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Abstract— This paper addresses a practical intelligent multi-
agent system for asset management for the petroleum industry,
which is crucial for profitable oil and gas facilities operations
and maintenance. A research project was initiated to study the
feasibility of an intelligent asset management system. Having
proposed a conceptual model, architecture, and implementation
plan for such a system in previous work [1], [2], [3] and
defined its autonomy, communications, and artificial intelligence
(AI) requirements [4], [5], we are proceeding to build a
system prototype and simulate it in real time to validate its
logical behavior in normal and abnormal process situations.
We also conducted a thorough system performance analysis to
detect any computational bottlenecks. Although the preliminary
system prototype design has limitations, simulation results
have demonstrated an effective system logical behavior and
performance.

I. INTRODUCTION

Asset management and control of modern process plants
involves many tasks of different time-scales and complexity
including data reconciliation and fusion, fault detection,
isolation, and accommodation (FDIA), process model iden-
tification and optimization, and supervisory control. The
automation of these complementary tasks within an infor-
mation and control infrastructure will reduce maintenance
expenses, improve utilization and output of manufacturing
equipment, enhance safety, and improve product quality.
Many research studies proposed different combinations of
systems theoretic and artificial intelligence techniques to
tackle the asset management problem, and delineated the
requirements of such system [6], [7], [8].

Several research programs addressed the automation of
asset management in large complex systems, namely the
Pilots Associate (PA) program sponsored by the Defense
Advanced Research Projects Agency (DARPA) [9], [10],
the Rotorcraft Pilots Associate (RPA) program funded by
the US army [11], MAGIC (Multi-Agent-Based Diagnostic
Data Acquisition and Management in Complex Systems)
developed by a joint venture of several European universities
and companies [12], ISHM (Integrated System Health Man-
agement) project developed by NASA for space applications
[13], AEGIS (Abnormal Event Guidance and Information
System) developed by the Honeywell led Abnormal Situa-
tion Management (ASM) Consortium in the United States
[14], and CHEM-CSS (Advanced Decision Support Sys-
tem for Chemical/Petrochemical Manufacturing Processes)
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developed by the European Community (EC) Intelligent
Manufacturing Systems (IMS) consortium [15].

Among all projects, AEGIS is the most relevant. It pro-
poses a comprehensive asset management framework from
an industrial view point. AEGIS built on the experience
of military aviation research projects, especially the Pilots
Associate (PA) and the Rotorcraft Pilots Associate (RPA)
[16]. Although the 12 year old research program has achieved
several goals and developed a well established abnormal situ-
ation management awareness and culture, it did not address
the automation of massive process data interpretation and
process fault diagnosis and accommodation, which would be
aimed to minimize the workload on process operators [17].

A new asset management research project, PAWS
(Petroleum Applications of Wireless Systems), was initiated
by a joint venture of Atlantic Canadian universities and the
National Research Council of Canada (NRC) for oil and
gas applications [1], [18], [2], [19], [20], [3], [21], [22],
[23], [24], [4], [25], [5], [26]. The PAWS project scope is
to develop a control and information management system
which consists of two subsystems. The first subsystem is a
wireless sensor network which will alleviate the need for data
cables in offshore oil rigs and onshore refineries, and improve
flexibility for adding and reconfiguring sensors. Wireless
sensors will be used where permitted by safety. The second
subsystem intelligently manages the massive data flow from
oil rigs and interprets it so as to help operators take more
appropriate decisions during abnormal events and, through
intelligent control, improve process economics. This effort
is building now on the AEGIS project experiences.

As part of the PAWS project, our team is developing
an intelligent control and asset management system (ICAM
system) in which several milestones have been achieved.
The conceptual model of an automated asset management
system, its architecture, and its behavioral model have been
defined [1], [2]. An implementation plan for such system
has been prepared, and the appropriate development plat-
forms have been chosen [3]. Furthermore, a general ICAM
system agent-based structure and its communication and the
artificial intelligence requirements were defined [4], [5]. This
paper builds on the previous requirements analysis work and
describes a real-time ICAM system prototype. Furthermore,
a real time simulation experiment is conducted to verify the
system design and validate its performance.

