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Abstract— This paper is an extension of the generalized
parity vector ( GPV) approach presented in Omana and Taylor
[1] and [2]. In the present work, this fault detection and isolation
(FDI) technique is implemented on a two-phase separator
followed by a three-phase gravity separator model used in
oil production facilities. This model simulates a larger scale
process, which allows the technique to be tested in a higher
dimensional space with more complex system dynamics. Also,
the plant model availability issue is overcome by incorporating
a system identification module before executing theFDI block.
This shows that while theGPV is a model-based technique, it is
still viable for FDI even for those plants where only input-output
data are available.

I. INTRODUCTION

Fault detection and isolation (FDI) using the generalized
parity vector (GPV) technique is a quantitative model-based
approach based on the linearized state space representation.
Although quantitative model-based approaches have made an
impact in mechanical and aeronautical engineering applica-
tions, they have had little impact in process industries [3].
One of the major advantages of using the quantitative model-
based approach is that we will have some control over the
behavior of the residuals. However, several factors such as
system complexity, high dimensionality, process nonlinearity
and/or lack of good data often render it very difficult even
impractical to develop an accurate mathematical model for
the system. This limits the usefulness of this approach in real
industrial processes [4].

So far, theGPV technique has been successfully tested
using a second-order aircraft engine model [10] and a third-
order linearized state-space obtained analytically from the
original nonlinear model for a jacketed continuously stirred
tank reactor (JCSTR) [1], [2]. In this paper, the viability of the
GPV implementation in real industrial processes is analyzed
using a gravity three-phase separation process, which allows
us to test thisFDI method in a higher dimensional space and
in a case where a mathematical model is lacking.

This paper is outlined as follows: First, a brief overview
of stable factorization and its application to implement the
generalized parity vector technique is given in section II.
Next, in section III, sensor and actuatorFDI using directional
residuals are defined [5], [6], [7]. Section IV presents an
overview of the transformation matrix optimization method
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proposed in Omana and Taylor [1] and includes an extension
to solve the hyperplane intersection issue. Section V de-
scribes briefly the gravity three-phase separation process and
its control loops, followed by system identification results
in section VI. Finally, section VII present theFDI results
obtained using the separator model described in section V
for different scenarios.

II. RESIDUAL GENERATION USING THEGENERALIZED

PARITY VECTORTECHNIQUE

The residual generator is implemented using the gener-
alized parity vector technique, which is developed in the
stable factorization framework. The significance of using
the stable coprime factorization approach is that the parity
relations obtained involve stable, proper and rational transfer
functions even for unstable plants. Therefore the realizability
and stability of the residual generator is guaranteed. Given
any nxmproper rational transfer function matrixP(s), it can
be expressed in terms of its left coprime factors as follows
[8]:

P (s) = D̃(s)−1Ñ(s) (1)

whereÑ(s) and D̃(s) are called the left coprime factors and
belong to the set of stable transfer function matrices. The
GPV technique is based on the stable factorization of the
system transfer function matrix in terms of its state-space
representation. Let the system be described by the set of
equations:

ẋ(t) = Ax(t) + Bu(t) (2)

y(t) = Cx(t) + Eu(t) (3)

where x, u, and y represent the state variables, inputs,
and outputs of the system, respectively. Assuming that the
pairs (A, B) and (A, C) are stabilizable and detectable, it
is possible to select a constant matrixF with appropriate
dimensions, such that the matrixAo , A − FC is stable.
Using the definition of the coprime factorization of P(s) in
[9], the left coprime factors are given by:

Ñ = C(sI −Ao)−1(B − FE) + E (4)

D̃ = I − C(sI −Ao)−1F (5)

Based on the definition of the transfer function matrixP(s)
given in equation (1) and taking the relationship among the
desired control input,ud, and the actual output of the sensors,
y, the following relations are obtained:



P (s) = D̃(s)−1Ñ(s) =
y(s)
ud(s)

(6)

D̃(s)y(s)− Ñ(s)ud(s) = 0 (7)

Under ideal conditions, when the plant is linear, noise and
fault free, equation (7) holds. However, when a fault happens,
this relation is violated showing the inconsistency between
the actuator inputs and sensor outputs with respect to the
unfailed model.

Using this fact, the generalized parity vector,p(s), is
defined as:

p(s) = Tr [ D̃(s)y(s)− Ñ(s)ud(s) ] (8)

The GPV p(s) is a time varying function of small magnitude
under normal operating conditions, due to the presence of
noise and modeling errors arising from linearization and
order reduction. However, it exhibits a significant magnitude
change when a fault occurs. Each distinct failure produces a
parity vector with different characteristics, allowing the use
of the GPV for isolation purposes. A transformation matrix
Tr(s) is introduced to make it possible to isolate faults more
effectively [10].

