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Abstract: A method for the solution of optimal re-
active power dispatch which treats var sources and
transformer tap ratios as discrete variables is pre-
sented. The optimal reactive power flow (ORPF)
problem is inheritly a mixed-integer nonlinear pro-
gramming (MINLP) problem. Due to difficulty of
solution, this problem is often approximated as a
nonlinear programming (NLP) problem. The NLP
methods find a suboptimal solution in most cases.
For finding the global optimal solution of this prob-
lem, an MINLP formulation is proposed and exe-
cuted. In this formulation, discrete variables, var
sources and tap ratios, are modeled as binary vari-
ables.

The MINLP problem with only continuous
and binary variables is solved by an outer-
approximation/equality-relaxation (OA /ER) algo-
rithm. In this algorithm, the MINLP problem is
decomposed into a mixed-integer linear program-
ming (MILP) master problem, and an NLP sub-
problem. These two subproblems are solved suc-
cessively until convergence criteria are met. A
sample network is used for testing the proposed
method. The results verify that the MINLP ap-
proach can find the global optimum, while NLP
algorithms give a suboptimal solution.

Keyword: optimal reactive power flow, power loss mini-
mization, MINLP problems, OA/ER algorithm

1 Introduction

The optimal reactive power dispatch problem has been
formulated since the 1960’s [1]. Many formulations have
been developed since then [2]. This problem is formu-
lated as an NLP problem in most cases. The ORPF is a
static mixed-integer nonlinear optimization problem. The
main objectives of ORPF study address two important as-
pects in power systems. The first objective is to maintain
the voltage profile of the network in an acceptable range.
The second objective is to minimize the total power loss
of the network while satisfying the first objective [3, 4].

The control variables for this study include vars/voltages
of generators, the tap ratios of transformers and reactive
power generation of var sources. The constraints include
the var/voltage limits of generators, the voltage limits of
load buses, tap ratio limits, var source limits, power flow
balance at all buses, and security constraints.

This problem has been solved by linear programming,
parametric linear programming, successive linear pro-
gramming, quadratic programming, gradient method, and
nonlinear quadratic programming [2]. In all of these meth-
ods, the discrete variables, var sources and tap ratios, are
treated as continuous variables in the optimization pro-
cess. These variables are rounded off to the nearest dis-
crete values after finding the optimal solution. In general,
these approaches yield a suboptimal solution. For finding
the global optimal solution, the ORPF problem is formu-
lated as an MINLP problem in this paper. In this formu-
lation, both var sources (capacitor and/or reactor banks)
and tap ratios are treated as discrete variables. The dis-
crete variables are modeled in terms of binary variables.

Different methods for solving MINLP problems are pro-
posed in the literature. Among these methods, generalized
bender decomposition (GBD) [b], branch and bound [6],
and OA/ER [7] can be cited. The method which is used in
this paper is an Quter-Approzimation/Equality Relazation
(OA/ER) algorithm [7], which is mainly based on the lin-
earity of binary variables and the convexity of nonlinear
functions.

The rest of this paper is organized as follows: in section
2 the general formulation of an MINLP problem is pre-
sented. In section 3 the OA/ER algorithm as a solution
method for MINLP problems is explained. In section 4 the
application of the OA/ER algorithm to ORPF problem is
addressed. In section 5 the proposed method is tested on
a sample network. We conclude with a short summary of
our results and their significance.

2 Formulation of an MINLP Problem

In this section the formulation of a particular class of
MINLP problems is addressed. In the class of MINLP
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which is formulated here, the integer variables are binary
numbers and can only have a linear structure, i.e., they
don’t appear in any nonlinear terms in objective function
or constraints. It is also assumed that the nonlinear func-
tions are convex and differentiable at least up to the second
order.

In the following formulation, the real and binary variables
are denoted by z and y vectors, respectively. The MINLP
formulation with the mentioned assumptions can be writ-
ten as:
min Z = f(z) +cTy
subject to:
h(z)+ Ay =0, (1)
g(z)+ By <0,

Tmin < 2 < Tmax,

where f: R R, h: R* =R, g: R"—>RP, z € ",y €
[0,1]; A, B are matrices with compatible dimensions; and
¢ 1s a column vector.

