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Abstract

Physical system modeling, whether automated or manual, requires a systematic procedure to choose
the appropriate order of a system model. This can be most readily accomplished by determining the
appropriate order of the component submodels. With previous schemes, the primary means to determine
the required order of component submodels has been to focus on the eigenvalues of the model, specifically,
the behavior of the eigenvalues inside of a circle in the complex plane defining a given spectral radius. In
this paper we develop a new algorithm, FD-MODA, that uses changes in a model’s frequency response as an
algorithm-stopping-criterion. The model’s frequency response provides a more comprehensive indication
of model performance and adequacy than just the eigenvalues, and is more meaningful in the context of
frequency-domain controller design methods.

1 Introduction

Modelers, both human and automated, must make a number of decisions when developing a mathematical
model of a physical system. The ultimate onus is, of course, on the human modeler to make these decisions
wisely. However, it would be highly desirable for automated-modeling software to support this decision-
making process to the extent possible. Such software is primarily in the demonstration-of-concept stage, e.g.
MBA, (Wilson and Stein 1993) and cAamBAs, (Stein and Louca 1995); however, one commercial program,
MAX, is available (Breunese et al. 1995). For almost a decade, researchers have been investigating issues
and algorithms relating to automated modeling. The most recent results can be found in the automated
modeling sessions of the following conference volumes: (Radcliffe 1994, Alberts 1995, Danai 1996).

1.1 Background

Key issues that confront a modeler of a given system include the modeling approach and the model complezity.
For physical systems the principal choices for the modeling approach are continuum-based models (cBMs),
finite-element models (FEMs), and lumped-parameter models (LPMs). These models have wide and often
overlapping application. In this paper, a system is defined as a collection of interconnected components,
which may be passive or active or a combination thereof.

The most exact approach to modeling a distributed system, i.e. a system with spatially distributed
inertia, compliance, and dissipation, is to employ a CBM expressed using a partial differential equation (PDE).
When using ¢BMs, the external boundary conditions must be specified and inter-component compatibility
conditions must be specified and maintained. To analyze a system expressed using this approach in the
frequency-domain, either the normal modes of the model must be identified using a root finding algorithm
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or the response to a sinusoidal input at frequency wi, can be found by substituting w = wj, throughout the
model, removing the temporal component from the PDE, and solving the remaining spatial component of
the equation. While obtaining an exact solution is often trivial for a single uniform component, it may be
quite difficult to obtain for a system of disparate components. A thorough discussion of the various analysis
techniques is provided in (Graff 1975).

The well known finite-element modeling method is also a viable way to model a physical system. With
this method, a continuum is approximated with a collection of elements whose physical behavior (e.g. dis-
placements and stresses) is represented by simple mathematical series such as a polynomial. As in CBMs,
external boundary conditions must be specified and inter-component compatibility conditions must be met.
FEMs are well suited to modeling continuous physical systems, in that a fine mesh will lead to a model whose
behavior will approach that of the corresponding cBM.

Although LPMs are more approximate than both ¢BMs and FEMs, they are often useful for control system
analysis and design purposes. As its name implies, this model requires that spatially distributed physical
phenomena be aggregated or lumped into a finite number (often quite low) of discrete inertial, compliant, and
dissipative elements. The models are generally simple to synthesize and manipulate. A common procedure
for obtaining the first-order state equations (which can then be used for analysis and simulation) is to
synthesize a bond graph from the lumped model. Once a bond graph is available, state equations can be
synthesized either manually or with bond graph software, e.g. (Rosenberg 1996). In addition to their ease of
use, a second reason for LPMs utility in a control context is that closed-loop bandwidths are generally limited
by the fundamental resonance(s) in a system. Inertial and compliant elements cause these resonances, and
the latter are often accurately predicted by low-order LPMs.

The selection of a modeling approach is a complex topic and beyond the scope of this paper. Insightful
discussions are available in the article (Margolis 1985), chapter 11 of (Huston 1990), and chapter 10 of
(Karnopp et al. 1990). For purposes of exposition and their general utility, this paper will use lumped-
parameter component models in the development and demonstration of FD-MODA.

Regardless of the modeling approach, appropriate model order is a central issue in system modeling.
A low-order model that is easy to analyze, simulate, and use in controller design may not provide an
accurate prediction of system performance. Conversely, a high-order model that provides a good prediction
of system performance may be cumbersome to use and lead to a high-order controller if certain controller
design techniques are applied. The algorithm presented here is intended to assist a designer in choosing the
appropriate order of component submodels that comprise a system model. As a byproduct, the algorithm
will also choose the appropriate order of the system model.

