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ABSTRACT 

Intelligent control and asset management for the petroleum industry is crucial for profitable oil and gas facilities 
operation and maintenance. A research program was initiated to study the feasibility of an intelligent asset 
management system for the offshore oil and gas industry in Atlantic Canada. The research program has achieved 
several milestones. The conceptual model of an automated asset management system, its architecture, and its 
behavioral model have been defined [1, 2]. Furthermore, an implementation plan for such system has been 
prepared, and the appropriate development tools have been chosen [3]. A system reactive agent structure was 
defined based on the MATLAB environment, and its communication requirements were analyzed and validated 
[31]. This paper builds on the previous work and proposes a general structure of the ICAM system intelligent 
supervisory agent and its software implementation. We also describe the software implementation using the G2 
expert system development environment. Furthermore, we analyze and define the autonomy requirements of the 
reactive agents of such system. 

1. INTRODUCTION 

Asset management and control of modern process plants involve many tasks of different time-scales and 
complexity including data reconciliation and fusion, fault detection, isolation, and accommodation (FDIA), process 
model identification and optimization, and supervisory control. The automation of these complementary tasks within 
an information and control infrastructure will reduce maintenance expenses, improve utilization and output of 
manufacturing equipment, enhance safety, and improve product quality.  Many research studies proposed different 
combinations of systems theoretic and artificial intelligence techniques to tackle the asset management problem, and 
delineated the requirements of such system [4], [5], [6]. 

Several research programs addressed the automation of asset management in large complex systems, namely the 
Pilots Associate (PA) program sponsored by the Defense Advanced Research Projects Agency (DARPA) [7], [8], 
the Rotorcraft Pilots Associate (RPA) program funded by the US army [9], MAGIC (Multi-Agent-Based Diagnostic 
Data Acquisition and Management in Complex Systems) developed by a joint venture of several European 
universities and companies [10], ISHM (Integrated System Health Management) project developed by NASA for 
space applications [11], AEGIS (Abnormal Event Guidance and Information System) developed by the Honeywell 
led Abnormal Situation Management (ASM) Consortium in the United States [12], and CHEM-DSS (Advanced 
Decision Support System for Chemical/Petrochemical Manufacturing Processes) developed by the European 
Community (EC) Intelligent Manufacturing Systems (IMS) consortium [13].  The most important project among 
these projects is AEGIS, which proposes a comprehensive asset management framework from an industrial view 
point. AEGIS built on the experience of military aviation research projects, especially the Pilots Associate (PA) and 
the Rotorcraft Pilots Associate (RPA) [14]. Although the 12 year old research program has achieved several goals 
and developed a well established abnormal situation management awareness and culture, it did not address the 
automation of massive process data interpretation and process fault diagnosis and accommodation, which would be 
aimed to minimize the workload on process operators [15]. 
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In order to build on the AEGIS project experiences and to incorporate the state of the art of fault diagnosis, 
artificial intelligence (AI) and wireless sensor networks techniques, a new asset management research project, 
PAWS (Petroleum Applications of Wireless Systems) was initiated by a joint venture of Atlantic Canadian 
universities and the National Research Council of Canada (NRC) for oil and gas applications [1], [16], [2], [17], 
[18], [3], [19], [20], [21], [22], [31]. The PAWS project scope is to develop a control and information management 
system which consists of two subsystems. The first subsystem is a wireless sensor network which will alleviate the 
need for data cables in offshore oil rigs and improve flexibility for adding and reconfiguring sensors. The second 
subsystem intelligently manages the massive data flow from oil rigs and interprets it so as to help operators take 
more appropriate decisions during abnormal events and, through intelligent control, improve process economics. 

