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Abstract: Earlier research in the modeling and simulation of hybrid systems led to the development of a general hybrid
systems modeling language (hsml) that has been described elsewhere. In more recent work, we have implemented
this concept in software. First, the standard matlab model framework and integration algorithms were extended to
support state-event handling in continuous-time components, including approaches for dealing with discontinuities
in the dynamic model, vector-field conflicts, and changing model order and structure. Then further major extensions
were made to handle embedded discrete-time components, generally understood to embody any agent implemented
in real-time software.

In this paper we overview the algorithmic implementation of the hsml ideas and language constructs for dealing
with state events and embedded discrete-time agents in matlab. A simple example (a missile roll control system
with a hysteretic switching function and a discrete-time controller) is presented to demonstrate the efficacy of these
extensions.
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time agents.

1 Introduction

hsml, as described previously [1, 2, 16], was designed
to support a broad definition of a hybrid system, which
we may express informally as being an arbitrary inter-
connection of components that are arbitrary instances
of continuous- and discrete-time subsystems. Require-
ments for hsml particularly focused on rigorous char-
acterization and execution of “events”, both discrete-
and continuous-time, that cause discontinuous changes
in system trajectories and/or the model structure itself.
In this respect, there is much commonality between the
hsml project and recent developments by Cellier et al.
in the area of object-oriented modeling [3]; for a detailed
view of state events see especially [4, 5].

In conceiving and developing hsml, there was no claim
that one cannot rigorously model hybrid systems us-
ing certain other, extant languages. For example, acsl

[6] can be used to model and simulate state events
in hybrid systems with considerable generality; how-
ever many other packages (especially commercially-
supported ones) lack even the basic provisions for state-

event handling. Also, the high-level features and strict
semantics and syntax formulated for hsml facilitate and
enforce a higher degree of rigor in hybrid systems model-
ing, thereby ensuring a greater probability of model cor-
rectness. For example, resetting the state after a state
event can be done in acsl, but not cleanly and reliably;
here we use a strict protocol that permits state reset
with safety. The ideas and algorithmic requirements
underlying hsml can be translated into any modeling
and simulation environments, assuming that a developer
can gain access to the necessary internal “machinery”,
as demonstrated in this presentation.

This paper focuses on our work to implement a sub-
set of hsml in a working modeling and simulation en-
vironment, matlab [7]. It also overviews an applica-
tion involving significant state-event handling in the
continuous-time part (to handle hysteresis) as well as
dealing with “time events” associated with the exe-
cution of discrete-time elements (a conventional con-
troller), thus providing a complete demonstration of the
approach. This presentation complements the prelimi-
nary discussions of state-event handling in [8, 9], espe-
cially with the approach for coordinating the execution
of embedded discrete-time algorithms [10].



The remaining parts are as follows: Section 2 outlines
the hsml framework for hybrid systems modeling, Sec-
tion 3 overviews state- and time-event handling, and
Section 4 deals with the extensions needed in matlab

for modeling and simulating hybrid systems. The final
sections show the use of the approach on a hybrid sys-
tem with discontinuities and a discrete-time component
and summarize the present status and future directions
of the hsml project.

2 hsml Overview

hsml is designed to be a rigorous and modular hier-
archical scheme for modeling hybrid systems. At the
lowest level hsml components are “pure” continuous-
time components (ctcs) and discrete-time components
(dtcs) [1]. These elements may be assembled into com-
posite components, and then systems. Every compo-
nent has an interface and a body; its interface defines
the entities that are accessible from and to the outside,
and the body describes the dynamic behavior of the
component. As described in [1, 2], the interface sec-
tion requires that the primary input/output variables
must be typed (‘signal’, ‘real’, ‘integer’, ‘boolean’ or
‘string’) and may be constrained as to range, broadly in-
terpreted to be a numerical range (<range> = (v min,

v max)) or a set (e.g., <range> = {"high", "medium",

"low"} for a string variable). In the body, the sec-
tions declarations and assignments exist for speci-
fying internal variables and assigning parameter values,
respectively. Beyond these general observations, a com-
ponent is elaborated for the specific component type
(ctc, dtc) by adding distinctive mandatory and op-
tional sections; e.g., initial, dynamics and output for
a ctc. (Note that we have not fully implemented all of
these features in matlab so far; however, they represent
important goals to be pursued in future work.)

