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Abstract

Previous research in the area of modeling and simula-
tion of hybrid systems led to the development of a gen-
eral hybrid systems modeling language (hsml) that has
been described elsewhere. Features of hsml include: hi-
erarchical, modular construction of models from compo-
nents; consistent yet distinctive definition of continuous-
time, discrete-time and logic-based components; prior-
itized scheduling of discrete-time components; mecha-
nisms for state-event handling; approaches for dealing
with vector-field conflicts and changing model order and
structure; rigorous type and range checking; and a strict
semantic basis that permits extensive checking and val-
idation of the model.

This paper describes a first step towards algorithmic im-
plementation of the hsml ideas and language constructs
for dealing with state-event handling and vector-field
conflicts in continuous-time components. Specifically,
the standard matlab model framework and integration
algorithms are extended to support these phenomena.
An example is presented to show the efficacy of these
extensions within the matlab environment.

Keywords: Modeling; simulation; numerical integra-
tion; hybrid system; dynamical system; discontinuity.

1 Introduction

The hsml language described previously [1, 2] was de-
signed to support a broad definition of a hybrid sys-
tem, which we may express informally as being an arbi-
trary interconnection of components that are arbitrary
instances of continuous-time, discrete-time and logic-
based systems. Requirements for hsml particularly
focused on rigorous characterization and execution of
“events”, both discrete- and continuous-time, that cause
discontinuous changes in system trajectories and/or the
model structure itself. In this respect, there is much
commonality between the hsml project and recent de-
velopments by Cellier et al. in the area of object-oriented
modeling [3]; for a detailed view of state-event handling
see especially [4, 5].

hsml is based partially on the modeling environment
provided by Simnon [6]. Simnon was used as a starting
point because it provides an excellent language-based
environment for building hierarchies of interconnected
components of various types with a considerable degree
of encapsulation and rigor, which are features believed
to be key ingredients of a solid modeling language. In
addition, features of other standard packages were con-
sidered, e.g., the acsl modeling approach [7], and the
mead specification for component interconnection [8].

In conceiving and developing hsml, there was no claim
that one cannot rigorously model hybrid systems us-
ing certain other, extant languages. For example, acsl

can be used to model and simulate hybrid systems of
great generality; however many other packages lack the
necessary provisions for state-event handling. Also, the
high-level features and strict semantics and syntax for-
mulated for hsml facilitate and enforce a higher degree
of rigor in hybrid systems modeling, thereby ensuring
a greater probability of model correctness. In contrast,
modeling and simulating state events in other packages
may require “work-arounds” and “hacks” to achieve the
desired functionality (e.g., resetting states during an
event). Finally, the ideas and algorithmic requirements
underlying hsml can be translated into other modeling
and simulation environments as well, assuming that a
developer can gain access to the necessary internal “ma-
chinery” such as routines for numerical integration, as
demonstrated in this presentation.

This paper describes the first steps in implementing a
subset of the hsml concept in a working modeling and
simulation environment, matlab [9]. It focuses nar-
rowly on the issues surrounding state-event handling in
continuous-time components (ctcs) and provides an il-
lustrative example to demonstrate the efficacy of the
approach. The remaining parts are as follows: Section
2 outlines the hsml structure of a ctc and its features
for state-event handling, Section 3 overviews the state-
event handling problem, Section 4 deals with the exten-
sions needed in matlab for modeling such components,
and Section 5 describes modifications required in mat-



lab’s numerical integration routines. The final sections
show the performance of the new algorithms on a sim-
ple ctc and summarize the present status and future
directions of the hsml project.

2 hsml Overview

At the lowest level hsml components are “pure” ctcs,
discrete-time components (dtcs) and logic-based com-
ponents (lbcs) [1]. These elements are assembled into
composite components, and then systems. Every com-
ponent has an interface and a body; its interface de-
fines the entities that are accessible from and to the
outside. This is consistent with the matlab approach
at the component level; above that (e.g., assembling sys-
tems from components) one would have to extend the
simulink formalism [10] instead.

