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; Abstract – The nonlinear dynamic behaviour of a modern, multi-purpose helicopter
is considered in this article. The main objective of this study is to characterize the
helicopter’s vibration mechanism(s) – i.e., to determine if the vibrations are peri-
odic or chaotic. This study involved analyses of flight data, specifically records of
acceleration for two different airspeeds with a sampling rate of 1024 Hz.

Some background in the theory of chaos in nonlinear dynamical systems is discussed,
and approaches for the identification of chaos in time series data are presented. Sev-
eral topics including delay-coordinate embedding theory, delay time and dimension
determination, and maximal Lyapunov exponent computation for chaotic systems
are described. In each section, helicopter flight data sets are examined and analyzed,
and the results are compared with those for classical chaotic systems. Results for
classical problems adds tutorial value as well as confirming our helicopter studies.
Finally, implications regarding the possibility of chaotic behaviour in the flight data
are discussed.

1 Introduction

An understanding of the identification and control of chaotic systems has improved
tremendously in the last two decades [1]-[21]. Chaotic behaviour can only occur in
systems with nonlinear dynamics. The recognition of chaos in a complex dynamical
system is very complicated. An important characteristic of a chaotic system is its
sensitive dependence on initial conditions. The trajectories of such systems can be
markedly different even for very close initial conditions. This factor makes the pre-
dictability of these systems very difficult and even impossible in the long run. It also
introduces new and challenging problems in the area of control.

In many cases, the chaotic behaviour of a system may be mistaken for randomness or
noise effects. A system with nonlinearity and random inputs or measurement noise
can also produce irregular trajectories. However, a random input is not the only
possible source of irregular behaviour in a system; nonlinear chaotic systems can have
very irregular output with purely deterministic dynamics and inputs. One important
issue in such systems is the discrimination of chaos from randomness. This factor
also has very important implications for controlling nonlinear systems. If a system



shows some signs of chaotic behaviour, then it may be controlled with some of the
methods which are proposed in the literature [6, 8, 10, 13, 14, 15].

Chaos may exist in classical systems (represented by mathematical models) or real-
life systems. Examples of classical systems include the logistic, tent and Hénon maps
in the realm of discrete systems, and the Lorenz and Rössler differential equations
for continuous-time dynamical systems [2]. Some real-life systems in which chaos
has been identified are complex chemical reactions, pendula with periodic forcing
functions [2], NMR laser data, human breath rate, vibrating spring data, foetal elec-
trocardiogram signals [8], among others.

In most real-life situations, system behaviour is characterized by time series data
sequences available from measurement. For this reason, useful methods for analyzing
chaotic systems should be able to deal with time series data. These data can be
measurements of only one variable, or measurements of several variables. The first
step in the analysis of time series data was introduced in Geometry from a time series
[16], in which state-space reconstruction of time series data was proposed for the first
time. The mathematical justification of this approach was presented in [21]. Based on
a mathematical proof given in [21], the reconstructed state space is diffeomorphically
(one-to-one and invertible) equivalent to the original state space of the real-life system.

In delay-coordinate reconstruction, the selection of time delay and dimension are the
most important issues [5, 9, 11, 12, 19]. For the calculation of time lag, different
approaches are proposed in the literature [5, 11]. Among them, the autocorrelation
function and mutual information approach are the most general and common [15].
Among the different techniques of the calculation of embedding dimension, the “false
nearest neighbours” method has attracted the most attention [9].

By appropriate selection of time delay and embedding dimension, the time series data
can be reconstructed in the delay-coordinate state space. In this space, the chaotic
behaviour of the nonlinear dynamical system can be studied. A common method
for the identification of chaos in state-space systems is to calculate the maximal
Lyapunov exponent [14]. The calculation of this exponent from time series data has
been extensively considered in the literature [7, 17, 18].

The organization of this article is as follows. In Section 2, the delay-coordinate state-
space reconstruction of time series data is discussed. In Section 3, the calculation of
the optimal time delay for delay-coordinate reconstruction is described and carried
out. In Section 4, the dimension calculation of the reconstructed state space is ad-
dressed and also executed. In Section 5, the computation of the maximal Lyapunov
exponent for time series data and its use in the identification of chaos are consid-
ered, and results are presented. In Section 6, concluding remarks about the possible
presence of chaos are provided.
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2 Time Series and State Space Reconstruction via
Delay-Coordinate Embedding

In most cases, observations of a real system are in the form of time series data, not
a state-space representation. However, the more effective approaches for studying
deterministic dynamical systems involve describing the system in an appropriate state
space. For this reason, time series data should be converted into state-space vectors.
This procedure is known as state-space reconstruction, which is based on a theorem
attributed to Takens [21].

2.1 State Space Models

A state space is a finite-dimensional vector space, <m. In this space, a state is denoted
by a vector x ∈ <m. The dynamics of a descrete-time system can be described in
state space by an m-dimensional map, F,

xn+1 = F(xn, n), (1)

where the index n denotes the discrete time instants; continuous-time systems are
governed by a flow (a system of m first-order ordinary differential equations),

d

dt
x(t) = f(x(t), t), t ∈ < (2)

If F does not depend on n, or f does not depend on t, then the map or flow is called
autonomous or time-invariant; hereafter we will consider only those cases. A sequence
of points xn solving Equation (1), or continuous solution x(t) satisfying Equation (2),
is called a trajectory, and x0 (or x(0)) the initial condition. The orbit of x under F
is the set of points {x, F(x), F2(x), · · ·}, and the trajectory of x(t) under f is the
solution of the indicated ordinary differential equation, usually obtained by numerical
integration.