Here we consider ctcs that may be represented as1:

ẋc = fc(xc, uc, ud,k, m, t)

yc = hc(xc, uc, ud,k, m, t) (1)

where xc is the state vector, yc is the output vector,
uc and ud,k are numeric input signals (continuous- and
discrete-time, respectively), m is comprised of a finite
alphabet of numeric or symbolic input variables that
characterizes the “mode” of the model, and t is the
time; in general uc, ud,k and m are vectors. There are
implicit “zero-order holds” operating on the elements of
ud,k and m, i.e., these inputs remain constant between

1The specific class of ctc that can be modeled depends on the
simulator’s integration methods. So far we have only extended
matlab’s ordinary differential equation solving routine ode45, so
we cannot handle differential algebraic equations (daes). This
leads to a significant simplification of formulation and variable
types in comparison with [1, 2].

those times when they change instantaneously. Of par-
ticular importance to the present exposition, the mode

input m is included to provide means of controlling the
model’s structure and coordinating its behavior with the
numerical integration process in state-event handling, as
described below.

State events are characterized by zero crossings,

S(xc, m, t) = 0 (2)

where S is a general expression involving the state,
the mode of the ctc, and perhaps time. An arbi-
trary state change in the ctc can be classified as a
negative-going event (i.e., one in which S becomes
negative), an on-constraint event (where S remains
equal to zero until another state event occurs), or
a positive-going event. Note that this framework
provides support for models that undergo structural
changes (e.g., changes in the definition or number of
state variables) [16]; e.g., in the case of mechanical sub-
systems engaging, the number of states decreases. Fi-
nally, we include provision for instantaneous reset of the
model state variables at an event:

x+
c = xc(t

+
e ) = r(xc(t

−

e ), m, t−e ) (3)

where r is also an arbitrary expression and te is the event
time. This feature is useful in resetting velocities after
engagement to conserve momentum, for example. In
accordance with this scheme for state-event definition,
we permit elements of m to take on the values –1, 0,
+1.

In the present effort, a dtc is a general algorithm which
we can characterize in terms of internal variables called
“discrete states” and outputs that also change discretely
(instantaneously) at each execution:

x+
d,k(tk) = fd(xd,k, ud,k, m, tk)

y+
d,k(tk) = gd(x

+
d,k, ud,k, m, tk) (4)

where xd,k is the discrete state vector, k is the index
corresponding to the discrete time point tk at which the
state takes on the new value x+

d,k, ud,k is the input vec-

tor, and y+
d,k is the output. Note that there are implicit

“sampling” operators on ud,k if continuous-time vari-
ables are involved. The times tk are usually – but not
necessarily – uniformly spaced (tk = t0 + k ∗ Ts where
Ts is the sampling period); in any case, we assume that
the update times can be anticipated. Corresponding to
this, we define the vector te,k which at any time is com-
prised of the next execution times for every dtc in the
model. (In future extensions provision will be made for
computational delay δk between the sample time and
the output change; this may be modeled with varying
degrees of realism, from a fixed delay time to an actual



emulation of the computational burden required in han-
dling the computations. Also, note that while the above
appears in a form suggesting a discrete-time controller
or Kalman filter algorithm, we emphisize that we have
other more general “logic-based” component formula-
tions in mind [1, 2, 16].)

3 Event Handling

3.1 State-Events

The hsml features for modeling state events are de-
signed to permit the accurate and efficient integration
of ctcs that may exhibit discontinuous behavior such
as relays switching and mechanical components engag-
ing/disengaging. The nature of the problem and an ap-
proach for proper handling of such events has been de-
tailed previously[8, 9]; in this context, it suffices to ob-
serve that blindly integrating a ctc by stepping from
a point tk before switching to tk+1 after the disconti-
nuity usually produces results that are both inaccurate
and inefficient (in the sense of consuming an inordinate
amount of computation).

The appropriate handling of state events requires co-
ordination between the model and simulation package.
This is achieved in hsml via flag variables in the model
(S in Eqn. 2; these signal the integrator that a state
event has been overshot), and the model input variable
m that can be used to control model switching. State-
event handling then proceeds as follows:

1. Integrate as usual as long as the flag variables do
not change sign. Each integration point is treated
as a “trial” point until the sign condition is checked;
if no sign change has occurred, the point becomes
“accepted”.