In addition to the order of the model, the representation in the model of nonlinear behavior found in
the real world system also affects model complexity. Although preliminary results for treating nonlinear
behavior, e.g. Coulomb friction or saturation, in an automated modeling context are available (Taylor and
Wilson 1995), the focus in this paper will be on linear systems.

1.2 Model-order deduction

This paper provides a new algorithm for model order deduction. To distinguish this process from the more
established model order reduction, some background on the latter is useful. Model order reduction begins
with a full order model, G(s) of order n, and seeks a reduced order model, G,(s) of order r with r < n,
that closely approximates the behavior of the full order model. A number of criteria exist for determining
how well G,(s) approximates G(s); a comprehensive review of these criteria is found in (Aguirre 1994) and
references therein. Standard model order reduction approaches include the Padé method (Bultheel and
van Barel 1986), the balanced realization (Pernebo and Silverman 1982), the Hankel norm approximation
(Glover 1984), and selecting the dominant poles (Aguiree 1993). The Ho,-norm of the model error

Gl = sup [Gie) = G () 1)

is a commonly used measure to quantity the error between full and reduced order models. Both the balanced
realization and the Hankel norm approximation enable bounds of (1) to be determined « priori.



Although model order reduction finds considerable utility and application in dynamic system analysis and
control design, its use presupposes the existence of a high order model as a starting point. However, such a
model, especially when the system is in the design stage, is often unavailable. In contrast, the starting point
for model order deduction is a very low order model. The model order deduction process adds state variables
to this model, through the inclusion of generalized inductive and capacitive elements (in the bond graph
sense), until the behavior predicted by the model no longer changes appreciably as model order increases.

Existing model order deduction algorithms have focused solely on system eigenvalues,
{)\Z | det()\iI—A) = 0, 1= 1,... ,n},

where A is the system matrix and n is the order of the model, as a means to assess model behavior.
The seminal algorithm is named model order deduction algorithm (MoDA) (Wilson and Stein 1995). MODA
systematically increases model order until any further increase in the order will cause the spectral radius
(the largest Euclidean norm of the model eigenvalues) to become greater than the upper bound, wpax, of
some predefined frequency range of interest (FROI). In the case of a LPM, model order is increased by a
finer division of compliant elements, adding compliance to gear pairs, and adding inductive lag to a DC
motor. MODA selects the combination of component submodels that (i) minimizes the spectral radius and
(ii) guarantees that any increase in model order will result in a spectral radius beyond wpax. This implies
that a model synthesized using MODA contains only eigenvalues whose Euclidean norm is less than or equal
t0 Wmax. Wilson and Stein (Wilson and Stein 1995) use the term Proper Model to refer to a model with
physically based parameters and state variables and that meets this model performance criterion.

A limitation of MODA is the lack of a guarantee regarding the accuracy of the eigenvalues in a model syn-
thesized using this algorithm (Ferris and Stein 1995). It is well known that different lumpings of continuous
components in a larger system model will result in different eigenvalues. In the case of MODA, an increase in
the order of a Proper Model generally results in some shifting of |A;| € [0, wmax], which is understandable,
as the location of the low frequency eigenvalues of a model will approach those of a continuum-based model
as more degrees of freedom are added to the model (Huston 1990, p. 334-337). This suggests that a more
accurate estimation of the true location of the eigenvalues can be obtained by increasing the order of the
Proper Model. Ferris and Stein (Ferris and Stein 1995) address the issue of eigenvalue accuracy in a model
synthesis algorithm that monitors the migration of the |A;| € [0, wmax], Which they refer to as the critical
system eigenvalues. Their algorithm, EXTENDED-MODA, synthesizes a Proper Model in the same manner as
MODA; it then continues increasing model order until the critical system eigenvalues remain in approximately
the same location as the model order is increased further. The degree of approximation can be controlled by
a user-specified tolerance defining the acceptable percentage change in the critical system eigenvalues. The
claim by Ferris and Stein is that EXTENDED-MODA will synthesize a model of appropriate complexity that
provides estimates of |A;| € [0, wmax] that have converged (presumably to the location predicted by a cBM™)
within some user-specified percentage. The algorithm 10-MoDA (Walker et al. 1996) refines EXTENDED-MODA
by using controllability and observability criteria to pare the quantity of models examined. Other than this
extension, the algorithms both employ the same convergence criteria.

As the discussion in the last two paragraphs indicates, existing deduction algorithms use eigenvalues
whose Euclidean norm is less than a given frequency and their convergence as a means of evaluating the
accuracy of a model. At best, this criteria provides a limited means to evaluate a model; at worst, it may
lead to completely false confidence in the response predicted by a model. The criteria is limited in that the
frequency response of a model, a well known analysis and design tool, is a function of both the poles (i.e.
the eigenvalues) and the zeros of a model. By ignoring the zeros during model synthesis, potentially useful
information on model performance is being ignored.

