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Abstract—My students and I have participated in a seven-year
effort to produce an advanced supervisory control system called
ICAM, a system for Intelligent Control and Asset Management,
with specific focus on petroleum industry applications. By design,
however, ICAM was devised to be widely applicable in a variety
of automation and manufacturing arenas.

We adopted a multi-agent architecture to implement ICAM,
and divided ICAM’s functionality among the various agents to
execute different specific tasks. Most agents were, by nature,
computationally intensive; these were implemented as MATLAB®
routines. The Supervisor (or “master agent), on the other hand,
was meant to incorporate the “intelligence” of ICAM, so it
was created in the G2 expert system shell. We also assumed
that a wireless sensor and actuator network (WSAN) would
be incorporated in the system under control, including links
comprising control loops.

Several important lessons were learned in the course of this
project. First, we found it easier and more efficient to distribute
much of the intelligence in the agents rather than the Supervisor,
and secondly, that implementing the Supervisor as an expert
system in G2 made the operation of ICAM very slow and
cumbersome, due to the excessive overhead involved. We have
concluded that replacing the expert system Supervisor with a
top-level event-based controller will make ICAM considerably
more effective, efficient, and easier to extend and maintain.

I. INTRODUCTION

Comprehensive asset management and control of a modern
process facility can involve many tasks with different time-
scales and levels of complexity, including but not limited to:
signal processing (gross error detection and correction, plus
filtering or data reconciliation); fault detection, isolation, and
accommodation; process model identification; and supervisory
control. In addition, wireless sensor and actuator network
coordination was addressed toward the end of the project, in
light of the burgeoning use of wireless links in process control
loops. The automation of these complementary and intertwined
tasks within an information and control infrastructure promises
to reduce maintenance expenses, improve utilization of equip-
ment, enhance safety, and improve production and product
quality.

As mentioned, we compartmentalized the functionality
of ICAM by adopting a multi-agent architecture. The tasks
outlined above were specifically implemented as follows: a
fault detection, isolation and accommodation (FDIA) agent [1],
a linear model identification (LMId) agent, also [1], an adaptive
nonlinear dynamic data reconciliation (ANDDR) agent [2], [3],

a wireless network control coordinator (WNCC) [4] and, as
lower-level assistants, a steady-state detection (SSD) agent [3]
and a rudimentary database manager. A high-level schematic
of ICAM is provided in Fig. I; as noted, all agents were
implemented in MATLAB [5] except the Supervisor [6], which
was built using the expert system shell G2 [7]. The process
simulator, also implemented in MATLAB, represents a two-
tank, three-phase crude oil separator with five PID control
loops built into the process simulator [8]).
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Fig. 1. Schematic showing ICAM’s architecture

We anticipated deploying the ICAM system in a real-world
application setting, with various components hosted on multi-
ple platforms; at a minimum, the Supervisor on one machine,
the MATLAB-based agents on another and the WSAN Gateway
on a third host. This necessitated the development of rigorous
interprocess communication protocols (see Section VI), which
added substantial complexity and overhead to ICAM at run
time. The communication between the expert system working
in G2 and the MATLAB-based agents was particularly slow



and burdensome, and in hindsight unnecessary [9]; this has
motivated our recent decision to replace the expert system-
based Supervisor with a simpler event-based control solution.

The remainder of this paper will include a brief outline
of the primary agent’s control-theoretic and logical function,
to demonstrate that most of ICAM’s knowledge and decision-
making was in fact embedded in the MATLAB agents. This
exposition is followed by a summary of problems encountered
and “lessons learned”, and a discussion of plans to reimple-
ment the Supervisor as an event-based master controller.

II. LINEAR MODEL IDENTIFICATION

Industrial processes are generally high-order and nonlinear
in nature, making it difficult and impractical to derive or
even use an accurate mathematical model for the system if
one exists. This has been one of the main reasons that has
limited the application of quantitative model-based techniques
such as nonlinear dynamic data reconciliation (see Section
II) — in fact, this is what prevented us from using our
highly realistic nonlinear model for the crude oil separator for
NDDR. Despite having the model, it executed too slowly for
use in a simulation-based optimization procedure. Also, many
such methods are only applicable to linearized models, such
as our fault detection, isolation and accommodation (FDIA)
technique (see Section IV). Therefore, developing a linear
model identification (LMId) agent was essential.