As part of the PAWS project, our team is developing an intelligent control and asset management system (ICAM 
system).  We defined the conceptual model of the ICAM system, its architecture, and its behavioral model [1], [2]. 
Furthermore, we prepared an implementation plan for such system, and chose the appropriate development tools [3]. 
The general structure of ICAM system reactive agents was defined, and the communication requirements were 
analyzed and validated [31]. This paper builds on the previous work and proposes a general structure of the ICAM 
system intelligent supervisory agent. The paper is organized as follows: First, we describe the structure of an ICAM 
system reactive agent to achieve the best autonomy in section 2. Then, we analyze the ICAM system artificial 
intelligence (AI) requirements, and suggest a general structure for the ICAM system intelligent supervisory agent in 
sections 3 and 4 respectively. Complex ICAM system knowledge representation is described in section 5.  Finally, 
we discuss the requirements of the ICAM system knowledge processing in section 6. 

2. AUTONOMY REQUIREMENTS OF ICAM SYSTEM REACTIVE AGENTS 

Having proposed the ICAM system development plan in previous work [3], it is crucial to design the reactive 
agent structure to achieve specific autonomy requirements in terms of an overlapping scheme for communication 
and computation along with ease of prototyping and deployment. The Message Passing Interface (MPI) 
communication model meets the autonomy requirements by offering many advantages such as expressivity, ease of 
debugging, and most importantly high performance [23], [24]. MPI is a specification and a library which provides 
the infrastructure for communications among several parallel computational processes.  MPI gives system designers 
the freedom to implement their own protocols that best fit their systems’ requirements. In order to reconcile efficient 
computation with ease of prototyping, the ICAM system is deployed as a distributed interconnection of MATLAB 
computational (i.e., reactive) agents, which runs on a network of several Windows XP workstations. Distributed 
MATLAB sessions exchange messages by using our newly developed MPI communication protocol. Exchanged 
messages have two roles; a control role, to achieve internal coordination with other agents, and a numerical data 
processing role, to achieve the best interaction with the external environment (e.g., offshore oil processing rigs).  

Figure 1 shows the structure of a reactive agent of the ICAM system. The reactive agent is implemented as a 
MATLAB m-script, which runs two communication tasks and a computational one. The computational task 
represents the agent’s main functionality (e.g., model ID, fault detection and isolation, etc...). The first 
communication task is an MPI remote memory access (RMA) protocol, which provides the basic buffered 
messaging capabilities with minimum overhead. Furthermore, a public memory window is embedded in the protocol 
for remote access by other agents. The memory window will act as a black board for direct transfer of complex 
numerical data structures among agents. This design decision was made after investigating the advanced features of 
the newest MPI 2.0 library [25], and to meet the blackboard functionality described in the behavioral model of the 
ICAM system.  The second communication task manages the connection with the main system supervisor 
(implemented as G2 expert system).  The proposed agent structure paves the way to design and to rapid prototype 
any complex multi-agent system for many applications. This definitely enables system designers to implement any 
communication protocol in addition to exploiting the full power of the MATLAB simulation, computation and 
development environment. 

3. ARTIFICIAL INTELLIGENCE REQUIREMENTS OF THE ICAM SYSTEM 

The artificial intelligence (AI) requirements of the ICAM system have to address different issues such as 
coordinating the system’s internal behavior (i.e., how the different agents interact) and managing the external 
manufacturing process. The choice of the appropriate AI paradigm is very crucial to high performance and real-time 
issues.  Different AI paradigms (e.g., rule based expert systems, case based reasoning (CBR) systems, neural nets 
(NN)...) have different strengths and disadvantages. Another issue is the intelligence distribution; locally within each 



agent versus globally within the system. Obviously knowledge specific to agent activity will be embedded at the 
agent level. However, global system intelligence should address the internal system coherence and its external 
interaction with the environment. An intelligent ICAM supervisory agent is responsible of managing the global 
system internal and external behavior.  

