
An Intelligent Multi Agent System for Integrated Control & Asset
Management of Petroleum Production Facilities

Atalla F. Sayda2 and James H. Taylor1

Department of Electrical & Computer Engineering
University of New Brunswick

PO Box: 4400, Rm. H113 Head Hall
Fredericton, NB CANADA E3B 5A3

ABSTRACT

Intelligent control and asset management for the petroleum industry is crucial for profitable oil and gas facilities
operation and maintenance. A research program was initiated to study the feasibility of an intelligent asset
management system for the offshore oil and gas industry in Atlantic Canada. The research program has achieved
several milestones. The conceptual model of an automated asset management system, its architecture, and its
behavioral model have been defined [1, 2]. Furthermore, an implementation plan for such system has been
prepared, and the appropriate development tools have been chosen [3]. A system reactive agent structure was
defined based on the MATLAB environment, and its communication requirements were analyzed and validated
[31]. This paper builds on the previous work and proposes a general structure of the ICAM system intelligent
supervisory agent and its software implementation. We also describe the software implementation using the G2
expert system development environment. Furthermore, we analyze and define the autonomy requirements of the
reactive agents of such system.

1. INTRODUCTION

Asset management and control of modern process plants involve many tasks of different time-scales and
complexity including data reconciliation and fusion, fault detection, isolation, and accommodation (FDIA), process
model identification and optimization, and supervisory control. The automation of these complementary tasks within
an information and control infrastructure will reduce maintenance expenses, improve utilization and output of
manufacturing equipment, enhance safety, and improve product quality. Many research studies proposed different
combinations of systems theoretic and artificial intelligence techniques to tackle the asset management problem, and
delineated the requirements of such system [4], [5], [6].

Several research programs addressed the automation of asset management in large complex systems, namely the
Pilots Associate (PA) program sponsored by the Defense Advanced Research Projects Agency (DARPA) [7], [8],
the Rotorcraft Pilots Associate (RPA) program funded by the US army [9], MAGIC (Multi-Agent-Based Diagnostic
Data Acquisition and Management in Complex Systems) developed by a joint venture of several European
universities and companies [10], ISHM (Integrated System Health Management) project developed by NASA for
space applications [11], AEGIS (Abnormal Event Guidance and Information System) developed by the Honeywell
led Abnormal Situation Management (ASM) Consortium in the United States [12], and CHEM-DSS (Advanced
Decision Support System for Chemical/Petrochemical Manufacturing Processes) developed by the European
Community (EC) Intelligent Manufacturing Systems (IMS) consortium [13]. The most important project among
these projects is AEGIS, which proposes a comprehensive asset management framework from an industrial view
point. AEGIS built on the experience of military aviation research projects, especially the Pilots Associate (PA) and
the Rotorcraft Pilots Associate (RPA) [14]. Although the 12 year old research program has achieved several goals
and developed a well established abnormal situation management awareness and culture, it did not address the
automation of massive process data interpretation and process fault diagnosis and accommodation, which would be
aimed to minimize the workload on process operators [15].

1. Email: jtaylor@unb.ca, Tel: +1.506.453.5101 ; FAX: +1.506.453.3589
2. Email: atalla.sayda@unb.ca, Tel: +1.506.449.0644 ; FAX: +1.506.453.3589

In order to build on the AEGIS project experiences and to incorporate the state of the art of fault diagnosis,
artificial intelligence (AI) and wireless sensor networks techniques, a new asset management research project,
PAWS (Petroleum Applications of Wireless Systems) was initiated by a joint venture of Atlantic Canadian
universities and the National Research Council of Canada (NRC) for oil and gas applications [1], [16], [2], [17],
[18], [3], [19], [20], [21], [22], [31]. The PAWS project scope is to develop a control and information management
system which consists of two subsystems. The first subsystem is a wireless sensor network which will alleviate the
need for data cables in offshore oil rigs and improve flexibility for adding and reconfiguring sensors. The second
subsystem intelligently manages the massive data flow from oil rigs and interprets it so as to help operators take
more appropriate decisions during abnormal events and, through intelligent control, improve process economics.

