
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract 
This paper focuses on solving the failure detection and 
isolation (FDI) problem by developing a model-based 
approach using a parity equation implementation of 
directional residuals.  This new approach is an 
extension of the generalized parity vector (GPV) 
technique based on the stable factorization approach.  
The present work has improved the approach in 
Viswanadham, Taylor and Luce [11] in two important 
respects: (1) a novel transformation matrix computation 
is presented that enhances the isolation properties of the 
FDI algorithm, i.e., increases the maximum number of 
faults that can be isolated and the number of 
disturbances that can be decoupled above the number of 
outputs of the system [2]; and (2) disturbance 
decoupling is implemented in the stable factorization 
framework to make the residuals immune to measurable 
disturbance effects.  The efficacy and robustness of this 
technique is demonstrated by applying this FDI scheme 
to a jacketed continuous stirred tank reactor (JCSTR).  
 
1. Introduction 
 

The continuous and growing advances in process 
control have resulted in large and complex plants, 
increasing the need of high performance fault 
monitoring systems.  As a result, fault detection and 
isolation has become a critical issue for safe and reliable 
plant operation and reduction of economic losses [9].  

Over the past decades, one area of active research is 
based on the use of analytical redundancy [1], [3], [5], 
[12] and the generation of residuals which have 
directional properties in response to particular faults [4], 
[7], [8] and [11].  This paper solves the FDI problem 
using an extension of the generalized parity vector 
(GPV) technique based on the stable factorization 
approach [11]. 

The paper is organized as follows.  In section 2 a 
general overview of stable factorization is first given, 
followed by its application to implement the generalized  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

parity vector technique.   Next, in section 3, FDI   using 
directional residuals for sensor and actuator faults is 
exposed.  In section 4 a novel calculation of the 
transformation matrix is proposed to improve isolation, 
and section 5 presents the implementation of disturbance 
decoupling in the stable factorization framework.  In 
section 6, an example using a jacketed continuous 
stirred tank reactor (JCSTR) model is used to illustrate 
the method.    

 
2. Residual generation 
 

The residual generation block is implemented using 
the generalized parity vector (GPV) technique, which is 
developed in the stable factorization framework.  Before 
introducing the GPV concept, some of the fundamental 
mathematics of stable factorization are outlined. 

 
2.1.  Stable factorization 
 

The significance of using the stable coprime 
factorization approach is that the parity relations 
obtained involve stable, proper and rational transfer 
functions even for unstable plants.  Therefore the 
realizability and stability of the residual generator is 
guaranteed [11]. 

Given any nxm proper rational transfer function 
matrix P(s), it can be defined in terms of its right and 
left coprime factors as follows: 

 
1D(s)(s)NP(s) −=                    (2.1.1) 

(s)N~(s)D~P(s) 1−=                     (2.1.2) 
 

where (s)N  and (s)D are said to be right coprime 

factors and (s)N~  and (s)D~ are called the left coprime 
factors.  All factors belong to the set of stable transfer 
function matrices. 
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The GPV technique is based on the stable 
factorization of the system transfer function matrix in 
terms of its state-space representation.  Let the system 
be described by the set of equations: 

 
( ) ( ) ( ) ( )x t Ax t Bu t Gd t= + +&   (2.1.3) 

)t(Eu)t(Cx)t(y +=                         (2.1.4) 
 

where x, u, d, and y represent the state variables, inputs, 
disturbances and outputs of the system, respectively.  
Assuming that the pairs of state space matrices (A, B) 
and (A, C) are stabilizable and detectable, it is possible 
to select a constant matrix F such as the matrix 

FCAA~o −=  is stable.  Using the definition of the 
coprime factorization of P(s) in [10], the left coprime 
factors are given by:  

 
E)FEB()A~sI(CN~ 1

o +−−= −        (2.1.5) 

F)A~sI(CID~ 1
o

−−−=                           (2.1.6) 
 