2. When a sign change is detected, the trial point is
discarded and an iterative procedure is initiated
(within the simulator) to find the step h∗ such that
the flag variable is zero (within a small tolerance
ε “on the other side”). The model does not switch
during this part of the procedure.

3. The integrator produces an accepted point just past
the switching curve (Eqn. 2) and then signals the
model to switch (e.g., by changing m from 1 to – 1
or vice versa if the boundary is to be crossed, or to
0 if the trajectory is to be confined to the boundary
until the next state event).

4. The integrator then calls the model to determine if
a state reset is desired, and if so executes it.

5. Normal integration proceeds from that point until
the next state event is encountered.

This procedure is illustrated below using matlab ex-
tensions.

3.2 Time-Events

The approach and conventions needed to handle time
events are much simpler than those required for state
events. After all, we are merely emulating the execu-
tion of a computer algorithm in a digital setting (but
without actual real time considerations). As we are im-
plementing this feature, we assume that each dtc will
“notify” the higher-level system integration block (sib)
about the next execution time, t exec (te,k). This is
done at the beginning of the simulation and at every
subsequent dtc execution. The sib determines the ear-
liest of the anticipated time events (if there is more than
one dtc), and signals the numerical integrator to stop
at that time. At that point the sib is invoked with t =
te,k and it proceeds to execute the appropriate dtc(s),
handling priority issues as required. At each dtc exe-
cution this process is updated and continued until the
end of the simulation run.

4 matlab Extensions for Event

Handling

The above outline of hsml and it’s approach for char-
acterizing state and time events provides a clear set of
requirements for implementation in a software package.
We have focused on matlab for this purpose, since it is
so readily extensible. Generalizations are needed in two
major areas: modeling schemes and numerical integra-
tion methods.

4.1 Extended Model Schema

The model input/output framework had to be extended
as follows [8, 9]: The original matlab scheme was to
create models in the form of functions with two inputs
(t, x) and one output (ẋ). To this, we added the new in-
put variable m (mode), allowing the numerical integra-
tion routine to request that the model switch according
to state events as they are detected. In addition, two
new output variables are S, the flag variable in Eqn. 2
that signals a state event, and r, included to permit
state reset (Eqn. 3). Note that S and m may be vectors,
to support multiple state event mechanisms (switching
conditions).

The inclusion of embedded dtcs in hybrid system mod-
els necessitates a further increase in complexity in com-
parison with these earlier extensions. We recently
adopted a modular model-building scheme much closer
to the conceptual design of hsml (and reminiscent of
simnon [11]). This scheme is portrayed in Fig. 1 (at
the end of the paper). In this diagram, observe that:

• The Numerical Integrator (ni – see [8, 9]) must now
serve as the “memory” for the aggregate discrete-
component states (xd) and for the dtc’s times of



next execution te, a vector having dimension equal
to the number of dtcs. The ni has the new require-
ment of stopping exactly at tn, the earliest of the
elements of te, and the “System Integrator Block”
(sib) has the responsibility of executing the correct
dtc(s) when t = tn.

• If multiple dtcs are to be executed at tn, then the
sib has the responsibility of calling them in the cor-
rect order.

• The continuous-time dynamics can reside in the sib

if they are simple; if it is helpful to create one or
several separate ctcs, then one can do this as dia-
grammed; note that this necessitates ctcs having
inputs and outputs that are defined at the interface,
as shown.

4.2 Extended matlab Integrators

Significant extensions must also be made in the matlab

numerical integration algorithms. There are three fea-
tures needed to permit the matlab integration routines
to deal with state and time events:

1. the numerical integrator must coordinate with the
extended model to establish the initial values of m

and te;

2. the routine must continuously test for the occur-
rence of events by:
(a) ensuring that t stops at tn for a time event,

and/or
(b) watching for zero crossings in S, iterating ex-

actly to the switching point and then changing
m; and

3. it must execute a state reset operation after a state
event, if it is called for by the model.