As part of the PAWS project, our team is developing an intelligent control and asset management system (ICAM
system). We defined the conceptual model of the ICAM system, its architecture, and its behavioral model [1], [2].
Furthermore, we prepared an implementation plan for such system, and chose the appropriate development tools [3].
The general structure of ICAM system reactive agents was defined, and the communication requirements were
analyzed and validated [31]. This paper builds on the previous work and proposes a general structure of the ICAM
system intelligent supervisory agent. The paper is organized as follows: First, we describe the structure of an ICAM
system reactive agent to achieve the best autonomy in section 2. Then, we analyze the ICAM system artificial
intelligence (AI) requirements, and suggest a general structure for the ICAM system intelligent supervisory agent in
sections 3 and 4 respectively. Complex ICAM system knowledge representation is described in section 5. Finally,
we discuss the requirements of the ICAM system knowledge processing in section 6.

2. AUTONOMY REQUIREMENTS OF ICAM SYSTEM REACTIVE AGENTS

Having proposed the ICAM system development plan in previous work [3], it is crucial to design the reactive
agent structure to achieve specific autonomy requirements in terms of an overlapping scheme for communication
and computation along with ease of prototyping and deployment. The Message Passing Interface (MPI)
communication model meets the autonomy requirements by offering many advantages such as expressivity, ease of
debugging, and most importantly high performance [23], [24]. MPI is a specification and a library which provides
the infrastructure for communications among several parallel computational processes. MPI gives system designers
the freedom to implement their own protocols that best fit their systems’ requirements. In order to reconcile efficient
computation with ease of prototyping, the ICAM system is deployed as a distributed interconnection of MATLAB
computational (i.e., reactive) agents, which runs on a network of several Windows XP workstations. Distributed
MATLAB sessions exchange messages by using our newly developed MPI communication protocol. Exchanged
messages have two roles; a control role, to achieve internal coordination with other agents, and a numerical data
processing role, to achieve the best interaction with the external environment (e.g., offshore oil processing rigs).

Figure 1 shows the structure of a reactive agent of the ICAM system. The reactive agent is implemented as a
MATLAB m-script, which runs two communication tasks and a computational one. The computational task
represents the agent’s main functionality (e.g., model ID, fault detection and isolation, etc...). The first
communication task is an MPI remote memory access (RMA) protocol, which provides the basic buffered
messaging capabilities with minimum overhead. Furthermore, a public memory window is embedded in the protocol
for remote access by other agents. The memory window will act as a black board for direct transfer of complex
numerical data structures among agents. This design decision was made after investigating the advanced features of
the newest MPI 2.0 library [25], and to meet the blackboard functionality described in the behavioral model of the
ICAM system. The second communication task manages the connection with the main system supervisor
(implemented as G2 expert system). The proposed agent structure paves the way to design and to rapid prototype
any complex multi-agent system for many applications. This definitely enables system designers to implement any
communication protocol in addition to exploiting the full power of the MATLAB simulation, computation and
development environment.

3. ARTIFICIAL INTELLIGENCE REQUIREMENTS OF THE ICAM SYSTEM

The artificial intelligence (AI) requirements of the ICAM system have to address different issues such as
coordinating the system’s internal behavior (i.e., how the different agents interact) and managing the external
manufacturing process. The choice of the appropriate AI paradigm is very crucial to high performance and real-time
issues. Different AI paradigms (e.g., rule based expert systems, case based reasoning (CBR) systems, neural nets
(NN)...) have different strengths and disadvantages. Another issue is the intelligence distribution; locally within each

agent versus globally within the system. Obviously knowledge specific to agent activity will be embedded at the
agent level. However, global system intelligence should address the internal system coherence and its external
interaction with the environment. An intelligent ICAM supervisory agent is responsible of managing the global
system internal and external behavior.

