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Abstract

In this paper, we report on recent advances in the de-
sign of fully nonlinear controllers for amplitude-sensitive
nonlinear plants using sinusoidal-input describing func-
tion methods. This work includes the development of
a new nonlinear controller synthesis approach that in-
cludes derivative action in an inner-loop feedback path
(nonlinear rate feedback), and its application to a motor
+ load model with torque saturation and stiction. This
approach is capable of treating nonlinear systems of a
very general nature, with no restrictions as to system
order, number of nonlinearities, configuration, or non-
linearity type; additionally, the techniques can be gener-
alized for the design of nonlinear controllers of different
structures. The end result is a closed-loop nonlinear
control system that is relatively insensitive to reference-
input amplitude.

1. INTRODUCTION

This paper treats recent work in the development of
nonlinear control system design techniques based on
sinusoidal-input describing function (SIDF) methods.
The basis of this work has been established previously:
Taylor [1, 2] outlines the motivation for using a modern
SIDF approach for control system design and establishes
a systematic plan of attack, and both [2] and Taylor and
Strobel [3] compare SIDF models with those based on
the random-input describing function technique. The
SIDF approach was first applied in [3], in which a linear
PID compensator in series with a single static nonlin-
earity is designed, and extended by Taylor and Strobel
[4] to the design of a fully nonlinear PID compensator,
i.e., a proportional-integral-derivative controller with a
nonlinearity in each of the three channels. In each case,

it was shown that the nonlinear compensator is capa-
ble of reducing amplitude sensitivity or even correcting
instabilities caused by the amplitude dependence of the
nonlinear plant without unnecessarily sacrificing perfor-
mance.

This technique uses a set of SIDF models of the non-
linear plant as the basis for nonlinear compensator syn-
thesis. SIDF models are used because they provide an
excellent characterization of the major nonlinear effect
with which we are concerned: the sensitivity of the non-
linear plant’s input/output (I/O) behavior to the am-
plitude of the input signal; this issue has been discussed
in detail in [1, 2, 3]. In summary, given an input in the
form u(t) = u0 +ai cos(ωt) the I/O model is of the form

y(t) = y0 +Re[G(jω;u0, ai)aie
jωt]

where higher harmonics are neglected in this represen-
tation. A set of SIDF models corresponding to {ai} is
denoted {G(jω;u0, ai)} = {Gi}.
Once a set of SIDF models is available, the synthesis of
a nonlinear compensator proceeds as follows: first, a lin-

ear compensator set is designed based on these models,
with the objective of making the overall open-loop con-
trol system as insensitive to input amplitude as possible
for a set of error signal amplitudes {ai}. This yields a
parametrized set of compensators {Ci(ai)}, where the
configuration of each compensator is the same (e.g.,
PID) but the parameters differ (e.g., {KP,i(ai)} etc.).
Final synthesis of the nonlinear control system is then
accomplished by SIDF inversion to determine the re-
quired compensator nonlinearities.

The particular approach presented here involves the de-
sign of a PI compensator in cascade and a tachometer
placed in inner-loop feedback about the plant; hereafter
this will be referred to as a PI + Tach controller. In gen-



eral, there is no restriction as to compensator structure
except that the linear controller set and final nonlinear
controller must be of the same type.

The work described in this paper includes a new nonlin-
ear compensator synthesis approach and its application
to a motor + load model with saturation and stiction.
The major extension in comparison to earlier research
[4] is that the controller obtained has the derivative ac-
tion in an inner-loop feedback configuration. This con-
troller configuration is more effective than the cascade
PID used previously, as it is well known that differenti-
ation should not be included in a precompensator. This
extension is not straightforward because of the assumed
amplitude sensitivity of the nonlinear plant.

This approach is capable of treating nonlinear plants of
a very general type, with no restrictions as to system or-
der, number of nonlinearities, configuration, or nonlin-
earity type. These results make the use of SIDF-based
nonlinear controller design methods substantially more
effective. It is also believed that this design approach
will provide a framework for further developments in
the realm of compensator design for nonlinear systems.

2. NL PI + TACH DESIGN APPROACH

First, it is important to state the premises of the SIDF
design approaches that we have been developing:

1. The nonlinear system design problem being ad-
dressed is the synthesis of controllers that are effec-
tive for plants having frequency-domain I/O mod-
els that are sensitive to input amplitude (e.g., for
plants that behave very differently for “small” and
“large” input signals).

2. The primary objective of nonlinear compensator
design is to arrive at a closed-loop system that is
as insensitive to input amplitude as possible.

