
Proc. American Control Conference, Albuquerque NM, June 1997 c©AACC

Rigorous Hybrid Systems Simulation

of an Electro-mechanical Pointing System
with Discrete-time Control

James H. Taylor & Dawit Kebede
Department of Electrical Engineering

University of New Brunswick
Fredericton, NB CANADA E3B 5A3

Internet: jtaylor@unb.ca & kebede@zeus.ee.unb.ca

Abstract

Earlier research in the modeling and simulation of hy-
brid systems led to the development of a general hybrid
systems modeling language (hsml). Effort is underway
to implement this concept in software. The standard
matlab model framework and integration algorithms
have been extended to support state-event handling in
continuous-time components and to handle embedded
discrete-time components.

In this paper we overview the algorithmic implementa-
tion of the hsml language constructs for dealing with
state events and embedded discrete-time modules in
matlab. An extensive example (an electro-mechanical
pointing system with stiction under discrete-time con-
trol) will be presented to demonstrate the efficacy of
these extensions.

1 Introduction

hsml was designed to support a broad definition of a
hybrid system, which we may express informally as be-
ing an arbitrary interconnection of components that are
arbitrary instances of continuous- and discrete-time sys-
tems [1, 2]. Requirements for hsml particularly focused
on rigorous characterization and execution of “events”,
both discrete- and continuous-time, that cause discon-
tinuous changes in system trajectories and/or the model
structure itself.

One can rigorously model hybrid systems using certain
other, extant languages. For example, acsl [3] can be
used to model and simulate state events in hybrid sys-
tems with considerable generality; however many other
packages (especially commercially-supported ones) lack
even the basic provisions for state-event handling. Also,
the high-level features and strict semantics and syntax
formulated for hsml facilitate and enforce a higher de-
gree of rigor in hybrid systems modeling, thereby ensur-
ing a greater probability of model correctness. For ex-
ample, resetting the state after a state event can be done
in acsl, but not cleanly and reliably; here we use a strict
protocol that permits state reset with safety. The ideas
and algorithmic requirements underlying hsml can be

translated into any modeling and simulation environ-
ments, assuming that a developer can gain access to the
necessary internal “machinery”, as demonstrated here.

This paper overviews our work to implement a subset of
hsml in the matlab modeling and simulation environ-
ment [4]. It focuses on a detailed application involving
significant state-event handling in the continuous-time
part (for stiction effects) as well as dealing with “time
events” associated with the execution of two discrete-
time elements (a nonlinear inner-loop controller and
a linear outer-loop one), thus providing a complete
demonstration of the approach. This presentation com-
plements the preliminary discussions of state-event han-
dling in [5, 6], and provides a detailed description of the
use of the later extensions for coordinating the execu-
tion of embedded discrete-time algorithms [7].

2 hsml Overview

hsml is designed to be a rigorous and modular hier-
archical scheme for modeling hybrid systems. At the
lowest level hsml components are “pure” continuous-
time components (ctcs) and discrete-time components
(dtcs) [1]. These elements are assembled into compos-
ite components, and then systems.

Here we consider ctcs that may be represented as1:

ẋc = fc(xc, uc, ud,k, m, t)

yc = hc(xc, uc, ud,k, m, t) (1)

where xc is the state vector, yc is the output vector,
uc and ud,k are numeric input signals (continuous- and
discrete-time, respectively), m is comprised of a finite
alphabet of numeric or symbolic input variables that
characterizes the “mode” of the model, and t is the
time; in general uc, ud,k and m are vectors. There are
implicit “zero-order holds” operating on the elements of
ud,k and m, i.e., these inputs remain constant between

1The specific class of ctc that can be modeled depends on
the simulator’s integration methods; matlab cannot handle dif-
ferential algebraic equations (daes), so we restrict ourselves to
ordinary differential equations and simplify the variable types in
comparison with [1, 2].

1

those times when they change instantaneously. Of par-
ticular importance to the present exposition, the mode

input m is included to provide means of controlling the
model’s structure and coordinating its behavior with the
numerical integration process in state-event handling, as
described below.