Certain solutions or trajectories are particularly important in characterizing the be-
haviour of nonlinear dynamic systems; for non-chaotic systems these are fixed points
and closed trajectories (period-K orbits or limit cycles). A fixed point p satisfies F(p)
= p or f(p) = 0; in other words, if x0 = p in Equation (1), then xn = p, n = 1, 2, . . .,
or, in Equation (2), x(t) ≡ p, ∀t > 0. Informally, a closed trajectory satisfies
xn+K = xn for some period K or x(t) = x(t + τ) for some period τ . The period
K is the minimum value for which FK(x) = x, and similarly τ is the smallest value
for which x(t) = x(t + τ), ∀t > 0. A (non-chaotic) attractor of a system is a fixed
point or closed trajectory such that for a set of near-by initial conditions the resulting
solutions will be attracted to it after some transient time or, more commonly, as n or
t approaches infinity. Non-chaotic attractors are stable fixed points and stable limit
cycles. The set of initial conditions leading to the same attractor is called the attrac-
tor’s basin of attraction. Note that the concept of attractor may also be extended
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to systems with chaotic behaviour, but such a concept and definition is not required
here.

For many physical systems, a state-space flow model, Equation (2), is not available;
rather, observations of the system variables are taken, including measurements of one
or several quantities which depends on the current state of the system. Given a scalar
signal, s(t), regularly sampled at time interval τs starting at some time t0, the nth
sample can be represented as:

sn = s(t0 + (n − 1)τs) + ηn , n = 1, 2, . . . , (3)

where ηn is the measurement noise. A delay-coordinate reconstruction can be formed
by plotting the time series versus one or more time-delayed version(s) of it. For
a 2-dimensional reconstruction, we plot the delay vector y(n) = [sn, sn−V ], n =
V +1, V +2, . . ., where V is the lag or sampling delay, i.e., the difference between the
adjacent components of the delay vector in number of samples. For a d-dimensional
reconstruction, the delay vector, y(n) can be written as:

y(n) = [sn, sn−V , · · · , sn−(d−2)V , sn−(d−1)V ], n = (d − 1)V + 1, . . . (4)

One of the major issues in the embedding approach is: Under what conditions is
the trajectory of the reconstructed state space equivalent to the original unknown
trajectory xn or x(t)? It was proved by Takens [21] that if the dimension of the
delay-coordinate space, d, is sufficiently large, the attractor formed by the y(n) vector
is equivalent to the attractor in the original space. Specifically, if the dimension of
the reconstructed space, d, is larger than twice the box counting dimension m of the
attractor (or the number of active degrees of freedom), the equivalence of the spaces
is guaranteed. In some applications, a smaller value of d can also be sufficient [1].
Based on these results, if the dimension of the original attractor is not very high, the
reconstruction is possible even if the dimension of the original system is very high.
Systems with this characteristic include hydrodynamic flows and lasers [8].

The selection of d, the dimension of the state-space reconstruction, and V , the sam-
pling delay (or T = V τs, the time lag), are of great importance, and needs detailed
analysis. In many applications, the product d ·V is the governing factor for the valid-
ity of the delay-coordinate reconstruction [10]. However, the separation of the process
of determining d and V makes their calculation easier, albeit perhaps conservative.

The calculation of V and d are discussed in Sections 3 and 4, respectively. From a
mathematical point of view, the selection of V has no effect on the embedding of a
noise-free time series. However, in practical applications and for data contaminated
with noise, a good choice of V has an important impact on the analysis [4]. If V is too
small in comparison with the dynamic variation of the system, successive elements
of the delay vectors are strongly correlated. If V is too large, successive elements
are almost independent. Several approaches are proposed in the literature for the
calculation of an optimal value of the sampling lag. Among these methods, the use
of the autocorrelation function and mutual information (see Section 3) are the most
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common. Optimal values of V can be verified through the visualization of the data
in a two-dimensional embedding space.

2.2 Time Series Data

The dynamical system considered in this article is characterized by helicopter flight
data. Two sets of data are examined, each comprised of acceleration signals (cali-
bration withheld) for two different airspeeds (also withheld). The time series data
were sampled at fs = 1024 Hz with the nominal rotor speed of fn = 3.57 Hz. The
predominant frequency is the blade passing frequency, fBP = 5fn = 17.85 Hz. The
data were sampled when the active vibration control system was switched off.

In this study, the two sets of data are referred to as flight data-set one (FDS1) and
flight data-set two (FDS2). The time evolution of the whole data sets and the first
1000 samples are shown in Figures 1 and 2, respectively.