III. FAULT DETECTION AND ISOLATION USING

DIRECTIONAL RESIDUALS

The basic idea ofFDI using failure directions is that each
failure will result in activity of the parity vector along certain
axes or in certain subspaces. Depending on the dynamics
of the system, some of these reference directions may be
close or identical, making the isolation for some faults
difficult or unachievable. To overcome the angle separation
problem between the reference directions, the calculation of
an optimal transformation matrixTr is introduced in section
IV.

A. Actuator Faults

Assuming an additive faultaj(t) in the jth actuator and
using the definitions in section II, theGPV becomes:

pa,j(s) = −(TrÑ)jaj(s) , TrB
j
n

aj(s)
s + σ

(9)

Equation (9) shows thatpa,j(s) is restricted to exhibit activity
along the direction defined by thejth column of Ñ, which
we denoteBj

n [10].

Actuator fault isolation is thus based on the angleΘj

between theGPV and Bj
n as illustrated in figure 1. If the

jth actuator is faulty, this angle should be zero in the ideal
case or less than a small threshold value,Th, to account
for model uncertainty, noise and/or unknown disturbances.
To make the graphical illustration easier, theGPV in figs. 1
and 2 is plotted in a 3-dimensional space. However, for the
separator model described in section V theFDI is performed
in a 5-dimensional space, which corresponds to the number
of input-outputs in the system.
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Fig. 1. Actuator FDI

B. Sensor faults

Similarly, for an additive faultsi(t) in the ith sensor the
parity vector in equation (8) reduces to:

ps,i(s) = (TrD̃)isi(s) , Tr

[
Ei

d +
Bi

d

s + σ

]
si(s) (10)

Thus, for the sensor failure case, it is not possible to confine
pa,i(s) to lie in a fixed direction. Only for fortuitous cases,
depending on the dynamics of the system, can this be
achieved. However, for any system, theGPV always lies on
a hyperplane in the generalized parity space, defined by the
vectorsEi

d andBi
d [10].

The sensor fault isolation can be based on the angleΘi,
between theGPV and theith sensor reference hyperplane,
SP i, as illustrated in figure 2. If theith sensor is faulty, this
angle should be zero or less thanTh.

iΘ

σ
i
dB

i
spN

i
dE

i
SP

1x

2x

3x
GPV

Fig. 2. Sensor FDI

IV. T RANSFORMATION MATRIX

The transformation matrixTr plays an important role in
FDI using directional residuals. It is desirable to chooseTr

to increase the separation angle between the original set of
reference directions and reference hyperplanes as much as
possible, to enhance robustness and maximize the number
of faults that can be isolated and the number of disturbances
that can be decoupled, beyond the number of outputs of the
system [6].

This can be formulated as a constrained optimization prob-
lem, whose objective is to maximize the angles between the
transformed reference directions and reference hyperplanes,
to the extent possible. The optimization routine maximizes
the minimum of Fi, j (Tr), where Fi, j (Tr) is the objec-
tive function containing the angles between the reference
directions and reference hyperplanes that are separable. The
mathematical formulation is given by:



Fi, j (Tr) = ](Zi , Zj) (11)

max
Tr

min
{Fi, j}

{Fi, j (Tr)} (12)

such that c (Tr) ≤ 0 , ceq(Tr) = 0

where c(Tr) ≤ 0 , ceq(Tr) = 0 represent a nonlinear
inequality and equality constraints, respectively; andZi

and Zj are transformed reference directions, hyperplanes
or a combination of both. These directions are given by
transformingBj

n, Bi
d andEi

d. The high flexibility of theTr

calculation approach proposed using optimization allows us
to add different nonlinear constraints to take into account
the dynamics of the system and solve some geometrical
restrictions. In general, the condition number ofTr should be
constrained to be small, to avoid obtaining an ill-conditioned
transformation matrix and improve the robustness of the FDI
response. For further information on this see [1].

As the number of inputs and outputs in the system in-
creases, the optimization routine to calculate the transforma-
tion matrix becomes more challenging since there are more
reference directions and reference hyperplanes to separate.
For the separator model described in section V, the system
has five input and five outputs, which produces 45 different
combinations of reference directions, reference hyperplanes
and combination of both to be separated in the objective
function. Despite the large amount of separation angles to
maximize, the original objective function proposed in (11)
was capable of calculating a transformation matrix that max-
imizes the original set of reference directions and reference
hyperplanes well enough to provide clear isolation. However,
since there are five unparallel hyperplanes, they intersect with
each other in a volume, regardless of their separation angle.
This condition only affects theFDI performance if the faulty
steady-stateGPV in a situation where a failure is applied to
the ith sensor,GPV i

ss, lies on or close to the hyperplane
intersection volume. For simplicity, although the separator
FDI is performed in a 5-dimensional space, the hyperplane
intersection situation illustrated in fig. 3 is plotted in a 3-
dimensional space.
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Fig. 3. Planes intersection