 

 

 

 

 

 

 
 

Fig. 1. ICAM system reactive agent deployment structure 

When it comes to selecting an appropriate AI paradigm, we were at first attracted by the case-based reasoning 
(CBR) approach, as it promised to meet the high performance, learning and real-time requirements of the ICAM 
system [1], [2]. The CBR paradigm is a novel problem-solving strategy and machine learning technique. In 
principle, it solves problems by retrieving a “nearest neighbor” past problem from its case base, evaluating any 
differences, and adapting the past problem solution to handle the new circumstances.  Every new problem that is 
handled successfully is added to the case base; if the new solution is a failure that information is also stored. While 
this approach is apparently systematic and easily automated, there are several major drawbacks: (1) developing an 
algorithm to extract a “nearest neighbor” problem is domain-specific and may be very difficult, and (2) “adapting 
the past problem solution to handle the new circumstances” is also much easier said than done. Although many CBR 
programs were developed during the 80’s and mid 90’s [27], the CBR development process slowed greatly due to 
the problems mentioned above (and others), so we are shifting to another paradigm.   

Traditional rule-based systems have a few well-known drawbacks, such as difficult knowledge acquisition, lack 
of a memory of tackled problems or previous experience, poor inference efficiency, ineffectiveness in dealing with 
exceptions and novel situations and lack of learning mechanisms, to name a few. However, the development of new 
software standards and technologies for rule-based expert systems continued to progress. Such development has 
enabled rule-based expert systems to overcome many of their drawbacks, and to compete with the CBR AI 
paradigm. In fact, if we can limit ourselves to “crisp” problems then the “nearest neighbor” problem does not arise, 
and we can use rules to define a case base, and retrieve and implement solutions.  Semi-automated procedures can 
also be implemented to allow operators or process engineers to enter new cases and thus implement a limited form 
of learning.   

Among the commercially-available rule-based expert system shells, the G2 real-time expert system shell from 
Gensym Corporation is considered the most versatile real-time expert system shell, as it integrates many software 
technologies and standards [28]. The G2 platform uniquely combines real-time reasoning technologies, including 
rules, work flows, procedures, object-oriented modeling, simulation, and graphics, in a single development and 
deployment environment. G2 can transform real-time operations data into automated decisions and actions, and can 
maintain an understanding of the behavior of processes over time.  

Several attempts were made to integrate the G2 expert system shell with computational modules for fault 
diagnosis. Although the AEGIS and CHEM-DSS research projects partnered with the Gensym Corporation, their 
research publication did not indicate how G2 servers are implemented in their systems. The ISHM research project 
supported by NASA used six G2 servers to monitor International Space Station (ISS) subsystems, including the 
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mechanical, structural, electrical, environmental and computational systems. The G2 servers continually inspect and 
analyze data transmitted from space during missions. Cinar et al have successfully combined multivariate statistical 
data analysis with expert systems for process fault diagnosis. Basically the multivariate statistical data analysis 
module developed in MATLAB was converted into C code, and then linked with G2 expert system through a G2 
standard interface (GSI) link [32], [34]. Cinar et al exploited only the G2 diagnostic assistant (GDA) capability (i.e., 
a graphical design tool similar to Simulink/MATLAB). Thornhill et al used the Computer Aided Engineering 
Exchange (CAEX) IEC/PAS 62424 standard for representation of process information in XML. The CAEX Plant 
Analyzer prototype incorporates process knowledge by linking the plant topology and a simple reasoning engine 
developed in Prolog with the results from plant disturbance signal-based analysis [33].  

The integration of the G2 expert system development environment with the ICAM system would benefit from 
and build on the previous G2 integration attempts. This would enhance the whole ICAM system performance, and 
enable the ICAM system to intelligently coordinate its internal behavior and interact with the external industrial 
process as well. The G2 development environment offers a goal-based rapid prototyping design, in which 
requirements analysis, design, and development tasks are done simultaneously and incrementally during the ICAM 
system development life cycle. G2 also adheres to software development standards such as object-oriented design, 
modularity, reusability, scalability, application programmer’s interface (API), and user interface standards [28]. To 
meet such software requirements during the design and development of the ICAM system supervisory agent, AI 
design requirements such as the supervisory agent structure and knowledge representation and processing have to be 
determined. 