As a preliminary investigation, the power spectrum of these data was also calculated;
the results are presented in Figure 3. As shown in this figure, the highest amplitude
pertains to the normalized blade passing frequency, fBP /1024 = 0.0174 and lines also
occur at higher harmonics; however, we observe that substantial power is also present
over a broad range of frequencies. The general sources of broad band frequency
content can be random noise or chaos; since the time series plots appear to be quite
clean (Figure 2), the presence of chaos in the time series data may be tentatively
suspected.
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Figure 1: The time evolution of data sets FDS1 and FDS2
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Figure 2: The time evolution of the first 1000 samples of FDS1 and FDS2
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Figure 3: Power spectra of data sets FDS1 and FDS2

2.3 Hénon Map and Lorenz System

In order to verify the results obtained for the helicopter flight data, two classical
models are also addressed in this study. The Hénon Map and Lorenz System are
selected, as examples of a discrete- and continuous-time chaotic system, respectively.
The calculated values for these models are compared with the reported values in the
literature, and very close conformation have been obtained. This conformation gives
us increased confidence about the accuracy of our analysis.
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The Hénon Map has states xn, yn and is described by

{

xn+1 = 1 − ax2
n + yn

yn+1 = bxn,
(5)

where a = 1.4 and b = 0.3 lead to chaotic behaviour. The time evolution of the
Hénon Map in the 2-dimensional state space is shown in Figure 4.
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Figure 4: The time evolution of Hénon Map in its state space

The Lorenz System can be formulated as:











ẋ = σ(y − x)
ẏ = x(R − z) − y
ż = xy − bz,

(6)

where σ = 16.0, R = 45.92 and b = 4.0 produce chaotic behaviour. The three state
variables of this system are two componenets of temperature and one component of
velocity in the convection problem. For comparison of the Lorenz System and the
helicopter time series data, the time evolution and power spectrum of the three states
of this system are shown in Figures 5 and 6, respectively.

3 Calculation of Optimal Time Delay

From a mathematical point of view, if an infinite amount of infinitely accurate data
is available, there is no limit on the choice of sampling delay, except certain multiples
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Figure 5: Time evolution of the three states of the Lorenz System
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Figure 6: Power spectra of the three states of the Lorenz System

of the precise period of a periodic signal. These conditions cannot be met in real-life
data, and an optimal choice of sampling delay plays an important role in the analysis
of the reconstructed system. The selection of sampling delay, V , should primarily be
based on the following considerations:

1. If the selected sampling delay is too short, the adjacent points (sn and sn−V )
will not be sufficiently independent (will have almost the same information).
This condition is also called redundancy [3]. In addition, if the data are noisy,
and the variation of the signal during the interval covered by one sample of
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vector y(n), d ·V · τs time units, is less than the noise level, the vector will have
no information.

2. If the sampling delay selected is too large, any relation between sn and sn−V

can be regarded as randomness due to the sensitive nature of the chaos. This
is a central problem with chaotic systems, where the autocorrelation function
decays very rapidly.

As a result, an optimal sampling delay should be large enough to give rather indepen-
dent values for sn and sn−V , and not too large that it gives completely independent
sn and sn−V . Techniques for the optimal selection of sampling delay have been dis-
cussed in the literature extensively. Many of these methods are appropriate only for
a specified application. Here, two methods which give satisfactory results in most
applications are discussed. These methods deal with the statistical behaviour of the
signal, as explained below.

3.1 Time Delay Calculation: Autocorrelation Method

In this approach, the autocorrelation function of the signal is used to identify the
optimal value of sampling delay. The autocorrelation function for each sampling
delay V can be defined as follows:

CT =
〈(sn − 〈s〉)(sn−V − 〈s〉)〉

σ2
, (7)

where 〈·〉 denotes ensemble average and 〈s〉 is the estimated mean of the signal; for a
time series with N points this is given by:

〈s〉 =
1

N

N
∑

n=1

sn ; (8)

and the variance of the time series, σ2, can be estimated as:

σ2 =
1

N − 1

N
∑

n=1

(sn − 〈s〉)2 (9)

A commonly used rule of thumb [15] for the calculation of sampling lag is to set
V equal to the sampling lag required for the autocorrelation function to become
negative. The problem with this approach is that it is only based on linear statistics,
and it does not account for any nonlinear dynamical correlation.

3.2 Time Delay Calculation: Mutual Information Method

The other method for determining sampling delay is based on the mutual information
function [5]. The original concept of mutual information was introduced in Shannon’s
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information theory, which gives a measure of the general independence of two vari-
ables. In our context, this function quantifies the information we have about the
signal sn+V given that we know sn.

For a computational definition of this function, a histogram for the probability dis-
tribution of the signal is created. The probability that the signal has a value inside
the ith bin of the histogram is denoted by pi, and the probability that sn is in bin
i and sn+V is in bin j is denoted by pij. Then the mutual information for sampling
delay V can be defined as:

I(V ) =
∑

i,j

pij(V ) ln pij(V ) − 2
∑

i

pi ln pi (10)

It should be noted that the value of mutual information is independent of the choice
of histogram, as long as it is fine enough. For large values of V , sn and sn+V have no
correlation with each other; pij = pi pj and the mutual information becomes zero.

The sampling lag related to the first minimum of the mutual information function
specifies the point where the information about sn+V given knowledge of sn or the
redundancy has a local minimum. In general, the sampling lag value based on the
autocorrelation function is not the same as the value from the mutual information
function local minimum; however, it is often close. In such cases, it is better to select
an optimal V inside that interval. Optimal values of V can then be verified through
the visualization of the data in a two-dimensional embedding.

3.3 Calculation of Optimal Sampling Delay for Helicopter
Flight Data

The autocorrelation function of our time series data is shown in Figure 7. It should be
noted that this function is positive for small V , then becomes negative as V increases,
then positive, etc., due to the quasi-periodic nature of sn; only the first interval of
positive autocorrelation is shown. According to one criterion [15], the optimal value
of sampling delay is near the point where the autocorrelation function has its first
zero crossing; based on this figure it is between V = 14 and V = 15. For the final
selection of the sampling delay, this result will be compared with that obtained from
the mutual information function, and the final selection will be verified by visualizing
the embedded data in the two-dimensional delay coordinates.

