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Abstract— This paper is an extension of the generalized
parity vector (GPV) approach presented in Omana and Taylor
[1]. Some aspects of sensor isolation are first clarified and a
special case is defined to solve an important sensor/actuator
fault detection and isolation (FDI) ambiguity issue. To overcome
this problem, a new optimization constraint is incorporated
in the transformation generation procedure used to improve
separation in the generalized parity space. The validity of
the different aspects analyzed through this research is demon-
strated by testing this FDI scheme using a nonlinear jacketed
continuously stirred tank reactor model. Robustness analysis
is then performed over the controller envelope, showing the
capability of the FDI technique to handle operating point and
fault size variability.

I. INTRODUCTION

The Generalized Parity Vector (GPV) technique is a model-
based approach based on the concept of analytical redun-
dancy [2], [3], [4], [5], [6] and the use of linearized models.
This paper deals with two long-standing questions in the use
of the GPV technique for fault detection and isolation (FDI):
sensor/actuator ambiguity and robustness [7]. The internal
structure of some dynamic systems make it difficult to isolate
certain pairs of sensor/actuator failures, and using linearized
models in any context raises basic performance issues. If
setpoint variation is large, then a significant deviation in the
corresponding linearized model may occur, yielding a poor
approximation of the nonlinear model at this new operating
point. Most industrial processes require frequent operating
point changes in order to satisfy production requirements [8],
therefore modelling errors become a significant issue for this
FDI method.

This paper is outlined as follows: First, a brief overview
of stable factorization and its application to implement the
generalized parity vector technique is given in section II.
Next, in section III, different cases for sensor and actuator
FDI using directional residuals are defined [9], [10], [11].
Section IV presents an overview of the transformation matrix
optimization method proposed in Omana and Taylor [1] and
includes an extension to improve isolation for systems with
sensor/actuator ambiguity. Finally, section V and VI present
the FDI robustness studies with respect to operating point
and fault size variability for a classical example, the jacketed
continuously stirred tank reactor (JCSTR).
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II. RESIDUAL GENERATION USING THEGENERALIZED

PARITY VECTORTECHNIQUE

The residual generator is implemented using the gener-
alized parity vector technique, which is developed in the
stable factorization framework. The significance of using
the stable coprime factorization approach is that the parity
relations obtained involve stable, proper and rational transfer
functions even for unstable plants. Therefore the realizability
and stability of the residual generator is guaranteed. Given
any nxmproper rational transfer function matrixP(s), it can
be expressed in terms of its left coprime factors as follows
[12]:

P (s) = D̃(s)−1Ñ(s) (1)

whereÑ(s) and D̃(s) are called the left coprime factors and
belong to the set of stable transfer function matrices. The
GPV technique is based on the stable factorization of the
system transfer function matrix in terms of its state-space
representation. Let the system be described by the set of
equations:

ẋ(t) = Ax(t) + Bu(t) + Gd(t) (2)

y(t) = Cx(t) + Eu(t) (3)

where x, u, d, and y represent the state variables, inputs,
disturbances and outputs of the system, respectively. Assum-
ing that the pairs (A, B) and (A, C) are stabilizable and
detectable, it is possible to select a constant matrixF such
that the matrixAo , A−FC is stable. Using the definition
of the coprime factorization of P(s) in [13], the left coprime
factors are given by:

Ñ = C(sI −Ao)−1(B − FE) + E (4)

D̃ = I − C(sI −Ao)−1F (5)

Based on the definition of the transfer function matrixP(s)
given in equation (1) and taking the relationship among the
desired control input,ud, and the actual output of the sensors,
y, the following relations are obtained:

P (s) = D̃(s)−1Ñ(s) =
y(s)
ud(s)

(6)

D̃(s)y(s)− Ñ(s)ud(s) = 0 (7)

Under ideal conditions, when the plant is linear, noise and
fault free, equation (7) holds. However, when a fault happens,
this relation is violated showing the inconsistency between
the actuator inputs and sensor outputs with respect to the
unfailed model.



Using this fact, the generalized parity vector,p(s), is
defined as:

p(s) = Tr [ D̃(s)y(s)− Ñ(s)ud(s) ] (8)

The GPV p(s) is a time varying function of small magnitude
under normal operating conditions, due to the presence of
noise and modeling errors arising from linearization and
order reduction. However, it exhibits a significant magnitude
change when a fault occurs. Each distinct failure produces a
parity vector with different characteristics, allowing the use
of the GPV for isolation purposes. A transformation matrix
Tr(s) is introduced to make it possible to isolate faults more
effectively [7].