The hsml interconnect schema is supported by the fol-
lowing general template for defining any type of com-
ponent:

<Component_type> <Component_name> is

%

{ interface

[ input(<name>,<type>,<range>); ]*

[ output(<name>,<type>,<range>); ]*

[ knob(<name>); ]*

[ view(<name>); ]*

end interface; }

%

{ body

declarations

. . . ;

end declarations;

section_one

. . . ;

end section_one;

. . . ;

assignments

[ <parameter_name> : <value>; ]*

end assignments;

end body; }

%

end <Component_name>;

In this example and others in this presentation, the fol-
lowing BNF notation is used:

Symbolism Meaning

< > delimits an arbitrary syntactic entity
[ ] delimits an optional element
{ } delimits a compulsory element
* repeat the marked element the appro-

priate number of times

In the interface section, note that the primary in-
put/output variables must be typed (‘signal’, ‘real’, ‘in-
teger’, ‘boolean’ or ‘string’) and may be constrained as
to range, broadly interpreted to be a numerical range
(<range> = (v min, v max)) or a set (e.g., <range> =

{"high", "medium", "low"} for a string variable). In
the body, the sections declarations and assignments

exist for specifying internal variables and assigning pa-
rameter values, respectively. Beyond these general ob-
servations, this generic component template may be
elaborated for the specific <Component type>s ctc,
dtc, lbc. To do so, the body part of the component
must be comprised of distinct mandatory and optional
sections; these are based on the model formulation un-
derlying each category.

Within this framework, a ctc may be represented as1:

ẋc = fc(xc, uc, uk, mj , bi, t)

0 = gc(xc, uc, uk, mj , bi, t) (1)

yc = hc(xc, uc, uk, mj , bi, t)

as outlined in [1], where xc is the state vector, yc is
the output vector, uc and uk are numeric input sig-
nals (continuous- and discrete-time, respectively), mj

is comprised of symbolic input variables, bi represents
boolean inputs, and t is the time; in general uc, uk, mj

and bi are vectors. There are implicit “zero-order holds”
operating on the elements of uk, mj and bi, i.e., these
inputs remain constant between those times when they
change instantaneously. Of particular importance to the
present exposition, the symbolic and boolean inputs are
included to provide means of controlling the model’s
structure and coordinating its behavior with the nu-
merical integration process in state-event handling, as
described below.

The internal variables to be specified in the
declarations section include state and flag vari-
ables; the first of these corresponds to xc, and
flag variables are used for state-event handling
(see below). Accordingly, ctc components may
include initial ...end initial; dynamics ...end

dynamics; constraints ...end constraints; and
output ...end output; sections. The first section is
provided for initializing the model including its mode
and state; the rest correspond directly to the sections
of Eqn. (1). Of particular interest here, a ctc may
include sections for rigorous handling of unpredictable
state events (e.g., mechanical subsystems engaging and

1The specific class of ctc that can be modeled depends on the
simulator’s integration methods. Many cannot handle even index
1 DAEs (as in Eqn. 1), in other words, they cannot simultaneously
integrate the ordinary differential equation ẋc = fc(· · ·) under the
constraint 0 = gc(· · ·). Integration routines have been developed
for Index 1 systems; cf. [13, 14]. Higher index models present
additional difficulties [15, 16].



disengaging, electronic elements switching [17]). These
sections have the structure:

event(<signal_variable>)

negative-going

. . . ;

end negative-going;

on-event

. . . ;

end on-event;

positive-going

. . . ;

end positive-going;

end event;

where <signal variable> must be declared to be of
type flag in the declarations section, and it charac-
terizes the state event by a zero-crossing condition,

