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FOR FDI USING THE EXTENDED GENERALIZED PARITY VECTOR TECHNIQUE
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Abstract—This paper is an extension of the generalized Il. RESIDUAL GENERATION USING THEGENERALIZED
parity vector (GPV) approach presented in Omana and Taylor PARITY VECTOR TECHNIQUE
[1]. Some aspects of sensor isolation are first clarified and a . o .
special case is defined to solve an important sensor/actuator  1he residual generator is implemented using the gener-
fault detection and isolation DI) ambiguity issue. To overcome alized parity vector technique, which is developed in the
this problem, a new optimization constraint is incorporated  stable factorization framework. The significance of using
in the transformation generation procedure used to improve  the staple coprime factorization approach is that the parity
separation in the generalized parity space. The validity of lati btained invol tabl d rati It f
the different aspects analyzed through this research is demon- rela |_0ns obtained invoive stable, proper and rationa _ran§_er
strated by testing this FDI scheme using a nonlinear jacketed functions even for unstable plants. Therefore the realizability
continuously stirred tank reactor model. Robustness analysis and stability of the residual generator is guaranteed. Given
is then performed over the controller envelope, showing the anynxmproper rational transfer function matri(s), it can

capability of the FDI technique to handle operating point and  pe expressed in terms of its left coprime factors as follows
fault size variability. [12]:

l. INTRODUCTION P(s) = D(s)"*N(s) 1)

The Generalized Parity Vectos fv) technique is a model- \ horeRj(g and B(s) are called the left coprime factors and
based approach based on the concept of analytical redyfsjong 1o the set of stable transfer function matrices. The
dancy [2], [3], [4], [5], [6] and the use of linearized models. .\, technique is based on the stable factorization of the

This paper deals with two long-standing questions in the U¥ystem transfer function matrix in terms of its state-space
of the gpV technique for fault detection and isolatiorD(): representation. Let the system be described by the set of
sensor/actuator ambiguity and robustness [7]. The imem@ﬁuations

structure of some dynamic systems make it difficult to isolate

certain pairs of sensor/actuator failures, and using linearized i(t) = Az(t) + Bu(t) + Gd(t) )
mode]s in any cqntext raises bas.lc p.erformanpe. issues. If y(t) = Ca(t) + Eu(t) 3)
setpoint variation is large, then a significant deviation in the

corresponding linearized model may occur, yielding a poorhere x, u, d, and y represent the state variables, inputs,
approximation of the nonlinear model at this new operatingisturbances and outputs of the system, respectively. Assum-
point. Most industrial processes require frequent operatirigg that the pairs (A, B) and (A, C) are stabilizable and
point changes in order to satisfy production requirements [8fietectable, it is possible to select a constant mdirisuch
therefore modelling errors become a significant issue for thtkat the matrix4, £ A — FC is stable. Using the definition
FDI method. of the coprime factorization of P(s) in [13], the left coprime

: : : : . . factors are given by:
This paper is outlined as follows: First, a brief overview 9 y

of stable factorization and its application to implement the N=C(sI - A,) ' (B-FE)+ E 4)
generalized parity vector technique is given in section II. ~ 1

Next, in section lll, different cases for sensor and actuator D=1-C(sl = A" F ®)
FDI using directional residuals are defined [9], [10], [11].Based on the definition of the transfer function matfis)
Section IV presents an overview of the transformation matrigiven in equation (1) and taking the relationship among the
optimization method proposed in Omana and Taylor [1] andesired control input,y, and the actual output of the sensors,
includes an extension to improve isolation for systems with, the following relations are obtained:

sensor/actuator ambiguity. Finally, section V and VI present . y(s)

the FDI robustness studies with respect to operating point P(s) = D(s)” N(s) = ua(s) (6)
and fault size variability for a classical example, the jacketed ~ ~

continuously stirred tank reactosdsTR. D(s)y(s) — N(s)ua(s) =0 @)
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Using this fact, the generalized parity vectqrs) is achieved. However, for any system, thev always lies on a
defined as: plane in the generalized parity space, defined by the vectors

p(s) = T [ D(s)y(s) = N(s)ua(s) ] (8) HaandByl7l
The sensor fault isolation can be based on the afgle
B?tween thecpv and thei’” sensor reference plans,P?,

s illustrated in figure 2. If th&" sensor is faulty, this angle
ghould be zero or less thah,.