As for the issue of false confidence, consider the two models of a flywheel-shaft-flywheel system shown in
Fig. 1.

Insert Fig. 1 here.

The driving-point admittance transfer function of the first model equals 1/(J; + J2)s, and the admittance



of the second model equals

w(s) Jos? + K
T(s) s(J1J2s2 + K(J1 + Ja))

(2)

Let us assume that the FrRoI is 0-9 rad/sec, and that the model parameters are J; = J; = 1l and K = 50. The
rigid body model in Fig. 1, the initial model used by the algorithm discussed above, has a single eigenvalue at
the origin. The frequency response predicted by such a model would be a straight line extending to w = oo,
with a slope of -20 dB/decade. The second model has eigenvalues at the origin and at £10j; it also has a zero
at +v/50j. The frequency response of this model would reflect the system’s anti-resonance and resonance
pair.

All the deduction algorithms discussed above would determine that the first model in Fig. 1 is adequate,
as subsequent increases in model order would result in a spectral radius beyond wpax (MODA) and the
single eigenvalue within the FROI has obviously converged (EXTENDED-MODA, 10-MODA). Yet the use of
the frequency response obtained from the first model to design a controller with a crossover frequency even
at 0.1 rad/sec would likely lead to an unstable closed-loop system. The frequency response of the second
model would likely lead to a successful controller design effort. While this example may appear somewhat
contrived, it does indeed portray the behavior of existing deduction algorithms and highlights the need for
a more comprehensive indication of model performance than just the eigenvalues.

1.3 Approach

The example in the previous section demonstrates the need for a model performance metric that is more
comprehensive than model eigenvalues. This paper proposes the use of the frequency response (specifically,
changes in the frequency response) as a model performance metric. The frequency response of a model
is obtained by substituting s = jw into the model transfer function and evaluating the resulting rational
function over a range of frequencies, i.e.

SN {H§11(jw+zi)

where K is a constant, —z; are the zeros, —p; are the poles, and m < n.

In the context of the deduction algorithms described in the previous section, comparing the frequency
response (3) over a FROI [Wmin, Wmax] provides a more meaningful basis for evaluating model performance
than the eigenvalues. Using eigenvalue convergence as a criterion for setting model order may have little
bearing on the convergence of the frequency response. As the example above shows, an eigenvalue just
beyond the wyax Wwill not be considered while evaluating eigenvalue convergence, but may have considerable
bearing on the frequency response within the FROI. Furthermore, in the context of control system analysis
and design, the frequency response provides a more comprehensive prediction than eigenvalues in measures
such a gain and phase margin, loop-shaping requirements (for compensator design), and the like. In the final
analysis, we want the system model to provide a reliable prediction of system performance for a given FROI.
For this to occur, both the zeros and the poles of the transfer function must have converged sufficiently such
that increases in model order do not cause appreciable changes in the frequency response. Approaches based
solely on eigenvalues may not achieve this convergence.

1.4 Overview of paper

The deduction algorithm developed in this paper coordinates the synthesis of a set of component submodels
with the property that subsequent increases in the order of the submodels will not cause the maximum
relative change in a model’s frequency response over a given FROI to be greater than a specified tolerance.
The approach to synthesizing such a model entails a systematic selection of component (passive and active)
submodels, using changes in the frequency response both as a means of selecting intermediate models and
as an algorithm stopping criterion in the frequency-domain.



This paper is organized as follows. Section 2 presents the modeling framework for the new deduction
algorithm. Section 3 develops the algorithm, and an example of algorithm operation is provided in Sect. 4.
The final section includes a summary and discussions of model validation and extensions.

2 Modeling Framework

The context of the present research in model-order deduction is as follows. We assume at the outset that
the modeler is dealing with a physical system that is assembled using a combination of zero or more passive
components and zero or more active components that have their own dynamic responses. We also assume that
a modeling environment exists that can be used to generate a system model and frequency responses once the
components are specified. This technique can produce a number of dynamic models, which differ in the level
of detail used to model each component. In the linear case, the level of detail of each component submodel
translates into its order; e.g., a more detailed motor model may include inductive lag (one additional state
variable), or a more detailed shaft model might include one or more compliant elements. The problem
addressed is deciding what minimal level of detail to use in each component submodel so that the response
of the resulting system model no longer changes appreciably with increasing model order.