4. ICAM SYSTEM SUPERVISORY AGENT IMPLEMENTATION 

Modules are the building blocks of complex G2 applications. A modular knowledge base (KB) consists of 
multiple G2 modules. The modules that make up an application form a module hierarchy, which specifies the 
hierarchical dependencies between modules [28]. Decomposing a large project into multiple small modules allows 
developers to divide and merge work. Modules can be structural or functional ones. The structural modules contain 
classes or capabilities that need to be shared in large applications; functional modules implement well defined goals. 
The ICAM system supervisory agent, which is a very complex artificial intelligence application, forms a good 
candidate for the modularization design approach. While the modularization design approach may add some 
overhead on the overall performance of the agent, it effectively organizes knowledge, and simplifies the 
development and deployment processes. 

  

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. ICAM supervisory agent architecture 

To meet the module reusability requirement, the guidelines for G2 application development recommend use of a 
four layer, two-module architecture, in which the graphic user interface (GUI) is in a separate module. Figure 2 
illustrates the general architecture of the ICAM supervisory agent, which accordingly has two modules. The first 
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module contains the agent’s core functionality implementation layer and its application programmer’s interface 
(API) layer, which protects the internal data structures in the core from corruption by other modules. The second 
module contains the public graphical user interface (GUI) layer and its GUI implementation layer, which interacts 
directly with the first module through its API layer. The ICAM system supervisory agent interacts with the other 
reactive agents through their external G2 links. The internal states of the ICAM system agents and the external 
environment are communicated to enable the supervisory agent to reason and make the correct and appropriate 
decisions for better system management. 

5. KNOWLEDGE REPRESENTATION IN THE CORE LAYER: 

ICAM system supervisory agent contains multi-faceted complex knowledge such as the internal structure of the 
ICAM system and the structure of the external environment (e.g., manufacturing plant topology, enterprise business 
structure). To represent such complex knowledge, organizing the knowledge structure in the core layer of the 
supervisory agent as a hierarchy of smaller modules would be the solution, as shown in figure 3.  Each module is 
represented in the G2 development environment as a knowledge base (KB). The modular knowledge base design 
approach supports objected-oriented design principles, increases productivity, encourages code reuse and scalability, 
and improves maintainability.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Knowledge representation structure in the ICAM supervisory agent 

The core (private layer) of the ICAM system supervisory agent has five modular knowledge bases (kb), which 
are organized as a module hierarchy. Basic knowledge about the ICAM system elements is represented in three 
lower level knowledge bases (i.e., ICAM system agents’ kb, external environment instrumentation kb, and fault 
propagation and mitigation kb). The first knowledge base organizes the different conceptual agents of the ICAM 
system (e.g. fault detection and isolation agents, optimization agent, etc ...). In contrast, the second knowledge base 
maps the external environment physical instrumentation (e.g., valves, sensors, and other chemical process 
equipment) into its class hierarchy. Instrumentation and process faults and their mitigating actions are represented as 
classes in the third knowledge base. Each basic element (i.e., object) in these knowledge bases has properties to 
represent its physical or conceptual characteristics; and has methods to represent its behavior. Elements are further 
organized as a class hierarchy to exploit object-oriented standards such as abstraction, inheritance, and information 
hiding and encapsulation. An abstract class, which hides its basic properties and methods, is first designed. More 
properties and methods are added to the higher level classes in the class hierarchy, which inherit from the abstract 
class.  

The ICAM system supervisory knowledge base merges the knowledge from the lower level modules into a three-
layer knowledge base, where each layer represents a subsystem of connected objects (i.e., classes), as illustrated in 
figure 4. The first layer (i.e., the ICAM system structure layer) assembles the conceptual structure of the ICAM 
system from the agent class hierarchy of the lower level knowledge base. This layer is responsible of managing the 
internal behavior of the ICAM system. Fault propagation and mitigating actions are assembled into object trees, and 
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mapped into the second layer, which manages the external environment during abnormal situations. In fact, it 
isolates instrumentation faults, and presents their propagation maps and their appropriate migrating actions to 
process operators. The third layer (i.e., process topology layer) represents the external process topology, where 
different process instrumentation objects are used from the instrumentation knowledge base module. Other 
knowledge bases can be added to represent other types of knowledge such as the enterprise business management 
module. 

