*}
$$

Example 2: Trigonometric nonlinearities may be treated conveniently using the above techniques in conjunction with complex variable notation: recall that the complex function $e^{i v}$ is of the form

$$
\begin{align*}
f(v) & =e^{i v} \\
& =\cos v+i \sin v \tag{4.3-8}
\end{align*}
$$

so we have

$$
\hat{f}=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2}\left(\frac{v-m}{\sigma}\right)^{2}+i v\right\} d v
$$

Adding and subtracting ($-\frac{1}{2} \sigma^{2}+i m$) in the argument of the exponential function permits us to complete a square;

$$
\hat{\mathrm{i}}=\frac{e^{-\frac{1}{2} \sigma^{2}+i m}}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2}\left(\frac{v-m-i \sigma^{2}}{\sigma}\right)^{2}\right\} d v
$$

The final result is obtained by transforming as in Eq. (4.3-3);

$$
\begin{align*}
\hat{f} & =e^{-\frac{1}{2} \sigma^{2}+i m} \\
& =e^{-\frac{1}{2} \sigma^{2}}(\cos m+i \sin m) \tag{4.3-9}
\end{align*}
$$

,

Taking the real and imaginary parts of Eq. (4.3-9) yields the mean component of the quasi-linear approximations of cos v and sin v, respectively; the random component ridf is obtained by taking the partial derivative with respect to the mean. We thus obtain

$$
\begin{align*}
\cos v & \cong E[\cos v]+(v-m) \\
& =e^{-\frac{1}{2} \sigma^{2}}[\cos m \cdots(\sin m) r] \tag{4.3-10}\\
\sin v & \cong E[\sin v]+n(v-m) \\
& =e^{-\frac{1}{2} \sigma^{2}}[\sin m+(\cos m) r]
\end{align*}
$$

Example 3: Piecewise-1inear characteristics cormonly occur in models of systems with saturation, quantization, deadzone, and other similar phenomena. Consider the ideal limiter (saturation element):

$$
f(v)= \begin{cases}v & |v| \leq v_{\max } \tag{4.3-11}\\ v_{\max } \operatorname{sign}(v), & |v|>v_{\max }\end{cases}
$$

Direct application of Eq. (4.3-3) leads to

$$
\begin{align*}
\hat{\mathrm{f}}= & -\frac{v_{\max }}{\sqrt{2 \pi}} \int_{-\infty}^{a_{1}} e^{-\frac{1}{2} u^{2}} d u+\frac{1}{\sqrt{2 \pi}} \int_{a_{1}}^{a_{2}}(o u+m) e^{-\frac{1}{2} u^{2}} d u \\
& +\frac{v_{\max }}{\sqrt{2 \pi}} \int_{a_{2}}^{\infty} e^{-\frac{1}{2} u^{2}} d u \tag{4.3-12}
\end{align*}
$$

where

$$
\begin{aligned}
& a_{1}=-\frac{v_{\text {max }}+m}{\sigma} \\
& a_{2}=\frac{v_{\text {max }}-m}{\sigma}
\end{aligned}
$$

Since some of the limits of these integrals are finite, the direct evaluation of \hat{f} in terms of edementary functions is not possible. We require two allxiliary functions based on the normal density function, here denoted PF(w):

$$
\begin{align*}
& \operatorname{PF}(w) \stackrel{\wedge}{\sqrt{2 \pi}} e^{-\frac{1}{2} w^{2}} \\
& \operatorname{PI}(w) \\
& G(w) \tag{4.3-13}\\
& \triangleq \int_{-\infty}^{w} \operatorname{PF}(w) d \omega \\
& \\
& =\int_{-\infty}^{W} \operatorname{PI}(\omega) d \omega \\
&
\end{align*}
$$

Some useful properties of these functions are

$$
\begin{align*}
& \operatorname{PF}(-w)=P F(w) \\
& \operatorname{PI}(-w)=1-\operatorname{PI}(w) \tag{4.3-14}\\
& G(-w)=G(w)-w
\end{align*}
$$

$$
\begin{align*}
& \lim _{w \rightarrow+\infty} P F(w)=0 \\
& \lim _{w \rightarrow-\infty} P I(w)=0, \quad \lim _{w \rightarrow \infty} P I(w)=1 \tag{4.3-15}\\
& \lim _{w \rightarrow-\infty} G(w)=0, \quad \quad \lim _{w \rightarrow \infty} \quad G(w)=\lim _{w \rightarrow \infty} w=\infty
\end{align*}
$$

The mean ridf term $\hat{\mathrm{i}}$ (Eq. (4.3-12)) can be manipulated directly to obtain

$$
\begin{equation*}
\hat{\mathbf{i}}=\sigma\left[G\left(\frac{v_{\max }+m}{\sigma}\right)-G\left(\frac{v_{\max ^{-m}}}{\sigma}\right)\right]-\mathrm{m} \tag{4,3-16}
\end{equation*}
$$

From Eq. (4.3-13) we have that

$$
\frac{d G}{d w}=P I(w)
$$

so by inspection the random component gain is

$$
\begin{equation*}
n=\frac{\partial \hat{f}}{\partial m}=P I\left(\frac{v_{\max }+m}{\sigma}\right)+P I\left(\frac{v_{\max }-m}{\sigma}\right)-1 \tag{4.3-17}
\end{equation*}
$$

The functions in Eqs. (4.3-13), (4.3-16) and (4.3-17) are standard in several works (cf. Refs. 6 and 18). Other references (cf. Refs. 15, 17) use the error function,

$$
\begin{equation*}
\operatorname{erf}(w) \triangleq \frac{2}{\sqrt{\pi}} \int_{0}^{w} e^{-\omega^{2}} d \omega \tag{4.3-18}
\end{equation*}
$$

which is related to the probability integral $\mathrm{PI}(w)$ by

$$
\begin{equation*}
\operatorname{erf}(w)=2 \operatorname{PI}(\sqrt{2} w)-1 \tag{4.3.19}
\end{equation*}
$$

Since the error function is available in some computer scientific subroutine packages, it may be advantageous to use

$$
\begin{equation*}
n=\frac{1}{2}\left[\operatorname{erf}\left(\frac{v_{\max }+m}{\sqrt{20}}\right)+\operatorname{erf}\left(\frac{v_{\max }-m}{\sqrt{20}}\right)\right] \tag{.1.:3-20}
\end{equation*}
$$

This result and many other describing function representations for a variety of piecewise-linear functions may be found in Ref. 6; basic examples are given in Appendix A.

4.3.2 Multiple-Input Nonlinearitjes

As might be anticipated, the describing function derivalion for functions with multiple inputs becomes more involved than for the single-input cone. In general, for two variables ${ }^{\text {G we seek }}$

$$
f\left(v_{1}, v_{2}\right) \cong \hat{f}+n_{1} r_{1}+n_{2}{ }_{2} \triangleq \hat{f}+\underline{n}^{T} \underline{r}
$$

where

$$
\begin{align*}
& \underline{m}=E[\underline{v}] \\
& \underline{r}=\underline{v}-\underline{m} \\
& p=E\left[\underline{r} \underline{r}^{T}\right]=\left[\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right] \\
& \hat{\mathrm{f}}=\frac{1}{2 \pi|P|^{1 / 2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(v_{1}, v_{2}\right) e^{-\frac{1}{2} \underline{r}^{T} p^{-1} \underline{r}} d v_{1} d v_{2} \\
& n_{1}=\frac{\hat{c} \hat{f}}{\partial m_{1}} \tag{4.3-21}\\
& n_{2}=\frac{\partial \hat{f}}{\partial m_{2}}
\end{align*}
$$

To demonstrate evaluation of integrals of this form, we consider the following general form of two-input nonlinearity for which we derive a ueful new result:

Case 1: For a nonlinearity that has a linear factor in one variable,

$$
\begin{equation*}
f\left(v_{1}, v_{2}\right)=v_{1} g\left(v_{2}\right) \tag{4.3-22}
\end{equation*}
$$

we write Eq. (4.3-21) out fully to obtain

$$
\begin{align*}
\hat{\mathrm{p}}= & \frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-p^{2}}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} v_{1} g\left(v_{2}\right) \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{v_{1}-m_{1}}{\sigma_{1}}\right)^{2}\right.\right. \\
& \left.\left.-2 \rho\left(\frac{v_{1}-m_{1}}{\sigma_{1}}\right)\left(\frac{v_{2}^{-m_{2}}}{\sigma_{2}}\right)+\left(\frac{v_{2}-m_{2}}{\sigma_{2}}\right)^{2}\right]\right\} d v_{1} d v_{2} \tag{4.3-23}
\end{align*}
$$

It would be possible to integrate this equation with respect to v_{1} directily, making use of the relation

$$
\begin{equation*}
\int_{-\infty}^{\infty} u \exp \left(-\mu u^{2}+2 v u\right) d u=\sqrt{\frac{\pi}{\mu}} e^{\frac{v^{2}}{\mu}} \frac{v}{\mu} \tag{4.3-24}
\end{equation*}
$$

(Ref. 17). However, a more systematic approach, explained below, reduces the possibility of error in the manipulations and algebra involved in evaluating \hat{f}. (The same technique is indispensable for three or more variables.)

Ccnsider the argument of the exponential factor, $\underline{r}^{T} \mathbf{p}^{-1} \underline{r}$; we seek a linear transformation $\underline{w}=R^{-1} \underline{r}$ which simplifies the integrations of Eq. (4.3-23), Choose the matrix R to be

$$
\because \quad R \Leftrightarrow\left[\begin{array}{cc}
r_{1} \sqrt{1-\rho^{2}} & \sigma_{1} \rho \tag{4.3-25}\\
0 & \sigma_{2}
\end{array}\right]
$$

so by definition

$$
\begin{equation*}
\mathbf{D}=\mathbf{R R}^{T} \tag{4,3-26}
\end{equation*}
$$

Defining w to be given by

$$
\begin{align*}
\underline{w} & =R^{-1}(\underline{v}-\underline{m}) \\
& =\left[\begin{array}{c}
\frac{v_{1}-m_{1}}{\sigma_{1} \sqrt{1-\rho^{2}}}-\rho \frac{v_{2}-m_{2}}{\sigma_{2} \sqrt{1-\rho^{2}}} \\
\frac{v_{2}-m_{2}}{\sigma_{2}}
\end{array}\right] \tag{4.3-27}
\end{align*}
$$

we obtain

$$
\begin{equation*}
(\underline{v}-\underline{m})^{T} \underline{p}^{-1}(\underline{v}-\underline{m})=\underline{w}^{T} \underline{w} \tag{4.3-28}
\end{equation*}
$$

This change of variables in Eq. (4.3-23) leads to

$$
\begin{equation*}
\hat{f}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left\{m_{1}+\sigma_{1}\left(\sqrt{1-\rho^{2}} w_{1}+\rho w_{2}\right)\right\} g\left(\sigma_{2} w_{2}+m_{2}\right) e^{-\frac{1}{2}\left(w_{1}^{2}+w_{2}^{2}\right)} d w_{1} d w_{2} \tag{4.3-29}
\end{equation*}
$$

The matrix R in Eq. (4.3-25) is specifically chosen to be lower triangular, i.e., zero below the diagonal, in order to make v_{2} a linear function of W_{2} alone, so that integration with respect to w_{1} can be carried out irrespective of the form of g. Discarding the odd terms in w_{1}, we use Eq. (4.3-6) to arrive at

$$
\begin{equation*}
\hat{f}=-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(m_{1}+\sigma_{1} \rho w_{2}\right) g\left(\sigma_{2} w_{2}+m_{2}\right) e^{-\frac{1}{2} w_{2}^{2}} d w_{2} \tag{4.3-30}
\end{equation*}
$$

which has reduced the evaluation of $\hat{\mathrm{f}} \mathrm{in} \mathrm{Eq} .(4.3-23)$ to an integration in one variable.

The result in Eq. (4.3-30) can be further internreted to obtain a fundamental form for nonlinearition which are ancur in one variable. Firat, consider the ridf approximation of $g\left(v_{2}\right)$ alone: from Eqa. (4.3-1) to (4.3-3) we have

$$
g\left(v_{2}\right) \cong \hat{g}\left(m_{2}, \sigma_{2}\right)+n_{k}\left(m_{2}, \sigma_{2}\right)\left(v_{2}-m_{2}\right)
$$

where

$$
\begin{align*}
& \hat{g} \triangleq \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g\left(\sigma_{2} w_{2}+m_{2}\right) e^{-\frac{1}{2} w_{2}^{2}} d w_{2} \tag{4.3-31}\\
& n_{g} \triangleq \frac{1}{\sigma_{2}^{2}} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \sigma_{2} w_{2} g\left(\sigma_{2} w_{2}+m_{2}\right) e^{-\frac{1}{2} w_{2}^{2}} d w_{2}
\end{align*}
$$

We then recognize that Eq. (4,3-30) is simply

$$
\begin{equation*}
\hat{\mathbf{f}}=m_{1} \hat{\mathbf{g}}+\rho \sigma_{1} \sigma_{2} n_{g} \tag{4.3-32}
\end{equation*}
$$

and that the two random component ridf's are

$$
\begin{align*}
n_{1} & =\frac{\partial \hat{f}}{\partial m_{1}}=\hat{g}\left(m_{2}, \sigma_{2}\right) \\
n_{2} & =m_{1} \frac{\partial \hat{g}}{\partial m_{2}}+\rho \sigma_{1} \sigma_{2} \frac{\partial n_{g}}{\partial m_{2}} \tag{4.3-33}\\
& =m_{1} n_{g}+p_{12} \frac{\partial n_{g}}{\partial m_{2}}
\end{align*}
$$

Consequently, given that the nonlinearity $g\left(v_{2}\right)$ is readily quasilinearized, it is a rirect matter of differentiation to evaluate ridf's for the multiple input nonlinearity $v_{1} g\left(v_{2}\right)$.

Example 4: As a special case, for the aingle-input nonlinearity

$$
f(v)=v g(v)
$$

where $g(v)$ has the quasi-linear approximation

$$
\mathbf{g}(v) \cong \hat{\mathbf{g}}+n_{\mathbf{K}}(v-m)
$$

we obtain

$$
\begin{aligned}
& \hat{f}=m \hat{g}+\sigma^{2} n_{g} \\
& n=\hat{g}+m n_{g}+\sigma^{2} \frac{\partial n_{g}}{\partial m}
\end{aligned}
$$

This result permits the direct evaluation of ride's for nonlinearities that are related to simpler forms $[g(v)]$ by multiplicative powers of v, provided the quasi-linear approximation of the simpler form is available.

Example 5: For the nonlinearity

$$
f\left(v_{1} v_{2}\right)=v_{1} \cos v_{2}
$$

we apply the relations given in Eqs. (4.3-32) and (4.3-33) to the ride's given in Eq. (4.3-10) to obtain

$$
\begin{align*}
& \hat{f}=\left[m_{1} \cos m_{2}-p_{12} \sin m_{2}\right] e^{-\frac{1}{2} p_{22}} \\
& n_{1}=e^{-\frac{1}{2} p_{22} \cos m_{2}} \tag{4.3-34}\\
& n_{2}=-\left[m_{1} \sin m_{2}+p_{12} \cos m_{2}\right] e^{-\frac{1}{2} p_{22}}
\end{align*}
$$

This result wes obtained in Ref. 3 by the more tedious direct evaluation of Eq. (4.3-21).

Case 2: By using similar transformation techniques (refer to Eqs. (4.3-25) and (4.3-26)), the three-variable case

$$
\begin{equation*}
f\left(v_{1}, v_{2}, v_{3}\right)=v_{1} g\left(v_{2}, v_{3}\right) \tag{4.3-35}
\end{equation*}
$$

has been proven to lead to a mean component quasi-linear term of the form

$$
\begin{align*}
\hat{\mathrm{f}} & =m_{1} \hat{g}+p_{12} \frac{\partial \hat{g}}{\partial m_{2}}+p_{13} \frac{\partial \hat{g}}{\partial m_{3}} \\
& =m_{1} \hat{g}+p_{12} n_{g_{2}}+p_{13} n_{g_{3}} \tag{4.3-36}
\end{align*}
$$

where $g\left(v_{2}, v_{3}\right)$ is represented in quasi-linear form by

$$
\begin{equation*}
g\left(v_{2}, v_{3}\right) \equiv \hat{g}+n_{g_{2}}\left(v_{2}-m_{2}\right)+n_{g_{3}}\left(v_{3}-m_{3}\right) \tag{4.3-37}
\end{equation*}
$$

This result should greatly expedite the evaluation of ridf's for three-input nonlinearities that are linear in one variable.

Cuse 3: Based on the above results, Eqs. (4.3-32) and (4.3-36), it is a matter of direct extension to prove a general direct quasi-linear approximation for the nonlinearity class

$$
\begin{equation*}
f\left(v_{1}, v_{2}\right)=v_{1}^{k} g\left(v_{2}\right), \quad k=1,2, \ldots \tag{4.3-38}
\end{equation*}
$$

First, we treat the case

$$
\begin{equation*}
f\left(v_{1}, v_{2}\right)=v_{1}^{2} g_{2}\left(v_{2}\right) \tag{4.3-39}
\end{equation*}
$$

as a special case of Eqs. (4.3-35) and (4.3-36) with g given by $\mathrm{v}_{1} \mathrm{~g}_{2}\left(\mathrm{v}_{2}\right)$; applying Eq. (4.3-32), we obtain

$$
\begin{equation*}
\hat{f}=\left(m_{1}^{2}+\sigma_{1}^{2}\right) \hat{g}_{2}+2 m_{1} p_{12} \frac{\partial \hat{g}_{2}}{\partial m_{2}}+p_{12}^{2} \frac{\partial^{2} \hat{g}_{2}}{\partial m_{2}^{2}} \tag{4.3-40}
\end{equation*}
$$

We can then proceed by induction to show that the general form of the mean component ridf is

$$
\begin{align*}
\hat{f}= & E\left[v_{1}^{k}\right] \hat{g}+k p_{12} E\left[v_{1}^{k-1}\right] \frac{\partial \hat{g}}{\partial m_{2}}+\frac{1}{2} k(k-1) p_{12}^{2} E\left[v_{1}^{k-2}\right] \frac{\partial^{2} \hat{g}}{\partial m_{2}} \\
& +\cdots+k_{12}^{k-1} E\left[v_{1}\right] \frac{\partial^{k-1} \hat{g}}{\partial m_{2}^{k-1}}+p_{12}^{k} \frac{\partial^{k} \hat{g}}{\partial m_{2}^{k}} \tag{4.3-41}
\end{align*}
$$

or, to use the more compact binomial coefficient notation (Ref.18),

$$
\begin{align*}
& \binom{k}{j} \triangleq \frac{k(k-1) \cdots(k-j+1)}{j!} \tag{4.3-42}\\
& \hat{f}=\sum_{j=0}^{k}\binom{k}{j} p_{12}^{j} E\left[v_{1}^{k-j}\right] \frac{\partial^{j} \hat{g}}{\partial m_{2}^{j}} \tag{4.3-43}
\end{align*}
$$

The random component ridf's are directly obtained by differentiation according to Eq. (4.2-11). This simple and powerful expression for \hat{f} reduces the ridf evaluation to a relatively easy task for a broad class of two-variable functions.

Various techniques exist for manipulating nonlinearities into forms that are directly treated by the above developments. A particularly fruitful approach is the use of trigonometric identities to reformulate nonlinearities, as the following case demonstrates.

Example 6: For a nonlinear function with multiple trigoncmetric factors, e.g.

$$
\begin{equation*}
f\left(v_{1}, v_{2}, v_{3}\right)=v_{1} \sin v_{2} \cos v_{3} \tag{4.3-44}
\end{equation*}
$$

wi :an use the sum-and-diflerence formulae (cf. Ref. 19) to obtain

$$
g \triangleq \sin v_{2} \cos v_{3}=\frac{1}{2}\left[\sin \left(v_{2}+v_{3}\right)+\sin \left(v_{2}-v_{3}\right)\right]
$$

and proceed as follows: From Eq. (4.3-10),

$$
E[\sin w]=e^{-\frac{1}{2} \sigma_{w}^{2}} \sin \left(m_{w}\right)
$$

where $w=v_{2} \pm v_{3}$. In the two cases $w=v_{2} \pm v_{3}$, Eq. (4.2-2) yields

$$
\begin{aligned}
& w=v_{2}+v_{3} \longrightarrow m_{w}=m_{2}+m_{3}, \quad \sigma_{w}^{2}=p_{22}+p_{33}+2 p_{23} \\
& w=v_{2}-v_{3} \longrightarrow m_{w}=m_{2}-m_{3}, \quad \sigma_{w}^{2}=p_{22}+p_{33}-2 p_{23}
\end{aligned}
$$

Thus
and the direct application of Eq. (4.3-36) leads to

$$
\begin{align*}
\hat{\mathrm{f}} & =\mathrm{m}_{1} \hat{\mathrm{~g}}+\frac{1}{2} e^{-\frac{1}{2}\left(p_{22}+p_{23}\right)}\left[\left(p_{12}+p_{13}\right) e^{-p_{23}} \cos \left(m_{2}+m_{3}\right)\right. \\
& \left.+\left(p_{12}-p_{13}\right) e^{p_{23}} \cos \left(m_{2}-m_{3}\right)\right] \tag{4.3-45}
\end{align*}
$$

Obtaining this result by the direct application of Eq. (4.2-10) would be very tedious.

With the tools developed in this section of the handbook and the cata ogue of single-variable ridf's provided in Appendix A, a broad class of nonlinearities can be treated in a straightforward manner (with little or no analysis of the sort illustrated in this chapter). Thus these contributions significantly enhance the direct usefulness of CADET.

4.4 EFFECTS OF DIFFERENT PROBABILITY DENSITY FUNCTIONS

An important issue that must be investigated in order to assess the potential accuracy of CADET is the effect of deviations from the assumed joint normality of the state variables on the evaluation of random input describing functions (ridf's). The gaussian hypothesis is the only approximation made in the application of CADET, so any inaccuracy in performance projections obtained via CADET is due to the nongaussian nature of the actual state variable joint probability density function (pdf).

In this section, we present results of an investigation of the sensitivity of quasi-linearization to changes in the pdf of the nonlinearity input (Ref. 4). We compare the ridf's corresponding to three common nonlinearities -- the limiter, the sinusoidal operator, and a power law nonlinearity -- computed for a variety of density functions. Seven probability density functions with quite different functional forms are considered. Four of these are given in Table C.2-1, viz., the exponential, gaussian, triangular, and uniform distributions. Three additional densities are special cases of the sum of two symmetrical triangular functions, defined in general by

$$
p(x) \triangleq\left\{\begin{array}{cl}
\frac{1}{2 \Delta}\left(1-\frac{\left||x|-x_{0}\right|}{\Delta}\right), & \left||x|-x_{0}\right| \leq \Delta \tag{4.4-1}\\
0 & ,\left||x|-x_{0}\right|>\Delta
\end{array}\right.
$$

which has a zero mean, a variance given by

$$
\begin{equation*}
\sigma^{2}=x_{0}^{2}+\frac{1}{6} \Delta^{2} \tag{4.4-2}
\end{equation*}
$$

and a kurtosis (ratio of fourth moment to variance squared, of

$$
\begin{equation*}
\lambda \triangleq \frac{\mu_{4}}{\sigma^{4}}=\frac{x_{0}^{4}+\Delta^{2} x_{0}^{2}+\frac{1}{15} \Delta^{4}}{x_{0}^{4}+\frac{1}{3} \Delta^{2} x_{0}^{2}+\frac{1}{36} \Delta^{4}} \tag{4.4-3}
\end{equation*}
$$

The three cases of Eq. (4.4-1) chosen for the comparison correspond to $\Delta=\frac{1}{2} x_{0}, x_{0}$ and $2 x_{0}$; the associated pdf's are portrayed in Fig. 4.4-1. Note that two of these densities are bimodal; i.e., they have two distinct peaks.