State events are characterized by zero crossings,

S(xc, m, t) = 0 (2)

A mode-change in the ctc can be classified as a
negative-going event (i.e., one in which S becomes
negative), an on-constraint event (where S remains
equal to zero until another state event occurs), or a
positive-going event. Finally, we include provision
for instantaneous reset of the model state variables at a
state event:

x+
c = xc(t

+
e) = r(xc(t

−

e), m, t−e) (3)

where te is the event time. This feature is useful in re-
setting velocities after engagement to conserve momen-
tum, for example. In accordance with this scheme for
state-event definition, we permit elements of m to take
on the values –1, 0, +1.

In the present effort, a dtc is a general algorithm which
we can characterize in terms of internal variables called
“discrete states” and outputs that also change discretely
(instantaneously) at each execution:

x+
d,k(tk) = fd(xd,k, ud,k, m, tk)

y+
d,k(tk) = gd(x

+
d,k, ud,k, m, tk) (4)

where xd,k is the discrete state vector, k is the index
corresponding to the discrete time point tk at which the
state takes on the new value x+

d,k, ud,k is the input vec-

tor, and y+
d,k is the output. Note that there are implicit

“sampling” operators on ud,k if continuous-time vari-
ables are involved. The times tk are usually – but not
necessarily – uniformly spaced; in any case, we assume
that the update times can be anticipated. Correspond-
ing to this, we define the vector te,k which at any time
is comprised of the next execution times for every dtc.

3 Event Handling

3.1 State-Events

The hsml features for modeling state events are de-
signed to permit the accurate and efficient integration
of ctcs that may exhibit discontinuous behavior such
as relays switching and mechanical components engag-
ing/disengaging. The nature of the problem and an ap-
proach for proper handling of such events has been de-
tailed previously[5, 6]; in this context, it suffices to ob-
serve that blindly integrating a ctc by stepping from
a point tk before switching to tk+1 after the disconti-
nuity usually produces results that are both inaccurate
and inefficient (in the sense of consuming an inordinate
amount of computation).

The appropriate handling of state events requires co-
ordination between the model and simulation package.
This is achieved in hsml via flag variables in the model
(S in Eqn. 2), and the model input variable m that can
be used to control model switching. State-event han-
dling then proceeds as follows:

1. Integrate as usual as long as the flag variables do
not change sign. Each integration point is treated
as a “trial” point until the sign condition is checked;
if no sign change occurred, the point is “accepted”.

2. When a sign change is detected, the trial point is
discarded and an iterative procedure is initiated
(within the simulator) to find the step h∗ such that
the flag variable is zero (within a small tolerance
ε “on the other side”). The model does not switch
during this part of the procedure.

3. The integrator produces an accepted point just past
the switching curve (Eqn. 2) and then signals the
model to switch (e.g., by changing m from 1 to – 1
or vice versa if the boundary is to be crossed, or to
0 if the trajectory is to be confined to the boundary
until the next state event).

4. The integrator then calls the model to determine if
a state reset is desired, and if so executes it.

5. Normal integration proceeds from that point until
the next state event is encountered.

This procedure is implemented via matlab extensions.

3.2 Time-Events

The approach and conventions needed to handle time
events are much simpler than those required for state
events, since we are merely emulating the execution of
a computer algorithm in a digital setting (but without
actual real time considerations). As we are implement-
ing this feature, we assume that each dtc will “notify”
the higher-level system integration block (sib) about its
next execution time, at the beginning of the simulation
and at every subsequent dtc execution. The sib de-
termines the earliest of the anticipated time events (if
there is more than one dtc), and signals the numerical
integrator to stop at that time. At that point the sib

is invoked and it proceeds to execute the appropriate
dtc(s), handling priority issues as required. At each
dtc execution this process is updated and continued
until the end of the simulation run.

3.3 Extended matlab Model Schema

The corresponding model input/output framework is
defined as follows [5, 6]: The original matlab scheme
was to create models in the form of functions with two
inputs (t, x) and one output (ẋ). To this, we added
the new input variable m (mode), allowing the numeri-
cal integration routine to request that the model switch
according to state events as they are detected. In addi-
tion, two new output variables are S, the flag variable
in Eqn. 2 that signals a state event, and r is included to
permit state reset (Eqn. 3). Note that S and m may be
vectors, to support multiple state event mechanisms.