Fig. 1. ICAM system reactive agent deployment structure

When it comes to selecting an appropriate AI paradigm, we were at first attracted by the case-based reasoning
(CBR) approach, as it promised to meet the high performance, learning and real-time requirements of the ICAM
system [1], [2]. The CBR paradigm is a novel problem-solving strategy and machine learning technique. In
principle, it solves problems by retrieving a “nearest neighbor” past problem from its case base, evaluating any
differences, and adapting the past problem solution to handle the new circumstances. Every new problem that is
handled successfully is added to the case base; if the new solution is a failure that information is also stored. While
this approach is apparently systematic and easily automated, there are several major drawbacks: (1) developing an
algorithm to extract a “nearest neighbor” problem is domain-specific and may be very difficult, and (2) “adapting
the past problem solution to handle the new circumstances” is also much easier said than done. Although many CBR
programs were developed during the 80’s and mid 90’s [27], the CBR development process slowed greatly due to
the problems mentioned above (and others), so we are shifting to another paradigm.

Traditional rule-based systems have a few well-known drawbacks, such as difficult knowledge acquisition, lack
of a memory of tackled problems or previous experience, poor inference efficiency, ineffectiveness in dealing with
exceptions and novel situations and lack of learning mechanisms, to name a few. However, the development of new
software standards and technologies for rule-based expert systems continued to progress. Such development has
enabled rule-based expert systems to overcome many of their drawbacks, and to compete with the CBR AI
paradigm. In fact, if we can limit ourselves to “crisp” problems then the “nearest neighbor” problem does not arise,
and we can use rules to define a case base, and retrieve and implement solutions. Semi-automated procedures can
also be implemented to allow operators or process engineers to enter new cases and thus implement a limited form
of learning.

Among the commercially-available rule-based expert system shells, the G2 real-time expert system shell from
Gensym Corporation is considered the most versatile real-time expert system shell, as it integrates many software
technologies and standards [28]. The G2 platform uniquely combines real-time reasoning technologies, including
rules, work flows, procedures, object-oriented modeling, simulation, and graphics, in a single development and
deployment environment. G2 can transform real-time operations data into automated decisions and actions, and can
maintain an understanding of the behavior of processes over time.

Several attempts were made to integrate the G2 expert system shell with computational modules for fault
diagnosis. Although the AEGIS and CHEM-DSS research projects partnered with the Gensym Corporation, their
research publication did not indicate how G2 servers are implemented in their systems. The ISHM research project
supported by NASA used six G2 servers to monitor International Space Station (ISS) subsystems, including the

ICAM Agent

MATLAB Script

MPI communication task RMA
Communications

Switch (Task)
 Case T1;
 ...
 Case Tn;

G2 expert system
communication task

Blackboard

MATLAB workspace

G2
Communications

mechanical, structural, electrical, environmental and computational systems. The G2 servers continually inspect and
analyze data transmitted from space during missions. Cinar et al have successfully combined multivariate statistical
data analysis with expert systems for process fault diagnosis. Basically the multivariate statistical data analysis
module developed in MATLAB was converted into C code, and then linked with G2 expert system through a G2
standard interface (GSI) link [32], [34]. Cinar et al exploited only the G2 diagnostic assistant (GDA) capability (i.e.,
a graphical design tool similar to Simulink/MATLAB). Thornhill et al used the Computer Aided Engineering
Exchange (CAEX) IEC/PAS 62424 standard for representation of process information in XML. The CAEX Plant
Analyzer prototype incorporates process knowledge by linking the plant topology and a simple reasoning engine
developed in Prolog with the results from plant disturbance signal-based analysis [33].

The integration of the G2 expert system development environment with the ICAM system would benefit from
and build on the previous G2 integration attempts. This would enhance the whole ICAM system performance, and
enable the ICAM system to intelligently coordinate its internal behavior and interact with the external industrial
process as well. The G2 development environment offers a goal-based rapid prototyping design, in which
requirements analysis, design, and development tasks are done simultaneously and incrementally during the ICAM
system development life cycle. G2 also adheres to software development standards such as object-oriented design,
modularity, reusability, scalability, application programmer’s interface (API), and user interface standards [28]. To
meet such software requirements during the design and development of the ICAM system supervisory agent, AI
design requirements such as the supervisory agent structure and knowledge representation and processing have to be
determined.