III. FAULT DETECTION AND ISOLATION USING

DIRECTIONAL RESIDUALS

The basic idea ofFDI using failure directions is that each
failure will result in activity of the parity vector along certain
axes or in certain subspaces. Depending on the dynamics
of the system, some of these reference directions may be
close or identical, making the isolation for some faults
difficult or unachievable. To overcome the angle separation
problem between the reference directions, the calculation of
an optimal transformation matrixTr is introduced in section
IV.

A. Actuator Faults

Assuming an additive faultaj(t) in the jth actuator and
using the definitions in section II, theGPV becomes:

pa,j(s) = −(TrÑ)jaj(s) , TrB
j
n

aj(s)
s + σ

(9)

Equation (9) shows thatpa,j(s) is restricted to exhibit activity
along the direction defined by thejth column of Ñ, which
we denoteBj

n [7].

Actuator fault isolation is thus based on the angleΘj

between theGPV and Bj
n as illustrated in figure 1. If the

jth actuator is faulty, this angle should be zero in the ideal
case or less than a small threshold value,Th, to account for
model uncertainty, noise and/or unknown disturbances.
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Fig. 1. Actuator FDI

B. Sensor faults

Similarly, for an additive faultsi(t) in the ith sensor the
parity vector in equation (8) reduces to:

ps,i(s) = (TrD̃)isi(s) , Tr

[
Ei

d +
Bi

d

s + σ

]
si(s) (10)

Thus, for the sensor failure case, it is not possible to confine
pa,i(s) to lie along a fixed axis. Only for fortuitous cases,
depending on the dynamics of the system, can this be

achieved. However, for any system, theGPV always lies on a
plane in the generalized parity space, defined by the vectors
Ei

d andBi
d [7].

The sensor fault isolation can be based on the angleΘi,
between theGPV and theith sensor reference plane,SP i,
as illustrated in figure 2. If theith sensor is faulty, this angle
should be zero or less thanTh.
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Fig. 2. Sensor FDI

C. Special case for actuator faults

We consider a special case in terms of theSP i normal,
N i

sp shown in figure 2 and defined byN i
sp = Ei

d ⊗Bi
d as:

Bj
n ·N i

sp = 0 (11)

If the dot product ofBj
n and the normal to theith sensor

reference plane is zero then thejth actuator axis lies on
the ith sensor reference plane and these faults cannot be
distinguished by the conditionθi = 0 or |θi| ≤ Th as
illustrated in figure 3.

σ
i
dB

i
spN

i
dE

i
SP

j
nB

1x

2x

3x

Fig. 3. Special case for actuator FDI

This condition would be a result of the system state space
structure and it is not unusual [1], [7]. For this case it is not
possible to calculate a transformation matrixTr such as the
actuator reference direction can be taken out of the sensor
reference plane. This can be demonstrated mathematically
by proving equation (12) for arbitraryTr, which we did by
symbolic manipulation inMATLAB r.

TrB
j
n · (TrE

i
d ⊗ TrB

i
d) = 0 (12)

Under this circumstance we may still be able to distinguish
between these faults by taking a more detailed look at
the parity vector relation in equation (10): Let us assume
that si(s) = ci/s (a sensor bias fault); we can apply the
initial value theorem to show that the initialGPV activity
is in the directionTrE

i
d and invoke the final value theorem



to demonstrate that the steady-stateGPV activity is in the
direction Tr

[
Ei

d + Bi
d

σ

]
, TrB

i
s. This is illustrated by

applying volume and temperature sensor faults to a linearized
version of theJCSTR model1 at t=0.5 hours. Figures 4 and
5 show that immediately after the fault is applied, the angle
between theGPV and Ed is nearly zero, while the angle
between theGPV andBs approaches zero later (after about
two hours). However, this is only valid for the pure linear
case.
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Nevertheless, we can still clearly isolate theith sensor
fault from thejth actuator fault unambiguously as long as

1A description of theJCSTRmodel may be found in [1].

Bj
n is not in the cone angle (sector) betweenEi

d andBi
s [1],

using the following logic:

if ](GPV, SP i) ≤ Th then
if ](GPV, Bj

n) ≤ Th then f j
a

else f i
s



 (13)

where f i
s and f j

a denote theith sensor andjth actuator
faults respectively. Based on equation (13) theith sensor
fault is declared if only the angle between theGPV andSP i

is smaller than a threshold value. Conversely, thejth actuator
fault is stated if both the angles between theGPV andSP i

and theGPV an Bj
n are smaller thanTh.