The model order deduction algorithm described in this paper, FD-MODA, is built within a framework of
components, model synthesis procedures, and model evaluation techniques. To define the framework for this
algorithm, we begin by specifying the set of components

C:{C1JC2J""CTI}

from which systems can be constructed. In the domain of electro-mechanical systems, C' will include com-
ponents such as DC motors, rotational shafts, and gear pairs. In addition, each component ¢; has a corre-
sponding model generating function (MGF) that maps the component into one of its submodels. The set of
MGFs for C is

F= {f1;f27"' 1fn}

Each f; is capable of synthesizing one or more candidate submodels of the component ¢; to which it cor-
responds. A non-negative integer, referred to as the rank of a component submodel, is used to specify its
complexity. Depending on the component, the maximum rank is either unbounded or bounded. Unbounded
rank components can be mapped into an infinite number of submodels, whereas bounded rank components
can be mapped into only a finite (typically small) number of submodels. A flexible shaft is an example of
the former case (as it can be infinitely divided), while a motor would generally be of bounded rank (as in
the context of typical control engineering, it has only two models available).

The set of submodels corresponding to the i** component is denoted as:

mgl), . ,ml(-j)},

Mi = {mz('O):
where the superscript of each m; corresponds to the rank of the submodel. Without loss of generality, we
assume the submodels in M; are ordered by increasing rank, which corresponds to increased model order.
Note that this set can also include active elements such as amplifiers and controllers with their own dynamic
responses. For example, a rank zero amplifier model would be a DC gain, and a rank one model would
include some rolloff with increasing frequency. The submodels, be they derived by parameter lumping or
other means, are assumed to be valid. Furthermore, higher order submodel are assumed to provide a more
accurate prediction of submodel behavior than a lower order submodel; in the limit as the rank approaches

infinity, the predictions provided by the submodels approach those provided by cBMs.

Finally, we would like to emphasize that models synthesized using FD-MODA have physical parameters.
The state variables are generalized displacements and momenta, and inertial, compliant, and dissipative
elements appear as coefficients of these state variables. This is in contrast to a system identification approach
to modeling, in which information internal to a physical system is generally not part of the model and in
which abstract coefficients serve as the model parameters.



The framework of FD-MODA also includes a means to assemble the component submodels into a system
model and to synthesize state equations. Submodel assembly of mechanical components is accomplished by
kinematically coupling adjacent inertial elements of the component submodels and summing two or more
inertias into a single inertia. This is standard, and is discussed in texts such as (Karnopp et al. 1990,
Rosenberg and Karnopp 1983). In these same texts, algorithms are provided for synthesizing the state
equations of a model expressed as a bond graph. An insightful discussion on the use of bond graphs in the
context of model order deduction is available in (Ferris and Stein 1995), where it is noted that bond graphs
allow the effect of increasing a component’s rank to be visualized more readily than a solely equation-based
modeling formulation. For future reference, we denote such a system model as:

GR(s) = Am{™); R=3 r

)

where A informally denotes “assembly” in the above sense, i ranges over the set of components and R denotes
the rank of the model, which is related to its order.

The FROI is of considerable importance in systems engineering and provides a context within which to
formulate requirements on model performance. The FRroI is the frequency band [wiin, wWmax] over which a
model, in terms of steady-state input-output prediction, should give a reliable indication of system response.
Zero, or a small positive number, is often the lower bound of the FRo1. The upper bound may be determined
from an input specification, e.g., if the frequency content of commanded inputs or disturbance inputs is known
then the model should be accurate to frequencies 2-5 times the highest input frequency (w;,) (Karnopp
et al. 1990); accordingly, wmaz = 5 X w4n. In the case of closed-loop system design, the open-loop crossover
frequency drives the FROI in that the model should provide a reliable response at frequencies 1 to 2 decades
beyond the crossover frequency we,, that is, 10 X weo < wimer < 100 X weo. Both of these approaches
are merely heuristics; the engineer must temper these suggestions with knowledge of the particulars of the
problem under consideration and be prepared to revise them as the overall design process proceeds.

Returning to the topic of the relative change in a model’s frequency response, we will adopt a metric
similar to that employed in model order reduction. The metrics will differ in that model order deduction
will employ a normalized relative comparison of model performance. The current model will be deemed
sufficiently accurate when

GR+m (Jw)

Ry -
6G = max GRlw)

n w EFROI

- 1‘ < TOL, 4)

where TOL is a given convergence tolerance, G¥(jw) refers to the frequency response of the current model,
and G®+™(jw) denotes the frequency response of a model with all m component ranks (where possible)
increased by unity. Furthermore, R should be a minimum for a given set of components, FrROI, and TOL.
Equivalently, we seek a set of component ranks

{r1, 72, ..., Pm},

where m is the quantity of components in the system, such that R = _ r; is minimized while meeting the
condition in (4). This alters the Proper Model definition provided in (Wilson and Stein 1995). Here a Proper
Model is defined as the minimal-order, lumped, physical model that adequately represents the response of a
configuration of passive and active components to excitations in the FROI [wmin, Wmax].- FD-MODA is intended
to choose component submodel ranks that will result in a model with these properties.