The mutual information function for the helicopter flight data is depicted in Figure 8.
This function has a flat minimum around V = 14 to V = 17. Any value in this range
should be a good choice for the sampling delay based on this criterion [5]. Again,
the final optimal sampling delay will be selected after inspecting the helicopter flight
data in two-dimensional delay coordinates.

Two-dimensional delay coordinate plots of the helicopter flight time-series data are
portrayed in Figure 9 for six different values of sampling delay. As shown in this
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Figure 7: Autocorrelation function for the helicopter flight data
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Figure 8: Mutual information function for the helicopter flight data

figure, for V = 1 the points are projected along the positive diagonal, indicating a
high degree of correlation. Increasing the value of V up to the range suggested by
the autocorrelation and mutual information approaches, we obtain better “unfolded”
projections in the two-dimensional coordinates; increasing V beyond that range, all
the points are projected near the negative diagonal, due to the negative autocorrela-
tion for V

∼

= 30 due to quasiperiodicity. From this visualization, the optimal value of
V = 15 is confirmed. It should be noted that other near-by values such as V = 14
and V = 16 also provide good projections.

3.4 Calculation of Optimal Sampling Delay for the Lorenz
System

The mutual information plot for the variable x(t) from the Lorenz System is shown
in Figure 10. The first minimum of this function is around V = 4. This function
is almost flat for higher values of V . The projection of the time series data of the
Lorenz System in a 2-dimensional embedding space for V = 1 to V = 8 is presented
in Figure 11. From the visualization provided in these plots, the optimal sampling
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Figure 9: The two-dimensional embedding of flight data for different sampling delays

delay of V = 4 was chosen to obtain an optimal unfolding.
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Figure 10: The mutual information function of x(t) in the Lorenz System
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Figure 11: The two-dimensional embedding of x(t) in the Lorenz System for different
sampling delays

4 Reconstructed State Space Embedding Dimen-
sion

As discussed in Section 2, the other important parameter for state-space reconstruc-
tion is the embedding dimension. The embedding dimension, d, is the lowest integer
dimension which unfolds the attractor in the projected space with no overlaps. Based
on the embedding theorem [21], if the dimension of the attractor defined by the orbits
in the original space is m, then the attractor can always be unfolded in an integer
dimensional space of dimension d where d > 2m. This condition is the sufficient di-
mension for embedding; in most cases a lower dimension can unfold the attractor. In
other words, it can be guaranteed that a delay-coordinate embedding with dimension
higher than 2m + 1 is never necessary. The most common approach for the calcula-
tion of embedding dimension, d, is the false nearest neighbours approach [9], which is
explained below.
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4.1 Embedding Dimension: False Nearest Neighbors Method

For a d-dimensional delay-coordinate reconstruction of sn (for n = 1, 2, · · · , N), the
delay vector at point k, y(k), can be written as:

y(k) = [sk, sk−V , · · · , sk−(d−2)V , sk−(d−1)V ] , k ≥ (d − 1)V + 1 , (11)

where V is found by the approach described in Section 3. The nearest neighbour
of the vector y(k) is then determined, denoted by yNN(k). In general, the vector
yNN(k) may be a true neighbour of y(k) due to its temporal nature, or it might be a
false neighbour of y(k) due to projection from a higher dimension. In the former case,
yNN(k) is either the vector just behind or ahead of y(k) along its orbit. If the vector
yNN(k) is a false neighbour, the dimension d does not unfold the attractor, and going
to a higher dimensions may move this false neighbour out of the neighbourhood
of y(k). This procedure can be repeated for all the y(k) delay vectors, for k =
1, 2, · · · , N . During this approach, the value of d is increased incrementally until
no more false neighbours are removed. At this point d is equal to the embedding
dimension of d, and the attractor is completely unfolded [9].

In order to identify true and false neighbours, we use the Euclidean distance between
the nearest neighbours in dimension d and d + 1. In going to dimension d + 1, the
vectors y(k) and yNN(k) are each augmented by sk−dV and sNN

k−dV , respectively. The
Euclidean distance between the nearest neighbours in dimension d, denoted Dd, and
in dimension d + 1, Dd+1, can be formulated as:

D2
d(k) =

d
∑

i=1

[sk−(i−1)V − sNN
k−(i−1)V ]2 (12)

D2
d+1(k) =

d+1
∑

i=1

[sk−(i−1)V − sNN
k−(i−1)V ]2 = D2

d(k) + [sk−dV − sNN
k−dV ]2 (13)

In fact, it is only necessary to compare the additional distance |sk−dV − sNN
k−dV | with

Dd(k), the Euclidean distance in dimension d. If the additional distance in comparison
to the distance of nearest neighbours in dimension d is large, the neighbours are
false; otherwise, the neighbours are true. The normalized distance difference between
dimension d and d + 1 with respect to the distance in dimension d, ∆Dd, can be
written as:

∆Dd(k) =
|sk−dV − sNN

k−dV |

Dd(k)
(14)

Whenever the value of the index ∆Dd is greater than some predefined threshold, the
neighbours are declared to be false. The value of this threshold is very important in
declaring false neighbours. In general, the threshold value depends on the application,
especially the noise level and the number of data points. If all regions of the attractor
are sampled adequately, the variation of false neighbours with the number of data
points is very small.
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The false nearest neighbours method is very effective as long as the time series data are
not corrupted by noise. In fact, for clean time series data the number of false nearest
neighbours drops to zero as d approaches the embedding dimension. By increasing
the delay-coordinate dimension beyond that point, the false nearest neighbours stay
equal to zero, since after the attractor is unfolded for d, it stays unfolded for any
dimension greater than d; this situation holds as long as the data are not seriously
corrupted by noise.