6. ICAM SYSTEM KNOWLEDGE PROCESSING: 

The G2 development environment offers several programming constructs for processing data such as procedures, 
methods, and rules. Procedures, which are independent of any class, define a general functionality, and can be 
invoked by rules, other procedures, and GUI actions. In contrast, methods whose invocation and structure are similar 
to procedures, define classes’ behavior. Methods structure the behavior of different objects through method 
inheritance between different classes of the class hierarchy. Procedures and method invocation can be single-
threaded (i.e., sequential) or multi-threaded (parallel). Rules, which are statements with antecedent and consequent 
parts, represent expert decision-making power by reasoning over data or event conditions (“facts”). Rules are 
invoked by forward chaining, backward chaining, or scanning.  

 

 

 

 

 

 

 

 

 

 

Fig. 4. Layers of the ICAM system knowledge base module 

Forward chaining is a form of deductive reasoning, in which rules are invoked to attempt to draw conclusions 
from existing facts. If the antecedent of a rule is true, then its consequent part is executed to create new facts, thus 
causing a chain of rule invocations in a rule base. Backward chaining is the process of determining a value of a goal 
or a variable by looking for rules that conclude that goal. Backward chaining follows two different search strategies. 
The breadth first search strategy examines all rules that could determine the value of the current goal and sets their 
antecedents as sub-goals before backtracking through other rules to determine the validity of each sub-goal. In 
contrast, the depth first search strategy backtracks through all of the rules in a knowledge base that could lead to 
determining the value of a goal by a single rule. Scanning is another rule invocation method in which rules are 
invoked automatically based on a fixed, user-defined frequency. 

A G2 rule-based system maps out a multi-threaded path of execution, which is potentially different each time the 
rule is invoked. For this reason, rule-based systems are often more complex, harder to test, debug, and maintain, and 
less efficient than procedure-based systems based on methods. Thus, rules should be used for specific purposes such 
as general event detection and event detection based on data driven processing and forward chaining [28]. Since the 
ICAM system knowledge is multi-faceted and complex, its knowledge processing structure should be also 
distributed and organized according to the class and/or module hierarchy of the supervisory agent. For example, 
generic rules for event detection of a specific reactive agent can be organized in the class associated with that 
reactive agent. Rules can also be categorized to achieve certain functionality. For example, the fault propagation and 
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mitigation schemes (i.e., cases) can be implemented as a rule category. This would narrow the scope of rules, where 
rules are only applied to their specified level in the class hierarchy and/or the module hierarchy. Consequently, rules 
invocation by forward chaining will be less prone to errors. The distribution of knowledge representation and 
processing would meet most of the software requirements. This would pave the way for managing complex process 
plants by dividing it into sub-processes that can be managed by a separate ICAM system. A universal supervisor can 
then manage the whole hierarchy of sub-processes efficiently.  

7. CONCLUSIONS 

As part of the PAWS project, we have demonstrated good progress in the design and development of the ICAM 
system. The ICAM reactive agents’ structure was designed to achieve autonomy requirements in terms of 
overlapping scheme efficient for communication and computation. In order to guarantee a robust and coherent 
system performance, the ICAM system’s artificial intelligence requirements, structure and tools were suggested. The 
software implementation of the ICAM intelligent supervisory agent was discussed. Complex ICAM system 
knowledge representation and processing requirements were thoroughly analyzed. The implementation and 
validation of the AI requirements in an ICAM system prototype will be the cornerstone of future work. We believe 
that the ICAM system will pave the way to real intelligent multi-agent systems for many applications. 
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