The paper is organized as follows: First, we describe the
structure of the ICAM system prototype and discuss its
supervisory agent design in section 2. Then, we describe
a real-time simulation-based implementation of the ICAM
system prototype, discuss the simulations results, and analyze
system performance in sections 3. We discuss the ICAM



system limitations and design challenges in section 4. Finally,
we summarize our research findings in section 5.

II. THE ICAM SYSTEM PROTOTYPE

In order to have the ICAM system requirements deployed
in a real-world system, a prototype has to be developed.
Figure 1 illustrates the simplified ICAM system prototype.
Data from an external plant (a pilot plant at the College
of North Atlantic) or a simulation model is received by the
statistical data monitoring agent, which preprocesses the data
by removing undesired discrepancies such as outliers and
missing data. Processed data is stored in a real-time database
for logging and other purposes, and is then sent to the model
ID and FDI agents for further processing. When the data
statistical preprocessor detects a change in the operating
point or an abnormal change in data, it alerts the model
ID and FDI agents to further identify the nature of the data
change. If a significant change in the process operating point
occurs, the system supervisory agent asks the model ID agent
to update the process model parameters. If the change is a
process fault (i.e., a sensor or actuator failure), the FDI agent
detects the nature of the fault and notifies the ICAM system
supervisor for further processing. For every event that occurs,
the supervisor is notified, which in turn monitors, directs, and
assesses the logical behavior of the system. Processed data
at every agent is sent to an operator interface, which allows
operators make the appropriate decision depending on the
plant situation.
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Fig. 1. ICAM system prototype

The FDI agent exploits the generalized parity space (GPS)
to generate a set of directional residuals, from which process
faults can be determined [27], [18], [22], [25], [28], [26].
The statistical preprocessor agent removes missing data and
outliers by exploiting the median absolute deviation algo-
rithm [29]. The model ID agent estimates the multivariable
plant model by using the subspace method, which uses the
canonical variable algorithm (CVA) in its singular value
decomposition stage [30], [31], [32]. The supervisory agent
is a G2 real time expert system [33], which codifies the
ICAM system internal and external behavior in its knowledge
base. The external plant model represents an oil production

facility, which separates oil well fluids into crude oil, sales
gas, and water.

The simulation model basically consists of two processes,
as illustrated in figure 2. The first is a two-phase separator
in which hydrocarbon fluids from oil wells are separated
into two phases to remove as much light hydrocarbon gases
as possible. The produced liquid is then pumped to the
three-phase separator (i.e., the second process), where water
and solids are separated from oil. The produced oil is then
pumped out and sold to refineries and petrochemical plants if
it meets the required specifications. Gas is processed further
and sent as sales gas.
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The two separation processes of the simulation model are
controlled to maintain the operating point at its nominal
value, and to minimize the effect of disturbances on the
produced oil quality. As shown in figure 2, the first separation
process is controlled by two PI controller loops. In the first
loop, the liquid level is maintained by manipulating the liquid
outflow valve. The second loop controls the pressure inside
the two-phase separator by manipulating the amount of the
gas discharge. The second separation process has three PI
controller loops: An interface level PI controller maintains
the height of the oil/water interface by manipulating the
water dump valve, the oil level is controlled by a second
PI controller through the oil discharge valve, and the vessel
pressure is maintained constant by a third PI loop [34].