In real-life applications, the time series data are always contaminated by noise, and in
some cases the noise may dominate the signal. For high noise levels, the embedding
dimension would increase until the noise is also unfolded; since the dimension of noise
is very high the false nearest neighbours may never decrease to zero. In such cases,
we can stop increasing the value of d when the false nearest neighbours value comes
to its first minimum. If the noise level is not very high, it is also possible to put the
threshold value of false nearest neighbours greater than the noise level [9].

4.2 Dimension Calculation of the Reconstructed State Space

The false nearest neighbours index was used to calculate the delay-coordinate dimen-
sion of the helicopter time series data. The result of this calculation is presented in
Figure 12. As shown, the value of the false nearest neighbours index is very close
to zero for d = 6. This value will be selected for the delay-coordinate state-space
reconstruction of our flight data.
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Figure 12: Calculation of embedding dimension by false nearest neighbours approach
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4.3 Dimension Calculation of Reconstructed State Space for
the Lorenz System

The delay-coordinate dimension of the Lorenz System was also calculated using the
false nearest neighbours approach. Based on this, we found that a value of d = 3
can unfold the Lorenz System. This value is equal to the actual dimension of the
system, m = 3. In the following analysis, the value of d = 3 is used as the minimum
embedding dimension of the Lorenz System.

5 Lyapunov Exponents

In general, the trajectory of a dynamical system starting at an arbitrary initial point
can end up at a stable fixed point (sink), a stable closed trajectory (periodic sink),
a chaotic orbit, or it may become unstable. The evolution of such a trajectory may
be quite complicated; for example, if an initial condition is near an unstable fixed
point (source) p, it experiences an unstable behaviour in the beginning but at some
distance from p, the orbit may be attracted to a sink q. Near the sink, the distance
between the orbit points and the sink will decrease. This transient instability and
attraction to a sink or period-K sink is not generic in all dynamical systems; in some
systems, there may be no stable solutions or there may be chaotic orbits.

A chaotic orbit can be defined as continuously unstable but bounded behaviour of
the system. Here the term “unstable” is not used to mean that the orbit completely
diverges, as is the case for unstable fixed points or unstable closed trajectories (un-
stable limit cycles); rather, in such a system, given a point on a chaotic orbit there
are points arbitrarily nearby on trajectories that will diverge from it during further
evolution. This behaviour is in marked contrast to that of a stable limit cycle, where
nearby points lead to converging trajectories. To discriminate between these phe-
nomena (stable limit cycles and chaotic orbits), the maximal Lyapunov number (or
maximal Lyapunov exponent) can provide a useful measure of the convergence or di-
vergence (chaotic behaviour) of the system’s orbits. The maximal Lyapunov number
is defined as the average per-step divergence rate of nearby points along a system’s
orbits, and the maximal Lyapunov exponent is the natural logarithm of the maximal
Lyapunov number.

5.1 Lyapunov Number/Exponent in One-Dimensional Maps

For simplicity. we discuss Lyapunov numbers and Lyapunov exponents in the context
of maps; analogous developments for continuous-time systems should be evident. The
stability of a discrete dynamical system around any fixed point is governed by the
derivative of its map. For example, in a one-dimensional map F with fixed point p and
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F′(p) > 1, the orbit of any point x near p will diverge from p at a multiplicative rate
of approximately F′(p) per iteration. Similarly, for a period-K orbit, the derivative
of the Kth iterate of the map determines the behaviour of the map. This derivative,
according to the chain rule, is equal to the product of the map’s derivatives at the K
points of the orbit. In this case, the orbit of each point x close to the periodic point
pK , after each K iterations, converges to or diverges from pK at a rate about equal
to the product of the derivatives.

The Lyapunov number is defined to quantify the average convergence or divergence
of near-by points at each iteration. A Lyapunov number of 2 (or Lyapunov exponent
of ln 2) means that the average distance between the orbit of x1 and the orbit of a
neighbouring point x′

1 doubles each iteration. If the Lyapunov number is less than
one (e.g. 1

2
), then the distance would be reduced (halved) at each iteration. For a

period K orbit pK , we use the chain rule to formulate this measure as:

|(FK)′(pK)| = |F′(x1)| |F
′(x2)| . . . |F′(xK)| (15)

To formalize this discussion, the sensitive dependence of chaotic systems on initial
conditions can be distinguished from the behaviour of stable limit cycles (period-K
sinks) by the Lyapunov number or exponent; clearly, these are the only two options
given a vibratory signal that does not diverge in the traditional sense of instability.
In fact, an orbit is chaotic if its Lyapunov number is greater than 1. In mathematical
form, the Lyapunov number and exponent can be defined as follows:

Lyapunov number: Let F be a one-dimensional map on <. The Lyapunov number,
L(x1), of the trajectory {x1, x2, x3, · · ·} is defined as:

L(x1) = lim
n→∞

(|F′(x1)| |F
′(x2)| . . . |F′(xn)|)1/n (16)

if this limit exists.