Fig. 3 demonstrates that if theGPV i
ss lies on or close to

the hyperplane intersection line (IL), its angle with respect

to the ith and kth reference hyperplanes are both zero or
close to zero, giving an ambiguous isolation. Nevertheless,
this ambiguity can be avoided by adding equation (13) to
extend the objective function proposed in (11). This assures
that the separation angle between the faulty steady-stateGPV

for the ith sensor and thekth sensor reference hyperplane
is maximized to provide an unambiguous isolation. This can
be expressed mathematically as:

Fi, j (Tr) = ](GPV i
ss , Zk) (13)

If equation (13) is omitted during the optimization routine,
there is no guarantee that the resultingTr will not produce
a GPV i

ss aligned or close to theith-kth hyperplanes line
intersection. This is illustrated later in section VII, fig. 9.
This modification is required only for those cases where the
optimization routine using the original objective function in
(11) returns a transformation matrix that pushes the faulty
steady-stateGPV close to a hyperplanes intersection line.

V. GRAVITY THREE-PHASE SEPARATION PROCESS

DESCRIPTION

Three-phase separators are designed to separate and re-
move the free water from the mixture of crude oil and
water. The fluid enters the separator and hits an inlet diverter.
This sudden change in momentum produces the initial gross
separation of liquid and vapor. In most designs, the inlet
diverter contains a downcomer that directs the liquid flow
below the oil/water interface. This forces the inlet mixture
of oil, water and gas to mix with the water continuous phase
(i.e., aqueous phase) in the bottom of the vessel and the oil
droplets rise to the oil/water interface. This process is called
water-washing, and it promotes the coalescence of water
droplets which are entrained in the oil continuous phase. The
inlet diverter assures that little gas is carried with the liquid.
The water wash assures that the liquid does not fall above
the gas/oil or oil/water interface, mixing the liquid retained
in the vessel and making control of the oil/water interface
difficult.

The gas flows over the inlet diverter and then horizontally
through the gravity settling section above the liquid. As the
gas flows through this section, small drops of liquid that were
entrained in the gas and not separated by the inlet diverter are
separated out by gravity and fall to the gas-liquid interface.
Some of the drops are of such a small diameter that they are
not easily separated in the gravity settling section. Before the
gas leaves the vessel it passes through a coalescing section
or mist extractor to coalesce and remove them before the gas
leaves the vessel.

The simulation model basically consists of two processes,
as illustrated in figure 4. The first is a two-phase separator
in which hydrocarbon fluids from oil wells are separated
into two phases to remove as much light hydrocarbon gases
as possible. The produced liquid is then pumped to the
three-phase separator (i.e., the second process), where water
and solids are separated from oil. The produced oil is then



pumped out and sold to refineries and petrochemical plants
if it meets the required specifications.

Fig. 4. Gravity three-phase separator process

The two separation processes of the simulation model are
controlled to maintain the operating point at its nominal
value, and to minimize the effect of disturbances on the pro-
duced oil’s quality. As shown in figure 4, the first separation
process is controlled by two PI controller loops. In the first
loop, the liquid level is maintained by manipulating the liquid
outflow valve. The second loop is to control the pressure
inside the two-phase separator by manipulating the amount
of the gas discharge. The second separation process has three
PI controller loops. An interface level PI controller maintains
the height of the oil/water interface by manipulating the
water dump valve. While the oil level is controlled by the
second PI controller through the oil discharge valve, the
vessel pressure is maintained constant by the third PI loop
[11].

VI. SYSTEM IDENTIFICATION

Chemical processes are inherently nonlinear in nature,
making it very difficult and even impractical to develop an
accurate mathematical model for the system. This has been
one of the main reasons that has limited the application of
quantitative model-basedFDI techniques in real industrial
processes [3].

In order to address this issue for theGPV approach, a
system identification module is implemented for the gravity
three-phase separator described in section V. It is assumed
that the actual nonlinear model for the plant is not available
and also the system order is unknown, thus the analytical
linearized state-space representation cannot be obtained. The
only available information is input-output data correspond-
ing to pseudo-random binary sequences (PRBS) applied as
setpoint variations to excite each of the system reference
inputs [12]. System identification is performed using the
standard prediction error/maximum likelihood method(pem)
implemented inMATLAB r, which provides a linearized state
space model. Since the model order is not specified, this is
calculated automatically using the subspace-based method
(n4sid), to provide the best fitting. The first 600 input-
output samples are used to identify the model, while the
last 300 samples are used to validate it. Fig. 5 shows the
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Fig. 5. Three-phase separator system identification

excellent system identification validation results for each
output variable.