A. The supervisory agent rule-base design

Since the supervisory agent of the ICAM system coordi-
nates its internal and external behavior, it is crucial to care-
fully design the rule-base of the supervisory agent to achieve
robust system performance. The rule-base codifies the de-
sired system behavior in response to external environment
dynamic changes and to process operator interactions. Figure
3 illustrates the ICAM system prototype event sequence dia-
gram, which is embedded in the supervisory agent rule-base.
The rule-base design process is in its preliminary stage; and it
will be further developed to address more complex situations
in future work. The ICAM system supervisory agent starts up
the other reactive agents, which are implemented as MATLAB
functions and scripts for ease of development and debugging
[5].
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If the FDI agent or the statistical pre-processing agents do
not have any process model, they report their status to the
supervisory agent, which, in turn, commands the statistical
pre-processor to check if the external plant is in steady state.
If the external plant is in a steady state, the supervisory agent
asks the low level control system to apply a small pseudo
random binary signal (PRBS) for a specified period of time
∆t = 300sec. The model ID agent collects process data
during the application of the PRBS signal. Once the low
level control flags back the end of PRBS signal application
to the supervisory agent, the supervisor flags to the model ID
agent to estimate a new process model. The estimated model
is then sent to the appropriate agents. The supervisor then
requests from the FDI agent to design the FDI filter based on
the received process model. The FDI agent starts monitoring
the external process for sensor and actuator faults. If the FDI
agent detects a fault in the plant, the fault location, type, time,
size and other information are reported back to the supervisor
for further processing. In the case of a sensor fault, the FDI
agent will also recommend the appropriate accommodation
(correction) [26].

III. ICAM SYSTEM PROTOTYPE SIMULATION SCENARIO

To analyze the performance of the ICAM system prototype
in terms of its logical behavior and its response to the exter-
nal environment dynamics, a real-time simulation experiment
was conducted for a time span of 30.92 minutes, and a
sampling period of 150 milli-second. The pilot plant sim-
ulation model consists of 10 states, 5 manipulated variables,
5 controlled variables, and 17 auxiliary measured inputs and
outputs (e.g., disturbances, product quality variables, etc...).
The time-stamped raw data is sent to the statistical prepro-
cessor for removing any discrepancies. The processed data

is then sent to the model ID agent to identify new process
models, and to the FDI agent for process fault diagnosis.
After the systems starts up and updates its knowledge about
the pilot plant state, a bias fault is applied to the liquid level
sensor in the two-phase separator (refer to control loop LCL1
in figure 2). The size of the fault is +15% of the liquid
level nominal value. The system behavior during startup and
fault occurrence is discussed in the next sections, where we
discuss the results of two process variables namely, the liquid
level of the two-phase separator and the oil phase level in
the three-phase separator. .

A. Simulation results
After the ICAM system supervisory agent starts executing

its rule-base, other reactive agents are started and initialized.
The pilot plant agent starts its simulation around a nominal
value of V = 146ft3, P = 625psi for the two-phase separa-
tion sub-process and Vwat = 77.5ft3, Voil = 46.5ft3, P =
200psi for the three-phase separation sub-process. Since the
ICAM system has no knowledge about the pilot plant agent
(i.e., no dynamic model), it sends a message to the statistical
pre-processor to check if the pilot plant is in steady state.
Once it is in steady state, the supervisor then commands
the control system of the pilot plant to apply a sufficiently
exciting PRBS signal with an amplitude of 2% about the
nominal operating point. This allows the model ID agent to
collect enough data to identify the pilot plant model, which is
then used by the FDI agent to design its parity vector filter.
Having gained new knowledge about the current dynamic
state of the pilot plant, the ICAM system now can start
monitoring the pilot plant for any failures. Figure 4 illustrates
the liquid volume and the associated outflow in the two-
phase separator during this simulation experiment. Outliers



and missing data were applied to the two-phase separator
measurements to simulate real-world data. The oil volume of
the three-phase separator and the associated outflow is also
shown in figure 5, where the PRBS signal is also applied
soon after the beginning of the simulation experiment. The
effect of the faulty volume sensor at tfault = 13:36:42 on
the oil volume in the three-phase separator is also shown.
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Fig. 4. Two-phase separator liquid volume logged at the pilot plant agent
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Fig. 5. Three-phase oil volume logged at the pilot plant agent