This encompasses a limited but important set of prob-
lems, for which gain-scheduled compensators cannot
be used and for which other approaches (e.g., vari-
able structure systems, model-reference adaptive con-
trol, global linearization) do not apply because their
objectives are different (e.g., their objectives deal with
asymptotic solution properties rather than transient be-
havior, or they deal with the behavior of transformed

variables rather than physical variables).

An outline of the design algorithm for the nonlinear PI
+ Tach controller is as follows:

1. Select a set of input amplitudes and frequencies
that characterizes the behavior of the plant in the
operating regimes of interest.

2. Generate SIDF models of the plant corresponding
to the input amplitudes and frequencies of interest.

3. Examine SIDF models to qualitatively determine:

• appropriateness of the design approach,

• severity of the nonlinear plant amplitude sen-
sitivity, and

• type of nonlinear controller likely to be
needed.

4. Design a nonlinear inner-loop tach feedback con-
troller using a modified D’Azzo and Houpis algo-
rithm [5].

5. Find SIDF models for the nonlinear plant plus non-
linear rate feedback.

6. Design a cascade nonlinear PI compensator using
an extension of the frequency-response mapping
technique described in [4].

7. Validate the design through simulation.

The resulting compensator structure is shown in Fig-
ure 1.
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Figure 1: Nonlinear PI + Tach Control Structure

Only items 4 and 6 above will be discussed in detail.
The selection of the input amplitudes and frequencies
for SIDF generation (item 1) and the simulation to val-
idate the design (item 7) depend on the familiarity of
the designer with the system in question. The actual
generation of SIDF models (items 2 and 5) is discussed
briefly below; see [6] for more details. Finally, the quali-
tative analysis of SIDF models (item 3) is a current area
of research.

2.1 SIDF Generation

The generation of sinusoidal-input describing function
models that provide an amplitude-dependent I/O char-
acterization for a nonlinear plant has been dealt with in
detail in [3, 6]. There are two basic approaches: solv-
ing the nonlinear algebraic equations derived from the
principle of harmonic balance, and simulation coupled
with Fourier analysis.



The first method is not easy to apply, especially if it is
desired to develop a general package that substitutes the
appropriate SIDFs into the nonlinear algebraic equa-
tions and solves them. Also, the assumption is made
that the input to each nonlinearity is approximately si-
nusoidal (refer to Atherton [7]), which may leave the
analysis open to question. However, there is an advan-
tage to this approach: the SIDF model is obtained in
a form that lends itself to further analysis such as pre-
dicting the existence of limit cycles.

The second technique is easier to implement, given a
good package for integrating nonlinear differential equa-
tions, and avoids the need to justify the assumption that
the inputs of every nonlinearity are nearly sinusoidal—
there is no such assumption made using simulation. The
only assumption is that a frequency-domain amplitude-
dependent I/O model provides a good representation
of the behavior of a nonlinear plant for control system
design; that issue has been discussed in [2, 3]. In our
opinion, while SIDF models are not exact, a set of SIDF
models covering the range of input amplitudes that will
be encountered provides an excellent basis for “robust
design”, in the sense that the sensitivity of the plant
behavior to input amplitude is one of the most impor-
tant issues in robustness, and the SIDF I/O model is
the least conservative model that accurately takes this
factor into account.

Extensions have been made to the nonlinear simulation
package SIMNON to perform SIDF I/O model gener-
ation for nonlinear system models. The basic idea is
to drive the nonlinear plant with a sinusoid of the de-
sired amplitude for a number of frequencies of interest,
and evaluate Fourier integrals as the simulation pro-
ceeds. The simulation for a given frequency is sam-
pled after each cycle and stopped when the Fourier in-
tegrals have converged; then the I/O model is evalu-
ated, as described in Taylor [6]. In general this gives us
G(jω;u0, ai) as mentioned above; in applications where
a constant offset u0 is not considered we will use the
shorthand notation G(jω; ai) to designate the SIDF I/O
model generated by driving a nonlinear system with the
input u(t) = ai cos(ωt).

2.2 Inner-Loop Controller Design

The general objective when designing the inner-loop
rate feedback controller is to give the same benefits ex-
pected in the linear case, namely stabilizing and damp-
ing the system, if necessary, and reducing the sensitivity
of the system to disturbances and plant nonlinearities
(see Thaler [8]). At the same time, we wish to design a
nonlinearity to be used with the controller that will de-
sensitize the inner-loop as much as possible to different
input amplitudes.

As shown in D’Azzo and Houpis [5], it will be conve-
nient to work with inverse Nyquist plots of the plant
I/O model, i.e., inverting the SIDF frequency-response
information in complex-gain form and plotting the re-
sult in the complex plane. In the linear case, this allows
us to study the closed-inner-loop (CIL) frequency re-
sponse GCIL(jω) in the inverse form

1

GCIL(jω)
=

1 +G(jω)H(jω)

G(jω)
=

1

G(jω)
+H(jω)

where the effect of H(jω) on 1/GCIL(jω) is easily de-
termined.

