
From Proc. IFAC CACSD’97, Gent, Belgium, 28-30 April 1997. c©IFAC

ENHANCED MATLAB TOOLS FOR
LINEAR AND NONLINEAR SYSTEM STABILILTY

James H. Taylor & Cheney Chan

Department of Electrical Engineering

University of New Brunswick

PO Box 4400, Fredericton, NB CANADA E3B 5A3

email: jtaylor@unb.ca

Abstract: Two matlab-based tools have been de-
veloped for the convenient assessment of stability
conditions for linear and nonlinear systems. The
first is a more helpful and definitive version of
nyquist, which has features of automatic zoom-
ing (to show all crossings of the real axis and thus
display the corresponding critical gain points) and
which displays on the real axis a numeral (‘0’,
‘1’ etc.) that represents the number of unsta-
ble (right-half plane) poles that will result in a
closed-loop system with feedback gain k if −1/k is
located in that region. The second tool is built on
this extended nyquist command, and makes the
application of the nonlinear time-varying system
Circle Criterion equally simple and definitive. Ex-
amples are presented to show the efficacy of these
extensions within the matlab environment.
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1 Introduction

Existing matlab commands for the stability anal-
ysis of linear systems are not easy to interpret
by the less-than-expert user, and tools for assess-
ing the stability of nonlinear systems are nonex-
istent in matlab. In the linear case, interpret-
ing the usual matlab Nyquist plot is not hard
if the plant is stable and the W (jω) locus is not
complicated, but it may be confusing, especially if
there are multiple real-axis crossings and/or open-
loop poles on the imaginary axis or in the right-
half plane (rhp). In the nonlinear case, none of
the classical absolute stability criteria are imple-
mented in matlab, and we have addressed that
lack by creating a comparably user-friendly tool
for the application of the Circle Criterion [1, 2].

2 Stability Criteria

In this section we state the linear and nonlinear
stability criteria, emphasizing their classical geo-
metric interpretations. As a preliminary, the class

of systems considered is depicted in Fig. 1, where
it is assumed that the forward-path transfer func-
tion is expressed in state-space form as:

W (s) = C(sI − A)−1B + D (1)

or in Laplace notation as a ratio of polynomials,
with the order of the numerator not exceeding
that of the denominator:

W (s) =
bmsm + . . . + b1s + b0

sn + an−1sn−1 + . . . a1s + a0

, m ≤ n

(2)
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Figure 1: Closed-loop Linear/Nonlinear System

The Nyquist criterion states that the closed-loop
system in Fig. 1 with k in the feedback path will
be stable if the point −1/k is not in the W (s)-map
of the right-half of the s-plane (rhp). In the case
of a stable plant W (s), this map is simply that
region to the right as one traverses the Nyquist
plot of W (jω). In the case of a plant with q poles
in the right-half plane, this map must take into
consideration q map layers due to excluding these
singularities by traversing a small circle around
each in the counter-clockwise sense, which results
in a large circle traversed in the clockwise sense
for each. As an example, consider the unstable
plant:

W (s) =
s + 2

s2 − 4s − 5
(3)

Then the s-plane region being mapped is depicted
in Fig. 2 and the resulting complete Nyquist dia-
gram is portrayed in Fig. 3. Observe that the only
range of k leading to stability is 4 < k < ∞; the
corresponding region for −1/k is shown with the
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Figure 2: s-plane region mapped for Nyquist cri-
terion

numeral 0 on the real axis to denote no closed-
loop poles in the rhp. For 2.5 < k < 4 there
will be 2 unstable closed-loop poles, and for the
range −∞ < k < 2.5 there will be one; again, the
numerals on the real axis indicate these results.