Lyapunov exponent: The Lyapunov exponent, λ(x1), exists if and only if L exists,
and can be defined as λ(x1) = ln L

It should be noted that the Lyapunov number/exponent cannot be defined for any
trajectory containing a point xi with F′(xi) = 0. For a one-dimensional map F, the
Lyapunov number and exponent of a fixed point p are:

L = |F′(p)| , λ = ln |F′(p)|, (17)

and for a period-K point pK , the Lyapunov number and exponent are:

L(pK) = (|F′(x1)||F
′(x2)| . . . |F

′(xK)|)
1/K

, λ(pK) = ln L(pK) (18)

The unit of Lyapunov exponent is in inverse normalized time, and it provides a
measure of the rate of divergence or convergence of nearby trajectories with each
time step. In calculating the Lyapunov exponent, the time unit can be equal to the
unit of the sampling time index or the unit of real time, say seconds [2].

17



5.2 Lyapunov Numbers and Exponents for Multidimensional
Maps

Lyapunov numbers and exponents can also be defined for multidimensional maps.
In a one-dimensional map, a single Lyapunov number gives a measure of separation
rates of nearby points along the real line. For maps on <m for m > 1, however,
nearby points may diverge in one direction and converge in another. Therefore, in an
m-dimensional map, each orbit has m Lyapunov numbers. These numbers measure
the rate of expansion /contraction from the current point along m orthogonal direc-
tions. In general, the maximal Lyapunov number/exponent is the most important one
for identifying chaotic behaviour of a system, since divergence (a positive Lyapunov
exponent) in some direction(s) is a signature for chaos.

As an example, consider a 2-dimensional map with expansion on one direction and
contraction on the other axis. Take a circle with unit radius centered on the first point
x0 in the a state space. After each iteration of map F on the points inside this disk,
the points on the circle are expanded in one direction, and contracted in the other
direction. This causes the unit circle to change into an ellipse. After each iteration
of the mapping, the ellipse becomes longer and thinner. The result of this mapping
for a unit circle after n iteration is shown in Figure 13. The expansion /contraction
of the axes of the ellipse at each iteration is governed by the Lyapunov numbers. The
natural logarithm of each Lyapunov number is the corresponding Lyapunov exponent.
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Figure 13: Effect of expansion and contraction in a 2-dimensional map [2]

In order to define the Lyapunov number in a multidimensional map, let the Jacobian
(the first derivative matrix) of F at x0 be denoted by J0 = DF(x0), and the
Jacobian of the nth iterate of F at x0 by Jn = DFn(x0). In the multidimensional
case m > 2, the circle and ellipse are replaced by hypersphere and hyperellipsoid.
Since we are considering the infinitesimal behaviour of map F around x0, the map
can be approximated by its linearized model at x0, xn+1 = J0xn. Denoting the
infinitesimal hypersphere of radius ε by Uε, J0Uε determines the hyperellipsoid with
m orthogonal axes after the first iteration, and JnUε represents the hyperellipsoid
after n iterations. The Lyapunov number can now be defined as follows:

18



Lyapunov number: Let F be a smooth map on <m, and for k = 1, · · · , m, let rn
k

be the length of the kth longest orthogonal axis of the hyperellipsoid JnUε divided by
ε (the expansion /contraction) for an orbit with initial point x0. Then rn

k gives the
expansion or contraction near the orbit at x0 during the first n iterations. The kth
Lyapunov number at x0 is defined by:

Lk = lim
n→∞

(rn
k )1/n, (19)

if the limit exists.

Lyapunov exponent: With similar notation, the kth Lyapunov exponent at x0 can
be defined as λk = ln Lk.

It should be noted that by definition, it is given that L1 ≥ L2 ≥ · · · ≥ Lm and
λ1 ≥ λ2 ≥ · · · ≥ λm.

According to the definitions above of Lyapunov number/exponent, a chaotic orbit in
a multidimensional map can be defined as follows:

Chaotic orbit: Let F be a map of <m, m ≥ 1, and let x0,x1,x2, · · · be a bounded
orbit of F. The orbit is chaotic if:

1. it is not asymptotically periodic,

2. no Lyapunov number (exponent) is exactly one (zero), and

3. L1(x0) > 1 (λ1(x0) > 0).

In a chaotic system, the separation of nearby trajectories may be extremely fast. The
average maximal rate of this divergence, characterized by the maximal Lyapunov
exponent, characterizes the strength of the chaos. If the separation rate is averaged
over a short time, we obtain a local Lyapunov exponent. Local Lyapunov exponents
can have strong fluctuations [18], and are difficult to interpret. The (global) Lyapunov
exponent is an average over the local values, and tends to be more consistent.