Raw data is received by the statistical pre-processing
agent, which removes any outliers and corrects missing data
by replacing it with the previous data value, as demonstrated
by the clean liquid volume data record in figure 6 (compare
with the top traces in figure 4). The statistical agent first
checks if the pilot plant is in steady state to prevent applying
the PRBS signal is a transient state. Apparently the pilot plant
takes a time period of t = 54.73sec to reach it steady state
due to the plant small initial conditions, as shown in figure 6.
Processed data is sent to the model ID agent during the PRBS
signal application, after which a new process model can be
estimated. Figures 7,8 show the two-phase liquid volume
and the three-phase oil volume process variables collected
during the PRBS signal application. Each process variable

data record has a length of 300 seconds, which is the pre-
specified PRBS signal application time.
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processing agent
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Fig. 7. Two-phase separator liquid volume logged at the model ID agent

Once the new process model is received by the FDI agent,
then it can design its FDI filter and deploy it to diagnose plant
faults. Figures 9,10 show the two-phase liquid volume and
the three-phase oil volume process variables collected after
the FDI filter is deployed. When a fault occurs, its effect
can be noticed not only in the local control loop, but also
downstream, which is seen as a disturbance in the three-
phase oil volume control loop, as shown in figure 10. The
FDI agent generates a generalized parity vector whose abnor-
mal magnitude detects faults, and whose angle with respect
to certain reference directions isolates them. When there is
a fault, then the smallest angle indicates the approximate
alignment of the parity vector with the reference direction
of the particular fault. Hence the fault can be isolated based
on the smallest angle after the fault detection. It is clear
from the top plot in figure 11 that the general parity vector
(GPV) magnitude increased significantly, which indicates
that a fault occurred. Furthermore, the smallest angle after
the fault detection instant is the one that corresponds to liquid
volume sensor in the two-phase separator, as indicated by the
dotted trace in the middle plot of figure 11(i.e., fault F1). The
other GPV angles are larger than the faulty volume sensor
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Fig. 8. Three-phase oil volume logged at the model ID agent

GPV angle, as indicated by the other traces in the middle
and bottom plots of figure 11.

13:33:36 13:40:48 13:48:00
140

145

150

155

160

165

170

Time

V
se

p−
liq

 (
ft

3 )

Separator liquid volume & its setpoint

13:33:36 13:40:48 13:48:00
1.72

1.74

1.76

1.78

1.8

1.82

1.84

1.86
x 10

5

Time

F
ou

t se
p−

liq
 (

B
P

D
)

Separator liquid outflow

Fig. 9. Two-phase separator liquid volume logged at the FDI agent

The parity vector-based FDI technique is highly sensitive
to process variable changes when there is no fault. This is
because of the small size of the GPV vector in no-fault
situations, so it can change its angle widely even in case
of very small process variable changes, as indicated by the
large variation of the GPV angles before fault occurrence in
figure 11. The local decision-making logic of the FDI agent
isolates the fault after its occurrence is signaled by the large
GPV magnitude, as demonstrated by figure 12. It interesting
to notice a fault # of -1 is indicated at the beginning of
fault isolation task; -1 denotes an unknown fault. The FDI
agent isolates faults when the process variables have reached
an acceptable steady state level, so it is ineffective during
the transient part of the fault dynamics. The FDI decision-
making mechanism fails to isolate the faulty instrumentation
between the times t1 = 13:37:55 and t2 = 13:40:48 due to
the very small GPV magnitude as discussed earlier.