The inner-loop tach feedback design algorithm given by
D’Azzo and Houpis and referred to as Case 2 uses a
construction amenable to extension to nonlinear sys-
tems. For linear systems, this algorithm is based on
adding a tachometer and external gain in order to ad-
just the inverse Nyquist plot to be tangent to a given
M-Circle at selected frequency. Referring to the dia-
gram taken from [5] and shown in Figure 2, the al-

Figure 2: Tach Feedback Design Algorithm 2

gorithm is applied as follows: The selected value of
ωa is first found; the projection of this point on the
real axis, point b, will be the center of the scaled M-
Circle. The radius of this scaled M-Circle will be cho-
sen to make it tangent to the line defined by the angle
ψ. Next Kt is determined to move the 1/Gx(jω) plot
to be tangent to this scaled M-Circle, giving the plot
1/GCIL(jω) = I(jω)/C(jω) ≈ 1/Gx(jω) + jωKt. The
gain A2 can then be determined by the distance to point
b. Due to the complicated geometry involved, some trial
and error may be required.

The algorithm is extended to the nonlinear case by ap-
plying it to each SIDF frequency-response model Gi cor-
responding to each plant input amplitude ai. Then for
each input amplitude a tachometer gain, Kt,i, and ex-
ternal (to the inner loop) gain A2,i is found. At this
point in the design, the A2,i values are not used, since
the external gain will be subsumed in the cascade por-



tion of the controller that is synthesized in the next
step.

The set of desired tachometer gainsKt,i(ai) is then used
to synthesize the tachometer nonlinearity (fT in Fig-
ure 1). As first described in [2], this gain/amplitude
data is interpreted as SIDF information for an unknown
static nonlinearity. A least-squares routine is used to
adjust the parameters of a general piecewise-linear non-
linearity so that the SIDF of that nonlinearity fits this
gain/amplitude data with minimum mean square error;
this generates the desired controller nonlinearity. While
the concept is identical to [3, 4, 6], the nonlinearity used
in this study is more general, and the algorithmic imple-
mentation allows much more flexibility and interaction
in achieving a good fit.

2.3 Cascade PI Controller Design

Referring back to Figure 1 and to the design strategy
outlined above, the final step in the complete controller
design is generating the nonlinear cascade PI compen-
sator. The general idea is to first generate SIDFs for the
nonlinear plant (which, in this approach, is actually the
nonlinear plant with nonlinear rate feedback) over the
range of input amplitudes and frequencies of interest.
This information forms a frequency-response map as a
function of both input amplitude and frequency. A sin-
gle nominal input amplitude is selected, a∗, and a linear
compensator is found that best compensates the plant
at that amplitude. This compensator, in series with the
nonlinear plant, is used to calculate the corresponding
desired open-loop I/O model CG∗(jω; a), the frequency-

domain objective function. Then, at each input ampli-
tude ai a least-squares algorithm is used to adjust the
parameters of the linear PI compensator, KP,i(ai) and
KI,i(ai), to minimize the difference between the result-
ing frequency response found using the linear compen-
sator and interpolating on the SIDF frequency-response
map, and CG∗(jω; a), as described in [4]. The nonlin-
ear PI compensator is then obtained by synthesizing the
nonlinearities fP and fI in Figure 1 by SIDF inversion.
This algorithm for PI design has also been improved
and extended for more general use.

The original algorithm [4] had no mechanism for ad-
justing the compensator parameter fit to emphasize or
deemphasize given frequency ranges; because it used a
PID controller, which has three channels covering low,
medium, and high frequencies, this ability was not nec-
essary. However, because we now wish to use a PI cas-
cade compensator, and in general don’t wish to assume
that the compensator will be able to affect all frequency
ranges equally, the ability to weight the different fre-
quencies is needed. Additionally, because different in-
put amplitudes correspond to different parts of the sys-

tem response (e.g., high input amplitudes correspond to
high errors which require an emphasis on the transient
response while low input amplitudes correspond to low
errors and an emphasis on the steady-state response),
it is necessary to provide different frequency weights at
each input amplitude. This ability has been added, and
thus allows frequency-domain ranges to be weighted to
achieve desired closed-loop time-domain objectives in a
very flexible framework.