The Circle Criterion [1, 2] states that the closed-
loop system in Fig. 1 with f( · , t) in the sector
[F , F ], i.e.,

F ≤
f(σ, t)

σ
≤ F (4)

is absolutely stable (uniformly asymptotically sta-
ble in the large – uasil) if one can draw a circle
on the W = U + jV plane whose diameter is de-
fined by the points V = 0,−1/F < U < −1/F
and whose interior has no points in common with
the W (s)-map of the right-half of the s-plane.
In essence, this circle must lie in a region of the
Nyquist plane where there are zero mapping layers
in the sense of the Nyquist criterion stated above.
The case F < 0 < F is interesting in that the
“diameter” so defined passes through the point
∞ and the “inside” of the circle is actually what
would ordinarily be considered the outside (exte-
rior points), as shall be illustrated in the examples
of Section 4.

3 Description of MATLAB

Stability Routines

Given the above problem definition, the following
“help” displays (reformatted to fit the columns of
the ifac style) constitute a concise “users’ man-
ual” for the routines newnyq and circle:
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Figure 3: W (s)-map for the Nyquist criterion

newnyq

A new and improved version of Nyquist frequency
response for siso continuous-time linear systems
(see nyquist). newnyq(a,b,c,d) produces a
Nyquist plot. The frequency range, number of
points and scaling are set automatically, and a
“zoom” feature displays all real-axis crossings. In
addition, the k range(s) for closed-loop stability
are reported, and the number of unstable closed-
loop poles for −1/k on various regions of the real
axis are displayed.

newnyq(a,b,c,d,s) will cause the right-half
plane mapping of W (s) = C(sI − A)−1B + D
to be indicated by hatching.

newnyq(num,den) and newnyq(num,den,s)
are corresponding variants for W (s) provided in
ratio of polynomial form.

circle

An implementation of the Circle Criterion for
nonlinear feedback control systems with a linear
part W (s) and a nonlinearity lying in a sector
[ Fmin, Fmax ], i.e.,

Fmin ≤ f(σ, t)/σ ≤ Fmax

The nonlinear system is uniformly asymptotically
stable in the large (uasil) if the circle whose
diameter is defined by the points −1/Fmax ≤

<(W (jω)) ≤ −1/Fmin has no interior points in
the rhp mapping of W (s).

circle(a,b,c,d,f min,f max) will check if the
cc is satisfied for the sector-bounded nonlinear-
ity and W (s) = C(sI − A)−1B + D



circle(a,b,c,d,f min) will determine the
maximum value of f max) for which the cc is
satisfied.

circle(a,b,c,d,nan,f max) will determine the
minimum value of f min) for which the cc is sat-
isfied.

circle(num,den,f min,f max) etc. are corre-
sponding forms for W (s) provided in ratio of poly-
nomial form.

This routine is built on newnyq, a new and im-
proved version of the Nyquist criterion with ad-
vanced graphics and reporting.

4 Examples

First we illustrate the use of newnyq and circle

on a relatively simple stable plant:

W (s) =
s + 1

s4 + 2s3 + 25s2 + 3s + 1
(5)
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Nyquist Study of a Stable Plant
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Figure 4: Nyquist Criterion Example (Stable
Plant, with Zooming)

Note that the upper plot is similar to that pro-
duced by the matlab nyquist command ex-
cept for the numerals on the real axis indicating
the corresponding number of unstable closed-loop
poles. The lower plot in Fig. 4 illustrates the fea-
ture of automatic zooming (to show all crossings
of the real axis); the only manual operations in
producing this figure were the text commands to
document the problem (record num and den and
the stable k range). The report that newnyq pro-
vides after it is invoked for this problem is:

>> newnyq(num,den)

stable k range

-1 < k < 43.17

Finally, the numerals 0, 1, 2 written on the
real axis represent the number of right-half-plane
closed-loop poles that would result if −1/k were
to lie in each region.