(o) $\Delta=\frac{1}{2} x_{0}$

(b) $\Delta=x_{0}$

(c) $\Delta=2 x_{0}$

Figure 4.4-1 Three Density Functions Comprised of Two Triangles

It is shown in the discussion of confidence intervals for the estimated standard deviation obtained via the monte carlo method (Section C.2) that the kurtosis has a significant impact on the confidence we have in the accuracy of the estimate. Here it is observed that the value of the random input describing function calculated for various pdf's seems to be directly related to the kurtosis. Thus we order the seven pdf's under consideration according to the value of λ :

$$
\begin{aligned}
& p_{1}(x)=\frac{1}{\sqrt{20}} \exp \left(-\frac{\sqrt{2}}{\sigma}|x|\right): \quad \lambda_{1}=6 \quad \text { (exponentia:) } \\
& P_{2}(x)=\frac{1}{\sqrt{2 \pi} \sigma}-\exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right) ; \quad \lambda_{2}=3 \quad \text { (gaucsian) } \\
& p_{3}(x)=\frac{1}{\sqrt{6} \sigma}\left(1-\frac{|x|}{\sqrt{6} \sigma}\right) .|x| \leq \sqrt{6} \sigma_{i} \quad \lambda_{3}=2.4 \quad \text { (triangular) } \\
& p_{4}(x)=\frac{1}{4 x_{0}}\left(1-\frac{|x|-x_{0} \mid}{2 x_{0}}\right),\left||x|-x_{0}\right| \leq 2 x_{0} ; \quad \lambda_{4}-2.14 \text { (F1g. 4.4-10) } \\
& P_{5}(x)=\frac{1}{2 \sqrt{3} \sigma} \quad|x| \leq \sqrt{3} \sigma ; \quad \lambda_{5}=1.8 \quad \text { (uniform) } \\
& p_{6}(x)=\frac{1}{2 x_{0}}\left(1-\frac{|x|-x_{0} \mid}{x_{0}}\right),|x|-x_{0} \mid \leq x_{0} ; \quad \lambda_{8}=1.52 \quad \text { (Fig. 4.4-1b) } \\
& p_{7}(x)=\frac{1}{x_{0}}\left(1-\frac{2| | x\left|-x_{0}\right|}{x_{0}}\right),|x|-x_{0} \left\lvert\, \leq \frac{1}{2} x_{0}\right. ; \quad x_{7}=1.16 \quad \text { (Fig. 4.4-1n) }
\end{aligned}
$$

While these density functions are not exhaustive in a formal sense, they do represent a variety of situations. All of the densities given in Eq. (4.4-4) have even symmetry; we note that skew densities can be disregarded in this context with no loss in generality. For a skew density $p_{s}(x)$ we can define its even part by

$$
p_{e v}(x)=\frac{1}{2}\left(p_{s}(x)+p_{s}(-x)\right)
$$

Since the three nonlinearities considered are symmetric (odd) and the mean values of their inputs are zero, only the cen part of the pdf contributes to the describing function calculation.

$$
\begin{align*}
& \text { Limiter - The ideal limiter or saturation operator, } \\
& f(x)= \begin{cases}x & |x| \leq \delta \\
\delta \operatorname{sign}(x), & |x|>\delta\end{cases} \tag{4.4-5}
\end{align*}
$$

is a common piecewise-linear function used to model nonlinear phenomena. In Fig. 4.4-2, we portray the various describing function gains for this nonlinearity, corresponding to the pdf's defined in Eq. (4.4-4), as functions of the ratio of the input rms level, σ, to the saturation point, δ. As would be expected, all seven quasi-linear gains capture the fact that the effective gain starts to decrease from unity whenever a significant portion of the assumed input pdf lies beyond the saturation point, i.e., whenever there is a significant probability that $|x|$ is greater than δ. As has been pointed out previously, this effect is the key to the success of quasi-linearization techniques in reflecting nonlinear system behavior that is beyond the scope of smallsignal (Taylor series) linearization.

It is interesting to observe that the relative positions of the curves in Fig. 4.4-2 exhibit a monotonic relation to the value of λ. The greater the difference between λ for a particular pdf and the value for the gaussian case ($\lambda=3$), the greater the difference between that density function's ridf curve and the curve for a gaussian distribution. This behavior holds in all the cases considered here, and is indicative of the fact that the value of λ is one quantitative measure of how "close" the density function is to being gaussian. The variation of the ridf's with λ is about at its maximum (on a percentage basis) for the case $\sigma=2 \delta$; the ridf decreases 13% as λ increases from 3 to 6 , and increases 28% as λ decreases from 3 to 1.16 .

Figure 4.4-2 Random Input Describing Function Sensitivity for the Limiter
pl Law - A similar study was performed for a powerlaw characte 'stic,

$$
\begin{equation*}
f(x)=x^{2} \operatorname{sign}(x) \tag{4.4-6}
\end{equation*}
$$

This type of nonlinearity is often used to model effects such as the 'hard spri.., characteristic (Ref. 15) discussed in considering nonlinear restoring torques acting on the missile seeker head, Section 3.6. For the power law, the ridf's calculated for the same density functions considered previously have the form (Ref.4)

$$
\begin{equation*}
n_{i}=\mu_{i} \sigma \tag{4.4-7}
\end{equation*}
$$

where σ is the input rms level and μ_{i} are coefficients determined by the input pdf's, $p_{i}(x)$. Thus the describing function gain for $f(x)$ increases linearly with the input rms level, in direct contrast to the small-signal linear gain which is identically equal
to zero, $2 s$ shown in Fig. 4.1-3. It is again observed that there is a monotonic relation between λ_{i} and the ridf curves. In this case, an increase in λ leads to an increase in the describing function gain, which is contrary to the behavior shown for the limiter. This is a result of the fact that the power law output increases more rapidly with increasing input than a linear characteristic, whereas the opposite is true for saturation. For the power law nonlinearity, the ridf sensitivity is independent of σ, i.e., the ratio of ridf's calculated for $p_{i}(x)$ and $p_{j}(x)$ is simply μ_{i} / μ_{j}. For $f(x)$ in Eq. (4.4-6), the describing function gain n varies from $+33 \%$ for the exponentially distributed case, to -34% for the pdf $p_{7}(x)$, compared to the gaussian input ridf, which shows that this nonlinearity is somewhat more sensitive to variations in λ than the limiter.

Figure 4.4-3 Random Input Describing Function Sensitivity for the Power Law Nonlinearity

Sinusoidal Operator - The third nonlineurity considered In thesso sonsifivity studios is lhe sinusoidal oporator,

$$
f(x)=\sin x
$$

which is needed to resolve the missile and target velocity vectors in the missile-target intercept model, for example. A potential source of difficulty with this function is that the nonlinearity output periodically changes sign with increasing or decreasing values of its input. This leads to quasi-linear gains that, for large values of rms input, u, may even differ in sign for different input pdf's. This problem is not unique to CADET; in many modeling and simulation studies, care must be exercised when the input to a sinusoidal operator (or any other trigonometric nonlinearity) can exceed $\pm 90 \mathrm{deg}$ ($\pm \pi / 2 \mathrm{rad}$), since in some sease the "gain" can change sign in some situations. Bearing this in mind, we have calculated the random input describing functions for values of σ as large as 3 rad to indicate where such effects become important, as shown in Fig. 4.4-4.

The quasi-linear gains for $\sigma<\pi / 2$ rad show some similarily to those obtained for the limiter; this is a reasonable mode of behavior, since the sine function shows a definite saturation effect of the range $|x| \leq \pi / 2$ rad. As expected, the ridf's are inversely related to λ for $\sigma<\pi / 2 \mathrm{rad}, 1 . e .$, as λ increases, n decreases. However, as the input rms level approaches 3 rad, the describing functions for all of the pdf's except $p_{1}(x)$ and $p_{2}(x)$ become negative, and the monotonic relationship between λ and n appears to be lost.

The preceding studies indicate that the sensitivity of random input describing function calculations to variations in input probability density function is slight for small values of input rms level; as σ approaches zero, the quasi-linear gains approach unity for the limiter and sinusoidal operator, and zero

Figure 4.4-4 Random Input Describing Function Sensitivity for the Sinusoidal Operator
for the power law nonlinearity. These limiting cases are che same values of gain that would be obtained by the traditional smallsignal linearization approach -- viz., by replacing $f(x)$ with a linear gain equal to the slope of the function at the origin (Section 1.2). As a general result, it has been shown (Ref. 6) that quasi-linearization subsumes small-signal linearization, i.e., for small signals the two are equivalent. This, in turn, proves that CADET provides nearly exact statistical analyses when the random variables have a small rus value in relation to the system nonlinearities, i.e., when most of each nonlinearity input probability density function lies in the linear region of its nonlinearity. As the rms levels of system variables increase so that the nonlinearities are being exercised significantly, the describing function sensitivity to the input pdf can be appreciable; then

It must be ascertained how sensitive the system performance is to variations in gain at each point in the system model where a nonlinearity occurs. No general answer can be given to this question; the verification of CADET for particular applications must be accomplished by direct comparison with monte carlo results, as has been done in Chapter 4 of Ref. 4 for the missile homing guidance system.

4.5 DESCRIBING FUNCTIONS NOT EXISTING IN CLOSED FORM UNDER THE GAUSSIAN ASSUMPTION

For certain nonlinearities, random input describing funclions cannot be obtained in closed form under the assumption that the inputs are jointly normal. In this section we indicate some approximate methods for computing ridf's that involve either approximation to the input probability density function, or approxmations to the nonlinearity, and discuss their usefulness.

An example of interest in the missile-target intercept problem is the nonlinearity

$$
\begin{equation*}
f(x, y)=\sqrt{x^{2}+y^{2}} \tag{4.5-1}
\end{equation*}
$$

which defines the missile-to-target range in terms of the cartesian components of the separation, x and y. This problem is considered in some detail to provide a focus for the discussion of several ridf approximation techniques. We compare the accuracy of each approach for the nonlinearity given in Eq. (4.5-1), and point out some pitfalls that may be encountered if care is not taken.

In order to simplify the discussion, we assume that y does not have a mean component, and x has a negligible random component. This approximation is valid in many missile-target intercept situations except at the very end of the engagement (refer to Section 4.1 of Ref. 4). With these assumptions, there
ure only two ridf's, \hat{f} and n_{y}, needed for a quasi-linear representation of the range. Thus from Eq. (4.1-i), we seek to evaluate

$$
\begin{aligned}
& \hat{f}=E\left[\sqrt{m_{x}^{2}+y^{2}}\right]=\int_{-\infty}^{\infty} p(y) \sqrt{m_{x}^{2}+y^{2}} d y \\
& n_{y}=\frac{1}{\sigma_{y}^{2}} \int_{-\infty}^{\infty} y p(y) \sqrt{m_{x}^{2}+y^{2}} d y
\end{aligned}
$$

Under the assumption that y is a gaussiai random variable, the second of these integrals can be evaluated analytically; however, the first, which is of the form

$$
\begin{equation*}
\hat{\mathrm{f}}=\frac{1}{\sqrt{2 \pi} \sigma_{y}} \int_{-\infty}^{\infty} \sqrt{m_{x}^{2}+y^{2}} \exp \left[-\frac{y^{2}}{2 \sigma_{y}^{2}}\right] d y \tag{4.5-2}
\end{equation*}
$$

cannot generally be solved in closed form unless $m_{x}=0$, in which case we have

$$
\begin{equation*}
\hat{f}=E[|y|]=\sqrt{\frac{2}{\pi}} o_{y} \tag{4.5-3}
\end{equation*}
$$

For the more general situation given by Eq. (4.5-2) with $m_{x} \neq 0$, it is desirable to use some approximate technique to obtain a closed form expression for \hat{f} that is convenient for use in a CADET analysis.*

A Taylor series expansion of a function of a random variable, $f(y)$, about the mean of that variable, m, results in

$$
\begin{equation*}
f(y)=f(m)+\left.\frac{d f}{d y}\right|_{y=m} r+\left.\frac{1}{2} \frac{d^{2} f}{d y^{2}}\right|_{y=m} r^{2}+\ldots . \tag{4.5-4}
\end{equation*}
$$

[^12]where r a $\quad \mathrm{m}$. We desire to determine the expocted valuo of the above function, which is given by
\[

$$
\begin{equation*}
E[f(y)]=f(m)+\left.\frac{1}{2} \frac{d^{2} f}{d y^{2}}\right|_{y=m} \sigma_{y}^{2}+\left.\frac{1}{6} \frac{d^{3} f}{d y^{3}}\right|_{y=m} E\left[r^{3}\right]+\ldots . \tag{4.5-5}
\end{equation*}
$$

\]

where use is made of the fact that $E[r]$ is zero to eliminute the second term in Eq. (4.5-4); all other odd central moment terms (E [${ }^{3}$] etc.) are also zero for symmetric pdf's. Truncating the series given in Eq. (4.5-5) at the second term, we obtain

$$
\begin{equation*}
E[f(y)] \cong f(m)+\left.\frac{1}{2} \frac{d^{2} f}{d y^{2}}\right|_{y=m} \sigma_{y}^{2} \tag{4.5-6}
\end{equation*}
$$

which is un approximation suggested in Ref. 8. We note that this result is independent of the particular density function of y. If more terms are desired, the higher-order central moments can be evaluated using a specified pdf. If y is gaussiun, all odd central moments are zero and even central moments are given by (Ref. 8)

$$
\mu_{2 k} \triangleq E\left[r^{2 k}\right]=(1)(3)(5) \ldots(2 k-1) \sigma^{2 k}
$$

as can be inferred from Eq. (4.3-6). Thus the full expansion is

$$
\begin{equation*}
E[f(y)]=f(m)+\left.\frac{1}{2} \frac{d^{2} f}{d y^{2}}\right|_{y=m} \sigma^{2}+\left.\frac{(1)(3)}{4!} \quad \frac{d^{4} f}{d y^{4}}\right|_{y=m} \sigma^{4}+\ldots \tag{1.5-7}
\end{equation*}
$$

The use of the first term alone in Eq. (4.5-7) corresponds to sma?l signal linearization; taking two terms as indicated in Eq. (4.5-6) results in a quasi-linear gain that is often useful. We observe that the existence of a well-behaved (i.e.,
convergent) expansion for $f(y)$ does not guarantee that Eq. (4.5-7) exhibits the same behavior.

In the present case, the series expansion approach is effective for evaluating \hat{f} only in situations where m_{x} is considerably larger in magnitude than σ_{y}, due to the singularities of the derivatives of $\sqrt{m_{x}^{2}+y^{2}}$ at the origin ($m_{x}=0$). To demonstrate this difficulty, we write the series expansion for the nonlinearity under consideration (Ref. 19),

$$
\begin{equation*}
f(y)=\sqrt{m_{x}^{2}+y^{2}}=\left|m_{x}\right|\left[1+\frac{1}{2}\left(\frac{y}{m_{x}}\right)^{2}-\frac{1}{8}\left(\frac{y}{m_{x}}\right)^{4}+\ldots .\right] \tag{4.5-8}
\end{equation*}
$$

from which we obtain

$$
\begin{equation*}
\hat{f}=\left|m_{x}\right|\left[1+\frac{1}{2}\left(\frac{\sigma_{y}}{m_{x}}\right)^{2}-\frac{3}{8}\left(\frac{\sigma_{y}}{m_{x}}\right)^{4}+. . .\right] \tag{4.5-9}
\end{equation*}
$$

as an approximate describing function to represent the mean component of the range. For m_{x} considerably larger than σ_{y}, the first few terms of this expansion yield acceptable accuracy.* However, since m_{x} approaches zero as range goes to zero in the missile-target intercept problem, using Eq. (4.5-9) is generally not suitable.

A second method for approximating the integral in Eq. (4.5-2) is the substitution of a nongaussian pdf for which the integral can be obtained in closed form. As in previous sensitivity studies (Section 4.4), the best result is obtained using the triangular pdf. Eubstituting this distribution into

[^13]Equation (4.5-1) leads to an integral that is evaluated in closed form to be

$$
\begin{equation*}
\hat{\mathbf{f}} \cong \frac{\left|m_{x}\right|}{v}\left[\sqrt{1+v^{2}}+v^{2} \log \left(\frac{1+\sqrt{1+v^{2}}}{v}\right)+\frac{4}{\sqrt{6}}\left(v^{3}-\left(1+v^{2}\right)^{3 / 2}\right)\right] \tag{4.5-10}
\end{equation*}
$$

where the auxiliary variable v is given by

$$
\begin{equation*}
\nu \triangleq \frac{m_{x}}{\sqrt{6} \sigma_{y}} \tag{4.5-11}
\end{equation*}
$$

The accuracy of Eq. (4.5-10) is quite good, especially when compared with the poor approximation given by the series expansion in Eq. (4.5-9) when $\left|m_{x}\right|$ is less than or equal to σ_{y}. The error between Eq. (4.5-10) and the exact result specified $: n$ Eq. (4.5-2), as shown in Fig. 4.5-1, is less than 3%, which is adequate for most applications.

We note that the conclusion that the series expansion technique is not useful for computing the ridf in the case treated above should not be taken as universally true. When series approximations for an ridf can be obtained which are accurate over the entire range of the input statistics, they will generaily yield good results. Another important consideration is that the series expansion technique is generally feasible for highly complicated nonlinearities, as demonstrated in Section A.4, while evaluating $\hat{\mathbf{f}}$ by integration with any approximate pdf $p(y)$ may be impractical or impossible. The cases treated in Section A. 4 thus illustrate the power of the series expansion technique, given in Eqs. (4.5-6) and (4.5-7), while the above presentation indicates the care that must be exercised to avoid convergence problems.

This chapter presents a detailed outline of the theory and application of statistical linearization. Guidance in

6. 1 DLEBCT CADET-ISONTE CARIO COMPARIGCNB

siace CADET and the monte carlo method are the dig tcolto available for the statistical analyels of the pertormance of nomiinear systoms with random inputs, ino ultimate value of cadrow con only be extablished by comparing the reiative efficacy of the teo approsches. In his section, we will touch oa utility, egosor application, expeuditure of computer tine, and accurgey. Bawed on these factors, and on other charactaristicm of the two techniques, will outiine the philosophy for th usplicntion of CADES that has been developed at TABC, and sumarize the atrong and wowt points of this methodology. The conclusions, whilo besed chiefly on extensive experience gained in treating the missile-tprget
 applications of CADET.

5.1.1 Overview and CADFT Mechasization

In Chaptar 1 we have derived differentiel equetions governing the approximate evolution of the mean vector and covariance matrix of nonlinear time-varying gysteme with random inputs, ixhing the form

$$
\begin{equation*}
\underline{\underline{x}}=\underline{f}(\underline{x}, t)+G(t) \underline{(t)} \tag{5.1-5}
\end{equation*}
$$

where $\underset{(t)}{ }(t)$ and $w(t)$ are vectors compused of the system states man random inputs, respectively, (Refer to Section 1.2 for iurther details.) Borore the CADET equations can ${ }^{2}$. limplemented, it is necessary to have the random inpur deacribink functions (ridf 's) required for a quasi-inear representation of every aystom
nonlinearity. The ridf's for a broad set of single-input nonlinearittes are directly available from Ref. 6 (see also Appendix A). In addition, Chapter 4 of this handbook providss ridf's for a number of common multiple-input nonlinearity forms. Consequeatly, use of CADET is often a matter of direct substitution of kncon ridi's in the mean and covariance equations, as demonstrated iat Chapter 2. If a matrix computer language is available to the analyst, the construction of a computer program for applying CADET is no more difficult than the programming required for using the monte carlo method. As an added benefit, CADET does not necessitate use of a random number generator; a common source of concern in the monte carlo method is the question of what constitutes a "good" random number sequence and how such a sequence can be generated.

Thus from the point of view of utility and mechanization, the two techniques appar to be quite comparable -- there is no clear-cut reason to state that one technique is superior to the other based on these considerations.

5.1.2 Accuracy and Efficiency

One of the main arguments that can be advanced for the use of CADET in obtaining projections of nonlinear system performance is the significant reduction in computer central processing unit (CPU) time achieved by using CADET instead of the monte carlo method. In making this comparison, two issues must be addressed: the number of monte carlo trials that must be performed in order to obtai comparably accurate results, an the practical limitation imposed by computer costs. From the standpoint of accuracy, a decision regarding the required number of monte carlo trials is somewhat arbitrary, because the error mechanisms of CADET and the monte carlo method are dissimilar.

Referring tc Fig. C. 3-3b, we note that, in situation where the statisties are quite nongaussian, the CADRT computation of the mos value uf a aystem variable appeapes to be at least as accurate as the value estimated with 400 monte carlo trials, in tiae senee that the 95% confidence band for 400 trials brackets the cappr result. Where the statistics are more nearly grussian, e.g. as in Fig. C.3-2a, it mould seem that CADET accuracy is comparable to that achicved by more than 500 monte carlo trials.* On the other hand, pragmatic evaluation of the efficiency of CADFT should take inio account the fact that most monte carlo studies must be limited in scope by computer budget constraints. A reasonable upper bound is ihus 256 trials since, in the gaussian case, this resulte in 95% confidence that an accuracy of 10% can be achieved (Section 2.2); for high-order systems, even this number of trials may require an nordinate amount of computer time. For the present discussion, we therefore compare the relative efficiency of the monte carlo and CADET approaches on the basis of 256 trials, recognizing that the estimated rms values of the system variables obtained for this number of monte carlo experimenti may be leas uccurate than the CADET reaults.

In pest studies, Refs. 1 to 4 , the savings in computer CPU time achieved by the appilication of CADET has always been significant in comparison with 256-trial monte carlo studies, even though the systen troated in ame cases has been of high order (with up to 42 system states) and very nonlinear (having up to 26 nonlinearities). We discuss below bew both of these factors tend to reduce the relative ificiency of CADET.

Wonte cerlo simulation for a system with n states requires the integration of an n-vector differential equation (repeated a times where q is the number of trials), while CADET involves the

[^14]propagation of the n-element mean vector. m, and the $n \times n$ bymetric covariance matrix, p -- a total of $n(n+3) / 2$ elements. Thus the computational burden for CADET can increase as fast as $\mathrm{n}^{2} / 2$ while the CPU time for monte carlo analysis only varies as n. demonstrating that an increase in the number of states may reduce the advantage of CADET in efficiency. This factor can be mitigated to a large extent when there is little dynamic cross-coupling in the system; in the quasi-iinear system model, Eq. (4.1-4), this corresponds to N having few non-zero elements (N being sparse). In many practical problems, N is sparse and a considerable increase In the computational efficiency of CADET can be realized by the application of techniques which circument multiplications involving zero elements, thus streamining the evaluation of \dot{p} (Eq. (1.2-7)). Such on approach has proven to be valuable in the studies presented in Ref. 3.