D. Special case for sensor faults

The special case for sensor faults may arise for systems
satisfying equation (11), where thejth actuator reference
direction lies on theith sensor reference plane as illustrated
previously in figure 3. Depending on the dynamics of the
system, anith sensor fault may yield to aGPV i

faulty aligned
with the jth actuator reference direction. This will make the
sensor fault isolation ambiguous, since both thejth actuator
and theith sensor will be declared faulty. This situation is
illustrated in figure 6.
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Fig. 6. Special case for sensor FDI

Although it was already proved via equation (12) that
the actuator reference direction cannot be taken out of the
sensor reference plane, it may still be possible to ensure that
the jth actuator reference direction is not aligned with the
sensor fault steady-stateGPV. This is achieved by adding an
optimization constraint during theTr calculation presented
in section IV. This constraint yields a transformation matrix
that guaranties thatBj

n is not longer aligned withGPV i
faulty

and in contrast there is a minimum separation angle greater
than a specified threshold allowing clear isolation.

IV. T RANSFORMATION MATRIX

The transformation matrixTr plays an important role in
FDI using directional residuals. It is desirable to choose
Tr to increase the separation angle between the original
set of reference directions as much as possible, to enhance
robustness and maximize the number of faults that can
be isolated and the number of disturbances that can be
decoupled, beyond the number of outputs of the system [10].

This can be formulated as a constrained optimization prob-
lem, whose objective is to maximize the angles between the
transformed reference directions, to the extent possible. The



optimization routine maximizes the minimum ofFi, j (Tr),
where Fi, j (Tr) is the objective function containing the
angles between the reference directions that are separable. In
this context, “separable” refers to those directions which do
not satisfy equation (12). The angle between those actuator
reference directions which lie on one of the sensor reference
planes should be excluded from theFi, j (Tr) function, since
it is already proved that it is not possible to calculate aTr

to separate them. The mathematical formulation is given by:

Fi, j (Tr) = ](Zi , Zj) (14)

max
Tr

min
{Fi, j}

{Fi, j (Tr)} (15)

such that c (Tr) ≤ 0 , ceq(Tr) = 0

wherec(Tr) ≤ 0 , ceq(Tr) = 0 represent nonlinear inequality
and equality constraints, respectively; andZi and Zj are
transformed reference directions. These directions are given
by transformingBj

n, Bi
d andEi

d. The high flexibility of the
Tr calculation approach proposed using optimization allows
us to add different nonlinear constraints to take into account
the dynamics of the system; for further information on this
see [1].

For the special case for sensorFDI defined in section
III-D, an additional constraint is added to avoid ambiguous
isolation. This assures a minimum separation angle between
the steady-stateGPV for the ith sensor and thejth actuator
reference direction to be large enough to provide an unam-
biguous isolation. This can be expressed mathematically as:

](GPV i
ss , Zj) ≥ Θmin (16)

whereΘmin should be the largest angle possible that allows
the optimization routine to converge to a solution. If this
constraint is omitted during the optimization routine, there
is no guarantee that the resultingTr will provide enough
separation to distinguish theith sensor fault from thejth

actuator fault, for systems satisfying equation (12).

V. OPERATING POINT VARIABILITY

The FDI algorithm has been implemented using
MATLAB r, based on a simulation model of a jacketed
continuously stirred tank reactorJCSTR [1]. In this model,
the tank inlet stream is received from another process unit
and there is a heat transfer fluid circulating through the
jacket to heat the fluid in the tank. The objective is to
control the temperature and the volume inside the tank by
varying the jacket inlet valve flow rate and tank outlet valve
flow rate respectively. The operating point is defined byVsp

andTsp and we investigate robustness by applying setpoint
variations∆V , ∆T around the nominal operating pointVo,
To.

In order to analyze the robustness with respect to mod-
elling errors in a realistic framework, we first determine
the envelope where the controllers for both the linear and
nonlinear models work properly. The inside of this envelope
is defined for those operating points where the system does

not show a steady state error caused by actuator limits. The
controller envelope is shaped as shown in figures 7 and
8. To estimate theFDI performance inside the controller
envelope, a fault size of -50% was applied for each sensor
and actuator for 361 different setpoints variations. For each
∆V and ∆T the FDI results were evaluated and plotted in
the corresponding figure, according with the plot symbols
describe in table I.