To support this functionality, the following conven-
tions are imposed: The value of m for initialization is
“empty” (m = [ ]). The model must return the appro-
priate value of S, based on the stipulated initial condi-
tion x0. From this information, the integration routine
will set m = sign(S). During normal integration the
value of m’s elements will be −1, 0, 1. When a state
event is detected and determined2, the corresponding
element of m is switched; then m is temporarily made
complex and the model should respond by returning the
reset value r (Eqn. 3) or r = [ ] if no reset is to be done.
Finally, that element of m is returned to −1, 0, 1 and nu-
merical integration is resumed with the indicated mode
change.

5 Example Application

The extensions to matlab outlined above were imple-
mented and tested using a number of simple switch-

2We determine zero crossings by embedding a modified version
of matlab’s fzero algorithm within the integrator [9].

ing systems [8, 9]. In addition, we demonstrated the
modeling and simulation of a much more realistic (and
difficult) application, control of a nonlinear model of
an electro-mechanical testbed [12, 13]; the model was
composed of two subsystems: a drive subsystem (a DC
motor with coulomb friction, a gear train with back-
lash, and an elastic shaft) and a wheel/barrel subsys-
tem (including an inertial wheel, also with coulomb fric-
tion, and a flexible gun barrel). Here, in the interest of
brevity and clarity, we will focus on simpler continuous-
time dynamics, a model for a missile roll-control system
due to Gibson [14].

The model depicted in Fig. 2 (at the end of the paper)
assumes a pair of reaction jets is mounted on the mis-
sile, one to produce torque about the roll axis in the
clockwise sense and one in the counterclockwise sense.
The force exerted by each jet is F = 100 lb and the mo-
ment arms are r = 2 ft. The moment of inertia about
the roll axis is 3.45 lb-ft/sec2. Let the control jets and
associated servo actuator have a hysteresis h = 5 lb and
two lags corresponding to time constants of 0.01 sec
and 0.05 sec. To control the roll motion, there is roll
and roll-rate feedback, with gains of 420 lb/radian and
42 lb/(radian/sec) respectively. In the original formu-
lation, the controller was analog; here however we have
modeled it as a digital algorithm wherein the rate signal
is generated by numerical differentiation; the sampling
time is fast, to emulate the analog control with reason-
able fidelity.

The hysteretic relay action was modeled rigorously us-
ing modes. The relay output corresponds to F = 100 m

where m takes on values of ±1, and the switching func-
tion is

S(e, m) =

{

e + h , m = 1 ;
e − h , m = −1

(5)

where e is the relay input (output of the hydraulic servo
amplifier).

Analog simulation and describing function analysis pre-
dict that the system should exhibit limit cycles [14].
Simulation results for the digital controller are depicted
in Fig. 3. According to Gibson, the amplitude and fre-
quency of the limit cycle oscillation should be ALC =
0.135 rad, ωLC = 22.9 rad/sec, which agrees quite well
with these hybrid simulation results (ALC = 0.130 rad,
ωLC = 23.1 rad/sec).

6 Conclusion

The matlab implementation presented above provides
a demonstration of hsml in general and of the impor-
tance of careful time- and state-event handling in partic-
ular. Introducing the concept “mode” and the carefully
prescribed “reset” protocol are both contributions to-
ward making the modeling and simulation of switching
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Figure 3: Illustration of Hybrid Simulation Results

in continuous-time systems more systematic and rigor-
ous. These features permit the study of systems that are
well beyond the capabilities of the standard matlab in-
tegrators such as ode45. Machinery for the execution
of embedded discrete-time components further increases
the level of generality available for modeling and simu-
lation of hybrid systems. A key factor in these develop-
ments is the ability to guarantee the correct timing of
state and time events, so that questions such as “does
the dtc execute just before or after the relay switches”
can be answered with high reliability.

Extending this modeling approach and associated nu-
merical integration routines can be pursued in several
obvious ways, e.g., they can be inserted into more so-
phisticated modeling environments (like the simulink

framework [15]). A more important extension would in-
volve the development of a “hsml compiler”, that would
take the more rigorous hsml formulations and autocode
extended matlab models. (See Section 2, e.g. typing
and constraining input/output variables.) In a more
technical vein, handling vector-field conflicts (situations
where the solution must remain on the surface S = 0
because the ODE vector is “into” the surface on both
sides) is not completely treated in the above approach.
In short, substantial work remains to be done!
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