3 Solution Method

The MINLP problem as formulated in (1) can be solved by
several different techniques. Some of the well known meth-
ods are the Generalized Bender Decomposition (GBD),
the OA/ER algorithm, and a branch and bound method
with NLP subproblems. The Branch and bound tech-
nique is appropriate for problems in which the solution of
the relaxed NLP is not expensive, or the number of NLP
subproblems in the search tree is very limited. GBD ap-
proach in comparison with OA/ER algorithm needs more
major iterations where NLP subproblems and MILP mas-
ter problems are solved successively, however, its MILP
problem has a smaller size than OA/ER. [8]. The method
which is used in this paper is an (OA/ER) algorithm [7],
which is chosen mainly based on the linearity of binary
variables and the convexity of nonlinear functions.

In the OA/ER algorithm the continuous and discrete op-
timizations are decomposed. Continuous optimization is
performed in NLP subproblems. The discrete optimiza-
tion is performed in a MILP master problem. The al-
gorithm involves successive solutions of MILP and NLP
subproblems, until stopping criteria are met [7]. In the
following sections the formulation of these two subprob-
lems are explained.

3.1 Formulation of NLP Subproblem

The optimization of an MINLP problem with only contin-
uous variables is performed in this section. In the NLP
subproblem, the binary variables of MINLP problem are
fixed at their optimal values found in the last MILP solu-

tion. By this process, the MINLP problem will be trans-
formed to the following NLP subproblem:

min ZI};LP = f(=) + cTy*

subject to:
h(z) + Ay* =0, (2)
g(z) + By* <0,

Zmin < 2 < Zmax,
where y* are constant values found in the previous MILP.

3.2 Formulation of Master Problem

In the master problem a mixed-integer linear program-
ming problem is optimized. This formulation can be writ-
ten as [8]:

min 28, . =a+cTy

subject to:
f(2*) + V(") (z —2*) — 2 <0,
T*[h(z*) + VA(z*)T (2 — z*) + Ay] <0, (3)

g(z*) + Vg(z*)" (z — z*) + By <0,
Z;‘ILPk_l g cTy + a?
Zmin S T < Zax,

where o is an upper bound for f(z); Vf(z*) is the n-
column gradient vector of f(z) at zF; Vh(z*), Vg(z*)
are the n x r and n x p Jacobian matrices of h(z) and
g(z) at 2*, respectively; mepk_l is the optimal value of
objective function of the previous MILP solution; T* is an
r x r diagonal matrix with diagonal terms as:

—4 4f AFxd
tiﬁi— +1 Zf )‘z@>0 1= 120 i (4)
0 if AM=0

where AF are the optimal Lagrangian multipliers for the
equality constraints h;(z) = 0 (¢ = 1, -, ) found in the
last NLP subproblem. The formulation given in (3) is a
relaxed MILP problem.

3.3 OA/ER Algorithm

In performing the OA/ER algorithm the formulations
given for NLP subproblem (2), and MILP master prob-
lem (3), will be used. Different steps of this algorithm can
be summarized as follows:

Step 1: solve the relaxed MINLP problem given in (1) by
replacing the binary variables, y, by real variables limited
between 0 and 1 by an NLP algorithm. The selution can
be feasible or infeasible. If the solution is infeasible, either
the original MINLP problem is infeasible, or the initial
point is not good. If the solution is feasible, and y° is
integer the algorithm stops. Otherwisé, y° is rounded to
the nearest discrete values. Then, set k& = 0, Z;‘mpk_l =
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—o0, 2* = 2%, y* =°, Z},. equal to the optimal value of
objective function, and go to step 2.

Step 2: solve the following MILP master problem with
(z*,y*) as initial points:

min ZF, . =a+cTy,

subject to:
f(@) + V(') (z — 2*) —a <0,
T*[h(z') + Vh(z*)T (2 — o) + Ay] <0,
g(z*) + Vg(2*)" (z — 2*) + By < 0,
Z y; — Z y; < |BY =1, i=0,1, -k, (integer cuts)
e kielN{ T

ZI:IILP E cyto

Tmin < T < Tmax,

i:oilaa"'lk

(5)
where sets B* = {j: y; = 1}, N* = {j: y; = 0}; and |B’|
is the cardinality of B*. In (5), integer cuts have been
produced to eliminate the previously-determined integer
vectors y°, y!, y?, - - -, y* from further consideration. Two
cases are possible:

(a) If the optimal integer solution y**! exists with objec-
tive value 27, " < Z e BO to step 3.