PLOT SYMBOL FDI PERFORMANCE

o Fast and certain

4 Fast but brief

+ Slow but certain

¤ Ambiguous

∗ Detection only

× FDI failed

TABLE I

FDI ENVELOPE PLOT SYMBOLS

A. Volume sensor FDI envelope

Figure 7 illustrates theFDI performance map over the
controller envelope for a -50% volume sensor fault. It is
observed that most of the time, theFDI algorithm yields
circle markers, which characterize the ideal case, where
the fault is detected right away and the isolation period
is long. A small area defined by triangles represents the
region where the fault is detected right away as well, but the
isolation period is short. This situation is due to the nonlinear
interaction that volume has on the temperature. Thus, when
a volume sensor fault is applied at some operating points,
the temperature loop is significantly disturbed after some
minutes affecting the residual directionality. However, the
performance of theFDI is still acceptable since it provides a
clear isolation period of around 15 minutes strengthened by
a subsequent “unknown abnormal situation” alarm.

Finally, there are two small area represented by squares,
which represents an ambiguous isolation. In this case, the
volume sensor fault is detected for a short period of time,
preceded or followed by an outflow valve fault alarm. This
situation is due to a special case for sensor faults described
in section III-D. To overcome this situation, a constraint was
added during theTr calculation to ensure that the outflow
valve reference direction was not aligned with the sensor
fault steady-stateGPV. However, its validity is limited to a
region surrounding the nominal operating point due to the
nonlinearities involved. This is evidenced in figure 7, since
the ambiguousFDI region starts for values of∆V < -10%.
Even though it is undesirable forFDI, it is still within the
expected limitations for this method since designs based on
linearized models are often assumed to be valid for±10%
setpoint variations around the nominal operating point.

B. Temperature sensor FDI envelope

Similarly, FDI performance for the controller envelope
was assessed applying a -50% temperature sensor fault.
It was observed that theGPV technique is able to isolate
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Fig. 7. FDI Envelope for volume sensor fault

the fault clearly for all the setpoint variations inside the
envelope (figure omitted). Even for large setpoint variations,
the detection was fast and the isolation period was long
and unambiguous, which is highly desirable forFDI. These
features were enhanced by transforming the original system
using theTr calculation method presented in section IV.

C. Outflow valve FDI envelope

Figure 8 illustrates theFDI performance map over the
controller envelope for a -50% outflow valve fault. It can be
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Fig. 8. FDI Envelope for outflow valve fault

observed that for this fault case, theFDI shows a variety of
performance regions. This is due to the fact that the outflow

valve controls the mixture volume and, as a result, it affects
the temperature of the mixture. This is evidenced in the
dominant region defined by triangles, that characterizes a fast
but shortFDI response. In this area the detection was fast,
but the isolation period was short, as a consequence of the
nonlinear behavior of the temperature. Nevertheless, theFDI

performance is satisfactory since it provides a clear isolation
period of around 15 minutes, strengthened by a subsequent
“unknown abnormal situation” alarm.

The second largest region is defined by circles, which
represents the ideal case where the fault is detected im-
mediately and the isolation period is long. This region is
characterized for large volume setpoint variations, which is
advantageous because those setpoints values are close to
the saturation level (maximum capacity of the tank). Hence,
when the outflow valve fault is applied, the effect in the
volume is not significant and therefore the nonlinear effect
on the temperature is not substantial. As a result, theGPV

is not closely aligned with the temperature reference plane,
even a long time following the fault.

The third region is depicted by squares, representing
ambiguous isolation. In this region either the volume or
temperature setpoint variations are large, which accentuates
modeling errors. Because of this, the residual directionality
is affected as theGPV points towards the outflow valve
reference direction only for a very short period of time (less
than 5 minutes) and later it points towards the heating fluid
inflow valve reference direction. Since the clear isolation
period is not long enough and it is followed by a heating
fluid inflow valve fault alarm, theFDI is declared ambiguous.
Although this is an undesirable situation forFDI it is not
that critical since most of the ambiguous cases are near
the envelope boundary or presented for∆V > 20% which
are outside the±10% expected functioning range for the
linearized model.

The small region symbolized by asterisks represents set-
point variations where only detection is possible. For these
setpoints, the nonlinear effect in the temperature becomes
more substantial and therefore theGPV directionality is
significantly affected. However, theFDI algorithm is still
capable of providing a prolonged unknown abnormal situ-
ation signal, avoiding false alarms but detecting an irregular
condition in the system.