2.2. Generalized parity vector (GPV) technique 
 

Based on the definition of the transfer function 
matrix P(s)  given in equation (2.1.2) and taking the 
relationship among the desired control input, ud, and the 
actual output of the sensors, y, the following relations 
are obtained: 

)s(u
)s(y(s)N~(s)D~P(s)

d

1 == −                   (2.2.1) 

0(s)u(s)N~(s)y(s)D~ d =−            (2.2.2) 
 

Under ideal conditions, when the plant is linear, noise 
and fault free, equation (2.2.2) holds.  However, when a 
fault happens, this relation is violated showing the 
inconsistency between the actuator inputs and sensor 
outputs with respect to the unfailed model.  Using this 
fact, the generalized parity vector, p(s), is defined as: 

 
      ](s)u(s)N~(s)y(s)D~[(s)Tp(s) dr −=          (2.2.3) 
 
The GPV is a time varying function of small 

magnitude under normal operating conditions, and 
exhibits a significant magnitude change when a fault 
occurs. Each distinct failure produces a parity vector 
with different characteristics, allowing the use of the 
GPV for isolation purposes.  A transformation matrix  
Tr(s) is introduced to make it possible to achieve the 
desired fault response specifications [11].  This paper is 
focused on fault diagnosis using the direction of the 
parity vector under various failure conditions.  We 
assume hereafter that Tr is constant, and that F in 

equations (2.1.5) and (2.1.6) is chosen such that 

oA Iσ= −%  (which can always be done if (A, C) is 
observable); this simplifies our discussion of GPV 
behaviour. 

 
3. Fault detection and isolation (FDI) using 

directional residuals 
 

The basic idea of FDI using failure directions is that 
each failure will result in activity of the parity vector 
along certain axes or in certain subspaces.   These 
reference axes or subspaces are determined by the state 
space matrices.  Depending on the dynamics of the 
system, some of these reference directions may be close 
or identical, making the isolation for some faults 
difficult or unachievable.  To overcome the angle 
separation problem between the reference directions, the 
calculation of an optimal transformation matrix Tr is 
introduced in section 4. 

 
3.1. Actuator faults 
 

Assuming an additive fault aj(t) in the jth actuator and 
using the definitions in section 2.2, the GPV becomes: 

 

( ),
( )

( ) ( ) ( ) jj j
a j r j r n

a s
p s T N a t T B

s σ
= − ∆

+
%     (3.1.1) 

 
Equation (3.1.1) shows that pa,j (s) is restricted to exhibit 
activity along the direction defined by the jth column of 
N~ , which we denote ( )/j

nB s σ+ .  For a system with 
y=x, or state space matrices C=Inxn and E=0nxm , as in the 
JCSTR model, equation (2.1.5) can be rewritten more 
simply as: 

( ) 11( )oN sI A B diag s Bσ −− ⎡ ⎤= − = +⎣ ⎦
%%          (3.1.2) 

                       
From equation (3.1.2), j j

nB B=  is obtained.  The 
actuator fault isolation is based on the angle Θj between 
the GVP and j

nB  as illustrated in figure 1.  If the jth 
actuator is faulty, this angle should be zero in the ideal 
case or less than a small threshold value, Th, to account 
for model uncertainty.   

 
 
 
 
 

 
 

Figure 1.  Actuator FDI 
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3.2. Sensor faults 
 

Similarly, for an additive fault si(t) in the ith sensor, 
the parity vector (section 2.2)  reduces to: 

 

( ), ( ) ( ) ( ) ( )
i

i i d
s i r i r d i

B
p s T D s t T E s s

s σ
⎡ ⎤

= ∆ +⎢ ⎥
+⎢ ⎥⎣ ⎦

%    (3.2.1) 

 
Thus, for the sensor failure case, it is not possible to 
confine pa,i(s) to lie along a fixed axis.  Only for 
fortuitous cases, depending on the dynamics of the 
system, can this be achieved.  However, for any system, 
the GPV always lies in a plane iSP of the generalized 
parity space, defined by the vectors i

dE  and i
dB [11].  