The number of nonlinearities may also increase the computation time required by CADET, since the calculation of a ran-
 numerical operations than evaluating the corresponding nonlinear function in the monte cario program (refer to Appendix A, for example). The investigation treated in Ref, 4 was exceptional in having nearly as many nonlinearities as state variables; more typical applications of CADET would focus on a few principal nonlinear effects, leading to a still more favorable comparison of CADET with the monte carlo method in terms of computation il burden per performance evaluation.

Usiag the same integration nethod in performing the monte carlo ensemble of simulations as was used in propagating the system mean vector a d covariance matrix via Caret, and assuming that the same integration step size is required in each procedure, the results summarized in Table 5. i-l indicate the effect of the system dimensionality (number of states) and degree of nonlinearity (number of nonlinearitiee) in typical studies of the missile-target

CUMPARISON OF CADET AND MONTE CARLO EPPSCIENCY BASED ON 258-TRIAL MONTE CARLO ANALYSIS

8tady	$\begin{gathered} \text { Mumbr } \\ \text { of } 8 t \text { cian } \end{gathered}$	Atumber of Honifuearytian	Ratio of Computer Time Conen Monte Carlo/CADEY
Res. 3	10	2	30
Ref. 3	17	6	18-20
Rex. 4	22	32	10
Bef. 23	42	26	20-30**

 tates omittod.
*Optimised, usims fast eparse-matrix-multiplication subroutines.
 we note a considerable decrasse in relative CADET efficiency caused by increased $s_{j} . \quad$. mp ity; in the analysis of the system model given in \therefore, an intermediate degree of complexity and corresponding efxiciency is noted. The study of Ref. 23, also indicated in Table 5.1-1, shows the significsnt improvement that can be achieved by careful CADET program optimization, using the iast sparse-matrix-multiplication subroutine approach mentioned above.

We should also point out that in some circumstances the monte canlo approach may require a roduced integration step size to avoid failure of the numerice" 'afegration technique (xefter to Section 4.4 of Ref. 4, for examr . . In such cases the monte carlo/CADET CDU time ratio will be even hlgher.

5. 2 OTHER FACTORS AND PHILOBOPEY OY APPLICATXO

In comparing CAnsT and the monte carlo method for use in obteinint performance project one for monilneaz eyetem with ratdom inputs, we have obeerved that thore are mevaral eignificant similarities. Both teckniques are applicahle to nonilaear system models with an arbitrary number of state and nonlinemeritias, and we often rely on the gausian assumption in mamesaing tho accuracy of the performance statiatics obtained (refor to sertions 1.2 and $C .2)$. In either case, departure trom normali'y can be compensated for to a certais oxtent; in CADEx, nongeuseian probability density functions can be used in calculating describing functions, while in monte carlo simulation the fact that the confidence band linits may increase for nongaussian randon vari. ablen (Fig. C.2-2) can be counteracted by increasiag the number of trials performed. The principle trade-off between the two methods is in eificiency versus versatility.

The monte cario simuigtion engemble or q representrative state trajectories (Eq. (C.1-4)) can be used not only as a data base for calculating asthated performance statistics $\underline{B}(t)$ and $\hat{p}(t)$ at instants of time of interest, but slso for estimetieg highe order moments, and for generating histograms which are aproximate density functions for the variables uncre consideration. however, the versatility of the monte carlo method can only be exploited with a further ignificant increase in computer time expenditure over that indicaced in Table $5.1-$; while the estimation of $\hat{\underline{m}}$ and $\hat{\mathrm{p}}$ may require several hundred trials or more, it is genarally necessary to perform thousands of trials in order to obtain an accurate estimate of the paf of a random variable (and, cf course, what constitutes an "accurate estimete" is generally a subjective value judgnert in a nomgaussian case). In the sense that one can always obtain better eetimate of the statietics of a ramdom vai iable by running more triais (camputer budget permitting), the monte carlo method is a "self-checking" procedure.

Cader, on the other hand, provides approximate valuea for m(t) and $P(t)$ in a single numerical integration of the quasi-linear covariance equations (Eq. (1.2-7)), usually in a small fraction of the computer processing time required for an accurate monte carlo analysis.

One of the primary purposes of the atatistical analysis of nonlinear system performance is the evaluation of the change in system effectivoness due to variations in random input levels, initial condition statistics, system parameter values and secondary nonlinear effects. The multiplicity oi facters such as these implies that the analysis will generally be cone repeatediy, and computational efficiency is thus an important consideration. This point is a strong argument in favor oi CADET. On the other hand, the versatility of monte carlo simulation (with its self-check capability) permits us to assess the accuracy of the wonte carlo analysis. This is a feature lacking in CADET which makes it advisable to utilize monte carlo simulation in a monitoriag capacity, since it is giways possible to obtain reasonably accurate performance projections by increasing the number of trials sufticiently.

The effective use of CADET and monte carlo analysis in concert can be demonstrated in a hypothetical trade-off study where two parameters, say α_{1} and α_{2}, are to be varied over ertain ranges to obtain optimal performance in some sense (to minimize rms terminal miss distance in the missile-target intercept problem, for example). As shown in Fig. 5.2-1, a f'ew points in the parameter flane are chosen for careful CADET-monte carlo comparison (verification of CADET); then extensive performance curves are generated using CADET, from which the optimal values of α_{1} and α_{2} are chosen. If desired, the vicinity of the pcint cif optimality can be studiec' using a few selected values of α_{1} and α_{2} and performing the required mozite carlo simulations. Similar approzches can be used in studying sensitivity to nonlinear and random effects.

Figure 5.2-1
Illustration of CADET and Monte Carlo Analysis in a Parameter Trade-Off Study

The overfly philosophy of CADET usage, based on the str points of both CA ex and monte carlo simulation, is illustrated Fig. 5.2-2. The initial verification procedure is generally undo taken for the "nominal system," lie., for the system with nominee. parameter values, and is of necessity quite meticulous. Thus several hundred monte carlo trials any be performed, and if there is reason to believe that the system is highly nonlinear -- so that the system variables may de quite nongaussian -- it may be necessary to investigate higher order moments or histograms to decide whether more trials are needed in order to obtain a reliable statistical analysis. Once this phase has been completer satisfactorily, the CADET parameter sensitivity studies can then be performed. Observe that the preliminary careful but timeconsuming monte carlo study is always required if accurate performance statistics are to be obtained from monte carlo simulation

performance projectionm for tacticnl misstle guidince aystem modela that are quite realistlc - 1.e., timt incorporate a number of eignificant nomlinamr and random effecte. The appruach uaed to achieve this objactive has entailed

- Verffication of CADER perinrmance projactions by the use of selected munte carlo performance studies
- Investigation of the sensitivity uf CADET analysis to deviation from the assumption that the stute varisbles are jointly normal.

In these investigations, the following effects were treated:

Sources of Nonlinearity

- Guidance law
- Acceleration command limiting
- Aerodynamic effects (nonlinear airframe)
- Missile-target intercept geometry

- Hange-dependent se日ker nolse sources
- Receiver/signal processing characteristics
- Seeker radome aberration
- Seeker mass imbalance
- Seeker gimbal Coulomb friction
- Seeker head restoring torques (n.snlinear spring offecte)

Random Effects

- Tracining sensor noise and measurement exrcrs
- Range rate measurement error
- Target maneuvers
- Devisition of initial conditions from nominal values

Two aspects of the sensitivity pioblem have been considered In Chapser 4: the sensitivity uf ransom bnput describing funcion
calculations to tio probability density function of the nonitnearity iapat, and the calculation of approximate random iuput doser bing funcilons when it is inconvaniont to use the exact rossult for the gaussian case.

5.3.2 Conclusions

The investigationa described in Ref's 1 to 4 have indeed shown that CADET is an accurate arid efficient tool for conducting statistical saalyses of the performance of a tartical misisile systom including the gifects of a number of significant nonlinear and random phenomena. The conelv-ions drawn from these studies can he summarized as iollows:

- Caber has the cemonstrated ability to capture
the dupact of ali of the nonlunear ufiects
listed roove on guldance sysiem nerformance.
In all chees studted, CADET resuits are close
to or within the 95% confidence itmits of the
monte carlo ansivats for ap to 500 trials.
This degree of agrement was generaliy mata-
tifined even in the numerous instances where the
nonlinearities were shown to have a marked
deleterious effect on rins miss distance.
- Even in cases where the number of system states anci nonlinearities is large, CADET shows : alignt picant computacional advantage over the munte carlo methou: Between 10 and 30 CADET performance projections have deen oftaiaed for the same amount of computer the required by one accurate monte carlo study.
- There are certain highly nonifnear cases in which CADET analysis may ve inadequate. Typicaliy, these are situations in which a nonlinearity injut is uricorreiated with its output; for a more complete discussion, refer to Sec.tion 4.2 and Appendix B. The Modified CADET methodology preganted in appendix B appears to offer a solution to rhis problem.
- Highly nomgaussian system variablee not only lead to inaccuracy in the CADET analysis, but also make the monte carlo method less weliable and reduce the ropaningfulness of the bastic statistical measures of system performance, the mean vector and covariance matrix.
- The value of the kurtosis, 1 , (the fourth centrai moment of a density function divided by the variance squared) is a useful measure of the departure of the lensity of a random variable from the gaussian case it would thus be valuable to estimate this parameter for each nonlinearity input in the monte carlo analysis to heip in appraising the accuracy of the monte carlo method and CADET.

In light of these and related findings, it is felt that confidence in the ability of CADET to provide accurate statistical analyses of omplex nonlinear missile guidance systems with a number of sandom disturbances has been auite well established.
Based on the diversity and complexity of the effects studied so far, it seems reasonable to anticipate that similar restits will be obtained in applying CADET to a broad spectrum of problems modeled by nonlinear systems with random inputs. It is hoped that this handbook will facilitate the further extension of the usefulness of CADET, as well as permitting the direct applicatior of the technique to the missile-target intercept problem.

APPENDIX A

A CATALOG OF RANDOM INPUT
 DESCRIBING FUNCTIONS

In this appendix, we provide random input describing functions (ridf's) required for quasi-linear representations of a number of nonlinearities that are commonly associated with effects that may be incorporated in a realistic missile-target intercept model. The material is organized in order of increasing complexity; single-input nonlinearities are listed first, followed by two-input characteristics, and finally, selected three-input nonlinearities are considered. Two highly nonlinear guidance laws are also treated, to demonstrate results that have been successfully used in the CADET analysis of missile guidance system performance. For those results without explanatory notes, ridf's have been taken from Ref. 6 or directly cbtained using the formulae given in Cases 1 to 3 of Section 4.3. The background and notation of this appendix and a number of useful examples are given in Chapter 4.

A. 1 RIDF'S FOR SINGLE-INPUT NONLINEARITIES

General case: $y=f(v), E[v]=m, E\left[(v-m)^{2}\right]=p=\sigma^{2}$
Quasi-linear repressentation: $\quad y \cong \hat{f}+n r, \quad r=v-m$
Definition of ridf's: $\hat{f} \triangleq E[f(v)]=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} f(v) e^{-\frac{1}{2}\left(\frac{v-m}{\sigma}\right)^{2}} d v$

$$
\mathrm{n}=\frac{\partial \hat{\mathbf{f}}}{\partial \mathrm{m}}
$$

A.1.1 Simple Analytic Nonlinearities

$y=\sin (v)$

$$
\begin{align*}
& \hat{\mathrm{f}}=\mathrm{e}^{-\frac{1}{2} p} \sin m \\
& \mathrm{n}=\mathrm{e}^{-\frac{1}{2} p} \cos m \tag{A.1-1}
\end{align*}
$$

$y=\cos (v)$

$$
\hat{f}=e^{-\frac{1}{2} p} \cos m
$$

$$
\begin{equation*}
n=-e^{-\frac{1}{2} p} \sin m \tag{A.1-2}
\end{equation*}
$$

$y=v^{2}$

$$
\begin{align*}
& \hat{\mathrm{f}}=\mathrm{n}_{\mathrm{t}}^{2}+\mathrm{p} \tag{A.1-3}\\
& \mathrm{n}=2 \mathrm{~m}
\end{align*}
$$

$y=v^{3}$

$$
\begin{align*}
& \hat{\mathrm{f}}=\mathrm{m}\left(3 \mathrm{p}+\mathrm{m}^{2}\right) \\
& \mathrm{n}=3\left(\mathrm{p}+\mathrm{m}^{2}\right) \tag{A.1-4}
\end{align*}
$$

$y=v^{4}$

$$
\begin{align*}
& \hat{\mathrm{f}}=\mathrm{m}^{4}+6 \mathrm{~m}^{2} p+3 p^{2} \\
& \mathrm{n}=4 m\left(m^{2}+3 p\right) \tag{A.1-5}
\end{align*}
$$

$$
y=v^{5}
$$

$$
\begin{align*}
& \hat{\mathbf{f}}=m^{5}+10 m^{3} p+15 p^{2} m \\
& n=5\left(m^{4}+6 m^{2} p+3 p^{2}\right) \tag{A.1-6}
\end{align*}
$$

Results for higher powers can be obtained directly using the relations given in Example 4 of Section 4.3.

A.1.2 Nonlinearities Involving Sign (v) and Piecewise-Linear Characteristics

Nonlinearities in this group require evaluations of PF(w), PI(w) and $G(w)$ given by

$$
\begin{align*}
& \operatorname{PF}(w)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} w^{2}} \\
& \operatorname{PI}(w)=\int_{-\infty}^{w} \operatorname{PF}(\omega) d \omega \tag{A.1-7}\\
& G(w)=\int_{-\infty}^{w} \operatorname{PI}(\omega) d \omega=w \operatorname{PI}(w)+\operatorname{PF}(w)
\end{align*}
$$

(For more details, see Example 3 of Section 4.3.) For convenient reference, tie piecewise-linear gains listed below are depicted in Fig. A.1-1.

(a) Ideal Relay

(b) Ideal Limiter

Idoal Relay

$$
y=\operatorname{sign}(v)
$$

$$
\begin{align*}
& \hat{\mathrm{i}}=2 P I\left(\frac{\mathrm{~m}}{\sigma}\right)-1 \tag{A.1-8}\\
& \mathrm{n}_{\mathrm{i}}=\frac{2}{\sigma} \mathrm{PF}\left(\frac{\mathrm{~m}}{\sigma}\right)
\end{align*}
$$

Ideal Limiter

$$
\begin{align*}
& \text { iter } \quad y= \begin{cases}v, & |v| \leq \delta \\
\delta \operatorname{sign}(v), & |v|>\delta\end{cases} \\
& \hat{\mathbf{f}}=\sigma\left[G\left(\frac{\delta+m}{\sigma}\right)-G\left(\frac{\delta-m}{\sigma}\right)\right]-m \\
& n=P I\left(\frac{\delta+m}{\sigma}\right)+P I\left(\frac{\delta-m}{\sigma}\right)-1 \tag{A.1-9}
\end{align*}
$$

$\frac{\text { Linear Gain }}{\text { With Deadzone }} \quad y= \begin{cases}0, & |v| \leq \delta \\ (|v|-\delta) \operatorname{sign}(v), & |v|>\delta\end{cases}$

$$
\begin{align*}
& \hat{\mathbf{f}}=2 \mathrm{~m}-\sigma\left[\mathrm{G}\left(\frac{\delta+\mathrm{m}}{\sigma}\right)-\mathrm{G}\left(\frac{\delta-\mathrm{m}}{\sigma}\right)\right] \tag{A.1-10}\\
& \mathrm{n}=2-\operatorname{PI}\left(\frac{\delta+\mathrm{m}}{\sigma}\right)-\operatorname{PI}\left(\frac{\delta-\mathrm{m}}{\sigma}\right)
\end{align*}
$$

$\frac{\text { Relay With }}{\text { Deadzone }} \quad y= \begin{cases}0, & |v| \leq \delta \\ 1, & |v|^{\prime}>\delta\end{cases}$

$$
\begin{align*}
& \hat{\mathbf{f}}=P I\left(\frac{\delta+m}{\sigma}\right)-P I\left(\frac{\delta-m}{\sigma}\right) \\
& \mathbf{n}=\frac{1}{\sigma}\left[\operatorname{PF}\left(\frac{\delta+m}{\sigma}\right)+\operatorname{PF}\left(\frac{\delta-m}{\sigma}\right)\right] \tag{A.1-11}
\end{align*}
$$

Limiter With $\quad y= \begin{cases}0 & |v| \leq \delta 1 \\ \left(|v|-\delta_{1}\right) \operatorname{sign}(v), & \delta_{1}<|v| \leq \delta_{2} \\ \left(\delta_{2}-\delta_{1}\right) \operatorname{sign}(v), & \delta_{2}<|v|\end{cases}$
 $$
\left.\left.\hat{\mathbf{f}}={\underset{L i}{r}}_{c_{i}}^{L^{r}}, \begin{array}{c} m \\ \sigma \end{array}\right)-G\left(\frac{\delta_{2}-m}{\sigma}\right)\right]-\sigma\left[G\left(\frac{\delta_{1}+m}{\sigma}\right)-G\left(\frac{\delta_{1}-m}{\sigma}\right)\right]
$$
 $$
\mathrm{n}=\mathrm{PI}\left(\frac{\delta_{2}{ }^{+m}}{\sigma}\right)+\mathrm{PI}\left(\frac{\delta_{2}^{-m}}{\sigma}\right)-\mathrm{PI}\left(\frac{\delta_{1}+\mathrm{m}}{\sigma}\right)-\mathrm{PI}\left(\frac{\delta_{1}-m}{\sigma}\right)
$$

(A.1-12)

We observe that ridf's for a large number of more comiplicated piecewise-linear characteristics can be obtained by decomposing them into a linear combination of the basic nonlinearities shown in Fig. A.1-1. To cite two examples, a multi-level idcal symmetric quantizer can be expressed as the sum of several characteristics of the type portrayed in Fig. A.1-1d, and a change from unity gain to a gain of k at breakpoints $\pm \delta$ can be represented by a linear unity gain plus the characteristic of Fig. A.1-1c multiplied by (k-1). These procedures are demonstrated in Fig. A.1-2. From decompositions of this sort, the associated ridf's can be obtained from the results given in Eqs. (A.1-8) to (A.1-12) by simple addition; for the above examples, we obtain:

Five-level Symmetric Quancizer (Fig. A.1-2a)

$$
\begin{align*}
& \hat{\mathbf{f}}=\operatorname{PI}\left(\frac{\delta+2 m}{2 \sigma}\right)-\operatorname{PI}\left(\frac{\delta-2 m}{2 \sigma}\right)+\operatorname{PI}\left(\frac{3 \delta+2 m}{2 \sigma}\right)-\operatorname{PI}\left(\frac{3 \delta-2 m}{2 \sigma}\right) \\
& \mathrm{n}=\frac{1}{\sigma}\left[\mathrm{PF}\left(\frac{\delta+2 m}{2 \sigma}\right)+\operatorname{PF}\left(\frac{\delta-2 m}{2 \sigma}\right)+\operatorname{PF}\left(\frac{3 \delta+2 m}{2 \sigma}\right)+\operatorname{PF}\left(\frac{3 \delta-2 m}{2 \sigma}\right)\right] \tag{A.1-13}
\end{align*}
$$

(a) Decomposition of a Five-Level Symmetric Quantizer

(b) Decomposition of a Gain-Changing Nonlinearity

Figure A. 1-2 Decomposition of Complicated PiecewiseLinear Characteristics into Basic Components

Gain-Changing Nonlinearity (Fig. A. 1-2b)

$$
\begin{align*}
& \hat{f}=m+(k-1)\left\{2 m-\sigma\left[G\left(\frac{\delta+m}{\sigma}\right)-G\left(\frac{\delta-m}{\sigma}\right)\right]\right\} \\
& n=1+(k-1)\left\{2-P I\left(\frac{\delta+m}{\sigma}\right)-P I\left(\frac{\delta-m}{\sigma}\right)\right\} \tag{A.1-14}
\end{align*}
$$

The functions PF, PI and G (Eq. (A.1-7)) also occur in quasi-linearizing nonlınearities having the factor sign(v). Three rammon cramulas of this type of charartorjetje:ar.

Absolute Valile Function $\quad y=v \operatorname{sign}(v)$

$$
\begin{align*}
& \hat{f}=2 \sigma G\left(\frac{m}{\sigma}\right)-m \\
& n=2 \operatorname{PI}\left(\frac{m}{\sigma}\right)-1 \tag{A.1-15}
\end{align*}
$$

Odd Square Law $y=v^{2} \operatorname{sign}(v)$

$$
\begin{align*}
& \hat{\mathbf{f}}=2 m \sigma P F\left(\frac{m}{\sigma}\right)+\left(m^{2}+\sigma^{2}\right)\left[2 P I\left(\frac{m}{\sigma}\right)-1\right] \tag{A.1-16}\\
& n=4 \sigma P F\left(\frac{m}{\sigma}\right)+2 m\left[2 P I\left(\frac{m}{\sigma}\right)-1\right]
\end{align*}
$$

Exponential Saturation $y=\left[1-e^{-a!}, ? \ln (v)\right.$

$$
\begin{gather*}
\hat{\mathrm{f}}=2 \operatorname{PI}\left(\frac{m}{\sigma}\right)+\mathrm{e}^{\frac{1}{2} \alpha^{2} p}\left\{\mathrm{e}^{\alpha m}\left[1-\mathrm{PI}\left(\alpha \sigma+\frac{m}{\sigma}\right)\right]-e^{-\alpha m}\left[1-\operatorname{PI}\left(\alpha \sigma-\frac{m}{\sigma}\right)\right]\right\}-1 \\
\mathrm{n}=\frac{2}{\sigma} \operatorname{PF}\left(\frac{m}{\sigma}\right)+\alpha \mathrm{e}^{\frac{t}{2} \alpha^{2} p}\left\{e^{\alpha m}\left[1-\mathrm{PI}\left(\alpha \sigma+\frac{m}{\sigma}\right)-\frac{1}{\alpha \sigma} \operatorname{PF}\left(\alpha \sigma+\frac{m}{\sigma}\right)\right]\right. \\
\left.\quad+e^{-\alpha m}\left[1-P I\left(\alpha \sigma-\frac{m}{\sigma}\right)-\frac{1}{\alpha \sigma} \operatorname{PF}\left(\alpha \sigma-\frac{m}{\sigma}\right)\right]\right\} \tag{A.1-17}
\end{gather*}
$$

These results complete the catalog of ride's for single-input nonlinearities.