4. ICAM SYSTEM SUPERVISORY AGENT IMPLEMENTATION

Modules are the building blocks of complex G2 applications. A modular knowledge base (KB) consists of
multiple G2 modules. The modules that make up an application form a module hierarchy, which specifies the
hierarchical dependencies between modules [28]. Decomposing a large project into multiple small modules allows
developers to divide and merge work. Modules can be structural or functional ones. The structural modules contain
classes or capabilities that need to be shared in large applications; functional modules implement well defined goals.
The ICAM system supervisory agent, which is a very complex artificial intelligence application, forms a good
candidate for the modularization design approach. While the modularization design approach may add some
overhead on the overall performance of the agent, it effectively organizes knowledge, and simplifies the
development and deployment processes.

Fig. 2. ICAM supervisory agent architecture

To meet the module reusability requirement, the guidelines for G2 application development recommend use of a
four layer, two-module architecture, in which the graphic user interface (GUI) is in a separate module. Figure 2
illustrates the general architecture of the ICAM supervisory agent, which accordingly has two modules. The first

Core module GUI module

Core functionality
implementation
 layer (private)

Application programmer's
interface (public)

Graphic user
interface (public)

GUI implementation
layer (private)

Inter-module
 calls

ICAM system supervisory agent
G2 Application

ICAM agent
Fault detection
and isolation

G2 link

ICAM agent
Model

identification

G2 link

ICAM agent
Data statistical
pre-processor

G2 link

module contains the agent’s core functionality implementation layer and its application programmer’s interface
(API) layer, which protects the internal data structures in the core from corruption by other modules. The second
module contains the public graphical user interface (GUI) layer and its GUI implementation layer, which interacts
directly with the first module through its API layer. The ICAM system supervisory agent interacts with the other
reactive agents through their external G2 links. The internal states of the ICAM system agents and the external
environment are communicated to enable the supervisory agent to reason and make the correct and appropriate
decisions for better system management.

5. KNOWLEDGE REPRESENTATION IN THE CORE LAYER:

ICAM system supervisory agent contains multi-faceted complex knowledge such as the internal structure of the
ICAM system and the structure of the external environment (e.g., manufacturing plant topology, enterprise business
structure). To represent such complex knowledge, organizing the knowledge structure in the core layer of the
supervisory agent as a hierarchy of smaller modules would be the solution, as shown in figure 3. Each module is
represented in the G2 development environment as a knowledge base (KB). The modular knowledge base design
approach supports objected-oriented design principles, increases productivity, encourages code reuse and scalability,
and improves maintainability.

Fig. 3. Knowledge representation structure in the ICAM supervisory agent

The core (private layer) of the ICAM system supervisory agent has five modular knowledge bases (kb), which
are organized as a module hierarchy. Basic knowledge about the ICAM system elements is represented in three
lower level knowledge bases (i.e., ICAM system agents’ kb, external environment instrumentation kb, and fault
propagation and mitigation kb). The first knowledge base organizes the different conceptual agents of the ICAM
system (e.g. fault detection and isolation agents, optimization agent, etc ...). In contrast, the second knowledge base
maps the external environment physical instrumentation (e.g., valves, sensors, and other chemical process
equipment) into its class hierarchy. Instrumentation and process faults and their mitigating actions are represented as
classes in the third knowledge base. Each basic element (i.e., object) in these knowledge bases has properties to
represent its physical or conceptual characteristics; and has methods to represent its behavior. Elements are further
organized as a class hierarchy to exploit object-oriented standards such as abstraction, inheritance, and information
hiding and encapsulation. An abstract class, which hides its basic properties and methods, is first designed. More
properties and methods are added to the higher level classes in the class hierarchy, which inherit from the abstract
class.

The ICAM system supervisory knowledge base merges the knowledge from the lower level modules into a three-
layer knowledge base, where each layer represents a subsystem of connected objects (i.e., classes), as illustrated in
figure 4. The first layer (i.e., the ICAM system structure layer) assembles the conceptual structure of the ICAM
system from the agent class hierarchy of the lower level knowledge base. This layer is responsible of managing the
internal behavior of the ICAM system. Fault propagation and mitigating actions are assembled into object trees, and