Because of the highly nonlinear nature and complexity
of the process, the ”best model order” obtained during the
identification process is 10, which is considerably higher than
the actual order of five. However, the identified linearized
10th order state space model provides a highly satisfactory
% of fitting overall, as shown in fig. 5. Also, this order
discrepancy allows us to test theGPV technique using a
state space model whose state variables do not correspond to
physical parameters as in the original nonlinear model. This
matter is discussed in more detail in section VII.

VII. FAULT DETECTION AND ISOLATION RESULTS

Using the identified linearized10th order state-space
model discussed in section VI, fault detection and isolation
using theGPV technique is performed for different sensor
and actuator fault scenarios. First, a -50% bias fault is
applied to the treator vapor outflow valve (denoted fault
F10) at the nominal operating point. Fig. 6 shows theGPV

magnitude and its corresponding sensor and actuator angles.
It is observed that right after the fault is applied at t=300 sec,
theGPV magnitude increases significantly allowing a definite
and fast detection. Also, theGPV angle corresponding to
actuator fault F10 moves toward zero, while keeping a
minimum separation of approximately 10 degrees with the
other reference directions. Thus, the detection and isolation
are fast and clear, which are important features forFDI.

Fig. 7 shows theFDI results for a -50% bias fault applied
to the separator vapor outflow valve (fault F7), for a setpoint
variation of 10%. It is observed that even for a significant
setpoint variation, theGPV magnitude and angle can detect
and isolate the fault promptly and clearly.
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Fig. 6. FDI results for actuator 10 fault
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Fig. 7. FDI results for actuator 7 fault

For the sensor case, a ramp fault with a slope of 0.4
representing an inaccurate sensor reading increasing with
time is applied to the separator liquid volume sensor (fault
F1) at the nominal operating point. TheFDI results illustrated
in fig. 8 show that even for faults slowly increasing with
time, the GPV magnitude increases around 15 times, only
0.9 sec after the fault is applied at t=300 sec, providing
immediate detection. Also, theGPV angle corresponding to
sensor 1 (F1) moves toward zero very rapidly reaching a
minimum separation of around 10 degrees with the other
reference directions within the first 20 sec. These detection
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Fig. 8. FDI results for sensor 1 fault - Modified
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Fig. 9. FDI results for sensor 1 fault - Unmodified

and isolation times are acceptable, since the fault was applied
to the liquid phase which has slower dynamics than the gas
phase.

However, if the modification to the objective function
described in section IV equation (13) is omitted, theGPVss

lies very close to the intersection volume for hyperplanes 1, 3
and 4, giving an isolation angle close to zero for all of them.
This is illustrated in fig. 9, where the angles corresponding
to F1, F3 and F4 are all close to zero, making the isolation
ambiguous.

Fig. 10 shows theFDI results when the treator oil volume
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Fig. 10. FDI results for sensor 4 fault

sensor signal is contaminated by a 20% sinusoidal interfer-
ence with a single frequency of 12.73 mHz (i.e., reading
from a wireless sensor). If the magnitude thresholdThm

is set to be small, for instance 4 times the fault freeGPV

magnitude, the fault is detected continuously aftertfault =
300 sec. However, the isolation is ambiguous periodically
for approximately 300 milliseconds due to theGPV angles
behaviour during the spikes caused by the|GPV |minimums.

From the previousFDI results obtained for sensors and
actuators when different type and size of faults are applied
it is seen that theGPV technique works satisfactory using the
10th order state-space model computed by system identifi-
cation. This demonstrates that the state-space representation
used in the left coprime calculations in equations (4) and (5)
are not required to match either the actual system order or
the physical state variables of the original nonlinear system.
Also, despite the fact that the identified model did not
provide an ideal % of fitting for all the outputs, as it is
shown in the separator identification results illustrated in
fig. 5, this did not affect theGPV performance. Clarifying
these aspects demonstrates that theGPV technique is feasible
for implementation in real industrial processes even when
mathematical models are not available.

VIII. CONCLUSIONS

TheGPV technique has been successfully tested on a larger
scale industrial process in the absence of a mathematical
model, by incorporating a system identification module.
This has demonstrated that the state-space representation
does not require the actual system order and/or physical
states to provide suitable left coprime factors for theGPV

computation. ThusFDI is possible even for those systems
where input-output data is the only accessible information.

Also, the state-space flexibility offers the possibility of
applying state-space transformations for those cases where
the linearized mathematical model is available but exhibits
some inseparable reference directions and/or rank-deficient
matrices. The hyperplanes intersection problem has been
clarified and solved by extending the objective function dur-
ing the optimization routine to compute the transformation
matrix.
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