A. 2 RIDF'S FOR TWO-INPUT NONLINEARITIES

General case: $y=f\left(v_{1}, v_{2}\right), E\left[v_{i}\right]=m_{i}, \quad r_{i}=v_{i}-m_{i}$

$$
E\left[\underline{r} \underline{r}^{T}\right]=\left[\begin{array}{ll}
p_{11} & p_{12} \\
p_{12} & p_{22}
\end{array}\right]=\left[\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right]
$$

Quasi-linear representation: $\quad y \cong \hat{\mathrm{f}}+\underline{n}^{T} \underline{r}$

$$
=\hat{\mathrm{f}}+\mathrm{n}_{1} \mathrm{r}_{1}+\mathrm{n}_{2} \mathrm{r}_{2}
$$

Definition of ridf's:

$$
\begin{aligned}
& \hat{\mathrm{f}}= E\left[f\left(v_{1}, v_{2}\right)\right]= \\
& \frac{1}{2 \pi \sigma_{1} \sigma_{2}\left(1-\rho^{2}\right)^{\frac{1}{2}}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(v_{1}, v_{2}\right) \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\right. \\
& {\left.\left[\left(\frac{r_{1}}{\sigma_{1}}\right)^{2}-2 \rho \frac{r_{1} r_{2}}{\sigma_{1} \sigma_{2}}+\left(\frac{r_{2}}{\sigma_{2}}\right)^{2}\right]\right\} d v_{1} d v_{2} }
\end{aligned}
$$

$$
\begin{aligned}
& n_{1}=\frac{\partial \hat{f}}{\partial m_{1}} \\
& n_{2}=\frac{\partial \hat{f}}{\partial m_{2}}
\end{aligned}
$$

A.2.1 Simple Analytic Nonlinearities

Most of the results of Eqs. (A.2-1) to (A.2-8) were reported in Ref. 3.
$y=v_{1} v_{2}$

$$
\begin{align*}
\hat{r} & =m_{1} m_{2}+p_{12} \\
n_{1} & =m_{2} \\
n_{2} & =m_{1} \\
\frac{y=v_{1} v_{2}^{2}}{\hat{r}} & =m_{1}\left(m_{2}^{2}+p_{22}\right)+2 m_{2} p_{12} \\
n_{1} & =\left(m_{2}^{2}+p_{22}\right) \\
n_{2} & =2\left(m_{1} m_{2}+p_{12}\right) \tag{A.2-2}
\end{align*}
$$

(A. 2-1)
$5 \quad y=v_{1} v_{2}^{3}$

$$
\begin{align*}
\hat{f} & =m_{1} m_{2}\left(m_{2}^{2}+3 p_{22}\right)+3 p_{12}\left(m_{2}^{2}+p_{22}\right) \\
n_{1} & =m_{2}\left(m_{2}^{2}+3 p_{22}\right) \tag{A.2-3}\\
n_{2} & =3 m_{1}\left(m_{2}^{2}+p_{22}\right)+6 m_{2} p_{12}
\end{align*}
$$

$y=v_{1}^{2} v_{2}^{2}$

$$
\begin{align*}
\hat{f} & =\left(m_{1}^{2}+p_{11}\right)\left(m_{2}^{2}+p_{22}\right)+2 p_{12}\left(2 m_{1} m_{2}+p_{12}\right) \\
n_{1} & =2 m_{1}\left(m_{2}^{2}+p_{22}\right)+4 m_{2} p_{12} \tag{A.2-4}\\
n_{2} & =2 m_{2}\left(m_{1}^{2}+p_{11}\right)+4 m_{1} p_{12}
\end{align*}
$$

$\underline{y}=v_{1} \cos v_{2}$

$$
\hat{f}=e^{-\frac{1}{2} p_{22}}\left(m_{1} \cos m_{2}-p_{12} \sin m_{2}\right)
$$

$$
n_{1}=e^{-\frac{1}{2} p_{22}} \cos m_{2}
$$

$$
n_{2}=-e^{-\frac{\lambda}{2} p_{22}}\left(m_{1} \sin m_{2}+p_{12} \cos m_{2}\right)
$$

$\underline{y=} v_{1} \sin v_{2}$

$$
\begin{align*}
\hat{\mathrm{f}} & =e^{-\frac{1}{2} p_{22}}\left(m_{1} \sin m_{2}+p_{12} \cos m_{2}\right) \\
n_{1} & =e^{-\frac{1}{2} p_{22}} \sin m_{2} \tag{A.2-6}\\
n_{2} & =e^{-\frac{1}{2} p_{22}}\left(m_{1} \cos m_{2}-p_{12} \sin m_{2}\right)
\end{align*}
$$

$\mathrm{v}_{1}^{2} \cos \mathrm{v}_{2}$

$$
\begin{align*}
& \hat{\mathbf{f}}=e^{-t p_{22}}\left[\left(m_{1}^{2}+p_{11}-p_{12}\right) \cos m_{2}-2 m_{1} p_{12} \sin m_{2}\right] \\
& n_{1}=e^{-\frac{2}{2} p_{22}}\left(2 m_{1} \cos m_{2}-2 p_{12} \sin m_{2}\right) \tag{A.2-7}\\
& n_{2}=-e^{-\frac{1}{2} p_{22}}\left[\left(m_{1}^{2}+p_{11}-p_{12}\right) \sin m_{2}+2 m_{1} p_{12} \cos m_{2}\right]
\end{align*}
$$

$\underline{\mathrm{v}_{1}^{2} \sin \mathrm{v}_{2}}$

$$
\begin{align*}
& \hat{f}=e^{-\frac{1}{2} p_{22}}\left[2 m_{1} p_{12} \cos m_{2}+\left(m_{1}^{2}+p_{11}-p_{12}\right) \sin m_{2}\right] \\
& n_{1}=e^{-\frac{1}{2} p_{22}}\left[2 p_{12} \cos m_{2}+2 m_{1} \sin m_{2}\right] \tag{A.2-8}\\
& n_{2}=e^{-\frac{1}{2} p_{22}}\left[-2 m_{1} p_{12} \sin m_{2}+\left(m_{1}^{2}+p_{11}-p_{12}\right) \cos m_{2}\right]
\end{align*}
$$

Results for nonlinearities involving higher powers of input variable can be obtained directly using the relations of Case 2 of Section 4.3. For powers or products of trigonometric functions, egg., $v_{1} \sin ^{2} v_{2}$, the use of trigonometric identities, as

$$
\sin ^{2} v_{2}=\frac{1}{2}\left(1-\cos 2 v_{2}\right)
$$

permit the direct use of results given in Eq. (A.2-5) to (A.2-8) .

A.2.2 Analytic Nonlinearities Without Closed-Form Gaussian ridf's

The quasi-linearization of the range,

$$
r=\sqrt{m_{x}^{2}+y^{2}}
$$

is treated in detail in Section 4.5. Note that it was assumed that $x \approx m_{x}$, i.e., the down-range component of the missile-target separation is essentially deterministic, as is true for head-on intercepts (Fig. 3.5-1). In this case, the range is a function of one random variable, y. We further noted that the most effective approximate ridf for this nonlinearity was obtained by using the triangular distribution for y (Table C.2-1) ; this result is given in Eq. (4.5-10).

In the seeker noise model, Section 3.6-1, related nonlinearities arise in the range-dependent components of the noise. Thus approximate ridf's for the following two nonlinearities were obtained in Ref. 4, based on the triangular distribution for y :
$\underline{\text { Range Proportional Noise }} y=v_{1} \sqrt{m_{x}^{2}+v_{2}^{2}}$

$$
\begin{aligned}
& \hat{f} \cong \frac{m_{1}}{v} \operatorname{sign}\left(m_{x}\right)\left[\sqrt{1+v^{2}}+v^{2} \log \left(\frac{1+\sqrt{1+v^{2}}}{v}\right)+\frac{4}{\sqrt{6}}\left(v^{3}-\left(1+v^{2}\right)^{3 / 2}\right)\right] \\
& n_{1}=\frac{\hat{f}}{m_{1}} \\
& n_{2} \cong \sqrt{\frac{2}{3}} p_{12}\left[\left(1+4 v^{2}\right) \sqrt{1+v^{2}}-4 v^{3}-3 v^{2} \log \left(\frac{1+\sqrt{1+v^{2}}}{v}\right)\right]
\end{aligned}
$$

where v is an auxiliary parameter given by
$v \triangleq \frac{\left|m_{x}\right|}{\sqrt{6} \sigma_{2}}$

Inverse Range Proportional Noise $y=\frac{v_{1}}{\sqrt{m m_{x}^{2}+v_{2}^{2}}}$

$$
\begin{align*}
& \hat{\mathrm{f}} \cong \sqrt{\frac{2}{3}} \frac{\mathrm{~m}_{1}}{\sigma_{2}}\left[\log \left(\frac{1+\sqrt{1+v^{2}}}{v}\right)+v-\sqrt{1+v^{2}}\right] \\
& \mathrm{n}_{1}=\frac{\hat{\mathrm{f}}}{\mathrm{~m}_{1}} \tag{A.2-1I}\\
& \mathrm{n}_{2} \cong-\sqrt{\frac{2}{3}} \frac{p_{12}}{\sigma_{2}^{3}}\left[\log \left(\frac{1+\sqrt{1+v^{2}}}{v}\right)+2\left(v-\sqrt{1+v^{2}}\right)\right]
\end{align*}
$$

where v is given in Eq. (A.2-10).
A third nonlinearity that is not tractable for gaussian random variables is the inverse tangent function, which is required in obtaining the line-of-sight angle from the cartesian coordinate representation of the missile-target separation, viz.

$$
\begin{equation*}
\theta=f\left(v_{1}, v_{2}\right)=\tan ^{-1}\left(\frac{v_{1}}{v_{2}}\right) \tag{A.2-12}
\end{equation*}
$$

The approximate ridf's for this nonlinearity were also derived in Ref. 4, using the truncated expansion technique demonstrated in Section 4.4, as follows:

Inverse Tangent $\quad y=\tan ^{-1}\left(v_{1} / v_{2}\right)$

$$
\begin{align*}
\hat{\mathrm{f}} & \cong \tan ^{-1}\left(\frac{\mathrm{~m}_{1}}{m_{2}}\right)+\frac{1}{\left(m_{1}^{2}+m_{2}^{2}\right)^{2}}\left[m_{1} m_{2}\left(p_{22}-p_{11}\right)+\left(m_{1}^{2}-m_{2}^{2}\right) p_{12}\right] \\
n_{1} & \cong \frac{m_{2}}{m_{1}^{2}+m_{2}^{2}} \tag{A.2-13}\\
n_{2} & \cong \frac{-m_{1}}{m_{1}^{2}+m_{2}^{2}}
\end{align*}
$$

These results conclude the presentation of ridf's for two-input nonlinearities.

A. 3 RIDF'S FOR SELECTED THREE-INPUT NONLINEARITIES

The following results are useful for nonlinear airframe models as described in Section 3.4; many of these ridf's were first reported in Ref. 3.

$$
y=v_{1} v_{2} v_{3}
$$

$$
\begin{align*}
& \hat{f}=m_{1} m_{2} m_{3}+m_{1} p_{23}+m_{2} p_{13}+m_{3} p_{12} \\
& n_{1}=m_{2} m_{3}+p_{23} \\
& n_{2}=m_{1} m_{3}+p_{13} \\
& n_{3}=m_{1} m_{2}+p_{12} \\
& y=v_{1} v_{2} v_{3}^{2} \\
& \hat{\mathrm{f}}=\left(\mathrm{m}_{3}^{2}+\mathrm{p}_{33}\right)\left(\mathrm{m}_{1} \mathrm{~m}_{2-} \mathrm{p}_{12}\right)+2 \mathrm{~m}_{3}\left(\mathrm{~m}_{1} \mathrm{p}_{23}+\mathrm{m}_{2} \mathrm{p}_{13}\right)+2 \mathrm{p}_{13} \mathrm{p}_{23} \\
& n_{1}=m_{2}\left(m_{3}^{2}+p_{33}\right)+2 m_{3} p_{23} \tag{A.3-2}\\
& n_{2}=m_{1}\left(m_{3}^{2}+p_{33}\right)+2 m_{3}{ }^{p} 13 \\
& n_{3}=2\left(m_{1} m_{2}+p_{12}\right) m_{3}+2\left(m_{1} p_{23}+m_{2} p_{13}\right) \\
& y=v_{1} v_{2} v_{3}^{3} \\
& \hat{f}=m_{3}\left(m_{3}^{2}+p_{33}\right)\left(m_{1} m_{2}+p_{12}\right)+3\left(m_{3}^{2}+p_{33}\right)\left(m_{1} p_{23}+m_{2}{ }_{13}\right)+\text { rm }_{3} p_{13} p_{23} \\
& n_{1}=m_{2} m_{3}\left(m_{3}^{2}+3 p_{33}\right)+3 p_{23}\left(m_{3}^{2}+p_{33}\right) \tag{A.3-3}
\end{align*}
$$

$$
\begin{aligned}
& n_{2}=m_{1} m_{3}\left(m_{3}^{2}+3 p_{33}\right)+3 p_{13}\left(m_{3}^{2}+p_{33}\right) \\
& n_{3}=3\left(m_{3}^{2}+p_{33}\right)\left(m_{1} m_{2}+p_{12}\right)+6\left(m_{1} m_{3} p_{23}+m_{2} m_{3} p_{13}+p_{13} p_{23}\right)
\end{aligned}
$$

$\underline{y}=v_{1} v_{2}^{2} v_{3}^{2}$

$$
\begin{aligned}
\hat{\mathrm{f}}= & {\left[\mathrm{m}_{1}\left(\mathrm{~m}_{2}^{2}+\mathrm{p}_{22}\right)+2 \mathrm{~m}_{2} \mathrm{p}_{12}\right]\left(\mathrm{m}_{3}^{2}+\mathrm{p}_{33}\right)+2 \mathrm{~m}_{3} \mathrm{p}_{13}\left(\mathrm{~m}_{2}^{2}+\mathrm{p}_{22}\right) } \\
& +2 \mathrm{~m}_{1} \mathrm{p}_{23}\left(2 \mathrm{~m}_{2} \mathrm{~m}_{3}+\mathrm{p}_{23}\right)+4 \mathrm{p}_{23}\left(\mathrm{~m}_{2} \mathrm{p}_{13}+\mathrm{m}_{3} \mathrm{p}_{12}\right) \\
\mathrm{n}_{1}= & \left(\mathrm{m}_{2}^{2}+\mathrm{p}_{22}\right)\left(\mathrm{m}_{3}^{2}+\mathrm{p}_{33}\right)+2 \mathrm{p}_{23}\left(2 \mathrm{~m}_{2} \mathrm{~m}_{3}+\mathrm{p}_{23}\right) \\
\mathrm{n}_{2}= & 2\left(\mathrm{~m}_{1} \mathrm{~m}_{2}+\mathrm{p}_{12}\right)\left(\mathrm{m}_{3}^{2}+\mathrm{p}_{33}\right)+4\left(\mathrm{~m}_{2} \mathrm{~m}_{3} \mathrm{p}_{13}+\mathrm{m}_{1} \mathrm{~m}_{3} \mathrm{p}_{23}+\mathrm{p}_{13} \mathrm{p}_{23}\right) \\
\mathrm{n}_{3}= & 2\left(\mathrm{~m}_{1} \mathrm{~m}_{3}+\mathrm{p}_{13}\right)\left(\mathrm{m}_{2}^{2}+\mathrm{p}_{22}\right)+4\left(\mathrm{~m}_{2} \mathrm{~m}_{3} \mathrm{p}_{12}+\mathrm{m}_{1} \mathrm{~m}_{2} \mathrm{p}_{23}+\mathrm{p}_{12} \mathrm{p}_{23}\right)
\end{aligned}
$$

Expressions for still higher powers of v_{1}, v_{2} and v_{3} can be obtained by extending the techniques given in Seciion 4.3

The following nonlinearities are required for 3-dimensional coordinate transformations:
$\underline{y=} v_{1} \sin v_{2} \sin v_{3}$

$$
\begin{align*}
& \hat{f}=\frac{1}{2} e^{-\frac{1}{2}\left(p_{22}+p_{33}\right)}[e^{p_{23}\left\{m_{1} \cos \left(m_{2}-\mathrm{m}_{3}\right)-\left(p_{12}-p_{13}\right) \sin \left(m_{2}-m_{3}\right)\right\}} \\
&\left.-e^{-p_{23}}\left\{m_{1} \cos \left(m_{2}+m_{3}\right)-\left(p_{12}+p_{13}\right) \sin \left(m_{2}+m_{3}\right)\right\}\right] \\
& n_{1}=\frac{1}{2} e^{-\frac{1}{2}\left(p_{22}+p_{33}\right)}\left[e^{p_{23}} \cos \left(m_{2}-m_{3}\right)-e^{-p_{23}} \cos \left(m_{3}+m_{3}\right)\right] \tag{3}
\end{align*}
$$

$$
\begin{align*}
& n_{2}=-\frac{1}{2} e^{-\frac{1}{2}\left(p_{22}+p_{33}\right)}\left[e^{p_{23}}\left\{m_{1} \sin \left(m_{2}-m_{3}\right)+\left(p_{12}-p_{13}\right) \cos \left(m_{2}-m_{3}\right)\right\}\right. \\
& \left.-e^{-p_{23}}\left\{m_{1} \sin \left(m_{2}+m_{3}\right)+\left(p_{12}+p_{13}\right) \cos \left(m_{2}+m_{3}\right)\right\}\right] \\
& n_{3}=\frac{1}{2} e^{-\frac{1}{2}\left(p_{22}+p_{33}\right)}\left[e^{p_{23}}\left\{m_{1} \sin \left(m_{2}-m_{3}\right)+\left(p_{12}-p_{13}\right) \cos \left(m_{2}-m_{3}\right)\right\}\right. \\
& \left.+e^{-p_{23}}\left\{m_{1} \sin \left(m_{2}+m_{3}\right)+\left(p_{12}+p_{13}\right) \cos \left(m_{2}+m_{3}\right)\right\}\right] \\
& \text { (A.3-5)(Cont.) } \\
& y=v_{1} \cos v_{2} \cos v_{3} \\
& \hat{f}=\frac{1}{2} e^{-\frac{1}{2}\left(p_{22}+p_{33}\right)}\left[e^{p_{23}}\left\{m_{1} \cos \left(m_{2}-m_{3}\right)-\left(p_{12}-p_{13}\right) \sin \left(m_{2}-m_{3}\right)\right\}\right. \\
& \left.+e^{-p_{23}}\left\{m_{1} \cos \left(m_{2}+m_{3}\right)-\left(p_{12}+p_{13}\right) \sin \left(m_{2}+m_{3}\right)\right\}\right] \\
& n_{1}=\frac{1}{2} e^{-\frac{1}{2}\left(p_{22}+p_{33}\right)}\left[e^{p_{23}} \cos \left(m_{2}-m_{3}\right)+e^{-p_{23}} \cos \left(m_{2}+m_{3}\right)\right] \\
& n_{2}=-\frac{1}{2} e^{-\frac{1}{2}\left(p_{22}+p_{33}\right)}\left[e^{p_{23}}\left\{m_{1} \sin \left(m_{2}-m_{3}\right)+\left(p_{12}-p_{13}\right) \cos \left(m_{2}-m_{3}\right)\right\}\right. \\
& \left.+e^{-p_{23}}\left\{m_{1} \sin \left(m_{2}+m_{3}\right)+\left(p_{12}+p_{13}\right) \cos \left(m_{2}+m_{3}\right)\right\}\right] \\
& n_{3}=\frac{1}{2} e^{-\frac{1}{2}\left(p_{22}+p_{33}\right)}\left[e^{p_{23}}\left\{m_{1} \sin \left(m_{2}-m_{3}\right)+\left(p_{12}-p_{13}\right) \cos \left(m_{2}-m_{3}\right)\right\}\right. \\
& \left.-e^{-p_{2}}\left\{m_{1} \sin \left(m_{2}+m_{3}\right)+\left(p_{12}+p_{13}\right) \cos \left(m_{2}+m_{3}\right)\right\}\right] \tag{A.3-6}
\end{align*}
$$

$y=v_{1} \sin v_{2} \cos v_{3}$

$$
\begin{aligned}
\begin{aligned}
\hat{f}=\frac{1}{2} e^{-\frac{1}{2}\left(p_{22}+p_{33}\right)}[& e^{p_{23}\left\{m_{1} \sin \left(m_{2}-m_{3}\right)+\left(p_{12}-p_{13}\right) \cos \left(m_{2}-m_{3}\right)\right\}} \\
& \left.+e^{-p_{23}\left\{m_{1} \sin \left(m_{2}+m_{3}\right)+\left(p_{12}+p_{13}\right) \cos \left(m_{2}+m_{3}\right)\right\}}\right] \\
n_{1}=\frac{1}{2} e^{-\frac{1}{2}\left(p_{22}+p_{33}\right)}[& {\left[e^{p_{23}} \sin \left(m_{2}-m_{3}\right)+e^{-p_{23}} \sin \left(m_{2}+m_{3}\right)\right] } \\
n_{2}=\frac{1}{2} e^{-\frac{1}{2}\left(p_{22}+p_{33}\right)}[& {\left[e^{p_{23}\left\{m_{1} \cos \left(m_{2}-m_{3}\right)-\left(p_{12}-p_{13}\right) \sin \left(m_{2}-m_{3}\right)\right\}}\right.} \\
& +e^{\left.-p_{23}\left\{m_{1} \cos \left(m_{2}+m_{3}\right)-\left(p_{12}+p_{13}\right) \sin \left(m_{2}+m_{3}\right)\right\}\right]} \\
n_{3}=\frac{1}{2} e^{-\frac{1}{2}\left(p_{22}+p_{33}\right)}[& e^{p_{23}\left\{-m_{1} \cos \left(m_{2}-m_{3}\right)+\left(p_{12}-p_{13}\right) \sin \left(m_{2}-m_{3}\right)\right\}} \\
& \left.+e^{-p_{23}\left\{m_{1} \cos \left(m_{2}+m_{3}\right)-\left(p_{12}+p_{13}\right) \sin \left(m_{2}+m_{3}\right)\right\}}\right]
\end{aligned}
\end{aligned}
$$

The last result is obtained in Example 6 of Section 4.3; the first two nonlinearities may be quasi-linearized by the same technique illustrated in that example.