External environment
instrumentation module

ICAM system agents
module

Business
management module

ICAM system
supervisory module

Fault propegation &
mitigation module

Model ID agent

Statistical processing
agent

Fault detection &
isolation agent

Optimization agent

Agent
{abstract}

Principle component
analysis agent

Subspace Model ID
agent

Parity vector based
FDI agent

Signed digraphs
based FDI agent

Connection

Separator

Valve

Sensor

Instrumentation
{abstract}

 Two-phase
separator

Three-phase
separator

Gas scrubber

Flow sensor

Volume
sensor

Pressure
sensor

Pipe

mapped into the second layer, which manages the external environment during abnormal situations. In fact, it
isolates instrumentation faults, and presents their propagation maps and their appropriate migrating actions to
process operators. The third layer (i.e., process topology layer) represents the external process topology, where
different process instrumentation objects are used from the instrumentation knowledge base module. Other
knowledge bases can be added to represent other types of knowledge such as the enterprise business management
module.

6. ICAM SYSTEM KNOWLEDGE PROCESSING:

The G2 development environment offers several programming constructs for processing data such as procedures,
methods, and rules. Procedures, which are independent of any class, define a general functionality, and can be
invoked by rules, other procedures, and GUI actions. In contrast, methods whose invocation and structure are similar
to procedures, define classes’ behavior. Methods structure the behavior of different objects through method
inheritance between different classes of the class hierarchy. Procedures and method invocation can be single-
threaded (i.e., sequential) or multi-threaded (parallel). Rules, which are statements with antecedent and consequent
parts, represent expert decision-making power by reasoning over data or event conditions (“facts”). Rules are
invoked by forward chaining, backward chaining, or scanning.

Fig. 4. Layers of the ICAM system knowledge base module

Forward chaining is a form of deductive reasoning, in which rules are invoked to attempt to draw conclusions
from existing facts. If the antecedent of a rule is true, then its consequent part is executed to create new facts, thus
causing a chain of rule invocations in a rule base. Backward chaining is the process of determining a value of a goal
or a variable by looking for rules that conclude that goal. Backward chaining follows two different search strategies.
The breadth first search strategy examines all rules that could determine the value of the current goal and sets their
antecedents as sub-goals before backtracking through other rules to determine the validity of each sub-goal. In
contrast, the depth first search strategy backtracks through all of the rules in a knowledge base that could lead to
determining the value of a goal by a single rule. Scanning is another rule invocation method in which rules are
invoked automatically based on a fixed, user-defined frequency.

A G2 rule-based system maps out a multi-threaded path of execution, which is potentially different each time the
rule is invoked. For this reason, rule-based systems are often more complex, harder to test, debug, and maintain, and
less efficient than procedure-based systems based on methods. Thus, rules should be used for specific purposes such
as general event detection and event detection based on data driven processing and forward chaining [28]. Since the
ICAM system knowledge is multi-faceted and complex, its knowledge processing structure should be also
distributed and organized according to the class and/or module hierarchy of the supervisory agent. For example,
generic rules for event detection of a specific reactive agent can be organized in the class associated with that
reactive agent. Rules can also be categorized to achieve certain functionality. For example, the fault propagation and

Process topology

Fault propagation map

ICAM system structure

FDI Model ID

Optimize

Fault 4

Fault 1

Fault 5

Fault 2

Fault 6

Fault 3

Actions

mitigation schemes (i.e., cases) can be implemented as a rule category. This would narrow the scope of rules, where
rules are only applied to their specified level in the class hierarchy and/or the module hierarchy. Consequently, rules
invocation by forward chaining will be less prone to errors. The distribution of knowledge representation and
processing would meet most of the software requirements. This would pave the way for managing complex process
plants by dividing it into sub-processes that can be managed by a separate ICAM system. A universal supervisor can
then manage the whole hierarchy of sub-processes efficiently.

7. CONCLUSIONS

As part of the PAWS project, we have demonstrated good progress in the design and development of the ICAM
system. The ICAM reactive agents’ structure was designed to achieve autonomy requirements in terms of
overlapping scheme efficient for communication and computation. In order to guarantee a robust and coherent
system performance, the ICAM system’s artificial intelligence requirements, structure and tools were suggested. The
software implementation of the ICAM intelligent supervisory agent was discussed. Complex ICAM system
knowledge representation and processing requirements were thoroughly analyzed. The implementation and
validation of the AI requirements in an ICAM system prototype will be the cornerstone of future work. We believe
that the ICAM system will pave the way to real intelligent multi-agent systems for many applications.