The FDI agent also estimates the fault size and sign
and reports the fault information back to the supervisor
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Fig. 10. Three-phase oil volume logged at the FDI agent
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Fig. 11. FDI agent diagnostic signals

for further processing and actions. The corresponding fault
information and recommended actions by the supervisor
are shown by the attributes table of the FDI object in the
G2 supervisory expert system in table I. The model status
and the FDI design status attributes indicate that the FDI
agent has received the process model and has deployed the
designed FDI filter. The accommodation status attribute is the
system recommendation, which is in this case to repair the
faulty sensor. Since the fault type is bias and not of a ramp
type, then recursive fault size estimation is not required as
indicated by the last attribute of the table. Work is proceeding
to accommodate sensor faults in the FDI agent [26]. Some
of the attributes are related to the internal operation of the
ICAM system, which will not be discussed.
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B. Performance analysis

Having verified and validated the ICAM system pro-
totype functionality during the simulation scenario, it is
crucial to analyze its real-time performance to pinpoint
any computational bottlenecks and to verify the computa-
tion/communication coordination in each agent. We embed-
ded a time-delay function of 100 milli-seconds in the pilot
plant ordinary differential equation (ODE) solver to emulate
a real-time clock functionality. The time-delay is less than
the sampling period because the pilot plant ODE model eval-
uation takes about 50 milli-seconds every sampling period.
Table II illustrates the profile of the oil separation plant
agent which was simulated in real time. It is evident that
the real-time clock functionality took the biggest execution
time slot (i.e., about 61.36%). The evaluation of the oil
separation ODE model took 29.19% of the total execution
time, due to the nonlinear problem being solved every sam-
pling period [34]. Communicating data to other agents and
messages to the supervisory agent did not have a significant
effect of the agent’s performance, which indicates efficient
communication/computation coordination. The approximate

one execution cycle for this agent is around 150msec. This
validates our real-time simulation design decision to take
the computational cost of the ODE model evaluation into
account.

While computational functionalities dominated the sepa-
ration plant agent, data communications with other agents
in the statistical processing agent took the largest execution
time slot, as shown in table III. This is due to synchronization
with other agents during data reception. However, this is
less significant on the agent performance when sending data
to other agents (i.e., about 4.8% of the execution time), as
was specified by the system design requirements [4], [3].
It is evident that there is a performance bottleneck in this
agent due to data storage (around 12%). This can be rectified
by adding a database agent to the system which stores the
different data types across the ICAM system. Again the
communication part with the supervisor had a minimum
effect on performance.

Functionality name Calls Total Time % Time

Real time simulation clock 11453 1253.053 s 61.26% 

Separator ODE model evaluation 11453 597.10 s 29.19% 

Raw data sending 11453 4.28 s 0.2% 

Communication with supervisor 11453 1.3s 0.06% 

Other functionalities   188.404 s 9.21% 

Totals 2045.137 s 100%

TABLE II
THE PILOT PLANT AGENT PERFORMANCE PROFILE

Functionality name Calls Total Time % Time 

Raw data reception from pilot plant 11453 1476.829 s 72.3%

Processed data storage 11453 152.843 s 7.5%

Processed data sending 10802 98.559 s 4.8%

Raw data storage 11453 99.88 s 4.89%

Communication with supervisor 11453 6.33 s 0.3%

Other functionalities 216.322 s 10.59%

Totals 2041.763 s 100%

TABLE III
THE STATISTICAL AGENT PERFORMANCE PROFILE

When it comes to the model ID agent, the reception
of processed data from the statistical processing agent had
the biggest effect on performance (i.e., about 86.3% of the
agent’s execution time). While the process model estimation
functionality took 4.8% of the agents’ total execution time,
communications with the supervisory agent had the least
effect on performance, as shown in table IV. The FDI agent



had a similar profile of the model ID agent, in which data
reception had 77.5% of execution time. We do notice here
that data storage has a fairly undesirable effect of 7.4% on
the FDI agent performance, as illustrated in table V. Table VI
demonstrate the performance of the supervisory agent during
the real-time system simulation. The G2 supervisory agent
was in an idle state for almost 99.0% of the total simulation
time, whereas communications with other agents had almost
no impact of the agent’s performance, as was specified for
in the design requirements. The total performance of the
ICAM system prototype during the real-time simulation was
satisfactory and will be improved in future design stages.