Once the Nyquist plot has been viewed, one may
request that the cc be applied to the same W (jω)
and a lower sector bound of Fmin = 2.5. The cc
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Circle Criterion Study of a Stable Plant

num = [ 1 1 ]

den = [ 1 2 25 3 1 ]

F_min = 2.5

−>  F_max = 11.59

Figure 5: Circle Criterion Example (Stable Plant)

locus is shown on the Nyquist plot (Fig. 5), and
the report that circle provides after it is invoked
for this problem is:

>> circle(num,den,2.5)

stable k range

-1 < k < 43.17

circle criterion is satisfied

maximum sector bound F_max = 11.59

(note that it includes the newnyq report, as
shown above). Again – the only manual steps
in preparing Fig. 5 were the documentation num

= , den = , F min = etc. defining the problem
and the result. The interpretation of this result
is that f( · , t) in Fig. 1 must lie in the sector
[ 2.5 , 11.59 ], i.e.,

2.5 ≤
f(σ, t)

σ
≤ 11.69 (6)

in order to guarantee absolute stability.

We conclude this example by illustrating the ob-
servation in Section 2 that the “interior” of the
CC circle may include the point ∞ by taking
Fmin = −0.5 for the above plant. The result is
shown in the following report and Fig. 6:

>> circle(num,den,-0.5)

stable k range

-1 < k < 43.17

circle criterion is satisfied

maximum sector bound F_max = 0.6897
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Second CC Study of a Stable Plant − Negative F_min

num = [ 1 1 ]

den = [ 1 2 25 3 1 ]

F_min = −0.5

−>  F_max = 0.6897

Figure 6: Circle Criterion Result for Negative
F min

Next, we provide the matlab plots obtained ap-
plying newnyq and circle to the unstable plant
in Eqn. 3. The resulting “new Nyquist” plot is
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Nyquist Study of an Unstable Plant
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Figure 7: Nyquist Criterion Example (Unstable
Plant)

depicted in Fig. 7; note that it is similar to Fig.
3 except that the “large (infinite) circle” arising
from the exclusion of the right-half-plane singu-
larity is not shown (to avoid unnecessary clutter);
that circle is, however, the basis for the numeral
1 at the far left on the real axis (meaning that
any k such that −1/k < −0.4 will result in a
closed-loop system with one unstable pole). The
region −0.25 < −1/k < 0 on the real axis has
the numeral 0, because the points are to the left

of the W (jω) locus meaning that points there are
no longer in the right-half-plane map of W (s). In
light of this, the report that newnyq provides in
this case is:

>> newnyq(num,den)

stable k range

4 < k < Inf
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Circle Criterion Study of an Unstable Plant

num = [ 1 2 ]

den = [ 1 −4 −5 ]

F_min = 5.0

−>  F_max = 27.83

Figure 8: Circle Criterion Example (Unstable
Plant)

To illustrate the application of the Circle Crite-
rion tool to the same unstable plant, we specify
a lower bound of F = 5, which is in the Nyquist
range as required, and the report that circle pro-
vides for this problem is:

>> circle(num,den,5)

stable k range

4 < k < Inf

circle criterion is satisfied

maximum sector bound F_max = 27.83

Again, we note that the corresponding circle in
the Nyquist plane lies completely within the “no
mapping” portion of the plot.

Another feature of circle allows us to specify
the upper bound (Fmax) and obtain the mini-
mum corresponding lower bound that guarantees
uasil. To demonstrate this we issue the com-
mand circle(num,den,NaN,100) on the above
unstable plant. We receive the following report
and plot:

>> circle(num,den,NaN,100)

stable k range

4 < k < Inf

circle criterion is satisfied

minimum sector bound F_min = 5.392
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Second CC Study of an Unstable Plant − F_min Sought

num = [ 1 2 ]

den = [ 1 −4 −5 ]

F_max = 100.0

−>  F_min = 5.392

Figure 9: Circle Criterion Example (Upper Bound
Provided)

5 Conclusion

The routines presented above provide a simple
environment for the determination of stability
conditions for linear and nonlinear plants. We
trust that the convenience and added support
they supply can be readily appreciated from the
examples presented in Section 4. We have in-
stalled these routines on our web page, url =
http://www.ee.unb.ca/jtaylor/ for your access. A
copy of this paper is also available there, to serve
as a small “User’s Guide”.
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