MILP

(b) If 22" > ZZ . or no feasible solution exists, stop.

NLP
The optimal solution is Z};, . at =%, y*.

Step 3: solve the NLP subproblem for fixed y = y*+! to
find optimal point (z**+!,y**1) and 27, . *t1.

Step 4: (a) if the NLP subproblem is feasible and
Z;ka+l < Zgyp 2 88 Lo, = Z;ka+1, ot = mk+l> Y=
k+1

y**t1 k& «— k + 1, and go back to step 2 by adding the
integer cut.

(b) If the NLP subproblem is feasible and Z2,.* " > 2}, .
or the NLP subproblem is infeasible, set k+k+ 1 and go
back to step 2 by adding the integer cut to eliminate y*+!

from the solution space.

4 Application of OA/ER to ORPF
problem

In this section, the formulation of the optimal reactive
power flow problem is addressed. This formulation is re-
arranged as an MINLP problem in two steps. In the first
part capacitor and/or reactor banks (var sources) are for-
mulated as discrete variables. In the second section, trans-
formers tap ratios are modeled as discrete variables.

4.1 Formulation of ORPF problem as an

NLP problem

The formulation of ORPF problem with continuous var
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sources and tap ratios can be written as:

min Py,
subject to:

where P, is the total power loss of transmission lines.

4.2 Formulation of ORPF problem as an
MINLP problem

In this formulation both var sources and transformer tap
ratios can be treated as discrete variables. The discrete
variables are modeled in terms of binary variables.

4.2.1 Formulation of Discrete Var Sources

For a capacitor bank with Ng; equal units, one possible
formulation of var value in terms of binary variables can
be written as:

Jmax

Qci = AQc: Z 2yl (7)

=%

where Q¢; is the var value of capacitor bank i, AQ¢; is the
var value of each unit, jmax = log, Ngi, and v, € [0,1]
are the related binary variables. By adding (7) as new con-
straints to the NLP formulation given in (6), the MINLP
formulation with discrete var sources will be obtained.
The formulation for reactor banks is similar.

4.2.2 TFormulation of Discrete Transformer Tap
ratios

In the following formulation, it is assumed that all the tap
steps have equal values of AT;, and the number of steps is
Ng;. The discrete tap ratios in terms of binary variables
can be formulated as:

Jmax
Ti = Timn + AT Y, 2071 o,

i=1
ﬂmin S TL S ,-F'imax,

(8)

where T; is the tap ratio of transformer 4, jimax = logy N7,
and yh, (j = 1,2,---) are the related binary variables. T;
can appear in any nonlinear terms, while the related bi-
nary variables appear only in linear relations of (8). By
adding (8) as a new set of constraints to the MINLP prob-
lem found in section 4.2.1, the MINLP formulation with
discrete var sources and transformers tap ratios will be
defined.




5 Simulation Results

The 6-bus Ward-Hale system (Fig. 1) is used for the test
of the OA/ER. algorithm. The line data and bus data of
the 6-bus system are given in Tables 1 and 2, respectively.
The data in Table 2 corresponds to full load conditions.
The limits of bus voltages, tap ratios, shunt capacitors,
and generator vars are given in Table 3. In the simulation
of the sample network, the capacitors and transformer taps
are treated as discrete variables. For comparison purposes,
the results of conventional ORPF (which uses the NLP
algorithm) are also presented.

Figure 1: Ward-Hale 6-bus System

5.1 ORPF problem with Continuous
Variables

The ORPF problem may be solved by an NLP algorithm,
if the discrete variables are assumed to be continuous dur-
ing the optimization process. Their values are rounded
off to the nearest discrete values in the last iteration. For
this study, the loading conditions given in Table 2 are
used. The computed optimal values of control variables
from continuous solution are given in the second column
of Table 4. The discrete variables are rounded off to the
nearest integer values with the following two methods:

1. rounding all the discrete variables in one step. From
the continuous solution, the optimal value of Q¢gs is
at its limit, and there is no need for rounding its value.
The nearest integer value of Q¢4 is zero. These results
with rounded tap ratios are given in the third column

of Table 4.