Functionality name Calls Total Time % Time

Processed data reception 10802 1756.774 s 86.3% 

Process model estimation 1 88.092 s 4.3% 

Communication with supervisor 11317 2.36 s 0.11% 

Other functionalities   190.156s 9.34% 

Totals 2035.021 s 100%

TABLE IV
THE MODEL ID AGENT PERFORMANCE PROFILE

Functionality name Calls Total Time % Time

Processed data reception 10802 1584.122 s 77.5% 

Communication with supervisor 10909 3.06s 0.14% 

FDI variables storage 7410 76.03 s 3.71% 

Processed data storage 10802 75.63 s 3.69% 

Other functionalities   305.785 14.95% 

Totals 2044.627 s 100%

TABLE V
THE FDI AGENT PERFORMANCE PROFILE

IV. SYSTEM DESIGN CHALLENGES AND LIMITATIONS

Designing an intelligent multi-agent system is very
challenging task, as all agents are distributed and semi-
autonomous. Although we proposed the colored petri nets
approach to design the internal logic of the ICAM system
agents in our development plan [3], we did a preliminary
design the agents’ internal logic in an ad hoc manner. We
have faced some difficulties during the design stage of the
ICAM system prototype. For example, the ICAM system
crashed during early simulation runs due to communication
deadlocks, in which two agents were trying to send messages
to each other simultaneously. The problem was solved by
imposing conditions on communicating agents to prevent
such deadlocks.

Computation/communication coordination was another de-
sign problem, in which computation and communication

Functionality name Total Time % Time

Idle time 1899.00 s 99.11% 

Scheduling time 3.637 s 0.19% 

Communication with agents 4.677 s 0.24% 

Other functionalities 8.686 s 0.45% 

Totals 1916.00 s 100%

TABLE VI
THE SUPERVISORY AGENT PERFORMANCE PROFILE

code chunks were not ordered correctly in the agent code.
For example, we combined the process model estimation
(computation task) and sending the estimated model to other
agents (communication task) into one functionality in the
model ID agent, which proved to be a design flaw. Model
estimation took a long time (i.e., over one minute), during
which other agents were locked waiting for the estimated
model due to synchronization failure. The problem was
solved by separating the one functionality into two separate
computation and communication functionalities (i.e., sepa-
rate agent states) and modifying other agents accordingly.
Although some design flaws had to be corrected, the ICAM
system prototype acted as a set of distributed stochastic
colored petri nets during real-time simulation. This implies
that a careful agent design should be done along with a
thorough system logical behavior analysis.

The plant data characteristics also had a major impact
on the ICAM system performance. For example, the ICAM
system prototype is not robust against noisy data due to the
design of the data differentiation-based steady state detection
algorithm. Likewise, the general parity vector (GPV) based
FDI algorithm is not robust to noise, which significantly
affects the fault isolation task in moderate to high noisy
data situation. Detection and isolation of fast dynamics faults
(e.g., faulty gas pressure sensor) is another limitation of the
ICAM system prototype. The outlier removal algorithm in
the statistical processing agent treats fast dynamics faults
as outliers, which changes the nature of processed data
sent to the FDI agent. Data filtering also may change the
data dynamics, which may have an impact of the system
performance.

The multi-threaded stochastic execution nature of the
supervisory agent’s rule-base adds another complexity level
to the ICAM system design process. The ICAM system
prototype design is still at early stages and as the ICAM
system design matures, most of these limitations can be
eliminated or minimized.

V. CONCLUSIONS

We have demonstrated good progress and described
lessons learned in the design and development of the ICAM



system. A system prototype was built and simulated in real-
time. These results verified the system’s logical behavior
in normal and faulty process situations. A detailed sys-
tem performance analysis was done, which revealed some
computation bottlenecks to be resolved in future design
stages. Although the preliminary ICAM system prototype
design has limitations, the experimental results supported
our requirements analysis done in previous work. Moreover,
our system design approach can be exploited to develop and
rapidly prototype real time distributed multi-agent systems.
We believe that the ICAM system will pave the way to real
intelligent multi-agent systems for many applications.
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