3. NL PI + TACH DESIGN EXAMPLE

A controller will be designed for the motor + load model
shown in Figure 3, which uses a gain reduction to model
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Te − fvθ̇ − fcsign(θ̇), |Te| > fc or θ̇ 6= 0.0
0.0, otherwise

Figure 3: Motor Model with Saturation and Stiction

motor saturation and also has a stiction nonlinearity.
Following the general algorithm presented above, the
first step is to perform a SIDF analysis of the motor.
This was done using the extension to SIMNON men-
tioned above, and the resulting I/O model is portrayed
in Bode magnitude and phase response plots for the dif-
ferent input amplitudes considered (Figure 5).

As seen from the plots, the magnitude differs by over
14 dB and the phase response has significantly differ-
ent shapes. Additionally, an examination of the higher
harmonics of the SIDF response show them to be sev-
eral orders of magnitude lower than the fundamental.
These two facts indicate the the SIDF approach is both
valid and appropriate for this problem. The observa-
tion that the phase responses are very different in shape
over the frequency range of interest indicates that one
static compensator nonlinearity cannot desensitize the
open-loop frequency response very well, so we choose to
design a fully nonlinear PI + Tach controller.

The next step is the design of the inner-loop feedback
of the nonlinear tachometer. The Case 2 D’Azzo and
Houpis algorithm is used, where the desired M-Circle
radius and natural frequency of the closed-loop system
are selected to be the default value of

√
2 (which should

result in acceptable overshoot) and ωa = 25. This tar-
get natural frequency was estimated from the desired
response time of the closed-loop system. A routine then



implements the geometry relations discussed earlier to
develop the gain/amplitude relationship needed for the
tach nonlinearity at each plant input amplitude. The
gain/amplitude relationship found is shown in Table 1.
Note that this design algorithm calls for slight positive

Tachometer PI Controller

e Kt e Kp Ki

0.4150 -0.3413 0.050 6.1266 34.0292
1.8091 -0.0385 0.065 5.2276 33.5021
3.5008 -0.0088 0.080 4.7781 32.8287
8.7778 0.0108 0.160 3.7593 30.0063

12.5293 0.0263 0.320 3.5064 28.8968
19.0920 0.0461 0.640 4.5711 22.5852
31.6697 0.0675 1.280 5.8645 8.0451
56.3283 0.0867 2.560 6.4135 0.0000

Table 1: Gain / Amplitude Relationships

feedback at low input amplitudes—this is due to the
algorithm’s objective which is to counteract the high ef-
fective damping provided by the stiction nonlinearity.
The final step in the feedback controller design is tak-
ing the gain/amplitude information and generating the
tachometer nonlinearity. SIDF inversion resulted in a
one-segment linear gain with a negative discontinuity
at the origin. Its gain/amplitude relationship and fit
with the data is shown in Figure 4A.

In this approach, the cascade PI design was done on the
basis of SIDF I/O models of the plant with nonlinear
tach feedback, since this represents the “plant” for the
cascade design. A nominal linear PI controller was de-
signed at a nominal, mid-range, input amplitude, and
the SIDF for the linear PI in cascade with the closed-
inner-loop plant at that amplitude was generated and
denoted CG∗

CIL(jω; a∗). Using this nominal linear con-
troller as a starting point, the parameters were fitted
at each input amplitude to match CG∗

CIL(jω; a∗) as
closely as possible. The gain/amplitude relationships
for KP,i(ai) and KI,i(ai) are also shown in Table 1.
This information was then used to synthesize propor-
tional and integral channel nonlinearities as shown in
Figures 4B and 4C.

The final stage of the design was simulation to vali-
date the resulting closed-loop system. The resulting
time histories, with step input amplitudes ranging from
r1 = 0.20 to r8 = 10.2, are shown in Figure 6A. As
compared with the time histories for the nominal lin-
ear controller and nonlinear PID controller used in [4],
Figures 6B and 6C, respectively, it is evident that the
resulting design achieves better performance, both in
the sense of lower overshoot and less settling time and
in the sense of very low sensitivity of the response over

the range of input amplitudes considered.

4. SUMMARY AND CONCLUSIONS

The method outlined in Section 2 is a specific realiza-
tion of the basic concept of using SIDF I/O models as
the basis for nonlinear compensator design proposed in
[1, 2]. Based on the example shown in Section 3, and
on work in progress, we feel that this approach shows
considerable promise in dealing with one of the more dif-
ficult problems in nonlinear systems design—the design
of controllers to correct for the amplitude-dependence
of nonlinear plants.

Note: This is not the original manuscript, which does
not exist in electronic form – it was reconstituted in
2004. The simulation results are not exactly the same,
as matlab was used instead of Simnon.
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Figure 4: Nonlinearity Gain vs Input Amplitude
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Figure 5: Motor Model G(jω, a) Plots
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Figure 6: Compensated Motor Step Responses