A. 4 RIDF'S FOR GUIDANCE LAW NONLINEARITIES

A.4.1 Proportional Guidance

Referring to Eqs. (3.5-6) and (3.5-8), the aceleratic command is the output of a limiter whose input is a highly
nonlinear function of six system variables, viz.

$$
a_{c}=f\left(a_{1} \phi_{1}+a_{2} \phi_{2}+a_{3} v_{1}\right) \Delta f\left(\phi^{\prime}\right)
$$

where the components ϕ_{1} and ϕ_{2} are given by

$$
\begin{align*}
& \phi_{1}=v_{1} v_{6} \\
& \phi_{2}=v_{1} \frac{\cos \left(v_{2}+\theta\right)}{\cos \left(v_{3}-\theta\right)} \tag{A.4-2}
\end{align*}
$$

The latter equation can be expressed in terms of system state variables by substituting the LOS angle relation,

$$
\theta=\tan ^{-1} \frac{v_{4}}{v_{5}}
$$

to obtain

$$
\begin{equation*}
\Phi_{2}=v_{1} \frac{v_{5} \cos \left(v_{2}\right)-v_{4} \sin \left(v_{2}\right)}{v_{5} \cos \left(v_{3}\right)+v_{4} \sin \left(v_{3}\right)} \tag{A.4-3}
\end{equation*}
$$

Assuming that the input to the limiter, ϕ^{\prime} in Eq.(A.4-1), is nearly gaussian, we quasi-linearize the acceleration command using Eq. (A.1-9),

$$
\begin{equation*}
a_{c} \simeq \hat{f}+n r \tag{A.4-4}
\end{equation*}
$$

where r is the random component of ϕ^{\prime}, and

$$
\begin{align*}
& \hat{\mathbf{f}}=2 \mathrm{~m}-\sigma\left[\mathrm{G}\left(\frac{\mathrm{a}_{\text {max }}+\mathrm{m}}{\sigma}\right)-\mathrm{G}\left(\frac{\mathrm{a}_{\text {max }}-\mathrm{m}}{\sigma}\right)\right] \\
& \mathrm{n}=2-\operatorname{PI}\left(\frac{\mathrm{a}_{\text {max }}+\mathrm{m}}{\sigma}\right)-\operatorname{PI}\left(\frac{\mathrm{a}_{\text {max }}-\mathrm{m}}{\sigma}\right)
\end{align*}
$$

where m and σ are the mean and standard deviation of ϕ^{\prime}, respectively.
A-17

Next, we must obtain the statisties of $\phi^{\prime}, \quad i . e ., m$ and 0, for use in Eq. (A.4-5) ; to do this, consider the three constituents given in Eq. (A.4-1): The third term is linear, thus presenting no problem, and for the product of variabless, ϕ_{1} of Eq. (A.4-2), we use Eq. (A.2-1) to obtain

$$
\begin{align*}
& \hat{\phi}_{1}=m_{1} m_{6}+p_{16} \\
& n_{1}^{(1)}=m_{6} \tag{A.4-6}\\
& n_{6}^{(1)}=m_{1}
\end{align*}
$$

The second term, ϕ_{2} in Eq. (A.4-2), is impossible to quasilinearize exactly in closed form under the gaussian assumption; thus we use a generalization of the truncated series expansion approach discussed in Section 4.5 (Eq. (4.5-3)):

$$
\begin{aligned}
& \dot{b}_{2}=\phi_{2}\left(m_{1}, m_{2}, \ldots, m_{5}\right)+\frac{1}{2} \sum_{i=1}^{5} \sum_{j=1}^{5} \frac{\partial^{2} \phi_{2}}{\partial m_{i} \partial m_{j}} p_{i, j} \quad \text { (A.4-7) } \\
& n_{i}^{(2)}=\frac{\partial \phi_{2}\left(m_{1}, m_{2}, \ldots, m_{5}\right)}{\partial m_{i}}, \quad i=1,2, \ldots, 5 \quad(A, 4-8)
\end{aligned}
$$

Listing the partial derivatives called for in $E(A .4-8)$ requires the introduction of some auxiliary notation:

$$
\begin{align*}
& \psi_{1}=m_{5} \cos m_{2}-m_{4} \sin m_{2} \\
& \psi_{2}=m_{5} \cos m_{3}+m_{4} \sin m_{3} \\
& \psi_{3}=-m_{5} \sin m_{2}-m_{4} \cos m_{2} \tag{A.4-9}\\
& \psi_{4}=-m_{5} \sin m_{3}+m_{4} \cos m_{3}
\end{align*}
$$

In terms of theso expressions, the quantitios required to evaluate Eq. (A.4-8) can bo shown to be

$$
\begin{aligned}
& \phi_{2}\left(m_{1}, m_{2}, \ldots, m_{5}\right)=m_{1} \frac{\psi_{1}}{\psi_{2}} \\
& \frac{\partial \phi_{2}}{\partial m_{1}}=\frac{\psi_{1}}{\psi_{2}} \cong n_{1}^{(2)} \\
& \frac{\partial \phi_{2}}{\partial m_{2}}=\frac{\psi_{3}}{\psi_{2}} m_{1} \cong n_{2}^{(2)} \\
& \frac{\partial \phi_{2}}{\partial m_{3}}=-\frac{\psi_{1} \psi_{4}}{\psi_{2}^{2}} m_{1} \cong n_{3}^{(2)}
\end{aligned}
$$

$$
\frac{\partial \phi_{2}}{\partial m_{4}}=-\frac{m_{1} m_{5}}{\psi_{2}^{2}} \sin \left(m_{2}+m_{3}\right) \cong n_{4}^{(2)}
$$

$$
\begin{equation*}
\frac{\partial \phi_{2}}{\partial m_{5}}=\frac{m_{1} m_{4}}{\psi_{2}^{2}} \sin \left(m_{2}+m_{3}\right) \cong n_{5}^{(2)} \tag{A.4-10}
\end{equation*}
$$

$\frac{\partial^{2} \phi_{2}}{\partial m_{1}^{2}}=0$
$\frac{\partial^{2} \phi_{2}}{\partial m_{1} \partial m_{2}}=\frac{\psi_{3}}{\psi_{2}}$
$\frac{\partial^{2} \phi_{2}}{\partial m_{1} \partial m_{3}}=-\frac{\psi_{1} \psi_{4}}{\psi_{2}{ }^{2}}$
$\frac{\partial^{2} \phi_{2}}{\partial m_{1} \partial m_{4}}=-\frac{m_{5}}{\psi_{2}^{2}} \sin \left(m_{2}+m_{3}\right)$

$$
\frac{\partial^{2} \phi_{2}}{\partial m_{1} \partial m_{5}}=\frac{m_{4}}{\psi_{2}^{2}} \sin \left(m_{2}+m_{3}\right)
$$

$$
\begin{aligned}
& \frac{\partial^{2} \phi_{2}}{\partial m_{2}^{2}}=-\frac{\psi_{1}}{\psi_{2}} m_{1} \\
& \frac{\partial^{2} \phi_{2}}{\partial m_{2} \partial m_{3}}=-\frac{\psi_{3} \psi_{4}}{\psi_{2}^{2}} m_{1} \\
& \frac{\partial^{2} \phi_{2}}{\partial m_{2}^{\partial m_{4}}}=-\frac{m_{1} m_{5}}{\psi_{2}^{2}} \cos \left(m_{2}+m_{3}\right) \\
& \frac{\partial^{2} \phi_{2}}{\partial m_{2} \partial m_{5}}=\frac{m_{1} m_{4}}{\psi_{2}^{2}} \cos \left(m_{2}+m_{3}\right) \\
& \frac{\partial^{2} \phi_{2}}{\partial m_{3}^{2}}=\frac{\psi_{1} m_{1}}{\psi_{2}^{3}}\left(\psi_{2}^{2}+2 \psi_{4}^{2}\right)
\end{aligned}
$$

$$
(A .4-10)(\text { Cont. })
$$

$$
\frac{\partial^{2} \phi_{2}}{\partial m_{3} \partial m_{4}}=\frac{m_{1} m_{5}}{\psi_{2}^{3}}\left(\psi_{4} \sin \left(m_{2}+m_{3}\right)-\psi_{1}\right)
$$

$$
\frac{\partial^{2} \phi_{2}}{\partial m_{3} \partial m_{5}}=\frac{m_{1} m_{4}}{\psi_{2}^{3}}\left(\psi_{4} \sin \left(m_{2}+m_{3}\right)-\psi_{1}\right)
$$

$$
\frac{\partial^{2} \phi_{2}}{\partial m_{4}^{2}}=2 \frac{m_{1} m_{5}}{\psi_{2}^{3}} \sin \left(m_{3}\right) \sin \left(m_{2}+m_{3}\right)
$$

$$
\frac{\partial^{2} \phi_{2}}{\partial m_{4} \partial m_{5}}=-\frac{m_{1}}{\psi_{2}^{3}}\left(\psi_{2}-2 m_{5} \cos \left(m_{3}\right)\right) \sin \left(m_{2}+m_{3}\right)
$$

$$
\frac{\partial^{2} \phi_{2}}{\partial m_{5}^{2}}=-\frac{2 m_{1} m_{4}}{\psi_{2}^{3}} \cos \left(m_{3}\right) \sin \left(m_{2}+m_{3}\right)
$$

Returning to Eq. (A.4-1), we have

$$
\begin{equation*}
m=a_{1} \hat{\phi}_{1}+a_{2} \hat{\phi}_{2}+a_{3} m_{1} \tag{A.4-11}
\end{equation*}
$$

where $\hat{\phi}_{1}$ and $\hat{\phi}_{2}$ are given in Eqs. (A.4-7) and (A.4-8). The random component of ϕ^{\prime} can be expressed in terms of the quasi-linear gains in the same equations to be

$$
r=\left[\begin{array}{llll}
r_{1} & r_{2} & \ldots & r_{6}
\end{array}\right]\left[\begin{array}{c}
a_{1} n_{1}^{(1)}+a_{2} n_{1}^{(2)}+a_{3} \\
a_{2} n_{2}^{(2)} \\
a_{2} n_{3}^{(2)} \\
a_{2} n_{4}^{(2)} \\
a_{2} n_{5}^{(2)} \\
a_{1} n_{6}^{(1)}
\end{array}\right]
$$

$$
\begin{equation*}
\triangleq \underline{r}^{T} \underline{b} \tag{A.4-12}
\end{equation*}
$$

Since r is a quasi-linear combination of the random components of the six variables v_{1}, the variance is approximately

$$
\begin{align*}
\sigma^{2}=E\left[r^{2}\right] & \approx E\left[\underline{b}^{T} \underline{r} \underline{r}^{T} \underline{b}\right] \\
& =\underline{b}^{T} \underline{b} \tag{A.4.-13}
\end{align*}
$$

Given the statistics m and σ required in Eq. (A.4-5), the quasi-linearization of Eq. (A.4-1) is completed as follows: We express a_{c} as mean \hat{f} plus the inner product of a vector of ridf's with the random vector,

$$
\begin{equation*}
a_{c}=\hat{\mathbf{f}}+\underline{n}_{a}^{T} \underline{r} \tag{A.4-14}
\end{equation*}
$$

The quantity \hat{f} is specified in Eqs. (A.4-6) and (A.4-11) to (4.4-13), and by i.spection

$$
\begin{equation*}
\underline{\mathrm{n}}_{\mathrm{a}}=\mathbf{n} \underline{b} \tag{A.4-15}
\end{equation*}
$$

where n is given in Eq. (A.4-6). The foregoing describing function development was originally performed and verified in Ref. 4; a more complete discussion of its basis is given in that work.

The approach outlined above in Eqs. (A.4-1) to (A.4-15) considers a nonlinearity of the form

$$
a_{c}=f\left(\phi^{\prime}\left(v_{1}, v_{2}, \ldots, v_{6}\right)\right)
$$

i.e., a nonlinear function of a nonlinearity. Because it is essentially impossible to quasi-linearize this relation as a whole, wo have first quasi-linearized ϕ^{\prime} to obtain the statistics m and σ necessary to calculate the ridf's for $f\left(\phi^{\prime}\right), E q$. (A.4-6), then "cascaded the ridf's" for the random part in arriving at Eq. (A.4-14). While this is not a completely rigorous procedure. we must rely on a priori knowledge that in the guidarce law, ϕ^{\prime} can reasonably be assumed to be nearly gaussian. In this situation, the above technique adequately represents the guidance law nonlinear effects.

A.4.2 Digital Guidance

A major source of nonlinearity in the estimation algorithm of the guidance module is embodied in the range dependence of the Kalman filter gain vector. Referring to the development of Section 3.5.2, we combine Eqs. (3.5-15), (3.5-16), (3.5-18) and (3.5-22) to arrive at the nonlinear difference equation

$$
\begin{equation*}
\hat{\underline{x}}_{f}\left(t_{k}^{+}\right)=\hat{\underline{x}}_{f}\left(i_{k}\right)+p \psi(r)\left[z\left(t_{k}\right)-\frac{x_{f_{1}}\left(t_{k}\right)}{r}\right] \tag{A.4-16}
\end{equation*}
$$

The time-varying vector p is comprised of the first column of the filter covariance matrix P_{f} (Eqs. (3.5-19) and (3.5-23)), ψ is given by

$$
\begin{equation*}
\psi(r)=\frac{r}{\left(p_{f_{11}+\sigma_{1}^{2}}^{2}\right)+\sigma_{3}^{2} r^{2}+\sigma_{2}^{2} r^{4}} \tag{A.4-17}
\end{equation*}
$$

with $p_{f_{11}}$ the first diagonal element of P_{f} and $\sigma_{1}, \sigma_{2}, \sigma_{3}$ specifying the r.as seeker noise levels, and r is the present range,

$$
\begin{equation*}
r=\sqrt{x^{2}\left(t_{k}\right)+y^{2}\left(t_{k}\right)} \tag{A.4-18}
\end{equation*}
$$

Thus from Eq. (A.4-16) we see that the first nonlinearity which must be quasi-linearize in order to study the nonlinear implementation of the filtering algorithm is of the form

$$
\begin{equation*}
f\left(v_{1}, v_{2}, v_{3}\right)=v_{1} \psi(r)=\frac{v_{1} \sqrt{v_{2}^{2}+v_{3}^{2}}}{\alpha_{1}+\alpha_{2}\left(v_{2}^{2}+v_{3}^{2}\right)+\alpha_{3}\left(v_{2}^{2}+v_{3}^{2}\right)^{2}} \tag{A.4-19}
\end{equation*}
$$

where v_{1} represents the measurement z (which is typically a linear combination of system state variables; cf. Fig. 3.5-5), v_{2} and v_{3} correspond to x and y, and the parameters α_{i} correspond to the coefficients in the denominator of ψ (Eq.(A.4-17)) in the obvious way.

As in the preceeding case (the proportional guidance law, Eq. (A.4-1)), the nonlinearity in Eq. (A.4-19) is too complicated to permit the derivation of exact ridf's. We thus again resort to the truncated series expansion technique derived in Section 4.5:

$$
\begin{align*}
& \hat{f} \cong f(\underline{m})+\frac{1}{2} \sum_{j=1}^{3} \sum_{k=1}^{3} \frac{\partial^{2} f(\underline{m})}{\partial m_{j} \partial m_{k}} p_{j k} \tag{A.4-20}\\
& n_{j} \cong \frac{\partial f(\underline{m})}{\partial m_{j}}, \quad j=1,2,3
\end{align*}
$$

The details required to complete the quasi-linearization of f are the partial derivatives indicated in Eq. (A.4-20):

$$
\begin{align*}
& r=\frac{m_{1} \sqrt{m_{2}^{2}+m_{3}^{2}}}{{ }^{\alpha_{1}+\alpha_{2}}\left(m_{2}^{2}+m_{3}^{2}\right)+\alpha_{3}\left(m_{2}^{2}+m_{3}^{2}\right)^{2}} \triangleq \frac{m_{1} m_{r}}{d\left(m_{r}\right)} \tag{4.4-21}\\
& n_{1} \cong \frac{m_{r}}{d\left(m_{r}\right)} \\
& n_{2} \cong \frac{m_{1} m_{2}\left(\alpha_{1}-\alpha_{2} m_{r}^{2}-3 \alpha_{3} m_{r}^{4}\right)}{\left.m_{r} d^{2} v_{r}\right)} \tag{A.4-22}\\
& n_{3} \cong \frac{m_{1} m_{3}\left(\alpha_{1}-\alpha_{2} m_{r}^{2}-3 \alpha_{3} m_{r}^{4}\right)}{m_{r} d^{2}\left(m_{r}\right)} \\
& \frac{\partial^{2} f}{\partial m_{1}^{2}}=0 \\
& \frac{\partial^{2} f}{\partial m_{1} \partial m_{2}}=\frac{m_{2}\left(\alpha_{1}-\alpha_{2} m_{r}^{2}-3 \alpha_{3} m_{r}^{4}\right)}{m_{r} d^{2}\left(m_{r}\right)} \\
& \frac{\partial^{2} r}{\partial m_{1} \partial m_{3}}=\frac{m_{3}\left(\alpha_{1}-\alpha_{2} m_{r}^{2}-3 \alpha_{3} m_{r}^{4}\right)}{m_{r} d^{2}\left(m_{r}\right)} \tag{A.4-23}
\end{align*}
$$

$$
\frac{\partial^{2} f}{\partial m_{2}^{2}}=\frac{m_{1}\left(\alpha_{1}-\alpha_{2} m_{r}^{2}-3 \alpha_{3} m_{r}^{4}\right)}{m_{r} d^{2}\left(m_{r}\right)}-\frac{m_{1} m_{2}^{2}}{m_{r}^{3} d^{3}\left(m_{r}\right)}
$$

$$
\begin{aligned}
& {\left[\alpha_{1}^{2}+6 \alpha_{1} \alpha_{2} m_{r}^{2}+3\left(6 \alpha_{1} \alpha_{3}-\alpha_{2}^{2}\right) m_{r}^{4}-10 \alpha_{2} \alpha_{3} m_{r}^{6}-15 \alpha_{3}^{2} m_{r}^{8}\right]} \\
& \frac{\partial^{2} f}{\partial m_{2} \partial m_{3}}=-\frac{m_{1} m_{2} m_{3}}{m_{r}^{3} d^{3}\left({ }_{1} r\right)}\left[\alpha_{1}^{2}+6 \alpha_{1} \alpha_{2} m_{r}^{2}+3\left(6 \alpha_{1} \alpha_{3}-\alpha_{2}^{2}\right) m_{r}^{4}\right. \\
& \left.-10 \alpha_{2} \alpha_{3}{ }^{\mathrm{m}_{r}^{6}-15 \alpha_{3}^{2} \mathrm{~m}_{\mathrm{r}}^{8}}\right] \\
& \frac{\partial^{2} f}{\partial m_{3}^{2}}=\frac{m_{1}\left(\alpha_{1}-\alpha_{2} m_{r}^{2}-3 \alpha_{3} m_{r}^{4}\right)}{m_{r} d^{2}\left(m_{r}\right)}-\frac{m_{1} m_{3}^{2}}{m_{r}^{3} d^{3}\left(m_{r}\right)} \\
& {\left[\alpha_{1}^{2}+6 \alpha_{1}{ }^{\alpha} 2^{m_{r}}{ }_{r}^{2}+3\left(6 \alpha_{1} \alpha_{3}-\alpha{ }_{2}^{2}\right) m_{r}^{4}-10 \alpha_{2}^{\alpha} 3^{m_{r}^{6}}-15 \alpha_{3}^{2} m_{r}^{8}\right]}
\end{aligned}
$$

These relations complete the quasi-linearization of Eq. (A.4-19) according to Eq. (A.4-20).

The second nonlinearity in Eq. (A.4-16) is of the form

$$
\begin{equation*}
f\left(v_{1}, v_{2}, v_{3}\right)=v_{1} \frac{\psi(r)}{r}=\frac{v_{1}}{\alpha_{1}+\alpha_{2}\left(v_{2}^{2}+v_{3}^{2}\right)+\alpha_{3}\left(v_{2}^{2}+v_{3}^{2}\right)^{2}} \tag{A.4-24}
\end{equation*}
$$

where v_{1} now represents the first filter state, $\mathbf{x}_{f_{1}}$. As above,

$$
\begin{equation*}
f=\frac{m_{1}}{\alpha_{1}+\alpha_{2} m_{r}^{2}+\alpha_{3} m_{r}^{4}}=\frac{m_{1}}{d\left(m_{r}\right)} \tag{A.4-25}
\end{equation*}
$$

$$
\begin{aligned}
& n_{1} \cong \frac{1}{d\left(m_{r}\right)} \\
& n_{2} \cong-\frac{2 m_{1} m_{2}\left(\alpha_{2}+2 \alpha_{3} m_{r}^{2}\right)}{d^{2}\left(m_{r}\right)} \\
& n_{3} \cong-\frac{2 m_{1} m_{3}\left(\alpha_{2}+2 \alpha_{3} m_{r}^{2}\right)}{d^{2}\left(m_{r}\right)}
\end{aligned}
$$

$$
\frac{\partial^{2} f}{\partial m_{1}^{2}}=0
$$

$$
\frac{\partial^{2} f}{\partial m_{1} \partial m_{2}}=-\frac{2 m_{2}\left(\alpha_{2}+2 \alpha_{3} m_{r}^{2}\right)}{d^{2}\left(m_{r}\right)}
$$

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial m_{1} \partial m_{3}}=-\frac{2 m_{3}\left(\alpha_{2}+2 \alpha_{3} m_{r}^{2}\right)}{d^{2}\left(m_{r}\right)} \tag{A.4-27}
\end{equation*}
$$

$$
\frac{\partial^{2} f}{\partial m_{2}^{2}}=-\frac{2 m_{1}\left(\alpha_{2}+2 \alpha_{3} m_{r}^{2}\right)}{d^{2}\left(m_{r}\right)}+\frac{8 m_{1} m_{2}^{2}}{d^{3}\left(m_{r}\right)}\left[\left(\alpha_{2}^{2}-\alpha_{1} \alpha_{3}\right)+3 \alpha_{3} m_{r}^{2}\left(\alpha_{2}+\alpha_{3} m_{r}^{2}\right)\right]
$$

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial m_{2} \partial m_{3}}=\frac{8 m_{1} m_{2} m_{3}}{d^{3}\left(m_{r}\right)}\left[\left(\alpha_{2}^{2}-\left(\alpha_{1}^{\alpha} 3^{)}+3 \alpha_{3} m_{r}^{2}\left(\alpha_{2}+\alpha_{3} m_{r}^{2}\right)\right]\right.\right. \\
& \frac{\partial^{2} f}{\partial m_{3}^{2}}=-\frac{2 m_{1}\left(\alpha_{2}+2 \alpha_{3} m_{r}^{2}\right)}{d^{2}\left(m_{r}\right)}+\frac{8 m_{1} m_{3}^{2}}{d^{3}\left(m_{r}\right)} \quad(A .4-27)(\text { Cont .) } \\
& {\left[\left(\alpha_{2}^{2}-\alpha_{1} \alpha_{3}\right)+3 \alpha_{3} m_{r}^{2}\left(\alpha_{2}+\alpha_{3} m_{r}^{2}\right)\right]}
\end{aligned}
$$

complete the requirements for a quasi-linear representation of the second basic Kalman filter nonlinearity specified in Eq. (A.4-24), in accordance with Eq. (A.4-20).

A second important source of nonlincarity in the digital guidance module is the t_{go}-dependence of the optimal control gains, and the acceleration command limiter. The latter is of the same form as indicated in Eq. (A.4-1),

$$
\begin{equation*}
a_{c}=f\left(c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}\right) \triangleq f\left(\phi^{\prime}\right) \tag{A.4-28}
\end{equation*}
$$

where v_{1}, v_{2} and v_{3} represent the Kalman filter estimates of missile-target lateral separation, y, lateral separation rate, \dot{y}, and missile acceleration, at, as discussed in Section 3.5.2. The gains c_{i} considered here are those given in Eqs. (3.5-27) to (3.5-30), under the assumptions that the missile dynamics are neglected (by permitting ω_{m} to approach infinity) and that the control effort weighting, γ, in the performance index, Eq. (3.5-24), is zero:

$$
\begin{align*}
& c_{1}=\frac{3}{t_{g o}^{2}} \\
& c_{2}=\frac{3}{t_{g O}} \tag{A.4-29}\\
& c_{3}=\frac{3}{\left(\omega_{t} t_{g O}\right)^{2}}\left[e^{\left.-\omega_{t} t_{g O}+\omega_{t} t_{g O}-1\right]}\right.
\end{align*}
$$

The gain c_{3} can reasonably be simplified by taking the first 5 terms of the expansion of $e^{-\omega t} \mathrm{t} 0$, i.e.,

$$
\begin{equation*}
c_{3} \approx 3\left[\frac{1}{2}-\frac{1}{6} \omega_{t} t_{g o}+\frac{1}{24}\left(\omega_{t} t_{g o}\right)^{2}\right] \tag{A.4-30}
\end{equation*}
$$

is a good approximation until the last fraction of a second of an engagement and is more readily implemented in the guidance module.

In order to estimate $t_{\text {go }}$, the digital system may hold the range from the previous measurement, r_{k-1}, and difference it with the present value, as indicated in Eq. (3.5-32), vi\%.

$$
\begin{equation*}
t_{g \circ}=\frac{\tau_{s} \sqrt{v_{4}^{2}+v_{5}^{2}}}{v_{6}-\sqrt{v_{4}^{2}+v_{5}^{2}}} \tag{A.4-31}
\end{equation*}
$$

where v_{6} represents the digital state holding r_{k-1}, and $\sqrt{v_{4}^{2}+v_{5}^{2}}$ is the present range in cariesian coordinates in the state vector formulation.