S(xc, bi, mj , t) = 0 (2)

where S is a general expression involving the state, time
and perhaps boolean variables and modes of the ctc

model. The arbitrary result of the state event in the
ctc model can be represented in the negative-going,
on-event and positive-going subsections, or a sim-
ple switching variable (e.g., sgn) may be set therein
and that variable may be used in arbitrarily compli-
cated expressions of the form if sgn > 0.0 then do

. . . else do . . . endif; in the dynamics
section. Finally, support for models that undergo struc-
tural changes (e.g., changes in the definition or num-
ber of state variables) is provided by this framework
[18]. In the case of mechanical subsystems engaging,
the number of states decreases, producing a “higher-
index” model that can be characterized by conditional
constraint equations and may be reduced using the Pan-
telides algorithm [11] to automatically reduce it to state-
space form, for example.

3 State-Event Handling

The hsml features for modeling state events are de-
signed to prevent problems that interfere with accu-
rately integrating ctcs that may exhibit discontinuous
behavior such as relays switching and mechanical com-
ponents engaging/disengaging. The difficulty is this: If
the simulator blindly integrates a ctc with state events,
then the switching point is typically “over-shot”, i.e.,
the numerical integration routine steps from a point tk
before switching to tk+1 after the discontinuity, trust-
ing its automatic step-size-control algorithm to make
the transition by detecting a large error, decreasing the
step size until error is acceptable, and continuing on to
tk+2 etc. This creates two problems [4, 17, 18]:

1. Most high-order integration routines use a num-
ber of derivative evaluations to calculate x(tk+1)

given x(tk). In the case of the standard fourth-
order Runge-Kutta method, these evaluations are
at times tk, tk+ 1

2

and tk+1; for predictor/corrector
methods these are at times tk, tk−1, tk−2 . . . and
tk+1. In passing the discontinuity, these derivative
evaluations are made indiscriminately on both sides
of the switching point, thus producing a “garbage”
point (so called because its error is completely un-
predictable, due to this erratic switching behavior).
The fact is: the point x(tk+1) obtained in this fash-
ion is not on the same trajectory as x(tk), due to
this anomolous handling of the discontinuity.

2. Using an integration routine without provision for
catching and handling state events correctly pro-
duces inefficient simulations as well as inaccurate
ones. The continual process of decreasing and in-
creasing the step size leads to “creeping” simulation
that may take large amounts of computation and
cause excessively long simulation runs.

Both of these problems are evident in the example
treated in Section 6.

The correct handling of state events is this:
1. The model should not be allowed to switch during

a numerical integration step.

2. The integration routine should not integrate past
the switching point.

This requires coordination between the model and sim-
ulation package, that is achieved in hsml via flag vari-
ables in the model (these signal the integrator that a
state event has been overshot), and the model input
variable mode that can be used to control model switch-
ing. The state-event-handling process is then as follows:

1. Integrate as usual as long as the flag variable does
not change sign. Each integration point is treated
as a “trial” point until the sign condition is checked;
if no sign change has occurred, the point becomes
“accepted”.

2. When a sign change is detected, the trial point is
discarded and an iterative procedure is initiated
(within the simulator) to find the step h∗ such that
the flag variable is zero (within a tolerance ε). The
model still does not switch during this procedure
(so no “garbage” points are produced).

3. The integrator produces an accepted point on the
switching curve (Eqn. 2) and then signals the model
to switch (e.g., by changing mode from 1 to – 1 or
vice versa).

4. Normal integration proceeds from that point.
This procedure is illustrated below using matlab ex-
tensions.

4 Extended Model Schema

The above outline of hsml representations of ctcs and
their provision for characterizing state-events provides



a clear roadmap for implementation in other packages.
One significant extension needed in matlab for mod-
eling and simulating state events in ctcs is in the in-
put/output structure of the model. The existing and
extended schema are depicted in Fig. 1: The additional
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Figure 1: matlab model input/output structure

output is the flag variable S (Eqn. 2) that signals a
state event (S will change sign at such an occurrence);
the new input mode allows the numerical integration
routine to request that the model switch according to
the state event just detected. Note that S and mode may
be vectors, to support multiple state events.