TheGpPv p(s) is a time varying function of small magnitude
under normal operating conditions, due to the presence
noise and modeling errors arising from linearization an
order reduction. However, it exhibits a significant magnitud
change when a fault occurs. Each distinct failure produces a
parity vector with different characteristics, allowing the use
of the GpPvV for isolation purposes. A transformation matrix
T,(s) is introduced to make it possible to isolate faults more
effectively [7].

[1l. FAULT DETECTION AND I SOLATION USING —
DIRECTIONAL RESIDUALS ‘/\E

The basic idea ofDI using failure directions is that each Bd'/o' X

failure will result in activity of the parity vector along certain

axes or in certain subspaces. Depending on the dynamics

of the system, some of these reference directions may be

close or identical, making the isolation for some faults

difficult or unachievable. To overcome the angle separatida- Special case for actuator faults

problem between the reference directions, the calculation of We consider a special case in terms of $i8° normal,

an optimal transformation matriX. is introduced in section N{ shown in figure 2 and defined by!, = E} ® B, as:

V. o
Bl -NI, =0 1)

Fig. 2. Sensor FDI

A. Actuator Faults . S
If the dot product ofB/ and the normal to thé'" sensor

reference plane is zero then th&" actuator axis lies on
the i** sensor reference plane and these faults cannot be

Assuming an additive fault;(t) in the 5" actuator and
using the definitions in section I, therv becomes:

R NN ; aj(s) distinguished by the conditiod; = 0 or |6;| < T} as
Paj(s) = —(I:N)a;(s) =T By, s+o ) iustrated in figure 3.
Equation (9) shows that, ;(s) is restricted to exhibit activity pr

along the direction defined by th&”" column of N, which
we denoteB’ [7].

Actuator fault isolation is thus based on the angle
between thesPv and B/ as illustrated in figure 1. If the

//’/ //’// » X
4" actuator is faulty, this angle should be zero in the ideal e
case or less than a small threshold vallig, to account for Bi/&*\ / Bi E,
d xS T s

model uncertainty, noise and/or unknown disturbances. C

X3 Br{ Fig. 3. Special case for actuator FDI
0, This condition would be a result of the system state space
*2 structure and it is not unusual [1], [7]. For this case it is not

possible to calculate a transformation maffixsuch as the
GPV actuator reference direction can be taken out of the sensor
Fig. 1. Actuator FDI reference plane. This can be demonstrated mathematically
by proving equation (12) for arbitrary,., which we did by
symbolic manipulation irMATLAB ®.

T.B) - (T.E}, ® T,.BY) = 0 (12)

B. Sensor faults

Similarly, for an additive faults;(t) in the i’ sensor the
parity vector in equation (8) reduces to:
Bi Under this circumstance we may still be able to distinguish
psi(s) = (T.D)'si(s) 2T, {E“ d }Si(s) (10) between these faults by taking a more detailed look at
s+o the parity vector relation in equation (10): Let us assume
Thus, for the sensor failure case, it is not possible to confintbat s;(s) = ¢;/s (a sensor bias fault); we can apply the
Da,i(s) to lie along a fixed axis. Only for fortuitous cases,initial value theorem to show that the initi@pv activity
depending on the dynamics of the system, can this be in the directionT, E} and invoke the final value theorem




to demonstrate that the steady-statev activity is in the
direction 7. E§+% £ T,B. This is illustrated by

applying volume and temperature sensor faults to a linearized

version of theacsTrRmodel at t=0.5 hours Figures 4 and

5 show that immediately after the fault is applied, the angle

between theGpv and E; is nearly zero, while the angle

between thespv and B, approaches zero later (after abou

two hours). However, this is only valid for the pure linea
case.