Combining Eqs. (A.4-27) to (A.4-30) yields the complete nonlinear representation of the acceleration command limiter input:

$$
\begin{aligned}
\phi^{\prime}= & \frac{3 v_{1}\left[v_{6}-\sqrt{v_{4}^{2}+v_{5}^{2}}\right]^{2}}{\tau_{5}^{2}\left(v_{4}^{2}+v_{5}^{2}\right)}+\frac{3 v_{2}\left[v_{6}-\sqrt{v_{4}^{2}+v_{5}^{2}}\right]}{{ }^{\tau} s \sqrt{v_{4}^{2}+v_{5}^{2}}} \\
& +3 v_{3}\left(\frac{1}{2}-\frac{\alpha_{4}}{6} \frac{\sqrt{v_{4}^{2}+v_{5}^{2}}}{v_{6}-\sqrt{v_{4}^{2}+v_{5}^{2}}}+\frac{\alpha_{4}^{2}}{24} \frac{v_{4}^{2}+v_{5}^{2}}{\left[v_{6}-\sqrt{v_{4}^{2}+v_{5}^{2}}\right]^{2}}\right)
\end{aligned}
$$

where

$$
\begin{equation*}
\alpha_{4} \triangleq \omega_{t}{ }^{\tau} s \tag{A.4-33}
\end{equation*}
$$

Since the basic form given in Eqs. (A.4-28) and (A.4-32) is exactly analogous to that treated in the proportional guidance law, Section A.4-1, we can abbreviate the previous presentation as follows: First, the variance of ϕ^{\prime} is given approximately by Eq. (A.4-13),

$$
\sigma^{2} \cong \underline{b}^{T} \mathrm{~Pb}
$$

where \underline{b} is the vector of first partial derivatives of $\phi^{\prime}(\underline{m})$, viz.

$$
\begin{aligned}
& \mathrm{b}_{1}=\frac{\partial \phi^{\prime}(\underline{m})}{\partial m_{1}}=\frac{3\left[m_{6}-\sqrt{m_{4}^{2}+m_{5}^{2}}\right]^{2}}{\tau_{s}^{2}\left(m_{4}^{2}+m_{5}^{2}\right)} \triangleq \frac{3\left(m_{6}-m_{r}\right)^{2}}{\left(\tau m_{r}\right)^{2}} \\
& \therefore=\frac{\partial \phi^{\prime}}{\partial m_{2}}=\frac{3\left(m_{6}-m_{r}\right)}{\tau} \frac{s^{m}}{m_{r}} \\
& b_{3}=\frac{\partial \phi^{\prime}}{\partial m_{3}}=3\left[\frac{1}{2}-\frac{\alpha_{4}}{6} \frac{m_{r}}{m_{6}-m_{r}}+\frac{\alpha_{4}^{2}}{24} \frac{m_{r}^{2}}{\left(m_{6}-m_{r}\right)^{2}}\right]
\end{aligned}
$$

$$
\begin{equation*}
b_{4}=\frac{\partial p^{\prime}}{\partial m_{4}}=m_{4}\left[\frac{6 m_{1} n_{6}\left(m_{r}-m_{6}\right)}{\left[{ }^{\tau} s^{m_{r}^{2}}\right]^{2}}-\frac{3 m_{2} 2_{6}}{\tau_{s} m_{r}^{3}}\right. \tag{A.4-34}
\end{equation*}
$$

$$
\left.-\frac{\alpha_{4} m_{3} m_{6}}{2 m_{r}\left(m_{6}-m_{r}\right)^{2}}+\frac{\alpha_{4}^{2} m_{3} m_{6}}{4\left(m_{6}-m_{r}\right)^{3}}\right]
$$

$$
b_{5}=\frac{\partial p^{\prime}}{\partial m_{5}}=\frac{m m_{5} b_{4}}{m_{4}}
$$

$$
\begin{aligned}
\mathrm{b}_{6}=\frac{\partial \phi^{\prime}}{\partial \mathrm{r}_{6}}= & \frac{6 \mathrm{~m}_{1}\left(m_{6}-\mathrm{m}_{r}\right)}{\left(\tau_{s} m_{r}\right)^{2}}+\frac{3 m_{2}}{\tau} s^{m_{r}} \\
& +\frac{\alpha_{4} m_{3}}{2}\left[\frac{m_{r}}{\left(m_{6}-m_{r}\right)^{2}}-\frac{\alpha_{4}}{2} \frac{m_{r}^{2}}{\left(m_{6}-m_{r}\right)^{3}}\right] \text { (A.4-34)(Cor.t.) }
\end{aligned}
$$

Then we evaluate m using the approximation of Eq. (A.4-7), for which we require the following second partial derivatives:

$$
\begin{align*}
& \frac{\partial^{2} \phi^{\prime}}{\partial m_{1}^{2}}=0 \\
& \frac{\partial_{\phi}{ }^{\prime}}{\partial m_{1} \partial m_{2}}=0 \\
& \frac{\partial^{2} \phi^{\prime}}{\partial m_{1} \partial m_{3}}=0 \\
& \frac{\partial^{2} \phi^{\prime}}{\partial m_{1} \partial m_{4}}=\frac{6 m_{4} m_{6}\left(m_{r}-m_{6}\right)}{\left(\tau_{s} m_{r}^{2}\right)^{2}} \\
& \frac{\partial^{2} \phi^{\prime}}{\partial m_{1} \partial m_{5}}=\frac{6 m_{5} m_{6}\left(m_{r}-m_{6}\right)}{\left(\tau s^{\left.m_{r}^{2}\right)^{2}}\right.} \tag{A.4-35}\\
& \frac{\partial^{2}{ }_{\phi}^{\prime}}{\partial m_{1}{ }^{\prime} m_{6}}=\frac{\sigma\left(m_{6^{-m}}\right)}{\left(\tau_{s} m_{r}\right)^{2}} \\
& \frac{\partial^{2} \phi^{\prime}}{\partial m_{2}^{2}}=0 \\
& \frac{\partial^{2} \phi^{\prime}}{\partial m_{2} \partial m_{3}}=0 \\
& \frac{\partial^{2} \phi^{\prime}}{\partial m_{Z} \partial m_{4}}=-\frac{3 m_{4^{\prime \prime \prime}} 6}{\tau s_{r}^{3}}
\end{align*}
$$

$$
\begin{aligned}
& \frac{\partial^{2} \phi^{\prime}}{\partial m_{2}^{\partial m_{5}}}=-\frac{3 m_{5} m_{6}}{\tau_{s} m_{r}^{3}} \\
& \frac{\partial^{2} \phi^{\prime}}{\partial m_{2}{ }^{\partial m_{6}}}=\frac{3}{\tau s^{m_{r}}} \\
& \frac{\partial^{2} \phi^{\prime}}{\partial m_{3}^{2}}=0
\end{aligned}
$$

$$
\frac{\partial^{2}{ }_{\phi}^{\prime}}{\partial m_{3} \mathrm{~m}_{4}}=-\frac{\alpha_{4} m_{4} m_{6}}{2 m_{r}\left(m_{6}-m_{r}\right)^{3}}\left[\left(i+\frac{\alpha_{4}}{2}\right) m_{r}-m_{6}\right]
$$

$$
\frac{\partial^{2} \phi^{\prime}}{\partial m_{3} m_{5}}=\frac{\alpha^{m_{5}} \frac{m}{5}^{m_{6}}}{2 m_{r}} \frac{\left(m_{6}-m_{r}\right)^{3}}{}\left[\left(1+\frac{\alpha_{4}}{2}\right) m_{r}-m_{6}\right]
$$

$$
\frac{\partial^{2} \phi^{\prime}}{\partial m_{3} \mathrm{~m}_{6}}=\frac{\alpha_{4} m_{r}}{2\left(m_{6}-m_{r}\right)^{3}}\left[m_{6}-\left(1+\frac{\alpha_{4}}{2}\right) m_{r}\right]
$$

$$
(\text { A. } 4-3 E)(\text { Cont. })
$$

$$
\frac{3^{2} \phi^{\prime}}{\partial m_{4}^{2}}=\frac{b_{4}}{m_{4}}+\frac{m_{4}}{m_{5}} \frac{\partial^{2} \phi^{\prime}}{\partial m_{4} \partial m_{5}}
$$

$$
\frac{\partial^{2} \phi^{\prime}}{\partial m_{4} \partial m_{5}}=m_{4} m_{5}\left[\frac{6 m_{1} m_{6}\left(4 m_{6}-3 m_{r}\right)}{\left(\tau s_{r}^{3}\right)^{2}}+\frac{9 m_{2} m_{6}}{\tau_{s} m_{r}^{5}}-\frac{\alpha_{4} m_{3} m_{6}}{2\left(m_{6}-m_{r}\right)^{3}}\right.
$$

$$
\left.\left\{\frac{3 m_{r}-m_{6}}{m_{r}^{2}}-\frac{3 \alpha_{4}}{2\left(m_{6}-m_{r}\right)}\right\}\right]
$$

$$
\frac{\partial^{2} \phi^{\prime}}{\partial m_{4} \partial m_{6}}=m_{4}\left[\frac{6 m_{1}\left(m_{r}-2 m_{6}\right)}{\left(\tau_{s} m_{r}^{2}\right)^{2}}-\frac{3 m_{2}}{\tau_{s} m_{r}^{3}}+\frac{\alpha_{4} m_{3}\left(m_{6}+m_{r}\right)}{2 m_{r}\left(m_{6}-m_{r}\right)^{3}}\right.
$$

$$
-\frac{\alpha_{4}^{2} m_{3}\left(2 m_{6}+m_{r}\right)}{4\left(m_{6}-m_{r}\right)^{4}}
$$

$$
\begin{align*}
& \frac{\partial^{2} \phi^{\prime}}{\partial_{m_{5}}^{2}}=\frac{b_{4}}{m_{4}}+\frac{m_{5}}{m_{4}} \frac{\partial^{2} \phi^{\prime}}{\partial m_{4} \partial m_{5}} \\
& \frac{\partial^{2} \phi}{\partial m_{5}{ }^{\prime} m_{6}}=\frac{m_{5}}{m_{4}} \frac{\partial^{2} \phi^{\prime}}{\partial m_{4} \partial m_{6}} \tag{A.4-35}\\
& \frac{\partial^{2} \phi}{\partial m_{6}^{2}}=-\frac{6 m_{1}}{\left(\tau s_{r}\right)^{2}}+\frac{\alpha_{4} m_{3} m_{r}}{\left(m_{6}-m_{r}\right)^{4}}\left[m_{r}\left(1+\frac{3 \alpha_{4}}{4}\right)-m_{6}\right]
\end{align*}
$$

With these results, we have the vector, required to evaluate σ^{2} (Eq. (A.4-13)) and the second partial derivatives needed to obtain m according to

$$
\begin{equation*}
m=\phi^{\prime}(\underline{m})+\frac{1}{2} \sum_{i=1}^{6} \sum_{j=1}^{6} \frac{\partial^{2} \phi^{\prime}}{\partial n_{i} \partial m_{j}} p_{i j} \tag{A.4-36}
\end{equation*}
$$

These statistics permit the calculation of the limiter ridf's, Eq. (A.4-6); \hat{f} is then the required mean component of the limited digital acceleration command and the random component ridf vector is simply

$$
\begin{equation*}
\underline{n}_{\mathrm{a}}=\mathrm{n} \underline{b} \tag{A.4-37}
\end{equation*}
$$

as before (Eq. (A.4-15)). This completes the quasi-linear representation of the Kalman filter gains and optimal control gains in the digital guidance module.

The random input describing functions catalogued in this appendix should be sufficiently inclusive to permit the direct quasi-linearization of a quite broad variety of system models representing the missile-target intercept problem. The examples and new results given in Chapter 4 (especially Cases 1 to 3 of Section 4.3) allow ridf's to be calculated for a nunber of cther nonlinearities with a relatively modest analytic effort. A majority of the nonlinearities treated in this handbook are alsc
of common occurrence in other nonlinear system models, so it is our hope that Chapter 4 and this appendix will facilitate the use of CADET in other applications as well.

APPENDIX B

EXTENSIONS OF CADET

B. 1 INTRODUCTION

We have indicated that there are situations in which the basic CADET methodology is inadequate. As discussed in Section 4.2 , the most common difficulty that arises is that the random component of a nonlinearity input, v_{i}, has zero correlation with the output, $z=f\left(v_{i}\right)$. For example,

$$
\begin{array}{ll}
z=\cos v_{1}, & E\left[v_{1}\right]=m_{1}=0 \\
z=v_{1} v_{2}, & E\left[v_{i}\right]=m_{i}=0,
\end{array}
$$

are cases for which
$E\left[\begin{array}{ll}z & v_{i}\end{array}\right] \equiv 0$
where v_{i} is a gaussian random variable. In this event, the random input describing functions (ridf's) for the random component -- which by definition only capture the nonlinearity inputoutput relations for the correlated components of the output -are identically zero. If this problem occurs in a primary transmission path of the system model, a statistical analysis using the basic CADET approach may be significantly in error.

A practical resolution of the difficulty described above has been proposed in Ref. 20. It is based on the selective
relaxation of the assumption that all of the state variables are jointly normal; in this way it is possible to propagate the firstand second-order statistics, \underline{m} and P, accurately using modified CADET methodology if some of the higher-order moments (corresponding to the states that are not assumed to be gaussian) are propagated as well.*

We present the essentials of Modified CADET via treatment of a simple low-order example. This material is directly based on the research documented in Ref. 20.

B. 2 BASIC CADET FAILURE

In this section, we analyze an example using both the basic CADET approach and a direct solution technique (which is too cumbersome to use in all but the simplest situations) to demonstrate the need for extension of CADET in some circumstances. Consider the nonlinear system depicted in Fig. B. 2-1, which has an output that is the integral of a simple product nonlinearity driven by twc random biases. We assume that the corresponding state vector differential equation and initial condicions are given by

$$
\begin{align*}
& \underline{x}=\underline{f}(\underline{x})=\left[\begin{array}{c}
0 \\
0 \\
x_{1} x_{2}
\end{array}\right] \\
& E[\underline{x}(0)] \triangleq \underline{m}_{0}=\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right]
\end{align*}
$$

[^15]

R-16226

Figure B.2-1
A Product Nonlinearity Uriven by Random Biases
$E\left[\left(\underline{x}(0)-\underline{m}_{0}\right)\left(\underline{x}(0)-\underline{m}_{0}\right)^{T}\right] \triangleq p_{0}=\left[\begin{array}{ccc}p_{110} & p_{120} & 0 \\ p_{120} & p_{22_{0}} & 0 \\ 0 & 0 & p_{33_{0}}\end{array}\right]$

Equation (B.2-3) indicates that the initial condition on x_{3} is independent of those on the first two states. Since there are no random inputs ($\underline{w}=0$), the evolution of the state variables is completely determined by the random initial conditions.

First, we indicate the exact solution, which can be obtained by direct integration. For any initial conditions x_{10} and x_{20}, the first $\mathrm{t} \boldsymbol{\prime} \mathrm{o}$ states remain constant, by Eq. (B.2-1). The solution for the third state is then given by

$$
\begin{equation*}
x_{3}(t)=x_{3_{0}}+x_{10} x_{2_{0}} t \tag{B.2-4}
\end{equation*}
$$

Taking the mean and variance of this solution, using the statistics specified in Eqs. (B.2-2) and (B.2-3), we obtain

$$
\begin{align*}
m_{3}(t)= & m_{3_{0}}+\left(m_{1} m_{2}{ }_{0}+p_{12_{0}}\right) t \\
p_{33}(t)= & p_{33_{0}}+\left[m_{10}\left(m_{1}{ }^{p} 22_{0}+m_{2}{ }_{0} p_{12_{0}}\right)\right. \tag{B.2-5}\\
& \left.+m_{2_{0}}\left(m_{20} p_{11_{C}}+m_{1}{ }_{0} p_{12}\right)+p_{11_{0}} p_{22_{0}}+p_{12_{0}}^{2}\right] t^{2}
\end{align*}
$$

In applying basic aDET, Eqs. (1.2-i) and (1.2-7), wr require the ridf's given by

$$
\begin{aligned}
& \hat{i}=\left[\begin{array}{c}
0 \\
0 \\
E\left[x_{1} x_{2}\right]
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
m_{1} m_{2}+p_{12}
\end{array}\right] \\
& \lambda=E\left[\underline{f}(\underline{x}) \underline{r}^{T}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
E\left[x_{1} x_{2} r_{1}\right] & E\left[x_{1} \sim_{2} r_{2}\right] & E\left[x_{1} x_{2} r_{3}\right]
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
m_{1} p_{12}+m_{2} p_{11}+E\left[r_{1}^{2} r_{2}\right] & m_{1} p_{22}+m_{2} p_{12}+E\left[r_{1} r_{2}^{2}\right] & m_{1} p_{23}+m_{2} p_{13}+E\left[r_{1} r_{2} r_{3}\right]
\end{array}\right]
\end{aligned}
$$

Under the assumption that all of the states are jointly normal, the expected values of the form $E\left[r_{1} r_{2} r_{j}\right], j=1,2,3$, given in the third row of NP in Eq. (B.2-6) are all zero. We can then evaluate the time derivatives of $\mathrm{m}_{3}(\mathrm{t})$ and $\mathrm{p}_{3}(\mathrm{t}) \mathrm{using} \mathrm{Eq} .(1.2-7)$, and integrate directly to obtain

$$
\begin{aligned}
m_{3}(\tau) & =m_{3_{0}}+\left(m_{1_{0}} m_{2_{0}}+p_{12_{0}}\right) t \\
p_{33}(t) & =p_{33}+\left[m_{0}\left(m_{1} p_{02}+m_{2_{0}} p_{12_{0}}\right)+m_{2_{0}}\left(m_{2_{0}} p_{11_{0}}+m_{1} p_{12_{0}}\right)\right] t^{2}
\end{aligned}
$$

On comparing Eqs. (B.2-5) and (B.2-7) we observe that the mean is propagated correctly by basic CADET in the above example In the variance equation, however, we note that the terms $p_{11}{ }_{0} p_{22_{0}} t^{2}$ and $\left(p_{12} t\right)^{2}$ a \cdot e absent in the CADFT result. If m_{10} and m_{2} are zero, CADET indinates that $p_{33}(t)$ is identically equal to its initial value ${ }^{2} 33_{0}$, while the exact result increases with time,

$$
\begin{equation*}
\left.p_{33}(t)\right|_{m_{1, ~}^{n}, m_{n}}=0=p_{33_{n}}+\left(p_{12 n}^{2}+p_{11_{n}} p_{22_{n}}\right) t^{2} \tag{B.2-8}
\end{equation*}
$$

In the general case (nonzero means and correlated states driving the product nonlinearity), then, CADET will do relatively we.ll in estimating the variance of x_{3} if

$$
2 m_{1} m_{0} p_{12}+m_{2}^{2} p_{111_{0}}+m_{1_{0}}^{2} p_{22} \gg p_{11_{0}} p_{22}+p_{12_{0}}^{2}(B .2-9)
$$

This is a quite restrictive condition.
As demonstrated in Section 1.2 , CADET will propagate the mean and covariance of the nonlinear system exactly if the expected values appearing in Eq. (B.2-6) are correctly evaluated. Basic CADET does not evaluate these expectations appropriately for the product nonlinearity just considered, because the probability density function of the product of two gaussian random variables is clearly nongaussian. Thus x_{3} cannot be assumed to be jointly normal with x_{1} and x_{2} without causing CADET accuracy deterioration, except in cases that satisfy Eq. (B.2-9). An approach for modifying CADET, which tends to eliminate this source of error, is introduced and explained in the next section.

B. 3 TWO GENERALIZATIONS OF CADET

B.3.1 Exact Solutions via Higher Moment Propagation

Having motivated the need for generalizing basic CADET by demonstrating its breakdown for a system having a product nonlincarity, a technique for extending CADET is introduced using the srme example. Consider the problem originally posed in Section B. 2 -- the nonlinear system of Fig. B.2-1 driven by two random
B-5
bias states. Since x_{3} is not jointly gaussian with x_{1} and x_{2}, no assumptions are made regarding the density function of x_{3}. The states driving the nonlinearity are still given to bo jointly normal. Referring to Eq. (B.2-6). lack of knowledge of the joint. density $p\left(x_{1}, x_{2}, x_{3}\right)$ implies that the term $E\left[r_{1} r_{2} r_{3}\right]$ cannot be imnediately evaluated. In order to obtain this otherwise unkrown higher-order moment, consider its propagation in time, in the same sense that basic CADET considers the propagation of the mean and covariance. Making use of the chain rule and the commutativity of differen iation and expectation, we obtain the following expression for the derivation of the higher-order moment:

$$
\dot{p}_{123} \triangleq \frac{d}{d t} E\left[r_{1} r_{2} r_{3}\right]=E\left[r_{1} r_{2} r_{3}\right]+E\left[r_{1} \dot{r}_{2} r_{3}\right]+E\left[r_{1} r_{2} \dot{r}_{3}\right]
$$

The first two terms are zero since r_{1} and r_{2} are constant; the last term is evaluated using

$$
\dot{\mathrm{r}}_{3}=\dot{\mathrm{x}}_{3}-\dot{\mathrm{m}}_{3}=\mathrm{x}_{1_{0}} \mathrm{x}_{2_{0}}-\left(\mathrm{m}_{1} \mathrm{~m}_{2_{0}}^{+\mathrm{p}_{12}}\right)
$$

to be

$$
\dot{\mathrm{p}}_{123}=\mathrm{p}_{11_{0}} \mathrm{p}_{22}+\mathrm{p}_{12}^{2}
$$

Integrating Eq. (B.3-1), and substituting into Eq. (B.2-6), we have.

Evaluating \dot{p} according to Eq. (1.2-7) and integrating, we obtain the result given in $E q$. ($B .2-5$) which is the exact solution to the problem.

To summarize this methodology, the lack of knowledge about the joint probaioility density function of the system states is compensated by introducing additional differential equations that govern the propagation of selected higher-order moments of the state variables. Initially, the components of the state vector may be assumed to be jointly gaussian in distribution; this estabiishes the initial values of the higher-order moments. As these moments propagate, however, the normal relation between \underline{m}, P and the higher-order moments disappears, due to the evolving nongiussian nature of the system states caused by the existence of the nonlinearity in the system.