5 Extended Integration Schema

A second significant extension must be made in the
matlab numerical integration algorithms: neither those
in matlab, i.e., ode23 and ode45, nor those in
simulink, i.e., gear, rk23 and rk45, can handle state
events in the desired fashion. There are two features
needed to permit the matlab integration routines to
deal with state events:

1. the numerical integration must coordinate with the
extended model to establish the initial value of
mode, and

2. the routine must continuously test for the occur-
rence of the event by watching for zero crossings in
the flag variable(s).

The following matlab function provides an example of
this functionality:

function [tout,yout] = trap_seh(dyfun,...

t0,tf,y0,step,tol,trace)

%TRAP_SEH Solve differential equations,

% "trapezoidal" method. TRAP_SEH integrates

% a system of ordinary differential equations

% using the "trapezoidal" algorithm, with a

% hybrid interpolation scheme to catch state

% events (times where ydot is discontinuous).

% (**remaining comment lines omitted.**)

% J.H. Taylor - UNB, Fredericton, NB CANADA

%% Initialization

if nargin < 5, step = 1.e-2; end

if nargin < 6, tol = eps; end

if nargin < 7, trace = 0; end

t = t0; h = step; y = y0(:);

chunk = 256;

tout = zeros(chunk,1);

yout = zeros(chunk,length(y));

k = 1; tout(k) = t; yout(k,:) = y.’;

kkmax = 3;

if trace, clc, t, h, y, end

%% get phi for initial mode evaluation:

mode = 0;

[junk,phi] = feval(dyfun,t,y,mode);

mode = sign(phi);

%% Main integration loop

while (t < tf) & (t + h > t)

if t + h > tf, h = tf - t; end

% save last "accepted" point:

yold = y(:); told = t; phiold = phi;

% trapezoidal predictor/corr. trial step:

[ydot,junk] = feval(dyfun,t,y,mode);

ydot = ydot(:);

yp = y + h*ydot; t = t + h;

[ydotp,junk] = feval(dyfun,t,yp,mode);

ydotp = ydotp(:);

y = yold + h*(ydot + ydotp)/2;

% Get the trial point phi; test:

[junk,phi] = feval(dyfun,t,y,mode);

if sign(phi) == -sign(phiold)

% state event is detected:

hstar = h; kk = 0;

while abs(phi) > eps

%% hybrid zero-solving routine

%% captures crossing within eps;

%% omitted for sake of space

%% "hstar" is the corresponding step:

t = told + hstar;

yp = yold + hstar*ydot;

[ydotp,phi] = feval(dyfun,t,yp,mode);

ydotp = ydotp(:);

y = yold + hstar*(ydot + ydotp)/2;

[junk,phi] = feval(dyfun,t,y,mode);

end

mode = - mode;

phi = - sign(phiold)*abs(phi);

end

k = k+1;



if k > length(tout)

tout = [tout; zeros(chunk,1)];

yout = [yout; zeros(chunk,length(y))];

end

tout(k) = t; yout(k,:) = y.’;

if trace, home, t, h, y, end

end

if (t < tf), disp(’Singularity likely.’), t

end

tout = tout(1:k); yout = yout(1:k,:);

6 Example Application

The extensions to matlab outlined above were imple-
mented and tested using the following simple switching
system:

ẋ1 = x2

ẋ2 = −sign(x1) (3)

The extended matlab model for this system (Fig. 1) is:

function [xdot,phi] = relay(t,x,mode)

if mode == 0

if x(1) == 0, phi = x(2) % x_2 governs mode

else phi = x(1); % ... if x_1 = 0

end

end

xdot(1) = x(2);

xdot(2) = -mode;

phi = x(1);

The new features of this model compared with a stan-
dard matlab model are: a section to be called with
mode = 0 to aid in initializing mode correctly (based on
phi), and the additional input variable mode and output
variable phi to provide the coordination for state-event
handling described previously. In addition to the ex-
tended model defined in Section 4, a standard matlab

model and a standard simulink model (based on the
sfunc formalism) were prepared, to permit comparisons
with respect to accuracy and efficiency of simulation.