GPV swinging respect to Ed and E»S for a Volume Sensor Fault

— = = =T

—— 0GPV, TB'
rs

— — -0OGPV, TE"
rd

degrees

35

Time (hrs)

Fig. 4. £(GPV,E;) and £ (GPV, B,) for a Volume Sensor Fault

GPV swinging respect to Ed and BS for a Temperature Sensor Fault
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Fig. 5. £ (GPV,E,) and £ (GPV, B,) for a Temperature Sensor Fault

Nevertheless, we can still clearly isolate ti{é sensor

fault from the j** actuator fault unambiguously as long as

1A description of thescsTRmodel may be found in [1].

B is not in the cone angle (sector) betweh and B¢ [1],
using the following logic:

if L(GPV, SPi’) <Th then
if L(GPV,B}) < Ty then f3
else f

(13)

where fi and fi denote thei'" sensor andj"" actuator
faults respectively. Based on equation (13) e sensor

fault is declared if only the angle between thev and S P’
is smaller than a threshold value. Conversely,ftieactuator
fault is stated if both the angles between thev and S P?
and theGgpv an B;, are smaller thaf},.

D. Special case for sensor faults

The special case for sensor faults may arise for systems
satisfying equation (11), where thg" actuator reference
direction lies on theé'” sensor reference plane as illustrated
previously in figure 3. Depending on the dynamics of the
system, an'" sensor fault may yield to &PV},,,,, aligned
with the j*" actuator reference direction. This will make the
sensor fault isolation ambiguous, since both fHeactuator
and thei” sensor will be declared faulty. This situation is
illustrated in figure 6.

i
Ny,
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o o iGPVflaulty

Fig. 6. Special case for sensor FDI

Although it was already proved via equation (12) that
the actuator reference direction cannot be taken out of the
sensor reference plane, it may still be possible to ensure that
the j** actuator reference direction is not aligned with the
sensor fault steady-statePv. This is achieved by adding an
optimization constraint during th&,. calculation presented
in section IV. This constraint yields a transformation matrix
that guaranties thas;, is not longer aligned witlx PV},
and in contrast there is a minimum separation angle greater
than a specified threshold allowing clear isolation.

IV. TRANSFORMATION MATRIX

The transformation matrid;. plays an important role in
FDI using directional residuals. It is desirable to choose
T, to increase the separation angle between the original
set of reference directions as much as possible, to enhance
robustness and maximize the number of faults that can
be isolated and the number of disturbances that can be
decoupled, beyond the number of outputs of the system [10].

This can be formulated as a constrained optimization prob-
lem, whose objective is to maximize the angles between the
transformed reference directions, to the extent possible. The



optimization routine maximizes the minimum &% _; (7,.), not show a steady state error caused by actuator limits. The
where F; ; (T;) is the objective function containing the controller envelope is shaped as shown in figures 7 and
angles between the reference directions that are separable8InTo estimate therDI performance inside the controller
this context, “separable” refers to those directions which denvelope, a fault size of -50% was applied for each sensor
not satisfy equation (12). The angle between those actuatand actuator for 361 different setpoints variations. For each
reference directions which lie on one of the sensor refereneeV and AT the FDI results were evaluated and plotted in
planes should be excluded from thg ; (T7.) function, since the corresponding figure, according with the plot symbols
it is already proved that it is not possible to calculaté,a describe in table I.

to separate them. The mathematical formulation is given by:

PLOT SYMBOL H FDI PERFORMANCE

Ey (1) = £(Zi , Z;) (14) 0 Fast and certain
max min {Fi, J (T)} (15) A Fast but brief
T, {F; ;} ’ + Slow but certain
suchthat ¢(T,) <0, ceq(Tr) =0 O Ambiguous
. . . * Detection only
wherec(T,.) <0, c.q(T,) = 0 represent nonlinear inequality 9 FDI failed

and equality constraints, respectively; ang and Z; are
transformed reference directions. These directions are given
by transformingB;, B/, and E',. The high flexibility of the