These vectors are related to D~  by equation (2.1.6).  
Assuming the same state space representation used in 
section 3.1 for the JCSTR, equation (2.1.6) can be 
simplified as: 
 
 1 1( ) ( )oD I sI A F I diag s Fσ− −⎡ ⎤= − − = − +⎣ ⎦

%%    (3.2.2) 

 
  From equation (3.2.2) and the definition of F, Bd and 
Ed are defined as: 
 

)IA(Bd σ−−= , IEd =                   (3.2.3) 
 

The sensor fault isolation is based on the angle Θi, 
between the GPV and the ith sensor reference plane, 

iSP , as illustrated in figure 2.  If the ith sensor is faulty, 
this angle should be zero or less than Th. 

 
 
 
 
 
 
 

 
 
 

Figure 2.  Sensor FDI 
 
3.3. Special case for actuator faults 
 

We consider a special case in terms of the iSP  
normal, i

spN  shown in figure 2 and defined by 
i
d

i
d

i
sp BEN ⊗=  as:                      

0NB i
sp

j
n =•                       (3.3.1) 

If the dot product of j
nB and the normal to the ith sensor 

reference plane is zero then the jth actuator axis lies on 
the ith sensor reference plane as is illustrated in figure 3. 
 
 
 
 
 
 

 
 
 
 

Figure 3.  Special case for actuator FDI 
 
This condition would be a result of the system state 
space structure.  For this case it is not possible to 
calculate a transformation matrix Tr such as the actuator 
reference direction can be taken out of the sensor 
reference plane.  This can be demonstrated 
mathematically by proving equation (3.3.2) for arbitrary 
Tr, which we did by symbolic manipulation in 
MATLAB®. 

 
( ) 0BTETBT i

dr
i
dr

j
nr =⊗•             (3.3.2) 

 
Under this circumstance we may still be able to 

distinguish between these faults by taking a more 
detailed look at the parity vector relation in equation 
(3.2.1): Let us assume that ( ) /i is s S s= (a bias fault); 
we can apply the initial value theorem to show that the 
initial GPV activity is in the direction i

r dT E and invoke 
the final value theorem to demonstrate that the steady-
state GPV activity is in the direction 

i
i id

r d r s
B

T E T B
σ

⎛ ⎞
+ ∆⎜ ⎟⎜ ⎟

⎝ ⎠
.  Then we can clearly isolate the 

ith sensor fault from the jth actuator fault unambiguously 
as long as j

nB is not in the cone angle (sector) between 
i
dE  and i

sB , using the following logic: 
 

( )
( ) ( ){ } ⎪⎭

⎪
⎬
⎫

≤∠∠

≤∠
j

ah
j

n
i

i
sh

i

fthenTB,GPV&SP,GPVif

fthenTSP,GPVif
(3.3.3) 

 
where i

sf and j
af  denote the ith sensor and jth actuator 

faults respectively.  Furthermore, we can still distinguish 
between these faults if j

nB  is not aligned with i
sB  by 

waiting to observe the steady-state GPV direction.   
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4. Transformation matrix 
 

The transformation matrix Tr is an important issue in 
FDI using directional residuals.  We wish to choose Tr to 
increase the separation angle between the original set of 
reference directions as much as possible, to enhance 
robustness and maximize the number of faults that can 
be isolated and the number of disturbances that can be 
decoupled, beyond the number of outputs of the system 
[2].  This can be formulated as a constrained 
optimization problem, whose objective is to maximize 
the angles between the transformed reference directions, 
to the extent possible.  

The optimization routine maximizes the minimum of 
Fi,j(Tr), where Fi,j(Tr) is the objective function 
containing the angles between the reference directions 
that are separable.  In this context, separable refers to 
those directions, which do not satisfy equation (3.3.2).  
The mathematical formulation is given by: 

 

( ), ( ) ,i j r i jF T Z Z= ∠                           (4.1) 

{ } { }
,

,max min ( )
r i j

i j rT F
F T                    (4.2) 

             such that  ( ) 0, ( ) 0r eq rc T c T≤ =   
         
where ( ) 0rc T ≤ , ( ) 0eq rc T =  represent nonlinear 
inequality and equality constraints, respectively; and Zi 
and Zj are transformed reference directions.  These 
directions are given by transforming j

nB , i
dB  and i

dE .  
In order to refine the optimization problem the 
following constraints of the form c(Tr) and ceq(Tr) are 
implemented. 