Again, the maximal Lyapunov exponent, λ1, is the most important. From the value of
λ1 for a particular trajectory, we can determine if the system has a stable fixed point,
a stable limit cycle, or if it exhibits chaotic behaviour. Dissipative systems have a
negative maximal Lyapunov exponent, and separate trajectories are attracted to a
stable fixed point. These trajectories approach each other exponentially fast when
they are approaching the stable fixed point. If the system has a stable limit cycle, two
separate trajectories can approach each other exponentially (λ1 < 0) or more slowly
than exponentially (λ1 = 0). In a chaotic system, the maximal Lyapunov exponent
is positive, λ1 > 0; in this case, the nearby trajectories diverge from each other
exponentially fast. Note that for a random noise, the maximal Lyapunov exponent is
infinite. A summary of system behaviour and its relation with the Lyapunov exponent
is summarized in Table 1 [8].
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Table 1: Relation of Maximal Lyapunov Exponent and System Behaviour

Type of motion Maximal Lyapunov exponent
stable fixed point λ1 < 0
stable limit cycle λ1 ≤ 0

chaos 0 < λ1 < ∞
noise λ1 = ∞

It should be mentioned that the Lyapunov exponent is an invariant of the system. In
numerical calculation of Lyapunov exponents from time series data, as long as the data
has enough resolution, the type of measurement, sampling time, or use of a smooth
transformation does not change the resulting values of the Lyapunov exponents. In
calculating Lyapunov exponents using the delay-coordinate embedding approach, the
local Lyapunov exponent varies throughout the attractor, and the actual exponent is
an appropriate average over the whole space.

5.3 Determining the Maximal Lyapunov Exponent from Time
Series Data

As mentioned, the maximal Lyapunov exponent is of paramount importance. For
this reason, most algorithms used in the study of chaos deal with the calculation of
this exponent. In this section, an algorithm which calculates the maximal Lyapunov
exponent from time series data is discussed [7, 17]. In this algorithm, the exponential
divergence of nearby trajectories is tested. Thus, for data with no finite exponent,
such as noise, no Lyapunov exponent will be calculated.

Recall that the (global) Lyapunov exponent is an average over the local Lyapunov
exponent in the whole attractor space. In another words, the Lyapunov exponent
is the average of exponential expansion /contraction rates over the whole time series
data. In most cases, the time series data are contaminated by noise. In order to reduce
the effect of noise on the calculation of the Lyapunov exponent, some appropriate
averaging (filtering) method may deployed if the noise level is substantial.

The Lyapunov exponent can be calculated using the delay-coordinate embedding
approach as follows:

1. Set l = 1.

2. Select a reference point sl from the time series data, l > (d− 1)V , and identify
y(l) in the delay-coordinate embedding space as:

y(l) = [sl, sl−V , · · · , sl−(d−2)V , sl−(d−1)V ] (20)

where the values of V and d are calculated as discussed in Sections 3 and 4,
respectively.
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3. Find all the points in the neighbourhood of y(l) with the distance smaller than
ε, Uε(y(l)).

4. Calculate δl(0), the average of the distances between y(l) and the points in
Uε(y(l)).

5. Calculate δl(∆k), the average of the same distances after ∆k time steps, for ∆k
= 1, 2, . . . .

6. Set l = l + 1; return to Item 2 until sufficient points are tested, l = 2, 3, . . . L.

7. Calculate the logarithm of the averaged calculated values of Item 5 over all the
data points, DL(∆k).

8. Plot the calculated values of Item 7, DL(∆k), versus ∆k. The slope of this
graph is the Lyapunov exponent per time step. This value can be converted to
the normal time unit.

The selected value of ε should be as small as possible, but it should be large enough
that each point has at least several neighbours. This causes all parts of the attractor
to participate in the calculation, and thus a better value of the Lyapunov exponent
is obtained.

In order to minimize computational effort, it is possible to reduce the number of data
points used during the above calculations. One option is to stop the computation as
soon as a sufficient number of reference points with rich neighbourhoods have been
obtained. The minimum number of reference points can be as low as 500 points,
and the number of neighbours for each reference point should be greater than 10 [8].
In general, reference points with fewer neighbours will cause more fluctuation in the
value of DL. Fluctuations in DL can also occur due to the presence of noise in the
data set. If the noise level is bigger than ε, some false neighbours may be considered
as true neighbours, and the value of DL will thereby be corrupted.

5.4 Calculation of the Maximal Lyapunov Exponent for He-
licopter Flight Data

The helicopter flight data set is studied by using the method explained in Section
5.3. The sampling delay and embedding dimension were varied in different studies,
and two methods were used, to rigourously confirm our results. The value of DL(∆k)
is calculated by the methods described in [7] and [17]. The following results were
obtained using software supplied by the authors [7, 17].

Study 1: Using the approach described in [7], the value of DL(∆k) is calculated for
neighbourhood sizes of ε = 6 and ε = 8, and five different dimensions d = 6, 7, · · · , 10,
resulting in 10 cases. The selected number of reference points is equal to L = 1000,
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and the number of points in the ε-neighbourhood of reference points with the selected
ε was from 50 to 1000. All the plots are presented in Figure 14.

In this figure, we note that a similar behaviour is obtained in each case. The initial
strong fluctuation of DL are due to the presence of quasiperiodicity in the dynami-
cal system. Underlying these fluctuations, a distinct linear increase is apparent, as
shown by the dashed line. The slope of this line gives the estimated value of the
maximal Lyapunov exponent. The calculated value of maximal Lyapunov exponent
from Figure 14 is λ1 = 3.0 ∗ 10−3 (time step)−1 or λ1 = 3.07 second−1.
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Figure 14: Maximal Lyapunov exponent calculation for helicopter flight data by the
method of Kantz [7]

Study 2: The maximum Lyapunov exponent is also calculated by the approach
mentioned in [17]. In this method, the value of ε is automatically changed until a
sufficient number of neighbors are found; the dimension values of d = 6, 10, 14, 18
are examined. The plots obtained from this method are portrayed in Figure 15, with
a dashed line with the same slope as shown in Figure 14. In this figure, the plot
for d = 6 has the same linear increase as mentioned above, and the slope of the
other plots will decrease when the value of d increases. This decrease could be due
to corruption of the data with noise. As mentioned in [8], noise can have a major
impact on the computation of the maximal Lyapunov exponent. To calculate the
maximal Lyapunov exponent more accurately, the measured data should be filtered
very precisely. Many linear and nonlinear filtering algorithms for chaotic data are
proposed in the literature; we have not pursued this, due to the low level of noise
evident in Figure 2.