2

The inclusion of embedded dtcs in hybrid system mod-
els necessitates a further increase in complexity in com-
parison with these earlier extensions. We adopted a
modular model-building scheme [7], as portrayed in Fig.
1 (at end of paper). In this diagram, observe that:

• The Numerical Integrator (ni – see [5, 6]) must now
serve as the “memory” for the aggregate discrete-
component states (xd) and for the dtc’s times of
next execution te, a vector having dimension equal
to the number of dtcs. The ni has the new require-
ment of stopping exactly at tn, the earliest of the
elements of te, and the “System Integrator Block”
(sib) has the responsibility of executing the correct
dtc(s) when t = tn.

• The continuous-time dynamics can reside in the sib

if they are simple; if it is helpful to create one or
several separate ctcs, then one can do this as di-
agrammed, with inputs and outputs defined at the
interface, as shown.

3.4 Extended matlab Integrators

Significant extensions must also be made in the matlab

numerical integration algorithms. There are three fea-
tures needed to permit the matlab integration routines
to deal with state and time events:

1. the numerical integrator must coordinate with the
extended model to establish the initial values of m
and te;

2. the routine must continuously test for the occur-
rence of events by:
(a) ensuring that t stops at tn for a time event,

and/or
(b) watching for zero crossings in S, iterating ex-

actly to the switching point and then changing
m; and

3. it must execute a state reset operation after a state
event, if it is called for by the model.

To support this functionality, the following conven-
tions are imposed: The value of m for initialization is
“empty” (m = []). The model must return the appro-
priate value of S, based on the stipulated initial condi-
tion x0. From this information, the integration routine
will set m = sign(S). During normal integration the
value of m’s elements will be −1, 0, 1. When a state
event is detected and determined2, the corresponding
element of m is switched; then it is temporarily made
complex and the model should respond by returning the
reset value r (Eqn. 3) or r = [] if no reset is to be done.
Finally, that element of m is returned to −1, 0, 1 and
numerical integration is resumed.

4 Example Application

The extensions to matlab outlined above were imple-
mented and tested using a number of simple switching
systems [5, 6]. Here we will focus on a more realistic

2We determine zero crossings by embedding a modified version
of matlab’s fzero algorithm in the integrator [6].

(and difficult) application, control of a nonlinear model
of an electro-mechanical testbed called the ATB10003.

The ATB1000 testbed consists of two subsystems: a
drive subsystem (a DC motor with coulomb friction,
a gear train with backlash, and an elastic shaft); and
a wheel/barrel subsystem (including an inertial wheel,
also with coulomb friction, and a flexible gun barrel).
The barrel is a distributed-parameter system that can
be approximated by a lumped-parameter model ob-
tained using the finite element method. The control
scheme for these dynamics is defined in two parts: a
“nonlinear proportional-integral-derivative (pid)” con-
troller for the drive system and a linear “outer loop”
compensator for the flexible member; both of these are
implemented in discrete-time form (as dtcs). Models
for these subsystems are provided in [8].

Figure 2 depicts the results of running a 1.25-second
simulation of the uncontrolled ATB1000 with a sinu-
soidal input, with stiction rigorously implemented. The
trace of ˙θm (dTh m) shows that stiction causes sticking
for substantial time intervals near t = 0.4, 0.7 and 1.0
seconds; this is being handled without chatter, which
would be observed using matlab’s ode45 algorithm.
Similar simulation studies were performed with back-
lash present, and it was observed that stiction is the
more dominant effect, and more troublesome to inte-
grate because it can cause controller chattering in some
circumstances. Unfortunately, page limitations do not

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

time

T
h_

m
, T

h_
i

ATB1000 model, STICTION, no backlash

T_m0 = 5 , omega = 10

dt = 0.005 ___ = Th_m, _ _ = Th_i

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−2

0

2

4

time

dT
h_

m
, d

T
h_

i

25−Jan−96 −− starts in "stuck" mode

___ = dTh_m, _ _ = dTh_i, ... = T_m/T_m0

Figure 2: Illustration of State-event Handling with
“Stiction”

permit further simulation results to be presented.