ACKNOWLEDGEMENT

This project is supported by the Atlantic Canada Opportunities Agency (ACOA) under the Atlantic Innovation
Fund (AIF) program. The authors gratefully acknowledge that support and the collaboration of the Cape Breton
University (CBU), the National Research Council (NRC) of Canada, and the College of the North Atlantic (CNA).
The authors also acknowledge the support of Natural Sciences and Engineering Research Council of Canada
(NSERC) for funding the first author's research.

REFERENCES

 [1] J. H. Taylor and A. F. Sayda, “Intelligent information, monitoring, and control technology for industrial process
applications,” in The 15th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM), Bilbao,
Spain, July 2005.

[2] J. H. Taylor and A. F. Sayda, “An intelligent architecture for integrated control and asset management for industrial
processes,” in Proc. IEEE International Symposium on Intelligent Control (ISIC05), Limassol, Cyprus, June 2005.

[3] A. F. Sayda and J. H. Taylor, “An implementation plan for integrated control and asset management of petroleum production
facilities,” in IEEE International Symposium on Intelligent Control ISIC06. Munich, Germany: IEEE, October 4-6 2006.

[4] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, and K. Yin, “A review of process fault detection and diagnosis part 1,
2, 3,” Computer & Chemical Engineering, vol. 27, no. 3, pp. 293–346, 2003.

[5] R. J. Patton, “Fault-tolerant control systems: The 1997 situation,” in IFAC Symposium on Fault Detection Supervision and
Safety for Technical Processes, R. J. Patton and J. Chen, Eds., vol. 3. Kingston Upon Hull, UK: IFAC, August 1997, pp. 1033–
1054.

[6] P. M. Frank and B. Kőppen-Seliger, “New developments using AI in fault diagnosis,” Engineering Applications of Artificial
Intelligence, vol. 10, no. 1, pp. 3–14, 1997.

[7] R. L. Small and C. W. Howard, “A real-time approach to information management in a pilot’s associate,” in Proceedings of
Digital Avionics Systems Conference. IEEE/AIAA, 14–17 Oct 1991, pp. 440–445.

[8] S. B. Banks and C. S. Lizza, “Pilot’s associate: a cooperative, knowledge-based system application,” IEEE Expert, vol. 6, no.
3, pp. 18–29, June 1991.

[9] C. A. Miller and M. D. Hannen, “Rotorcraft pilot’s associate: Design and evaluation of an intelligent user interface for
cockpit information management,” Knowledge-Based Systems, vol. 12, no. 8, pp. 443–456, Dec 1999.

[10] B. Kőppen-Seliger, T. Marcu, M. Capobianco, S. Gentil, M. Albert, and S. Latzel, “MAGIC: An integrated approach for
diagnostic data management and operator support,” in Proceedings of the 5th IFAC Symposium Fault Detection, Supervision
and Safety of Technical Processes - SAFEPROCESS05, Washington D.C., 2003.

[11] J. Schmalzel, F. Figueroa, J. Morris, S. Mandayam, and R. Polikar, “An architecture for intelligent systems based on smart
sensors,” IEEE Transactions on Instrumentation and Measurement, vol. 54,no. 4, pp. 1612–1616, August 2005.

[12] T. Cochran, P. Bullemer, and I. Nimmo, “Managing abnormal situations in the process industries parts 1, 2, 3,” in NIST
Proceedings of the Motor Vehicle Manufacturing Technology (MVMT) Workshop, Ann Arbor, MI, 1997.

[13] S. Cauvin, “Chem: Advanced decision support system for chemical/ petrochemical manufacturing processes,” in CHEM
Project Annual Meeting. Lille, France: http://www.chem-dss.org/, 25-26 March 2004.

[14] E. L. Cochran, C. Miller, and P. Bullemer, “Abnormal situation management in petrochemical plants: can a pilot’s
associate crack crude,” in Proceedings of the 1996 IEEE National Aerospace and Electronics Conference, NAECON, vol. v2.
Dayton, OH, USA: IEEE, Piscataway, NJ, USA, May 20-23 1996, pp. 806–813.