Study 3: To investigate the effect of sampling delay on the computed maximal
Lyapunov exponent, we chose the dimension d = 6 and several values of sampling
delay, V = 10, 11, 12, 14, 16 and 18. The results for these cases by the method
of [17] are shown in Figure 16. In all the plots, the dashed line has a slope equal
to the above-mentioned value. As it is clear from these plots, changing V slightly
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Figure 15: Maximal Lyapunov exponent calculation for the helicopter flight by the
method of Rosenstein et al [17]

(12 ≤ V ≤ 16) does not have much impact on λ1, but larger and smaller values can
have some effect on the computed value of λ1.

Study 4: It should be noted that in real-life time series, the number of data points
and sampling time can also have some effect on the computed Lyapunov exponent.
To study this, a new data set FDS′

1 is created by removing every other point of the
original data FDS1. Using the same approaches, the new optimal sampling delay,
V , and embedding dimension are estimated. Plots for the new data set for V = 7
and four different values of dimension, d = 6, 10, 14, and 18 from the approach of
[17] are presented in Figure 17. The dashed line has the slope of λ1 = 5.98E − 3
(time step)−1 or 3.06 second−1. Comparing this result with that of Study 1, it can
be concluded that the sampling time has only a slight effect on the calculated value
of λ1.

5.5 Calculation of the Maximal Lyapunov Exponent for the
Hénon Map and Lorenz System

In order to confirm our computation of λ1, two classical problems are also examined.
As an example of a discrete system, the value of λ1 for the Hénon Map by the approach
of Kantz [7] is calculated. The plots of DL for this map for d = 2, 3, 4, and several
values of ε is shown in Figure 18. The value of λ1 as reported in the literature is 0.418
[17]. The slope of the dashed line in Figure 18 is 0.418; as can be seen, the slopes of
the DL plots are very close to the slope of the dashed line.
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Figure 16: The effect of reconstruction sampling delay on maximal Lyapunov expo-
nent computation for d = 6
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Figure 17: Maximal Lyapunov exponent computation for data set FDS′

1 by the
method of Rosenstein et al [17]
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Figure 18: Maximal Lyapunov exponent calculation for the Hénon Map by the ap-
proach of Kantz [7]

The maximal Lyapunov exponent of x(t) for the Lorenz System is also computed
using the approach of Kantz [7]. The value of DL is calculated for d = 3, 4, 5, 6, and
several values of ε; the corresponding plots are depicted in Figure 19. The dashed
lines in Figure 19 have a slope equal to the accepted value of λ1 = 1.5 [17], so it is
clear that the slope of DL is in accordance with the reported value in the literature.
The fluctuation of DL in this figure is related to the use of small values of ε.
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Figure 19: Maximal Lyapunov exponent calculation of x(t) in the Lorenz System by
the approach of Kantz [7]
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6 Conclusion

A detailed analysis of helicopter flight data has been performed in order to investigate
the possibility of chaotic behaviour. The motivation of this study was to determine
the vibrational characteristics of a helicopter during flight. Two sets of flight data
related to the acceleration of the helicopter for different airspeeds were considered.
The data were sampled at fs=1024 Hz at the nominal rotor speed of fn = 3.57 Hz,
when the active vibration control of helicopter is switched off.

As a first step, the time series data was inspected in the frequency domain. The
blade passing frequency of fBP =17.85 Hz has the highest amplitude in the power
spectrum of the data (Figure 3); however, significant power over a broad range of
frequencies is also present. The general sources of broad band frequency content can
be random noise or chaos. The data sequences provided do not appear to be noisy;
for this reason, the presence of chaos in the time series data may be suspected.

One of the major characteristics of chaotic systems is their sensitive dependence of
their trajectory to the initial conditions. Two trajectories with very close initial
conditions can diverge rapidly as time passes. This characteristic can be quantified
by the Lyapunov exponent; in particular, chaotic systems have a maximal Lyapunov
exponent greater than zero. In order to calculate the maximal Lyapunov exponent,
the given time series data were used to reconstruct a state-space representation. The
delay-coordinate embedding approach was used for this purpose.

The selection of sampling delay and dimension of the embedding space were the main
considerations. The optimal sampling delay for the helicopter time series data was
determined using the autocorrelation and mutual information functions. The final
selection was verified by inspecting the data embedded in a 2-dimensional delay-
coordinate state space. The dimension of the helicopter data was computed by the
false nearest neighbours approach.

The maximal Lyapunov exponent of the embedded system was calculated by two of
the methods proposed in the literature and using software supplied by the authors.
The maximum Lyapunov exponent derived from the helicopter data was equal to
λ1 = 3.0 ∗ 10−3 (time step)−1 or λ1 = 3.07 second−1. This value is greater than
zero, and shows the exponential divergence of nearby points. As a result, the system
appears to have a chaotic behaviour.
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