3 Frequency-Domain Deduction Algorithm

The deduction algorithm developed in this paper uses the change in the normalized frequency response as
a termination condition. Once the model has an order such that subsequent normalized changes in the fre-
quency response (with increasing model order) are less than a given tolerance, the algorithm stops increasing
model order. The use of the frequency response distinguishes the new algorithm from previous deduction



algorithms, which consider convergence of the eigenvalues only. This section discusses the requirements of
the algorithm in terms of input and output data, the choice of a suitable search strategy for the algorithm,
and the information flow in the new algorithm.

The input and the desired output specify the requirements of the algorithm. The input to FD-MoODA
includes:

1. asystem, S, of serially-connected components; e.g. § = {c1,c3,¢c2,cs}
2. a FROI, [Wmin,wmax], and a set of frequencies, €, discretized over this range

3. a frequency response convergence tolerance, TOL.

We assume the following are available: (i) a set of model generating functions that synthesize the submodels
of the components in &, (ii) a routine that assembles the submodels in a system model, and (iii) analysis
software that calculates the frequency response of the system model.

The output of FD-MODA is the set of ranks of the components of 8, e.g. R = {r1,rs, r2,rg}. This set must
satisfy two conditions:

1. Increasing all r; will not cause a significant change in the normalized frequency response over the FROI.

2. The sum of the ranks, >, r;, is minimum.

This provides a Proper Model of the system, i.e. a model of appropriate complexity given the specification
that the frequency response should be accurate over the FROI.

3.1 Search strategy

The search strategy employed by FD-MODA is characterized as a greedy, or modified hill-climbing search
(Rowe 1988). The initial state of the algorithm is a set of zero-rank components submodels. The final, or
goal, state of the algorithm is the set of ranks with the minimum sum that meets the condition in (4). The
algorithm employs inner and outer iterative loops. The inner loop determines which rank increase causes the
largest normalized change in frequency response over the FROI. The component whose rank increase causes
this change is referred to as the most sensitive component for a particular iteration of the outer loop. The
outer loop increases the rank of this component on a trial basis and evaluates the need to keep the rank
increased. By searching for the component whose rank increase causes the mazimum normalized change in
the frequency response, which can be assumed to lead to the biggest improvement in model fidelity, we can
characterize FD-MODA’s search strategy as a greedy search. This strategy modifies the usual hill-climbing
search, in that only one variable (rank) is changed at each step where that single variable is selected to
maximize the normalized change in the frequency response, as opposed to the conventional multi-variable
hill-climbing approach.

The greedy search is adopted for several reasons. First, in the current context this search will always find
a set of component ranks that meet the desired error criterion. As increasing component ranks adds more
degrees of freedom to a model, the accuracy with which the model predicts a frequency response improves.
Eventually, sufficient degrees of freedom will be included in the model so that the error criterion is met.
While a non-optimal local minimum is an issue in many applications of the greedy search, it is not an issue
for FD-MODA. When using this strategy to make decisions in a search tree, choosing a certain branch normally
means that other branches are no longer available. In the FD-MODA context, however, choosing a branch
implies increasing the rank of a given component. A rank increase in one component does not preclude
subsequent rank increase of another component. Increasing a component’s rank does imply a commitment
in that any increase in a component’s rank is permanent, but this is independent of the local minimum issue.

A second reason for choosing this search strategy is that the greedy search is suited to the problem of
selecting which degrees of freedom to add to a model. Consider a torsional system with three identical
inertias separated by two shafts: one which is very stiff and the other which is very flexible. The shafts
provide the only means of adding degrees of freedom to the model of this system. For any realistic FROI,



adding the compliance of the more flexible shaft to the model will have a larger effect on the frequency
response than would adding the compliance of the stiffer shaft. Given the choice between which compliance
to add, i.e. which component’s rank should be increased, it is clearly desirable to add the compliance of the
more flexible shaft as this will provide a more realistic description of the system behavior. This logic can
be generalized to any number of components: At any state of the algorithm, the component that causes
that largest change in the system behavior (as measured by the maximum change in the frequency response)
when its rank is increased should be used to add more complexity to the model. The greedy search will lead
to this behavior.

A final reason for adopting the greedy search strategy is that it requires fewer models to be evaluated
than a strategy such as breadth-first (Rowe 1988). As discussed in (Wilson and Stein 1995), a greedy strategy
requires that the following quantity of models be evaluated

1+ N(R+1), (5)
where N is the number of components and R is the final rank of the model. In contrast, an exhaustive
breadth-first strategy introduces a combinatoric explosion, requiring that

Ri (N +i—1)! -

, (N =1)!