2. If the step size of capacitors is much bigger than the
transformer taps, as in this case, it is advisable to
round off the discrete variables in two steps. In the
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Table 1: Line data of the 6-bus system on 100 MV A base

Impedance
Line Bus Number (per unit) Tap
Number | From | To R X Ratio
1 1 6 0.123 | 0.518 -
2 1 4 0.080 | 0.370 =
3 4 6 0.097 | 0.407 -
4 6 5 0.000 | 0.300 | 1.025
5 b 2 0.282 | 0.640 -
6 2 3 0.723 | 1.050 =
7 4 3 0.000 | 0.133 | 1.100

Table 2: Bus data of the 6-bus system in full load condi-
tions

Voltage Load
Bus vV )] P Q
Number | (per unit) | (deg) | (MW) | (MVAR)
1 1.04 0.0 0.0 0.0
2 1.11 -6.6 0.0 0.0
3 0.85 -14.0 55.0 11.0
4 0.95 -10.1 0.0 0.0
5 0.92 -13.6 30.0 18.0
6 0.91 -12.8 50.0 10.0

first step, the capacitors are rounded off to the nearest
integer values. Afterwards the ORPF program is run
with the new fixed values of capacitors. Then the
new optimal values of tap ratios are rounded off to
the nearest discrete values. The results are given in
the fourth column of Table 4.

In both cases, it is necessary to run the ORPF program
after the final round offs to optimize the continuous control
variables.

Table 3: Low and high limits of variables

Dependent Limits Control Limits

Variables | Low | High || Variables | Low | High
Vi1 1.00 | 1.10 Qg1 -20.0 | 100.0
Vo2 1.10 | 1.15 Qu2 | -20.0 | 100.0
Via 0.90 | 1.00 Qca 0.0 | 15.0
Via 0.90 | 1.00 Qcs 0.0 | 30.0
Vis 0.90 | 1.00 T43 0.95 1.09
Vie 0.90 | 1.00 T65 0.95 1.09




Table 4: Continuous and discrete optimal values of capacitors and taps (ratios)

continuous round off round off | MINLP with discrete
Variable capacitors & taps | in one step | in two steps capacitors & taps
ch(Mva}?) 0.06 0.0 0.0 20.0
Qoe(Mvar) 25.00 25.0 25.0 25.0
T43 0.982 0.98 0.98 0.98
T65 1.0565 1.06 1.05 1.08
Pr(MW) 8.51 8.68 8.62 8.57

5.2 ORPF problem with Discrete Var
Sources and Tap Ratios

The var sources and transformer taps are modeled as dis-
crete variables in an MINLP formulation. The optimal
results for this case are given in the fifth column of Table
4, By comparing the results of this section with results of
the NLP approach, it is clear that the NLP method gives
a suboptimal solution, while the OA/ER algorithm finds
the global optimum solution. The total power loss which
is found by OA/ER algorithm is 1.3% less than that from
the NLP with rounding off in one step, and 0.6% with
round off in two steps.

By studying some other simulation results, it was also ob-
served that the discretization of tap ratios has less effect
than that from var sources. This result is due to the small
step size of tap ratios. If a larger step size for transform-
ers taps or smaller step size for capacitor banks is selected,
the results could be different.

6 Discussion and Conclusions

The MINLP formulation, and the basic concept of the
OA/ER algorithm as a tool for MINLP solution are pre-
sented. The ORPT problem is inheritly an MINLP prob-
lem, but due to the complications, this problem is solved
by NLP algorithms in most applications. In the NLP ap-
proach the discrete variables, var sources and transformers
tap ratios, are treated as continuous variables. The opti-
mal values of continuous variables are rounded off to the
nearest discrete values at the final iteration of the NLP
program. This procedure results in a suboptimal solution.
Two methods are considered for rounding the continuous
variables. The difference between the simulation results
shows that the rounding method used for finding the fi-
nal solution is of great importance. The two methods are
different by 0.7% in the total power loss result.

The ORPF problem as an MINLP problem is formulated
with discrete var sources and tap ratios. The sample net-
work is studied for NLP and MINLP cases. The optimal
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solution found by the OA/ER algorithm is the global min-
imum of the problem, and has less power loss than that
from the NLP approach. The total power loss in MINLP
approach has a reduction of 0.6% to 1.3% in comparison
to the NLP approach. This demonstrates that the existing
NLP approaches give a suboptimal solution for the ORPF
problem, while the MINLP approach can find the golobal
optimal solution.
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