T.. calculation approach proposed using optimization allows. Volume sensor FDI envelope

us to add Qn‘ferent nonlinear constraints Fo take mto accognt Figure 7 illustrates the=pI performance map over the
the dynamics of the system; for further information on th'%ontroller envelope for a -50% volume sensor fault. It is

see [1]. observed that most of the time, tied1 algorithm yields
For the special case for sensepl defined in section circle markers, which characterize the ideal case, where
l1I-D, an additional constraint is added to avoid ambiguou#he fault is detected right away and the isolation period
isolation. This assures a minimum separation angle betwetsnlong. A small area defined by triangles represents the
the steady-statepv for the i*" sensor and thg'" actuator region where the fault is detected right away as well, but the
reference direction to be large enough to provide an unarigolation period is short. This situation is due to the nonlinear

biguous isolation. This can be expressed mathematically dgteraction that volume has on the temperature. Thus, when
LGPVi . Z)> O (16) a volume sensor fault is a_ppl_u?d at some operating points,
ss>43) = Fmin the temperature loop is significantly disturbed after some
where®,,,,, should be the largest angle possible that allowglinutes affecting the residual directionality. However, the
the optimization routine to converge to a solution. If thi?€rformance of thepi is still acceptable since it provides a
constraint is omitted during the optimization routine, therélear isolation period of around 15 minutes strengthened by
is no guarantee that the resultifg will provide enough @ subsequent “unknown abnormal situation” alarm.

TABLE |
FDI ENVELOPE PLOT SYMBOLS

: - o o " .

separation to distinguish thé" sensor fault from thej™ Finally, there are two small area represented by squares,

actuator fault, for systems satisfying equation (12). which represents an ambiguous isolation. In this case, the
V. OPERATING POINT VARIABILITY volume sensor fault is detected for a short period of time,

. . . preceded or followed by an outflow valve fault alarm. This
The (FI@D' algorithm ha}s bgen |mplementeq USIn%ituation is due to a special case for sensor faults described
MATLAB =, bas'ed on a simulation model Of. a jackete n section IlI-D. To overcome this situation, a constraint was
contlnuou_sly stirred ta_nk rea.CtGCSTR[l]' In this model, added during thel’,. calculation to ensure that the outflow
the tank |nl_et stream s received _”0”_“ anot_her process URJLy e reference direction was not aligned with the sensor
gnd there is a heat t.ran.sfer fluid cwculatmg_thrpugh th?ault steady-state&spv. However, its validity is limited to a
jacket to heat the fluid in the tank. The objective is tOregion surrounding the nominal operating point due to the

cont_rol the Femper.ature and the volume inside the tank kWonlinearities involved. This is evidenced in figure 7, since
varying the jacket inlet valve flow rate and tank outlet valv he ambiguous:Di region starts for values bV < -10%

flow rate respectively. The operating point is definediBy  £yan though it is undesirable fami, it is still within the

aan.SP arXi weAmvesuga(;e r:obustn_esT by ap"?'y'“g .Setpo'rétxpected limitations for this method since designs based on
variationsAV, AT around the nominal operating poif, linearized models are often assumed to be valid#£&0%

To. setpoint variations around the nominal operating point.

In order to analyze the robustness with respect to mod-
elling errors in a realistic framework, we first determingB: Témperature sensor FDI envelope
the envelope where the controllers for both the linear and Similarly, FDI performance for the controller envelope
nonlinear models work properly. The inside of this envelopwas assessed applying a -50% temperature sensor fault.
is defined for those operating points where the system dolswas observed that thepv technique is able to isolate



FDI Envelope for Volume Sensor Fault valve controls the mixture volume and, as a result, it affects