+=0

models be synthesized and evaluated. To identify a Proper Model, the greedy strategy will obviously require
fewer models to be evaluated than a breadth-first strategy.

3.2 Information flow

The overall information flow of the deduction algorithm is shown in Fig. 2.
Insert Fig. 2 here.

As the flowchart illustrates, the deduction algorithm is a multi-loop iterative process of testing the effect
on model performance of increasing the rank of the most sensitive component. Note that the component
with this distinction will normally change during each iteration. A change in model performance is deemed
significant when

Gt (jw)

sGH = — R
G, max G ()

W EFROI

— 1‘ > ToL, (7)

where G®*1(jw) corresponds to increasing the rank of the most sensitive component. When a change in
model performance is significant, the more complex submodel corresponding the most sensitive component
is retained in the model, and the iterative process repeats. Should the change in model performance be
insignificant, i.e. the LHS of (7) is less than ToL, an additional check on model performance is performed.
The ranks of the remaining components are increased and the condition in (4) is checked. The reason for
this check is that normalized changes in model performance may not necessarily be monotonically decreasing
with increasing model rank, and a more thorough check on model convergence is necessary. (This lack
of monotonicity is demonstrated in the example in Sect. 4.) Should (4) hold, i.e. the change in model
performance is insignificant after increasing the remaining ranks, all ranks are decreased and the algorithm
stops. Should (4) not hold, all ranks are decreased except that of the most sensitive component and the
algorithm continues searching for the new most sensitive component. This extra step adds one additional
model to the quantity determined by (5).

Determining the most sensitive component requires a separate iterative procedure. The process for this
step involves increasing the rank of each component on an individual basis and determining the component
that causes the largest normalized change in the frequency response over the FrROI. The flowchart for this
process is shown in Fig. 3.



Insert Fig. 3 here.

Note that the quantity §G in the figure is determined by

6G = max 7GHEW(JW)

— —1 8
wesd chrrent(Jw) ( )

where Gpew(jw) and Geyprent(jw) correspond to the frequency responses of the new (rank increased) and
current models.

4 Algorithm Demonstration

The operation of FD-M0ODA is demonstrated in this section. First, a physical system and component sub-
models are described. This is followed by the synthesis of a system model with a convergence tolerance of

0.1.

4.1 Physical system and submodels

We will demonstrate FD-MODA with an example that involves synthesizing a model of a DC motor driving
a chain of five flywheels separated by four torsional shafts. This system is illustrated in Fig. 4.

Insert Fig. 4 here.

The parameters for this system are given in the appendix.

The component models for the motor, flywheels, and torsional shafts are as follows:

DC Motor Two models are available for this component. The rank-0 model assumes no inductive lag in
the armature windings, whereas the rank-1 model includes this lag. A bond graph illustrating these
models is shown in Fig. 5.

Insert Fig. 5 here.

The symbols in the figure are defined as: L, — armature winding inductance, R, — armature winding
resistance, J, — armature torsional inertia, K; — torque constant, and B, — armature viscous friction
coefficient.

Flywheel Only a single model of rank-0 is available for a flywheel, a rotational inertia. The bond graph
for an inertia consists of a 1-junction with an inertial port. This model is standard (Rosenberg and
Karnopp 1983). We also assume that each flywheel in Fig. 4 will have some viscous friction due to
the bearings that support it. For convenience, the viscous friction coefficients are scaled so that the
resulting time constant of the flywheel in free rotation is 10 seconds.

Torsional Shaft An infinite quantity of models is available for this component. The rank-0 model assumes
no compliance, the rank-1 model assumes a single compliance, and so on. For this example, torsional
damping in the shaft has been ignored.

The configuration in Fig. 4 has five components whose rank can be increased. The notation ijklm will
be used to denote the particular combination of ranks that correspond to a given model. For example,
the combination 01001 implies three rank-zero components (the DC motor, the second shaft, and the third
shaft) and two rank-one components (the first and fourth shafts). This translates into a system model with
compliant elements for the first and fourth shafts and no inductive lag.



4.2 Model synthesis

For this example, the range 0.1-100 rad/sec defines the FROI and the convergence tolerance is 0.1. We begin
with the 00000 model and search for the most sensitive component of this model, i.e. the component whose
rank increase will cause the largest change in

6GE = max
w EFROI

9)

Gt (jw)
GR(jw)

for R = 0. A plot of (9) as a function of increasing the ranks of the various components is shown in Fig. 6,

where 00000 is the initial set of ranks.

Insert Fig. 6 here.

The maximum change shown in the figure, 2.957, is greater than the convergence tolerance. This change was
caused by increasing the rank of the fourth shaft, which is the fifth “rank-increasable” component. Thus the
00001 set of ranks produces the initial model for the second iteration of FD-MODA.