1. A compulsory constraint is imposed on Cond(Tr), 
the condition number of Tr; max( )rCond T C≤ (where 
Cmax depends on the application) improves the stability 
and robustness of the FDI response.  Specifically, 
smoother behaviour of the GPV angles and smaller 
fault-free |GPV|peak is achieved during transients if 
Cond(Tr) is constrained.  

2. An optional constraint normalizing Tr is applied; 
||Tr||=1 keeps the transformed GVP magnitude in a 
scale similar to the original one.  

3. A final constraint is required only for failure cases 
where the faulty |GPV| is not large enough in 
comparison with the transient fault free |GPV|.  This is 
solved by constraining the faulty steady state |GPV| to 
be as large as possible compared to the maximum value 
of the fault free |GPV| during the transient. 

It is necessary to modify the above optimization 
problem definition when dealing with the special case 
discussed in section 3.3.  As mentioned, when a fault in 
the ith sensor is applied, the GPV lies on the plane 

iSP within the cone defined by vectors i
sB  and i

dE .  
Figures 4 and 5 illustrate how these sensor fault sectors 
are defined for the JCSTR model and their relations 
with j

nB . 
 
 
 
 
      
 
 
 
 

 
Figure 4.  Volume sensor fault sector 

 
 
 
 

 
 
 
 
 
 
 

Figure 5.  Temperature sensor fault sector 
 
In figure 4 we observe that the outflow valve 

reference direction ov
nB  lies on the boundary of the 

volume sensor fault sector, making isolation difficult.  
However, basing isolation on the steady-state GPV 
activity along v

sB should still be feasible.  Conversely, 
in figure 5 the heating inflow valve reference direction 

hv
nB  is well outside of the temperature sensor fault 

sector, which is desirable for the sensor fault isolation. 
We are still investigating the best strategy to 

implement in such cases.  For the case shown in figure 5 
we may want to maximize the angular separation 
between hv

nB and the cone, in the situation depicted in 

figure 4 we can maximize the angle between ov
nB and 

v
sB if the steady state strategy is used. 

 
5. Disturbance decoupling 
 

Disturbances are considered to be measurable extra 
inputs acting on the plant, assuming no particular 
temporal behaviour [6].  The distinction between a 
disturbance and certain additive faults is indeed 
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subjective.  We model faults as additive inputs at 
particular sensors and actuators, and may specify 
temporal behaviour (e.g., bias faults); any other extra 
inputs we categorize as disturbances.  We desire that our 
FDI approach not be affected by such extra inputs.    

We demonstrate that residual directionality can be 
unaffected by extra inputs whose measurements are 
available.  This can be demonstrated by rewriting 
equation (2.1.3) as follows:  

)t(u~B~)t(Ax)t(x +=&             (5.1) 

where [ ]B B G=% , T]du[u~ =  and d represents the 
disturbance inputs.  Using equation (5.1), the coprime 
factorization definition given by equation (2.1.5) can be 
rephrased as: 
 

1( ) ( )oN C sI A B FE E−= − − +%% %       (5.2) 
 

Using the modified definition of N~ given by equation 
(5.2), disturbance decoupling is implemented in the 
stable factorization framework to make the GPV 
immune to disturbance effects.   
 
6. JCSTR description and preliminary 
results 
 

The FDI algorithm has been implemented using 
MATLAB®, based on a simulated model of the jacketed 
continuous stirred tank reactor shown in figure 6.  In this 
JCSTR, the tank inlet stream is received from another 
process unit and there is a heat transfer fluid circulating 
through the jacket to heat the fluid in the tank. The 
objective is to control the temperature and the volume 
inside the tank by varying the jacket inlet valve flow 
rate (the temperature control or TC loop) and tank outlet 
valve flow rate (the level control or LC loop) 
respectively.   