There are a few cases denoted by crosses where the fault
is detected after a while, but the isolation period is extended
and clear. These cases are for some∆V > 54%, variations
for which the setpoint values are very close to the saturation
level. Hence, if the outflow valve is stuck, the effect on the
volume level is not significant because it cannot increase
beyond the maximum capacity of the tank. As a result, it will
take a longer time for theGPV to be significantly affected
by this fault and this will delay the detection.

Finally, there were just three cases denoted by x’s where
the FDI did not work; for these cases∆V > 53% so



modeling errors are substantial. This causes a large fault free
GPV magnitude, and the magnitude increment after the fault
is not large enough to be detected. However, this situation
is not a critical issue for theJCSTR FDI system, since it is
present only for three setpoint values (over 361 tested) and
these were located on the corner of the envelope boundary
where the plant is unlikely to operate.

D. Heating fluid inflow valve FDI envelope

The FDI performance inside the controller envelope was
also evaluated applying a -50% heating fluid inflow valve
fault. It was observed that theFDI algorithm is capable of
unambiguously isolating the fault for all the setpoint varia-
tions inside the envelope. For significant setpoint variations,
the detection was quick and the isolation period was long
and definite. The isolation features were improved by the
proper calculation of the transformation matrix, allowing it
to increase the separation angle between the volume sensor
reference plane and the heating fluid inflow valve reference
direction from 2.86◦ to 56.94◦.

VI. FAULT SIZE ANALYSIS

In order to test the robustness of theGPV technique with
respect to the fault size, different scenarios for each type
of fault were simulated at the nominal operating point. The
minimum fault size was set at±10%, since we are not
interested in detecting smaller faults. For the actuator case,
the fault size defines the % with respect to the steady state
value at which the valve is stuck. For the sensor case, it
determines the bias with respect to the actual value. The
results for different negative and positive fault sizes are
tabulated in tables II and III respectively, using the notation
presented in table I.

It was verified by simulation that the faultyGPV magnitude
increases with the fault size, as expected. This occurs because
the difference between the analytically computed and sensor
measurement values is more significant when the latter is
perturbed for larger faults. Although the value of the faulty
GPV magnitude changes considerably for each fault type and
size, theGPV technique was able to detect and isolate the
fault properly in a majority of cases (20/24), as symbolized
by ano in tables II and III.

Many of the volume sensor fault cases are labelled with
a 4, which represents fast detection with a short isolation
period (10 to 15 minutes). This is because the volume control
loop is able to reject the fault quickly, driving the measured
mixture level back to the setpoint and the mix outflow
to a corresponding steady state. Since these are the only
measurements affecting the volume parity equation, theGPV

will point towards the volume reference direction only for a
short period of time while the fault has not been rejected.
However, since the actual mixture level inside the tank is
different than the measured one (due to the sensor fault),
this will affect the measured temperature and heating fluid
inflow. As a consequence of this, theFDI algorithm is still
able to detect an unknown abnormal situation even after the

fault is rejected. Conversely, when a negative volume sensor
fault ≥ 50% is applied, the volume loop is not able to reject
it and therefore the isolation period is extended.

````````````̀FAULT TYPE

FAULT SIZE
-10% -50% -100%

Volume Sensor 4 o o

Temperature Sensor o o o

Outflow Valve o o o

Heating Fluid Inflow Valve o o o

TABLE II

NEGATIVE FAULT SIZE ROBUSTNESS ANALYSIS

````````````̀FAULT TYPE

FAULT SIZE
10% 50% 100%

Volume Sensor 4 4 4
Temperature Sensor o o o

Outflow Valve o o o

Heating Fluid Inflow Valve o o o

TABLE III

POSITIVE FAULT SIZE ROBUSTNESS ANALYSIS

The previous results demonstrate that the performance of
the GPV technique is not restricted by the fault size. On the
contrary, as the fault size increases, its performance improves
showing a faster detection and more definite isolation, while
being sensitive enough to detect small size faults.

VII. C ONCLUSION

The GPV robustness has been significantly improved by
incorporating an optimal transformation matrix calculation,
disturbance decoupling [1] and an adaptive decision maker.
However, there is still some sensitivity of the extended
GPV technique with respect to modeling errors arising from
linearization. To improve this aspect, future research should
be conducted to make the completeGPV technique adaptive
depending on the operating point and incorporate a model pa-
rameter identification module to handle unknown dynamics.
This improvement will also consider the online calculation
of the transformation matrix using optimization to guarantee
the best separation for the set ofGPV angles at each operating
point.
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