Figure 2 depicts the results of running a 10-second sim-
ulation with initial condition x0 = [ 0.25 ; 0 ] us-
ing the methods ode45 (matlab), rk45 (simulink) and
trap seh, the trapezoidal integration routine with state-
event handling reproduced Section 5. In the first two
cases (built-in variable step-size routines) the step size
was unspecified; for trap seh (a fixed-step routine) the
step was set to 0.05 sec. The trap seh routine produced
the most precise solution, a smooth, closed trajectory
represented by the solid curve in the plot. The most
erratic results were produced by the rk45 algorithm; as
shown, the switching is missed quite significantly, lead-
ing to an initial increase in the amplitude of the response

followed by a decay that (for longer simulation times)
continues indefinitely. matlab’s ode45 method (dashed
curve) appears to maintain a steady amplitude that ex-
hibits a “cutting the corners” effect due to using a much
larger step size than trap seh.
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Figure 2: Numerical Integration Method Comparison

A secondary benefit in using a fixed-step routine with
state-event handling is run-time efficiency. Longer sim-
ulations were conducted with the three methods above
(simulation final time = 100 sec); for both ode45 and
rk45 these simulations took about 60 seconds of wrist-
watch time, while trap seh took less than half as much
time. More precise computations are difficult, since
built-in matlab routines do not register the number of
flops consumed by a simulation. However, the m-file
for ode45 was copied into our workspace and renamed
so it could be compared with trap seh; since both are
thus interpreted rather than compiled code, this is the
most meaningful comparison. The results were: 32 sec
of wrist-watch time and 36,949 flops for trap seh, 140
sec of wrist-watch time and 1,220,204 flops for (inter-
preted) ode45. While some of the added overhead of
ode45 may be attributed to its being of higher order
and including an automatic step-size control algorithm
(but this is supposed to be an advantage!), some of the
big difference is due to the “creeping” effect [4] caused
by state-event discontinuities making the step-size re-
duce greatly until the discontinuity is past.

7 Conclusion

The implementation presented above provides a simple
but compelling demonstration of hsml in general and
of the the concept of state-event handling and its value



for modeling and simulating switching systems in par-
ticular. The machinery for extending the model and
numerical integration routines is being generalized in
several ways, i.e., it has been inserted into more sophisti-
cated models and integration routines (like ode45), and
it now supports vector modes and switching functions
for defining multiple state events in one model. In ad-
dition, provision for state resetting at state events has
been implemented. These extensions will be presented
in [19].
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Technique for Solving High-Index Differential-
Algebraic Equations Using Dummy Derivatives”,
Proc. CACSD’92, IEEE Computer-Aided Control
Systems Design Conference, Napa, CA, pp. 218–
224, March 17–19, 1992.

[16] Campbell, S. L., “High Index Differential Algebraic
Equations”, preprint/report, Dept. of Math, North
Carolina State University, Raleigh NC 27695-8205,
June 1993; slc@math.ncsu.edu.

[17] Cellier, Francois, “Combined Continuous/Discrete
System Simulation by Use of Digital Computers:
Techniques and Tools”, PhD Thesis, Swiss Federal
Institute of Technology, Zurich, Switzerland, 1979,
Number ETH 6438.

[18] Taylor, J. H. A Rigorous Modeling and Simula-
tion Package for Hybrid Systems, US National Sci-
ence Foundation SBIR Report, Award No. III-
9361232, Odyssey Research Associates, Inc., June
1994 (available only from the author).

[19] J. H. Taylor, “Modeling and Simulation of Hybrid
Systems”, accepted for IEEE Conference on De-
cision and Control, New Orleans, LA, December
1995.