B.3.2 A Further Application of Exact Higher Moment Propagation

A more complicated dynamic system containing the product nonlinearty is shown in Fig. B. 3-1. The two nonlinearity input states are assumed to be band-limited gaussian processes with correlation determined by the parameter α, and the output of the multiplier is passed through two stages of low-pass linear dynamics. The state vector differential equation formulation of this system model is given by

$$
\underline{\dot{x}}=\left[\begin{array}{llll}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -0.1 & 0 \\
0 & 0 & 0.1 & -0.1
\end{array}\right] \underline{x}+\left[\begin{array}{c}
0 \\
0 \\
0.1{ }_{k} x_{2} \\
0
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
\alpha & 1 \\
0 & 0 \\
0 & 0
\end{array}\right] \underline{2}(B .3-3)
$$

where x and w are the state vector and the input vector of gaussian white noise processes, respectively. Note that the correlation between x_{1} and x_{2} is given by

Figure B.3-1
Dynamie System with a product-of-Staies Nonlinearity

$$
p_{12}=\alpha \sigma_{1}^{2}
$$

so the degree of correlation is directly proportional to $:$. The state variable initial conditions were chosen to be zero; then given the constant input means, b_{i}, and spectral donsities. y_{i} (refer to Eq. (1.1-2)). the statisties of the states driving the multiplier can be directly obtained to be

$$
\begin{aligned}
& { }^{m_{1}}=b_{1}\left(1-a^{-1}\right) \\
& { }^{p_{11}}=q_{1}\left(1-e^{-2 t}\right) \\
& m_{2}=\left(b_{2}+a b_{1}\right)\left(1-e^{-t}\right) \\
& p_{22}=\left(q_{2}+a q_{1}\right)\left(1-e^{-2 t}\right)
\end{aligned}
$$

The statistical analysis of the systom depicted in Fif. B.3-1 was carried out in Ref. 20 by applying basic Caber, oxact hifher moment piopagation (hereafter designated fiMb), and the monte carlo method (200 trials). In the catses presiontrd here.
α is taken to be 0.1 , and the input white noise processes were chosen io have means and spectral densities given by $b_{i}=0.01$, $q_{i}=1.0$ respectively. Consequently, from Eq. (B.3-5) we observe that the means are much less than the rms values, so, as indicated in ëq. (B.2-9), it would be anticipated that CADET would be quite inaccurate in this circumstance. The results are portrayed in Fig. B.3-2; since the driving states, x_{1} and x_{2}, are jointly gaussian, we confine our attention to the evolution of σ_{3} and σ_{4} with time. Observe that the HMP result is exact, as verified by the monte carlo data, while the basic CADET analysis is completely inadequate in its projection of σ_{3} and σ_{4} versus time.

For the ahove example the HMP analysis only entailed the propagation of two higher-order moments, $E\left[r_{1} r_{2} r_{3}\right]$ and $E\left[r_{1} r_{2} r_{4}\right]$. The computer time expenditure was thus nearly identical with that of basic CADET; the monte carlo analysis required 26 times the CADET computational expense.

A question of some importance regarding the general practicality of HMP concerns the impact of increasing the complexity of the system before and after the nonlinearity. As demonstrated in Ref. 20 , simply introducing coupling between states 1 and 2 , e.g. replacing the first two state variable differential equations in Eq. (B.3-3) with

$$
\begin{aligned}
& \dot{x}_{1}=a_{11} x_{1}+a_{12} x_{2}+w_{1} \\
& \dot{x}_{2}=a_{22} x_{2}+w_{2}
\end{aligned}
$$

irereases the number of higher order moments that must be propagated from 2 to 4 . A similar increase in computaticnal complexity occurs when the system is made more complicated following the nonlinearity. Thlis the analysis of high-order closed-loop systems via HMP may be impractical.
\longrightarrow (TMALTM

(a) The rms Vaiue of x_{3}

Figure B.3-2
Simulation Results for a System Containing a Product-of-States Nonlinearity

B.3.3 Modified CADET

The Modified CADET methodology suggested in Ref. 20 serves the purpose of providing a significant increase in the accuracy of CADET without the great increase in computational burden that may be necessitated in using HMP to treat high-order systems, especially those in a closed-loop configuration where all or nearly all of the system state variables may be nongaussian.

The application of Modified CADET to the simple system treated in the preceding section (Fig. b. 3-1), containing a product nonlinearity followed by two stages of linear dynamics, is summarized by the following basic steps:

- Relax the gaussiai assumption only on that component of the state vector "nearest" the output of the nonlinearity (i.e., x_{3} in Fig. B.3-1); retain the assumption of joint normality on all other states.
- Develop expressions for the derivatives of all resulting unknown higher-order moments appearing in the evaluation of the expected values in \hat{f} and NP, Eq. (1.2-6) (as in Eq. (B.2-6)).
- Integrate these derivatives along with the derivatives of the system mean and covariance from assumed initial values.

The rationale behind this selective assumption of joint normality is that in general, states more than 2 few integrations from the nonlinearity (e.g., x_{4} in Fig. B.3-1) can be assumed to be jointly normal with respect to other gaussian states (e.g., x_{1} and x_{2} in the same figure), for reasons discussed in Section 1.2.

To demonstrate the usefulness of Modified CADET, we treat the same example as above (Figs. B.3-1 and B.3-2) under the assumption that x_{4} is gaussian. Then $E\left[r_{1} r_{2} r_{4}\right]$ is identically zero, and only one higher-order moment is propagated. The corresponding time
history of σ_{4} is compared with the HMP result in Fig. B. $3-3$; clearly it provides a close approximation to the exact solution.

Figure B.3-3 Modified CADET Solution For the System Shown in Fig. B.3-1 With Only One State Assumed Nongaussian

Modified CADET represents a methodology which potentially broadens the usefulness of the CADET concept, permitting its applicability to a wider class of nonlinear systems. For the loworder examples presented in this appendix, Modified CADET has clear-cut advantages, and we anticipate that it will be a useful method for improving the accuracy of statistical analyses for more complex systems.

APPENDIX C
 THE MONTE CARLO METHOD: APPLICATION AND RELIABII,ITY

C. 1 DESCRIPTION OF TKE TECHNIQUE

The monte carlo method provides an approach for the statistical analysis of the performance of a nonlinear syetem with random inputs, based on direct simulation. entails determining the system response to a finite number of "typical" initial conditions and noise input functions which are generated according to their specified statistics. Thus, the information required for monte carlo analysis includes the system model, initial condition statistics, and random input statistics.

The system model can be given in the form of a state vector differential equation,

$$
\begin{equation*}
\underline{\dot{x}}=\underline{f}(\underline{x}, \underline{y}, t) \tag{C.1-1}
\end{equation*}
$$

where \underline{x} is the vector of system states, y is a vector of random inputs, and $\underline{f}(\underline{x}, \underline{y}, \mathrm{t})$ represents the nonlinear time-varying dynamic relationships in the system. We assume at the outset that the elements of y are correlated random processes with deterministic components that may be nonzero; in this case, a system model of the form

$$
\begin{equation*}
\underline{\dot{x}}=\underline{f}(\underline{x}, t)+G(t) \underline{w}(t) \tag{C.1-2}
\end{equation*}
$$

where \underline{w} is the sum of a vector of white noise processes and a deterministic vector can generally be obtained that is equivalent to Eq. (C.1-1), as discussed in Section 1.2. Henceforth,
wo trat Eff. (C.1-2) as the basic system model: it is portrayed in block diagram notation in fig. (.1-1.

Figure C.1-1 Nonlinear System Model

The initial condition of the state vector is specified by assuming that the state variables aro jointly normal. Thus, ficen an initial mean vector and covariancr matris*,
$\mathrm{N}[\underline{\ddot{x}}(0)]=\underline{m}_{0}$
$E\left[\left(\underline{x}(0)-\underline{m}_{0}\right)\left(\underline{x}(0)-\underline{m}_{0}\right)^{T}\right]=p_{0}$
the injtial condition specification is complete. As stated above, the input vector w is assumed to be composed ol elemerts that are white noise processes, plus an additive deterministic component or mean; thus

$$
\begin{aligned}
& E[\underline{w}(t)]=\underline{b}(t) \\
& \text { E: }\left[(\underline{w}(t)-\underline{b}(t))(\underline{w}(\tau)-b(\tau))^{T}\right]=Q(t) i(t-\tau)
\end{aligned}
$$

[^16]$$
\mathrm{C}-2
$$
where $Q(t)$ is the input spectral density matrix and the impulse function $\delta(t-\tau)$ indicates that the input vector random components have zero autocorrelation for $t \neq \tau$; i.e., the quantity $\underline{u}(t)=$ $\underline{w}(t)-\underline{b}(t)$ is "white noise", as stated.

Given the above information, monte carlo analysis requires a large number, say q, of representative simulations of the system response, viz., the q-fold repetition of the following procedure: First, an initial condition vector is chosen gecording to the statistics indicated above; i.e., a random numbar generator calculates the elements of a random vector $x(0)$ based on Eq. (C.1-3). Then a random initial input vector, $\underline{w}(0)$, is generated, using the statistics given in Eq. (C.1-4)*. These vectors provide the data for evaluation of $\dot{\underline{x}}(0)$ in Eq.(C.1-2) which in turn is used to propagate the solution from $t=0$ to $t=h$ according to any standard technique for the digital integration of a state vector differential equation. Then, given $\mathrm{x}(\mathrm{h})$, simulation continues by the generation of a new value of the input noise vector $w(h)$, evaluation of $\dot{x}(h)$, numerical integration to obtain $x(2 h)$ and so on, to the specified terminal time t_{f}.
*We simulate white noise with spectral density matrix $Q(t)$ by using a random number generator to obtain an indeperident sequence of random vectors $\underline{u}(k h)$. $k=0,1,2, \ldots$ satisfying

$$
\begin{aligned}
& E[\underline{u}(k h)]=\underline{0} \\
& E\left[\underline{u}(k h) \underline{u}^{T}(k h)\right]=\frac{1}{h} Q(k h)
\end{aligned}
$$

Then we define $\underline{u}(t)$ by

$$
\underline{u}(t)=\underline{u}(k h), \quad k h \leq t<(k+1) h
$$

where h is a small time increment. For h small ($1 / h$ much larger than the bandwidth of the system in question), $u(t)$ is an accurate approximation to a white noise process.

Performing a indopendent simulations yields an ensemble of state trajecoories, each denoted $\underline{x}^{(i)}\left(t: x^{(i)}(0), \underline{w}^{(i)}(t)\right)$ to stress the dependence of the trajeciory on the random intital condition and noise jnput sample function:

$$
\left.\begin{array}{l}
\underline{x}^{(1)}\left(t ; \underline{x}^{(1)}(0), \underline{w}^{(1)}(t)\right) \\
\underline{x}^{(2)}\left(t ; \underline{x}^{(2)}(0), \underline{w}^{(2)}(t)\right) \tag{C.1-5}\\
\underline{x}^{(q)}\left(t ; \underline{x}^{(q)}(0), \underline{w}^{(q)}(t)\right)
\end{array}\right\} ; 0 \leq t-t
$$

Ench satisfies the state vector differential equation (Eq. (C.1-2)) to within the accuracy of the numerical integration mothod used, and the ensembles of initial conditions, $\underline{x}^{(i)}(0)$, ard random inputs, $\underline{w}^{(i)}(t)$, obey the statistical conditions given in Eqs. (C.1-3) ard (C.1-4), subject to the limitations of the random number generator employed. The mean $\underline{m}(t)$ and covariance $P(t$; of the state vector are estimated by averafing over the ensemble of trajectorios using the relations

$$
\begin{aligned}
& \hat{m}(t) \triangleq \frac{1}{q} \sum_{i=1}^{q} \underline{x}^{(i)}(t) \ddot{=} \underline{\underline{m}}(t) \\
& \ddot{p}(t) \triangleq \frac{1}{q-1} \sum_{i=1}^{q}\left(\underline{x}^{(i)}(t)-\underline{\underline{m}}(1)\right)\left(\underline{x}^{(i)}(t)-\underline{m}(t)\right)^{T} \ddot{P} p(t)
\end{aligned}
$$

where $\hat{m}(t)$ and $\hat{P}(t)$ denote the astimated values* . Th assenco of the monte carlo technique is illustrated in fir. C. $1-2$.

[^17]$$
P_{S} \triangleq \frac{1}{q} \sum_{i=1}^{q}\left(\underline{x}^{(i)}-\hat{m}\right)\left(\underline{x}^{(i)}-\hat{\underline{m}}\right)^{T}
$$
is biased (Ref. 8), i.e.,
$$
E\left[p_{s}\right]=\frac{q-1}{q} p
$$

Figure C.1-2 Schematic Characterization of the Monte Carlo Technique

C. 2 ASSESSMENT OF AこCURACY -- CONFIDENCE INTERVALS

In order to assoss the accuracy of the approximate statistics given in Eq. (C.1-6), it is necessary to consider the statistical properties of the estimates $\hat{\underline{m}}(t)$ and $\hat{\mathbf{P}}(t)$. To simplify the notation, consider a scalar random variable y (e.g., the value of some system state variable at some time of interest), and let m and p represent the true values of the mean and variance of y,

$$
\begin{align*}
& m=E[y] \\
& p=E\left[(y-m)^{2}\right] \tag{C.2-1}
\end{align*}
$$

By performing one set of q monte carlo trials, we obtain a single estimate of m and p, which we denote \hat{m} and \hat{p}. These estimates are also randon variables; that is, if another set of q monte

$$
C-5
$$

carlo trials were performed independentiy of the first set, but with the same statistics for the initial conditions and noise inputs, then a different ensemble of simulations results, and different estimates for the mean and variance would be obtained. If q is sufficiently large, then we can invoke the central limit theorem to justify the assumption that the random variables \hat{m} and \hat{p} are gaussian*, a.d thus that their distributions are asymptotically specified by the following statistics for larse q (Ref. 21) :

$$
\begin{align*}
& E[\hat{m}]=m \\
& E[\hat{p}]=p \\
& J_{\hat{m}} 2 \triangleq E\left[(\hat{m}-m)^{2}\right]=\frac{p}{q} \tag{C.2-2}\\
& { }_{\sigma_{\hat{p}}} 2 \triangleq E\left[(\hat{p}-p)^{2}\right]=\frac{\mu_{4}-p^{2}}{q}
\end{align*}
$$

where μ_{4} is the fourth central moment,

$$
\begin{equation*}
\mu_{4}=E\left[(y-m)^{4}\right] \tag{C.2-3}
\end{equation*}
$$

For many common probability density functions (pdf's), a const.nt x exists surh th:at.

$$
\begin{equation*}
\mu_{4}=\lambda p^{2} \tag{C.2-4}
\end{equation*}
$$

Table C.2-1 gives a summary of values of λ, known as the kurtosis or excess of the density, for intme: ce,mmull pill': for pul's

For $q<20$, it is necessary to assume that \hat{p} has the chi square distribution if y is a gaussian variable (Ref. 22); if y is significantly nongaussian, the validity of the qaussian assumption for \hat{m} and \hat{p} may require considerably more than twenty trials.

TABLE C.2-1

SOME COMMON PROBABILITY DENSITY FUNCTIONS

			$0+1798$
DESIGNAIION	FUNCTIONAI REPRESENTAIION*	GRAPHCM REPRESENTATICIN	λ
EXPORENTIAL	$\begin{aligned} & \frac{1}{\sqrt{2 \sigma}} \operatorname{arp}\left(-\frac{\sqrt{2}}{\sigma}\|x-m\|\right) \\ & -\infty<x<-\infty \end{aligned}$		6
NORMAL	$\begin{aligned} & \frac{1}{\sqrt{2 \pi} \sigma} \operatorname{axp}\left(-\frac{1}{2}\left(\frac{x \cdot m}{\sigma}\right)^{2}\right) . \\ & -\infty \leqslant x<+\infty \end{aligned}$		3
triancular	$\begin{aligned} & \frac{1}{\sqrt{6 \sigma}}\left(1-\frac{\|m-. n\|}{\sqrt{6 \sigma}}\right) . \\ & m-\sqrt{6 \sigma} \leq x \leq m \cdot \sqrt{6 \sigma} \end{aligned}$		2.4
UNIFORM	$\begin{gathered} \frac{1}{\sqrt{12} \sigma} \\ m-\sqrt{3} \sigma \leq x \leq m+\sqrt{3} \sigma \end{gathered}$		1.8
BIPOLAR (Discrele)	$\begin{array}{r} \frac{1}{2} \delta(x-m-\sigma) \\ +\frac{1}{2} \delta(x-m+\sigma) \end{array}$		1.0

-Formulated to hove mean m and slondard deviotion σ
of this type, we can express both of the standard deviations of the estimated statistics given in Eq. (C.2-2) in terms of the true variance, p, to obtain

$$
\begin{align*}
& \sigma_{\hat{m}}=\sqrt{\frac{\mathbf{p}}{q}} \\
& \sigma_{\hat{p}}=\sqrt{\frac{\lambda-1}{q}} \mathbf{p} \tag{C.2-5}
\end{align*}
$$

The above discussion of the sintistics of the gaussian random variable \hat{p} provides the basis fcr determining a range in the vicinity of \hat{p} such that the true value of p is guaranteed to

$$
C-7
$$

Lle within that rango with in specified probability, w. Thit is. done by dotermining the number, n_{n}, of standard drviations. "f, such that.

$$
\operatorname{Prob}\left[0 \leq|p-\hat{p}| \leq n_{n}(9 \hat{p}]=\psi \quad(C, 2-6)\right.
$$

Since p is approximatoly gaussian, n_{o} is the solution to

$$
\frac{1}{\sqrt{2 \pi}} \int_{-n_{G}}^{n_{\theta}} \exp \left(-\frac{1}{2} \zeta^{2}\right) d i=\psi \quad(C .2-7)
$$

For example, if the desired prohability is 0.95, Eif. (C.2-7) jiolds $n_{0}=1,96$. Other values of n_{0} corresponding to difforent valuos ol ψ can be obtained from probability intogral tai)les (kof. 18); several representative values are x iven in Table c.2-2.

TABLE C.2-2
CUMULATTIVE PROBABIIITY WITHIN no STANDARD DEVIATIONS OF TIIE MIAN FOR A GAUSSIAN RANDON VARIABII:

n_{0}	ψ
1.0	0.6827
1.615	0.9000
1.960	0.9500
2.576	0.9900

To reformulate Eq. (C.2-6) , "to an inequality for p, We substitute for $\hat{\sigma}_{p}$ from Eq (C.2-5) into Eq. (C. $2-G$) io ohtitn

$$
\begin{equation*}
\operatorname{Prob}\left[p<\frac{\hat{p}}{1+n_{\sigma} \sqrt{\frac{\lambda-1}{q}}} \leq p \leq \frac{\hat{p}}{1-n_{\sigma} \sqrt{\frac{1-1}{q}}} \Leftrightarrow \frac{1}{p}\right]=\psi \tag{..2-8}
\end{equation*}
$$

that is, the true value of p lies between the values p and \bar{p} indiocoated in Eq. (C.2-8) with probability ψ. Alternatively, in terms of the eqtimated rms value of the variable. $\hat{\sigma}$, we have the comparable result

$$
\operatorname{Prob}[\underline{\sigma} \leq 0 \leq \bar{\sigma}]=\psi
$$

where \mathfrak{a} and $\bar{\sigma}$ are given by

$$
\begin{align*}
& \underline{\varrho} \triangleq \sqrt{\underline{p}}=\frac{\hat{\sigma}}{\sqrt{1+n_{\sigma}} \sqrt{\frac{\lambda-1}{q}}} \triangleq \underline{o} \tag{C.2-9}\\
& \bar{\sigma} \triangleq \sqrt{p}=\sqrt{1-n_{\sigma} \sqrt{\frac{\lambda-1}{q}}} \triangleq \bar{\rho}
\end{align*}
$$

The quantities σ and $\bar{\sigma}$ are referred to as lower and upper confdene limits; the value of ψ expressed as a percent is the degree of confidence. Equation (C.2-9) demonstrates that the standard deviation confidence limits can be obtained from \hat{o} simply by using the multipliers ρ and \bar{n}. The latter are functions only of the kurtosis, λ, the number of monte carlo trials, q, and the number of standard deviations, n_{σ}, required to achieve the desired degree of confidence.

The problem of making a reasonable choice of λ, which depends upon the statistics of the random variable y, must be faced before the confidence limit multipliers can be calculated. One option is to determine an approximate value of λ by estimating the fourth central moment using the q sample values of the varable y, and calculating

$$
\lambda \equiv \hat{u}_{4} / \hat{p}^{2} \triangleq \hat{\lambda}
$$

$$
\mathrm{C}-9
$$

The value of λ need not be known exactly, since the confidence limits \underline{I} and $\bar{\sigma}$ are not extremely sensitive to errors in this parameter. Unfortunately, as we rote in a subsequent example, a meaningful estimate of λ can often require several hundred trials. In the absence of reliable information about the higher central moments, it is frequently assumed that y is gaussian; i.e., that $\lambda=3$. However, if there is any reason to believe that the pdf for y has abnormally heavily weighted tails -- as in the case of the exponential distribution in Table C.2-1, for example -- then a larger value of λ may be required in order to arrive at a realistic assessment of the accuracy of an estimated rms value obtained via the monte carlo technique.

Values of $\underline{\rho}$ and $\bar{\rho}$ for $\lambda=3$ are indicated as functions of the number of monte carlo trials in Fig C.2-1, for two typical values of confidence. As an example of the significance of the confidence interval, if we desire to have 99% certainty that σ is within 10% of the estimated value, $\hat{\sigma}$; i.e.,

$$
\begin{equation*}
\operatorname{Prob}[0.90 \hat{\sigma} \leq \sigma \leq 1.1 \hat{\sigma}]=0.99 \tag{C.2-10}
\end{equation*}
$$

then Fig. C.2-1 demonstrates that it is necessary to perform 440 trials; 256 trials suffice for 95% confidence.*

Figure C.2-2 shows the deterioration that occurs in the accuracy of the monte carlo estimated standard deviation, for a given level of confidence, if the kurtosis of the random variable is greater than 3 due to y being nongaussian. We discuss an instance where $\lambda \cong 15$ in Section C.3; in this case, even for 256 trials, the upper 95% confidence limit is 36% greater than the estimated value of σ.

[^18]$$
\mathrm{C}-10
$$

Figure C.2-1
Typical Confidence Interval Multipliers for the Estimated Standard Deviation of a Gaussian Random Variable ($\lambda=3$)

The confidence interval calculation for the estimated mean is quite direct, since $\sigma_{\hat{m}}$ (Eq. (C.2-5)) is not a function of the mean. The same value of n_{σ} is obtained for the desired degree of confidence (e.g., from Eq. (C.2-7), $n_{\sigma}=1.96$ for $\psi=$ 0.95 corresponding to 95% confidence), and the value ${ }^{*}$ of \bar{p} given in Eq. (C.2-8) is used in deriving the result that for \underline{m} and m given by

[^19]$$
\mathrm{C}-11
$$

Figure C.2-2 Effect of Kurtosis on Confidence Interval Limits

$$
\begin{align*}
& \underline{m}=\hat{m}-n_{\sigma} \sqrt{\frac{\bar{p}}{q}} \\
& \bar{m}=\hat{m}+n_{\sigma} \sqrt{\frac{\bar{p}}{q}} \tag{C.2-11}
\end{align*}
$$

one can assert that

$$
\begin{equation*}
\operatorname{Prob}[\underline{m} \leq m \leq \bar{m}]=\psi \tag{C.2-12}
\end{equation*}
$$

Here, we see that m and \bar{m} cannot be readily expressed in terms of a multiple of \hat{m}.

The confidence limit concept developed above provides a statistical measure of the accuracy of the estimated mean and standard deviation of a random variable obtained by using the monte carlo method. It is only possible to assess the accuracy of such estimates in a probabilistic sence; e.g., for 256 trials, we can assert, for example, that an estimated standard deviation (rms value) of a gaussian random variable is within 10% of the true value, with probability 0.95 (with 95% confidence). We note below that even this assessment may be open io question if kurtosis is not known at least approximately, however.

C. 3 ILLUSTRATIVE EXAMPLES

Considerable practical experience has been gained in applying the monte carlo method in studies undertaken to validate the use of CADET to provide accurate and efficient performance evaluations for tactical missile guidance systems (Refs. 1, 2 and 4). The significance of the confidence interval concept and the important role played by kurtosis have been graphically demonstrated by the results obtained, as the following example shows (Ref.4).