Six iterations are required to synthesize a system model that has converged. Initially, five iterations are
required before the LHS of (7) is less than ToL. A sixth iteration corresponds to the final check in (4). To
illustrate the incremental change in the normalized frequency response during the model synthesis process, a
plot of (9) as a function of algorithm iteration number and the total rank is shown in Fig. 7. It is interesting
to note that the plot in Fig. 7 does not demonstrate monotonicity. That is, the maximum incremental change
in the normalized frequency response as model order increases does not necessarily decrease with increasing
model order. Commentary on this topic will be provided in Sect. 5.

Insert Fig. 7 here.

We will summarize the model synthesis process for this example. Beginning with the 00000 set of ranks,
the following rank sets (and corresponding model changes) were identified in synthesizing a Proper Model
of the system in Fig. 4:

1. 00001 (add compliance of fourth shaft)
00101 (add compliance of second shaft)
00111 (add compliance of third shaft)
01111 (add compliance of first shaft)

(
(

11111 (add DC motor armature inductance)

SRR S

12222 (augment all possible ranks, ranks subsequently decreased)

Note that the last set of rank increases in the above list was needed to check model convergence. These rank
increases were not actually incorporated into the final Proper Model. The frequency responses corresponding
to this list of models are shown in Fig. 8. These plots illustrate the apparent convergence of the response as
model order is increased using FD-MODA.

Insert Fig. 8 here.

5 Discussion

This paper develops an order deduction algorithm for linear systems. The algorithm begins with a very
low order model of a system and uses a greedy search strategy to identify which submodel’s order is to be
increased and substituted into the overall model. The algorithm, FD-MODA, uses the normalized change
in the frequency response over some specified frequency range of interest as the criterion for determining
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which higher order component submodel will have the most effect on model performance. If the maximum
normalized change, as determined by testing all components, is greater than some convergence tolerance,
the order of the appropriate submodel is increased and the model order deduction process continues. The
process terminates when the maximum normalized change in the frequency response with all ranks increased
is less than the convergence tolerance.

The frequency-domain performance criterion is comprehensive in that it reflects the input/output be-
havior of the entire system, not just the behavior of its poles. This observation is particularly important
in the context of modeling plants for control system design. Note that this criterion can also be used for
closed-loop systems, since a change in closed-loop frequency response due to an increase in model order
can be evaluated as easily as open-loop frequency response. Finally, the frequency response reflects system
performance by concisely depicting input-output behavior over w € [Wimin, Wmas]- Engineers have found this
type of information meaningful for over half a century and continue to employ it in modern techniques such
as Hy,-based design.

The algorithm improves upon existing algorithms in that it considers normalized changes in the frequency
response as the algorithm-stopping-criterion, as opposed to the (assumed) convergence of the model eigen-
values. As shown in Sect. 1.2, using the eigenvalues as the sole measure of model performance can lead to
an erroneous assessment of system performance. In the remainder of this section, the validity of the models
synthesized using FD-MODA, the generality of FD-MODA, and algorithm extensions will be discussed.

5.1 Model validation

The deduction algorithm developed in this paper, when used either manually or as a module of an au-
tomated modeling software program, will produce a model that is assumed to have converged to a given
tolerance. This presupposes that the parameter lumping strategy being employed is acceptable. Let us
examine the validity of the convergence assumption. Although the engineering community in general and
the control engineering community in particular relies extensively on mathematical models of physical phe-
nomena, absolute validation of these models is impossible without the actual hardware in place. In the
design stage, when models are used extensively, the hardware is not be available. Lacking the hardware,
the alternatives for checking a given lumped-parameter model include synthesizing and analyzing either a
continuum-based model or a finite-element model. Although not demonstrated here, either of these tech-
niques can indeed provide valuable information regarding the performance of a lumped-parameter model,
whether synthesized using FD-MODA or otherwise. For the designer who wishes to use a lumped-parameter
model for controller synthesis and requires a model with guaranteed accuracy, either of these modeling tech-
niques can be quite useful. However, the designer must weigh the additional information against the effort
required to obtain it. Particularly in the case of a continuum-based model, obtaining a solution can be very
tedious. Although it is known that lumped-parameter models of simple continuous systems will converge to
their continuum-based equivalents (Huston 1990, p. 334-337), a guarantee on the absolute error bounds of a
general lumped-parameter model, including one synthesized using FD-MODA, cannot be provided. Measured
data, a continuum-based model, or a finite-element model can all be used to help estimate these bounds.