[15] A. Ogden-Swift, “Reducing the costs of abnormal situations: the next profit opportunity,” in IEEE Advanced Process
Control Applications for Industry Workshop (APC2005), Vancouver, Canada, May 2005.

[16] M. Omana and J. H. Taylor, “Robust fault detection and isolation using a parity equation implementation of directional
residuals,” in IEEE Advanced Process Control Applications for Industry Workshop (APC2005), Vancouver, Canada, May 2005.

[17] W. Larimore, in Multivariable System Identification Workshop. Fredericton, New Brunswick: University of New Brunswick,
31 October – 2 November 2005.

[18] C. Smith, C. Gauthier, and J. H. Taylor, Petroleum Applications of Wireless Sensors (PAWS) Workshop. Sydney, Nova
Scotia: Cape Breton University, 22–23 August 2005.

[19] A. F. Sayda and J. H. Taylor, “Modeling and control of three-phase gravity separators in oil production facilities,”
accepted by the American Control Conference (ACC), New York, NY, 11-13 July 2007.

[20] M. Omana and J. H. Taylor, “Enhanced sensor/actuator resolution and robustness analysis for FDI using the extended
generalized parity vector technique.”, in Proc. American Control Conference (ACC). Minneapolis, Minn. AACC, 14-16 June
2006.

[21] J. H. Taylor and M. Laylabadi, “A novel adaptive nonlinear dynamic data reconciliation and gross error detection
method,” in IEEE Conference on Control Applications, Munich, Germany, October 4-6 2006.

[22] M. Laylabadi and J. H. Taylor, “Anddr with novel gross error detection and smart tracking system,” in 12th IFAC
Symposium on Information Control Problems in Manufacturing, Saint-Etienne, France, May 17-19 2006.

[23] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel programming with the message-passing interface, 2nd
ed., ser. Scientific and Engineering Computation, J. Kowalik, Ed. Cambridge, Massachusetts: MIT Press, 1999.

[24] W. Gropp and et al, MPI: The Complete Reference. The MIT Press, 1998, vol. 2.

[25] W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced features of the message-passing interface, ser. Scientific and
Engineering Computation. Cambridge, Massachusetts: MIT Press, 1999.

[26] W. Gropp and E. Lusk, “Tuning MPI applications for peak performance,” www.mcs.anl.gov/Projects/mpi/tutorials/perf,
Argonne National Laborary.

[27] K.-D. Althoff, E. Auriol, R. Barletta, and M. Manago, “A review of industrial case-based reasoning tools,” Al intelligence,
Oxford, UK, Tech. Rep., 1995.

[28] G2 for Application Developers Reference Manual, 8th ed., Gensym Corporation, Burlington, Massachusetts, December
2005.

[29] N. Viswanadham, J. H. Taylor, and E. C. Luce, “A frequency domain approach to failure detection and isolation with
application to GE21 turbine engine control system,” Control Theory and Advanced Technology, vol. 3, no. 1, pp. 45–72, 1987.

[30] M. Omana. “Robust fault detection and isolation using a parity equation implementation of directional residuals,” Master’s
thesis, University of New Brunswick, 2005.

[31] A. F. Sayda and J. H. Taylor, “Toward a practical multi-agent system for integrated control and asset management of
petroleum production facilities,” submitted to the IEEE International Symposium on Intelligent Control, Singapore, 1-3 October
2007.

[32] A. Norvilas, A. Negiz, J. DeCicco, and A. Cinar, "Intelligent process monitoring by interfacing knowledge-based systems
and multivariate statistical monitoring.", Journal of Process Control, 10, pp. 341–350, 2000.

[33] S.Y. Yim, H.G. Ananthakumar, L. Benabbas, A. Horch, R. Drath, N.F. Thornhill, "Using process topology in plant-wide
control loop performance assessment.", Computers and Chemical Engineering, 31, pp. 86–99, 2006.

[34] E. Tatara, and A. Cinar, " An intelligent system for multivariate statistical process monitoring and diagnosis.", ISA
Transactions, 41, pp. 255–270, 2002.