3The ATB1000 electro-mechanical pointing system was built
by Integrated Systems Inc., Santa Clara, CA, for the Army
Research, Development and Engineering Center (ARDEC), Pi-
catinny Arsenal, Dover, NJ.

3

5 Conclusion

The matlab implementation presented above provides
a demonstration of hsml in general and of rigorous
time- and state-event handling in particular. Introduc-
ing the concept “mode” and the carefully prescribed
“reset” protocol are both contributions toward making
the modeling and simulation of switching in continuous-
time systems more systematic. Recently added machin-
ery for the execution of embedded discrete-time compo-
nents further increases the generality available for mod-
eling and simulation of hybrid systems. A key factor in
these developments is the ability to guarantee the cor-
rect timing of state and time events, so that questions
such as “does the dtc execute just before or after the
parts engage” can be answered with high reliability.

Extending this modeling approach and associated nu-
merical integration routines can be pursued in several
obvious ways, e.g., they can be inserted into more so-
phisticated modeling environments (like the simulink

framework). A more important extension would involve
the development of a “hsml compiler”, that would take
the more rigorous hsml formulations and autocode ex-
tended matlab models.

6 References

[1] Taylor, J. H. “Toward a Modeling Language Stan-
dard for Hybrid Dynamical Systems”, Proc. 32nd
ieee Conference on Decision and Control, San An-
tonio, TX, December 1993.

[2] Taylor, J. H. “A Modeling Language for Hy-
brid Systems”, Proc. ieee/ifac Symposium on
Computer-Aided Control System Design, Tucson,
AZ, March 1994.

[3] Advanced Continuous Simulation Language (acsl),
Reference Manual. Mitchell & Gauthier Associates,
Concord MA 01742.

[4] matlab User’s Guide, The MathWorks, Inc., Nat-
ick, MA 01760.

[5] Taylor, J. H., “Rigorous Handling of State Events

in matlab́’, Proc. IEEE Conference on Control
Applications, Albany, NY, 28–29 September 1995.

[6] Taylor, J. H. and Kebede, D., “Modeling and Simu-
lation of Hybrid Systems”, Proc. IEEE Conference
on Decision and Control, New Orleans, LA, 13–15
December 1995.

[7] Taylor, J. H. and Kebede, D., “Modeling and Simu-
lation of Hybrid Systems in matlab”, Proc. IFAC
World Congress Vol. J, San Francisco, CA, 275–
280, July 1996.

[8] J. H. Taylor and J. Lu, “Robust Nonlinear Control
System Synthesis Method for Electro-Mechanical
Pointing Systems with Flexible Modes”, J. of Sys-
tems Engineering, Vol. 5 (special issue on motion
control systems), pp. 192-204, January 1995.

4

System

Integrator Block

u(i) = ... u
(i)
d,k = ...

x = [x(1) x(2) . . .]T

x
(i)
d,k = x

(i)+
d,k−1

xd = [x
(1)
d x

(2)
d . . .]T

te = [t
(1)
c t

(2)
c . . .]T

x

xd

m

t

ẋ

φ

r

te

N

I

� � CTC
(1)

� � CTC
(2)

. . .

� �

DTC
(1)

� � DTC
(2)

. . .

�

�

�

� CTC
(i)

ẋ = f(x, u, m, t)

y = g(x, u, m, t)

φ = φ(x, u, m, t)

r = h(x, u, m, t)

x

u

m

t

ẋ

φ

r

y

�

�

�

�

DTC
(i)

(k)

x+
d,k = fd(xd,k, ud,k, m, tk)

y+
d,k = gd(xd,k, ud,k, m, tk)

tc,k = . . .

�

�

�

�

xd,k

ud,k

m

t

�

�

�

x+
d,k

y+
d,k

tc,k

�

�

�

�

�

� �

�

� �

Figure 1: New matlab model component input/output structures

5