02 ‘ ‘ ‘ o the temperature of the mixture. This is evidenced in the
03292 % dominant region defined by triangles, that characterizes a fast
0151 292%2%%%° ] but shortFpI response. In this area the detection was fast,
0823282822 % but the isolation period was short, as a consequence of the
01 %%OQ%%O%OQ%%Q%%O | nonlinear behavior of the temperature. Neverthelessrithe
005 %Q%Q%Q%Q%Q%O%%%o%o% performance is satisfactory since it provides a clear isolation
o LAV RRLRLRYL LYY period of around 15 minutes, strengthened by a subsequent
& 6 %%%O%o%%%%%o%%o%?% “unknown abnormal situation” alarm.
= 7 0.0 0 0 0 0 O 0 O O O 0 O |
g | 9%9%9%9%9%0%9%9%0%% ° The second largest region is defined by circles, which
-0.05¢ 03 AXAPYY0 1 represents the ideal case where the fault is detected im-
DDDD D %%% B mediately and the isolation period is long. This region is
0.1 053 1 characterized for large volume setpoint variations, which is
o DDD DDD D advantageous because those setpoints values are close to
-0.15F @ D 1 the saturation level (maximum capacity of the tank). Hence,
when the outflow valve fault is applied, the effect in the
02 02 0 02 04 06 volume is not significant and therefore the nonlinear effect
%AV /100 on the temperature is not substantial. As a result,ghe

is not closely aligned with the temperature reference plane,

Fig. 7. FDI Envelope for volume sensor fault . .
even a long time following the fault.

The third region is depicted by squares, representing
the fault clearly for all the setpoint variations inside theambiguous isolation. In this region either the volume or
envelope (figure omitted). Even for large setpoint variationdemperature setpoint variations are large, which accentuates
the detection was fast and the isolation period was longodeling errors. Because of this, the residual directionality
and unambiguous, which is highly desirable fav. These is affected as thespv points towards the outflow valve
features were enhanced by transforming the original systeiigference direction only for a very short period of time (less
using theT}. calculation method presented in section IV. than 5 minutes) and later it points towards the heating fluid

inflow valve reference direction. Since the clear isolation
C. Outflow valve FDI envelope period is not long enough and it is followed by a heating
Figure 8 illustrates theeDI performance map over the fluid inflow valve fault alarm, the&pi is declared ambiguous.
controller envelope for a -50% outflow valve fault. It can beAlthough this is an undesirable situation fepi it is not
that critical since most of the ambiguous cases are near

o .
FDI Envelope for Outflow Valve Fault the envelope boundary or presented oY > 20% which

0.2 : : : : o+ are outside thet10% expected functioning range for the
00%9% linearized model.
015} 22228 % |
o% QYR (2%9%?% The small region symbolized by asterisks represents set-
01 %OA{A%OA% 29 | point variations where only detection is possible. For these
A%%A \ %(2%0%9%9% setpoints, the nonlinear effect in the temperature becomes
0,05k TRy more substantial and therefore tl@Pv directionality is
9 %%D%D%D%D%X significantly affected. However, thepi algorithm is still
A %%DD g% capable of providing a prolonged unknown abnormal situ-
'cé VAR ation signal, avoiding false alarms but detecting an irregular
~0.05} D G o* * 1 condition in the system.
i DDD b D ” There are a few cases denoted by crosses where the fault
o Aﬂ% i | is detected after a while, but the isolation period is extended
o5l %{% ] and clear. These cases are for safxi¢ > 54%, variations
' for which the setpoint values are very close to the saturation
02 ‘ ‘ ‘ ‘ level. Hence, if the outflow valve is stuck, the effect on the
0.4 -0.2 0 0.2 0.4 0.6 volume level is not significant because it cannot increase
%4V /100 beyond the maximum capacity of the tank. As a result, it will
Fig. 8. FDI Envelope for outflow valve fault take a longer time for the&pPv to be significantly affected

by this fault and this will delay the detection.

observed that for this fault case, thel shows a variety of Finally, there were just three cases denoted by x’s where
performance regions. This is due to the fact that the outflothe FDI did not work; for these caseAV > 53% so



modeling errors are substantial. This causes a large fault fréault is rejected. Conversely, when a negative volume sensor
GPV magnitude, and the magnitude increment after the faulault > 50% is applied, the volume loop is not able to reject
is not large enough to be detected. However, this situatiahand therefore the isolation period is extended.

is not a critical issue for thecsSTR FDIsystem, since it is

present only for three setpoint values (over 361 tested) and FAULT SIZE
these were located on the corner of the envelope boundary .1 type

where the plant is unlikely to operate.