As discussed in Sect. 2, FD-MODA is intended to synthesize a Proper Model, i.e. a minimum-order model
that has convergence to a final frequency response within some tolerance. As FD-MODA uses the relative
change in a model’s frequency response as an algorithm-stopping-criterion, its models cannot be guaranteed
to meet the convergence criterion. We thus restrict our claim regarding the performance of FD-MODA to the
following:

FD-MODA provides an effective heuristic for coordinating the synthesis of a model that has con-
verged, relative to other lower-rank models of the same system, to a user-specified tolerance over
a user-specified frequency range [Wmin, Wmax]-

The density of the frequency grid used during model synthesis is an important consideration. The spacing
between adjacent grid points must be sufficiently close so that an accurate estimation of a model’s frequency
response results. The spacing is especially critical when the model has lightly damped poles and zeros. The
example in Sect. 4 uses 200 points, logarithmically-spaced over three decades. While this spacing is sufficient
for the example, some applications may require a finer grid.
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5.2 Generality of algorithm

The procedure provided in this paper is applicable to systems other than electromechanical systems. The
approach is suited to physical phenomena that can be characterized by distributed-parameter behavior or
with parasitic effects similar to DC motor lag that may or may not need to be included in the model to
achieve the desired level of accuracy. In either case, there are phenomena that may be approximated by
finite-dimensional models whose order can be increased to better approximate the original dynamics. For
example, model synthesis for pneumatic, hydraulic or electro-magnetic (e.g. wave-guide) phenomena can also
be coordinated using FD-MODA, as can systems with parasitic capacitances.

Although demonstrated using a single-input / single-output system, FD-MODA can also be applied to a
multiple-input / multiple-output model. This may be done by studying the effect of component rank increases
on each input / output variable pair’s transfer function and selecting the most sensitive component based on
the maximum change in 6GE(jw) (7) over the input / output pairs. In this way, any input / output pair that
results in some component rank being increased for a given convergence tolerance will result in this rank
increase being incorporated in the final model.

FD-MODA can also be used in a finite-element or finite mode bond graph (Karnopp et al. 1990, ch. 10)
context. In the former, FD-MODA would provide a finer mesh for the most sensitive components until the
change in the model’s frequency response is less than some tolerance. With finite mode bond graphs, the
algorithm would include additional modes for the most sensitive components, in an analogous manner, until
the frequency response settled.

5.3 Extensions

A more thorough analysis regarding the accuracy of a lumped-parameter model against its continuum-based
equivalent would improve the understanding of the former. As stated above, results regarding model accuracy
are available for single elements and model accuracy is a major topic in the finite-element literature. The
accuracy of LPMs does not appear to have received the same attention. In previous work with deduction
algorithms, it was assumed (and observed) that the early rank increases caused the largest changes in a model
and that the frequency response soon converged to its (assumed) final shape. The algorithm demonstration
in Sect. 4, in particular the plot in Fig. 7, shows that model change is not monotonically decreasing with
increasing model rank. This lack of monotonicity and the ubiquity of simple lumped-parameter models in
the application of controller design suggests that an estimation of the error bounds associated with a given
lumped-parameter model is needed and would be useful to a broad audience.

The utility of FD-MODA can be broadened by extending it to encompass nonlinear systems and other
complicating factors. For nonlinear systems, describing-function methods provide a direct approach to
achieving this goal, and frequency-domain performance criteria are even more appropriate than in the linear
case. Preliminary research in extending MoDA for nonlinear systems is described in (Taylor and Wilson 1995).
Finally, since RHP poles and zeros may severely limit the achievable performance of a system (Middleton
1991), any rank increase that produces a RHP pole or zero should automatically be kept in the model. As
such poles and zeros were not an issue in the example provided in Sect. 4, this criteria was not included
previously. However, feedback can introduce RHP poles; thus when feedback is present, FD-M0DA should be
modified as described here.
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Appendix: Component Dimensions and Material Constants for Ex-
ample in Sect. 4

Standard SI units are used; units are only given in the first usage.

DC Motor : motor constant Ky = 0.06 n-m/amp = 0.06 v/rad/sec, armature resistance R, = 0.9 ohms,
armature inductance L, = 0.002 Henry, rotor torsional inertia J, = 3.8e-5 kg-m?

First flywheel : J; = 4.937e-4, viscous friction coefficient By = (J, + J1)/10 n-m/rad/sec
First shaft : Jg, = 6.053e-6, stiffness Kg, = 612.5 n-m/rad

Second flywheel : J, = 0.0046, B; = J2/10

Second shaft : Jg, = 3.783e-7, Kg, = 38.28

Third flywheel : J3 = 0.0046, Bs = J3/10

Third shaft : Js, = 3.783e-7, Kg, = 38.28

Fourth flywheel : J; = 7.748¢-4, By = J4/10

Fourth shaft : Jg, = 2.364e-8, Kg, = 2.393

Fifth flywheel : J5 = 4.937e-4, B5 = J5/10
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