A variable of particular interest in the planar missiletarget intercept problem during the terminal homing phase is the cross-range (lateral) separation between the missile and target, denoted y (refer to Fig. 3.2-1). In a typical analysis, y (and all other system variables) is assumed to be gaussian at the initiation of the terminal homing phase, and y remains quite

Figure C.3-1 Time History of rms Missile-Target Lateral Separation
gaussian until the last few seconds of the engagement. Fig. C.3-1 shows the variation of σ_{y} with time during a six-second engagement, where a quite highly nonlinear system model of the type developed in Chapter 3 with 17 state variables, 9 nonlinearities and 5 random inputs has been used for simulation purposes. The solid curve is obtained by CADET, and the results of a $500-t r i a l$ monte carlo study are indicated with circied data points to indicate $\hat{\sigma}_{y}$ and vertical I-bars to indicate the 95% confidence interval. The estimated value of kurtosis is also indicated near each data point; as observed above, $\hat{\lambda}$ is nearly 3 until the last second, while at the final time, $t=6 \mathrm{sec}, \hat{\lambda}$ is 15 , which is indicative of the quite highly nongaussian character of the final lateral separation (miss distance).

Figure C.3-2 gives a more detailed view of the CADET and monte carlo analysis depicted in Fig. C.3-1; for two values of tine the estimated σ_{y} is shown as a function of the number of trials

(a) $t=4 \sec$

(b) $t=6$ sec

Figure C.3-2 Comparison of CADET and Monte Carlo rms Lateral Separation
performed, q. We note in Fig. C.3-2a that the estimated value of σ^{y} at $t=4$ appears to "settle" to about 145 ft after a few hundred trials; after 500 trials we have the result that

$$
\begin{equation*}
\operatorname{Prob}\left[138 \mathrm{ft} \leq \sigma_{y}(4) \leq 156 \mathrm{ft}\right]=0.95 \tag{C.3-1}
\end{equation*}
$$

which indicates that the monte carlo estimate of σ_{y} has nearly converged to its true value with high probability. The situation at six seconds is quite different, as demonstrated in Fig. C. $3-2 b$. For $\hat{\lambda}=15$ the result of 500 trials is

$$
\begin{equation*}
\operatorname{Prob}\left[24.7 \leq \sigma_{y}(6) \leq 33.9 \mathrm{ft}\right]=0.95 \tag{C.3-2}
\end{equation*}
$$

which indicate a considerable margin for error in the monte carlo estimate of σ_{y}, on a percentage basis.

A synopsis of a part of the data portrayed in Fig. C.3-2b is provided in Table C.3-1, broken down into five sets of 100 trials (set 1 corresponding to the first 100 trials, set 2 including trials 101 to 200 , etc.). The data demonstrates that in this case the result of 100 trials is highly random -- with $\hat{\sigma}_{y}(6)$ varying between 19.72 ft and 35.88 ft ; the variation exhibited by $\hat{\lambda}$ is even more dramatic. We also observe that there exists a clear relation between $\hat{\lambda}$ and $\hat{\sigma}_{y} ; \hat{\sigma}_{y}$ is small if $\hat{\lambda}$ is small and $\hat{\sigma}_{y}$ is large if $\hat{\lambda}$ is large. This phenomenon is a direct resuit of the basic significance of kurtosis if λ is appreciably larger than 3 , then the "tails" of the density function are abnormally heavily weighted -implying that there is an unusually high probability of the occurrence of very large values of the randoli variable in comparison with a gaussian random variable having the same standard deviation. (To cite an example, given two random variables with unity variance, y_{1} normally distributed and y_{2} exponentially distributed ($\lambda=6$; Table C. 2-1), the probability that $\left|y_{1}\right| \geq 3$ is only 0.0027 , compared with the probability of 0.0144 that $\left|y_{2}\right| \geq 3$.) Thus the

TABLE C.3-1
ESTIMATED STANDARD DEVIATION AND KURTOSIS FOR LATERAL SEPARATION, $t=6 \mathrm{sec}$

$100-T r i a l$ Set Number	$\hat{\sigma}_{y}(f t)$	$\hat{\lambda}$
1	19.72	4
2	32.08	15
3	22.25	6
4	25.67	4
5	35.88	23
Aggregate* (500 Trials)	27.78	15

*To obtain aggregated values for $\hat{\sigma}_{y}$ and $\hat{\lambda}$, it is necessary to average the corresponding values of variance and fourth central moment (Eqs. (C.2-2) and (C.2-3)).
incidence of several large values of $|y|$ in the space of a few trials results in a sudden jump in the estimated σ_{y}, as evident in the vicinity of 160 and 440 trials in Fig. C. $3-2 b$, while it is probable that the "settling" observed during the third and fourth sets of trials is due to the untypically benign character of these trials (an abnormally small number of trials occurred in which $|y|$ is large). Table C.3-1 thus demonstrates a fundamental problem with the monte carlo method applied to nonlinear systems: Analysis based on a modest but seemingly reasonable number of trials (say 100) may be quite inconclusive unless the value of λ is known quite accurately in advance. Thus the analyst should be extremely cautious in assessing the reliability of monte carlo estimated statistics, even if the estimated kurtosis is monitored. In the preceding example, the importance of a few large values of miss distance that occur in a set of trials in characterizing the tails of the pdf, and thus in determining the kurtosis of a nongaussian random variable, also demonstrates that the common
practice of "discarding the pathological trials" can lead to very misleading results.

C. 4 CONFIDENCE INTERVAL LIMIT TABLES

The confidence interval limits of an esimated standard deviation $\hat{\sigma}$ can be expressed as multiples of $\hat{\jmath}$, viz.,

$$
\begin{align*}
& \underline{\sigma}=\underline{\rho} \hat{\sigma} \\
& \bar{\sigma}=\bar{\rho} \hat{\sigma} \tag{C.4-1}
\end{align*}
$$

where ρ and $\bar{\rho}$ are determined only by the desired degree of confidence, the kurtosis of the randorn variable, λ, and the number of trials performed, q. These multiples, p and $\bar{\rho}$, have the form

$$
\underline{\rho}=\frac{1}{\left[1+n_{\sigma} \sqrt{\frac{\lambda-1}{q}}\right]^{2}}
$$

$$
\begin{equation*}
\bar{\rho}=\frac{1}{\left[1-n_{\sigma} \sqrt{\frac{\lambda-1}{q}}\right]^{\frac{1}{2}}} \tag{C.4-2}
\end{equation*}
$$

where n_{σ} is determined by the confidence ψ expressed as a decimal fraction,

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi}} \int_{-n_{\sigma}}^{n_{\sigma}} \exp \left(-\frac{1}{2} \zeta^{2}\right) d \zeta-\psi \tag{C.4-3}
\end{equation*}
$$

This formulation, Eq. (C.4-1), makes it particularly convenient. to present the confidence interval multipliers in tabular form. Thus we include Tables C.4-1 to C.4-3 for easy reference, giving
confidence interval multipliers $£$ and $\bar{\rho}$ for 90% confidence $(\psi=$ 0.90), 95% confidence and 99% confidence. This data is directly applicable to gaussian variables, or any other case where $\lambda=3$; for other values of kurtosis, the confidence interval multipliers can be determined by use of the gaussian equivalent number of trials, derivod as follows: for a specified degree of confidence (or, equivalently, a given value of n_{σ}) the multipliers ρ and $\bar{\rho}$ (Eq. (C.4-2)) are determined solely by the ratio ($\lambda-1$)/q. Thus given a set of monte carlo trials typified by the parameters (q, λ), the confidence interval multipliers are identical to those for ($q_{e q}, 3$) where $q_{e q}$ is chosen to satisfy

$$
\begin{equation*}
\frac{3-1}{q_{e q}}=\frac{\lambda-1}{q} \tag{C.4-4}
\end{equation*}
$$

or

$$
\begin{equation*}
q_{e q}=\frac{2 q}{\lambda-1} \tag{C.4-5}
\end{equation*}
$$

The desifed multipliers ρ and $\bar{\rho}$ may ther be obtained from the sppropriate table of con :idence interval aitipilers for gaussian random variatles under $q_{e q}$.

Example: Tr the preceding section we iiscussed a study of 50 , trials where $\lambda \ddot{*} i 5$; to obtaid E and $\bar{\rho}$ use

$$
q_{e q}=\frac{1000}{14}=10
$$

as given in Eq. (C.4-5). From Table C.4-2, nnder the entry for 70 trials, we see that the 95% confidence interval limit multipliers are $\varrho^{\cong} 0.866, \bar{\rho} \tilde{\mathbf{m}} 1.225$.

TABLE C．4－1
90 PERCENT CONFIDENCE INTERVAL LIMITS， gaussian random variables，q Trials

$$
\left(n_{\sigma}=1.645\right)
$$

9	£	$\bar{\rho}$
20	0.037489	1.464364
22	0.914433	1．425104
24	0.420599	1.303521
$? 6$	0.426170	1.367472
28	0.831122	8．345555
30	0.835070	1.320915
32	$0 . A 30814$	1.310573
34	0.743649	1.296336
36	0.847216	1．2．83735
38	0.850511	1． 2724 A
40	0．853584	1．2．67375
42	0.756458	1.253223
44	0.759157	1． P 24093
46	0.461696	1.237273
48	0.864092	1.230269
50	0.866358	1． 2.23806
55	0.871527	1.207615
60	0．A76101	1.197062
65	0.480883	1.187427
80	0.083570	1．178543
75	9．887213	1.170742
80	0.890365	1.163826
85	0.893068	1.157642
90	0.895655	1.152072
95	0．898053	1.147023
100	0.900204	1.142420
105	0.902367	1.138202
110	0.904318	1.154320
115	0.906150	1.130731
120	0.907876	1.127402
125	0.909506	1.124303
130	0.911048	1.121409
135	0.912509	1.118699
140	0.913898	1．116154
145	0.915220	1.113760
150	0.916480	1.111501
160	0.918835	1.107343
170	0.726900	1.103600
180	－0．922977	1.100208
100	0.924815	1.097117

9	$\underline{\square}$	$\bar{\rho}$
270	C092から3	1．n902n＇i
210		1．04．1n7m
220	0．0300ns	1．0ヶmbat
230	9．731091	1.0 netcie
2.40	0.932315	1.094551
＜ 50	0.933455	1.083007
200	0.934724	1.0211 mm
270	9．035835	1．079676
280	0.93 Acsan	：© C．77EA 7
290	0.937889	1.07634 s
300	0.91 A443	1．07491？
32 j	0.940021	1．cte？nd
340	0.942208	1．negans
360	0.943745	1.061080
380	0.945127	1.065003
400	0.946410	1.0639 s
420	0.947005	1.002173
440	0.940721	1.060607
460	0.949767	1.059151
400	0.950750	1.057793
500	0.951670	1．0565？
520	0.952550	1.055329
540	0.953378	$1.054 ? 07$
560	0.954163	1.053149
580	0.754008	1.052147
600	0.955617	1.051203
650	0.957251	1.049040
700	0.758713	1．047176
750	0.960032	1.045415
800	0.9612 .30	1.043874
850	0.902324	1.047478
900	0.903329	1.041205
950	0.964257	1．04003A
1000	0.965116	1.038963
1100	0.966660	1．03：046
1200	0.908013	1.035382
1300	0.969212	1．03392？
1400	0.970283	1.032 .626
1500	0.971248	1.031465
2000	0.974959	1．027075

TABLE C.4-2
95 PERCENT CONFIDENCE INTERVAL LIMITS, GAUSSIAN RANDOM VARIABLES, q TRIALS
$\left(n_{\sigma}=1.960\right)$

q	p	\bar{p}
20	0.78 gana	1.457247
22	0.7n9372	1.5ngs?
84	$0.794 n 71$	1.75083
26	0.802092	1.497989
28	0.007540	1.464009
30	0.417532	1.435490
32	0.817087	1.011150
34	0.821299	1.390109
36	$0 . A$ 52nal	1.371603
38	0.428032	1.355420
40	0.432223	1.34n91\%
42	0.835400	1.327095
44	$0 . A 38380$	1.316127
46	$0.741: 79$	1.309430
48	0.143850	1.295050
50	0.846373	1.286683
55	0.052123	1.267130
60	0.857222	1.250839
69	0.861789	1.234990
70	0.865911	1.225069
75	0.869659	1.214659
80	0.873087	1.205478
85	0.874240	1.19730 n
90	0.179153	1.189980
95	0.881857	1.163362
100	0.184375	1.177348
105	0.886729	1.171856
810	0.888930	1.166813
115	0.091011	1.162165
120	0.092967	1.857863
125	0.894815	1.153867
130	0.896566	1.150143
135	0.898227	1.106062
140	0.899006	1.143400
145	0.908309	1.140335
150	0.902744	1.137440
100	0,905425	1.132145
870	0.407885	1.127385
180	0.910154	$1.12308!$
190	0.912256	1.119167

q	\underline{p}	$\bar{\rho}$
200	0.414210	1.115988
210	0.916033	1.118299
220	0.917740	1.109265
230	0.919302	1.100433
240	0.920850	1.103840
230	0.922274	1.101402
210	0.923060	1.099128
270	0.924696	1.096482
280	0.920107	1.094970
290	0.927259	1.093074
300	0.928358	1.091283
320	0.930407	1.007980
340	0.932284	1.084999
360	0.933012	1.082293
300	0.035610	1.079H22
000	0.937094	1.077554
420	0.938476	1.0754 .3
440	0.939769	1.073527
460	0.940980	1.071729
480	0.942120	1.070053
500	0.943193	1.008485
520	0.944208	1.067016
540	0.945169	1.065634
500	0.946080	1.064333
580	0.946946	1.063104
000	0.947770	1.061940
650	0.949670	1.059286
$\div 00$	0.951372	1.056938
750	0.952408	1.054043
100	0.954305	1.052958
050	0.955581	1.051251
000	0.956754	1.049606
450	0.957637	1.048278
1000	0.958840	1.046960
1100	0.9606 Ac	1.044624
1200	0.962229	1.042600
1300	0.963632	1.040023
1000	0.964887	1.039240
1500	0.966018	1.037840
2000	0.970373	1.032517

$$
\mathrm{C}-21
$$

'TABIE (..4-3
99 PERCENT CONFIDENCE INTERVAI, I,IMI'TS, GAUSSIAN RANDOM VARIABLES, q TRIAIS

$$
\left(n_{0}=2.576\right)
$$

9	$\underline{1}$	$\overline{7}$
20	0.73 An78	2.467137
22	0.746410	P.20A149
24	0.753870	? 0.039417
26	0.7 ¢ches	1.919349
28	0.746728	1.429951
30	0.772334	1.750031
32	0.777496	1.700093
34	6.7AP771	1.053232
16	0.7 in709	1.613199
38	0.790849	1.578906
40	0.704725	1.549151
42	0.718365	1.523048
44	0.801794	1.499936
46	0.105031	1.479303
48	0.ADA095	1.460754
50	0.811001	1.443978
55	0.217664	1.408197
60	0.823597	1.379144
45	0.828928	1.155092
70	$0 . A 33757$	1.334565
75	0.838160	1.317003
80	0.442199	1.301717
. 4	0.845922	1.288269
90	0.849371	1.276330
95	0.852579	1.265044
100	0.855572	1.25012
105	0.454376	1.247278
110	0.701009	1.239313
$1: 5$	0.753489	1.232014
120	0.965031	1.225295
125	0.868047	1.219087
130	0.070148	1.213320
135	0.972145	1.207969
140	0.874046	1.202966
145	0.475858	1.198283
150	0.877589	1.193888
170	$0.88 \mathrm{ch30}$	1.185856
170	$0 . A B 3 A 10$	1.178686
180	0.786563	1.172230
190	0.489118	1.166402

4	1	$\stackrel{\square}{1}$
210	1.n41407	1.1010.1.
¢ 10	0.413721	1.1'in? ${ }^{\text {a }}$
220	0.495306	1.151/53
230	0.497765	1.147823
<40	0.979513	1.143795
250	0.201358	$1.10 n 330$
2 no	0.973 .10	1.13445
270	9.904578	i.131407
280	0.906008	1.13MAP:
270	0.907487	1.18 A 144
300	0.908340	1.129343
320	0.911370	1.120407
340	0.913590	1.110331
360	0.715330	1.117nas
380	0.917811	1.109113
400	0.919653	1.10591?
420	0.921371	1.102914
440	0.923079	$1.10 n 704$
460	0.924488	1.097062
480	0.925909	1.095290
500	0.927249	1.093091
520	0.928517	1.091024
540	0.920718	1.089085
500	0.730854	1.0972ng
580	0.931742	1.089534
600	0.932976	1.083913
650	0.935359	1.080208
700	0.737498	$: .076940$
750	0.930431	1.074030
800	0.941171	1.071418
850	0.942801	1.069057
900	0.944282	1.066409
950	0.945651	1.064945
1000	0.946920	1.063139
1100	0.949208	1.059929
1200	0.951210	1.057152
1300	0.952999	1.054720
1400	0.954595	1.052569
1500	0.956735	1.050047
2000	0.761594	1.043407

REFERENCES

1. Gelb, A. and Warren, R.S., "Direct Statistical Analysis of Nonlinear Systems: CADET," AIAA Journal, Vol. 11. No. 5, May 1973, pp.689-644.
2.
3.
4.
5.
6.
7.
8. Phaneuf, R.J., "Approximate Nonlinear Estimation," Ph.D. Thesis, Dept. of Aeronautics and Astronautics, N.I.T., Cambridge, Mass., May 1968.
Price, C.F. and Warren, R.S., "Performance Evaluation of Homing Guidance Laws for Tactical Missiles, : The Analytic Sciences Corp., Report No. TR-170-4, January 1973.

Warren, R.S, and Slegel, J, "Missile Performance Analysis Using CADET," The Analytic Sciences Corp., Report No. TR-286-2, August 1973.

Taylor, J. H. and Price, C.F., "Direct Statistical Analysis of Missile Guidance Systems via CADETTM," The Analytic Sciences Corp., Report No. TR-385-3, to be published.

Jazwinski, A.H., Stociastic Processes and Filtering Theory, Academic Press Inc., New York. 1970.

Gelb, A, and Vander Veldo, W.E., Multiple-Input DescribInf Functions and Nonlinear System Desirn, McGraw-HiJI Book Co., New York, 1988.

Papoulis, A., Probability, Random Variables, and Stochastic Processes, NcGraw-hill Book Co., New York, 1965.
9. Price, C.F., "Optimal Stochastic ruidance Laws for Tactical Missiles," The Analytic iences Corp Report No. TR-170-2, Sept mmber 1 .
10. Price, C.F., "Adaptive Control and Guidance for Tactical Missiles," The Analytic Sciences Corp. Report No. TR-170-1, Vol. II, June 1970.
11.
12.

Gelb, A. (Ed.), Applied Oprimal Estimation, The MIT Press, Cambridge, Mass., 1974.

Bryson, A.E., Jr. and Ho, Y.C. Applied Optimal Concrol, Blaisdell Pubiishing Co., Waltham, Mass., 1969.
13.
15. Gibson, J.E., Nonlinear Automatic Control, McGraw-Hill Book Co., New York, 1963.

Goldstein, H., Classical Mechanics, Addison-Wesley Publishing Co., Reading, Mass., 1950.
17. Gradshteyn, I.S. and Ryzhik, I.M., Table of Integrals, Series, and Products, Academic Press Inc., New York, 1965.
18. Abramowitz, M. and Stegun, I.A. (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, No. 55 in National Bureau of Standards Applied Mathematics Series, U.S. Department of Commerce, Washington, D.C., 1964.
19. Peirce, B.O. and Foster, R.M., A Short Table of Integrals (Fourth Ed.), Oxford University Press, London, 1956.
20. Geier, J,G., "Approximate Direct Statistical falysis of Nonlinear Systems," Master's Thesis, Dept. of Aeronautics and Astronautics, M.I.T., Cambridge, Mass., June 1973.
21. Bucy, R.S., Hecht, C. and Senne, K.D., "An Fngineer's Guide to Building Nonlinear Filters," Seiler Research Lab. Report No SRL-TR-72-0004 (USAF Systems Command), May 1972.
22. Bowker, A.H. and Lieberman, G.J., Engineering Statistics, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1959.
23. Siegel, J., "Missile Performance Analysis Using CADET," The Analytic Sciences Corp., Report No. TR-449-1, to be published.

[^0]: * E denotes ensemble expectation, or average value; a superscript T denotes the transpose of a vector or matrix; $\delta(t-T)$ is the Dirac delta function.

[^1]: *The initial time can be taken to be $t=0$ with no loss in generality.

[^2]: * In treating single-jnput nonlinearities, it is sometimes convenient to consider f / m_{x} to be the mean component "gain".

[^3]: *The discrete-time operation actually takes place between t_{k+1} and $t_{k+1}+\varepsilon$. In this discussion it is assumed that ε is negligible in comparison with the time-scale of the continuous-time dynanics, although finite computational delays can be treated in a straightforward manner.

[^4]: *The five white noise inputs to the system are simply lenoted $w_{j}, j=1,2, \ldots, 5$, to correspond with Fig. 3.1-1.

[^5]: *Refer to the footnote on page 1-15.

[^6]: *The derivation cited above is based on the assumption of continuous control -- i.e., the sampled and held nature of the control law is neglected.

[^7]: Where no conventional state variable nomenclature is suggested, arbitrary state numbers are assigned for convenient reference.

[^8]: *The use of hydraulic actuaturs for mechanizing the seeker tracking function generally leads to a quite different model of the seeker dynamics; we do not consider this case here.

[^9]: *The first term in Eq. (4.2-4) could be expressed as $a^{T}{ }^{m}$, i.e., a linear combination of the means; however, we note that The elements of a can only rarely be found explicitly, as can be appreciated in the example of Eq. (4.3-34).

[^10]: *ote that by convention the derivative of a scalar by a column vector is a row vector, and, by extension, the derivative of a column vector by a column vector is a matrix.

[^11]: *We observe that the quasi-linear approximation, Eq. (4.2-8), always conveys the mean input-output relation correctly.

[^12]: *While \hat{f} in Eq. (4.5-2) for given values of m_{x} and σ_{y} can be calculated by numerical integration, a less time-consuming approach is desired for repeated evaluation in a CADET analysis.

[^13]: We note that the expansion indicated in Eq. (4.5-9) never converges formally, i.e., for any value of σ_{y} / m_{x}, no matter how small, the series will eventually diverge as more terms are evaluated. This is a standard property of asymptotic expansions which are useful only when truncated after a finite number of terms.

[^14]: Recall that CADET is exact in the linear gaussian case, Section 1.1 .

[^15]: If all state variables are jointly normal, then m and P completely characterize the statistical properties o \bar{f} the system variables and higher-order moments are redundant.

[^16]: *E [] denotes the expected value of the bracketed variable.

[^17]: * In estimating P, we obsorvo that it is nocossary lo divide by ($\mathrm{q}-1$), since the sample variance,

[^18]: *Note thai the bounds, p and $\bar{\rho}_{\perp}$ are not symmetric with respect to one; thus the point at which ρ crosses 1.1 determines the value of η for which Eq. (C.2-10) is satisfied.

[^19]: *While σ_{m} is given by $\sqrt{\mathrm{p} / \mathrm{q}}$ in Eq. (C.2-5), the true value of p is unknown. Thus a conservative (large) value of $\sigma_{\hat{m}}$ is obtained by using \bar{p}.