-10% -50% | -100%

\Volume Sensor
D. Heating fluid inflow valve FDI envelope Temperature Sensor

The FDI performance inside the controller envelope was | Outflow Valve

also evaluated applying a -50% heating fluid inflow valve | Heating Fluid Inflow Valve
fault. It was observed that thebi algorithm is capable of

unambiguously isolating the fault for all the setpoint varia-
tions inside the envelope. For significant setpoint variations,
the detection was quick and the isolation period was long FAULT SIZE
and definite. The isolation features were improved by the 10% 50% | 100%
proper calculation of the transformation matrix, allowing it FAULT TYPE

o |o |o |D>

o |0 [0 |o
o |0 [0 |Oo

TABLE I
NEGATIVE FAULT SIZE ROBUSTNESS ANALYSIS

to increase the separation angle between the volume sensqr Volume Sensor A A A
reference plane and the heating fluid inflow valve reference| Temperature Sensor 0 0 0
direction from 2.86 to 56.94. Outflow Valve o o o
VI. FAULT SIZE ANALYSIS Heating Fluid Inflow Valve o} o] o]

TABLE Il

In order to test the robustness of tBev technique with
respect to the fault size, different scenarios for each type
of fault were simulated at the nominal operating point. The
minimum fault size was set at10%, since we are not The previous results demonstrate that the performance of
interested in detecting smaller faults. For the actuator cas®e GPV technique is not restricted by the fault size. On the
the fault size defines the % with respect to the steady statentrary, as the fault size increases, its performance improves
value at which the valve is stuck. For the sensor case, showing a faster detection and more definite isolation, while
determines the bias with respect to the actual value. Theeing sensitive enough to detect small size faults.
results for different negative and positive fault sizes are
tabulated in tables Il and Il respectively, using the notation

presented in table I. VII. CONCLUSION

It was verified by simulation that the faulgPv magnitude The PV robusiness has been significantly improved by

increases with the fault size, as expected. This occurs becali‘r?gor orating an optimal transformation matrix calculation
the difference between the analytically computed and sensor b 9 b '

measurement values is more significant when the latter Ilsturbance decoupling [1] and an adaptive decision maker.

perturbed for larger faults. Although the value of the faulty OWEver, _there 1S still_some sen3|t_|V|ty of the _e_xtended
GpV technique with respect to modeling errors arising from

GPV magnitude changes considerably for each fault type a - . .
. 9 ng y Mt yP r?lnearlzatlon. To improve this aspect, future research should
size, theGpPv technique was able to detect and isolate th

fault properly in a majority of cases (20/24), as symbolize§ € conQucted to make the compl@tey technique adaptive
: depending on the operating point and incorporate a model pa-
by ano in tables Il and lIl.

rameter identification module to handle unknown dynamics.
Many of the volume sensor fault cases are labelled witfihis improvement will also consider the online calculation

a A\, which represents fast detection with a short isolatioof the transformation matrix using optimization to guarantee

period (10 to 15 minutes). This is because the volume contrtile best separation for the seta#v angles at each operating

loop is able to reject the fault quickly, driving the measuregboint.

mixture level back to the setpoint and the mix outflow

to a corresponding steady state. Since these are the only

measurements affecting the volume parity equation Gihe VIIl. A CKNOWLEDGEMENT

will point towards the volume reference direction only for a

short period of time while the fault has not been rejected. This project is supported by Atlantic Canada Opportunities
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