In order to test the FDI performance, different sensor 
and actuators fault were applied, as well as disturbances.  
Both linear and nonlinear models were used in this 
study; time histories from both models are shown in all 
plots, although they coincide in a number of cases.     

The effectiveness of sensor FDI is evident in figures 
7, 8 and 9 which show the result of applying a -20% bias 
fault to the volume sensor at t=3 sec.  It is observed in 
figure 8 that immediately after the fault is applied, the 
|GPV| increases significantly, allowing the 
unambiguous detection of the fault.  Isolation is made 
based on the behaviour shown in figure 9, where only 
the GPV angle with respect to the volume sensor 
reference plane goes to zero, while the remaining angles 
move further away from zero.  
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Figure 6.  Jacketed continuous stirred tank reactor  

 
For the JCSTR model, both actuators satisfy equation 

(3.3.1) with respect to one of the sensors, falling into the 
special case for actuator fault isolation.  As expected 
from the mathematical derivation, the outflow valve 
fault GPV lies on the volume sensor fault reference 
plane.  This is shown in figure 12, where both angles go 
to zero, when a -20% bias outflow valve fault is applied. 
However, the FDI algorithm is capable of isolating this 
fault successfully by using the logic described in 
equation (3.3.3).  By comparing figures 9 and 12, its 
effectiveness is confirmed, since only for the actuator 
fault case are both angles zero, while for the sensor 
failure case, only the angle corresponding to the faulty 
sensor is zero.  This verifies that even for systems whose 
reference directions fall in the special case presented in 
section 3.3, the GPV may provide a different signature 
for each fault. 

Finally, a -20% temperature sensor fault is applied at 
t=3 sec followed by a +20% high mix inflow 
disturbance at t=6 sec.   The influence of the disturbance 
in the temperature measurement is observed in figure 
13, for the period of 6 to 9 sec.  Disturbance rejection is 
verified in figures 14 and 15:  The |GPV| and the GPV 
angles are only slightly and briefly affected by the 
disturbance after t=6 sec.  Since none of the thresholds 
are exceeded, correct detection and isolation is achieved, 
validating the immunity of the residual to disturbance 
effects.  

 
7. Conclusion 
 

In this paper we have described an extension of the 
generalized parity vector approach first introduced by 
Viswanadham, Taylor and Luce [11].  A systematic 
approach to calculate an optimal transformation matrix 
has been effectively developed, enhancing the FDI 
properties and the scope in terms of the number of faults 
that can be isolated.   

 



 
Figure 7. Volume sensor time-histories (-20% bias    

fault) 

 
Figure 8.  |GVP| for  -20% bias volume sensor fault 

 

 
Figure 9.  GPV angles for  -20% bias volume sensor 

fault 

 
Figure 10.  Outflow valve time-histories (-20% bias 

fault) 

 
Figure 11.  |GPV| for – 20% bias outflow valve fault 

 

 
Figure 12.  GPV angles for – 20% bias outflow valve 

fault 



 
Figure 13.  Temperature sensor time-histories (-20% 

sensor bias fault at t=3 sec + 20% high mix 
inflow disturbance at t=6 sec) 

 
Figure 14. |GPV| for -20% bias temperature sensor 

fault at t=3sec + 20% high mix inflow 
disturbance at t=6sec 

 
Figure 15.   GPV angles for -20% bias temperature 

sensor fault at t=3sec  +  20% high mix 
inflow disturbance at t=6sec 

The special case when an actuator fault GPV direction 
lies on a sensor fault plane has been clarified, and 
additional logic has been added to deal with the special 
case defined for actuator fault detection.  Finally, 
robustness has been improved by incorporating 
disturbance decoupling in the stable factorization 
framework.  These results demonstrate the capability of 
a powerful model-based approach for FDI, even if there 
are significant nonlinearities involved, as there are in the 
JCSTR problem (but not discussed in detail here). 
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