Linear model identification involves exciting the process
and collecting input/output signals from it to infer the process
dynamics. We excited the process using generalized binary
noise (GBN), generated according to a fixed sample interval
Ty and amplitude a; at each sample time ¢; the GBN switches
from a to —a or vice versa with probability pg,, [10]. Thus
GBN signals are easy to design and generate, and, since they
can possess good low-frequency content if 7Ty and pg, are
suitably chosen, we found that they gave more consistent
results overall compared with using pseudo-random binary
sequences. Furthermore, being of limited amplitude, we could
choose a large enough to achieve adequate excitation yet not
drive the process too strongly. We used MATLAB’s predic-
tion error/maximum likelihood method which gave excellent
results, in terms of fitting percentage and matching output
waveforms, as demonstrated in [1], [11].

This agent was designed and implemented so that it could
operate completely autonomously, with no need for external
direction from the Supervisor or operator. That philosophy was
successfully applied to all of ICAM’s MATLAB-based agents.

III. SIGNAL PROCESSING

Data from process sensors are typically corrupted by noise
(usually high-frequency random signals, e.g., those modeled by
first-order Markov processes) and gross errors (e.g., data drop-
outs, spikes, analog-to-digital or digital-to-analog conversion
errors). Low-pass filtering is often used for noise reduction,
but this alters the spectrum of the filtered process signals
and thus introduces additional dynamics that may negatively
impact LMId and other activities. An alternative technique
that is often used in the chemical process control context is
called nonlinear dynamic data reconciliation (NDDR). This

technique, pioneered by Liebman et al. [12], was extended
by Laylabadi and Moreno [13], [14] to make NDDR adaptive
(hence ANDDR) and more self-sufficient. Also, Laylabadi and
Taylor created and demonstrated a new heuristic approach for
Gross Error Detection and Correction (GEDC) [15] that is also
self-adjusting — it estimates the random noise levels to help
in distinguishing gross errors from random variation. ANDDR
and GEDC are complicated procedures which were completely
automated — space limits do not permit an intelligible sum-
mary. Both ANDDR and GEDC proved to be very effective.

IV. FAULT HANDLING

In real-world industrial processes, such as oil and gas
facilities, continuous production is required to achieve good
asset utilization and profitability. As a result, stopping pro-
duction suddenly in the middle of operations to fix or replace
a sensor or actuator that has failed unexpectedly may result
in significant economic losses. To minimize the impact of
interruptions in plant operation, sensor fault detection and
isolation (FDI) are essential, and accommodation (FDIA), if
possible, is even more beneficial, to provide a temporary
solution to sustain safe operation while maintenance can be
scheduled without significantly upsetting the process or pro-
duction. FDI for actuator failures is equally important; even
though accommodation may not be possible, an immediate
alarm for the specific failed actuator is imperative for quick
repair or replacement. Both should be integrated as part of an
effective asset management strategy.

We implemented FDIA using a powerful technique based
on generating and interpreting directional residuals (general-
ized parity vectors) [1], [11], [16]. The residuals are very
small when all sensors and actuators are working normally,
but become large in magnitude in the presence of a fault.
Moreover, the residuals “point” in different directions in the
parity vector space, depending on which component has failed,
and, in the case of sensor faults, the magnitude of the parity
vector can be used to infer fault size, e.g., “temperature sensor
3 is reading 15 C low”, so the control system can add that
offset to the measured signal and continue normal operation.
This directional residual method was demonstrated to be very
effective.

The procedure for disambiguating the various residual
directions for each possible sensor and actuator fault required
the development of an optimization method to calculate a
transformation matrix that can separate them as much as
possible. This must be done every time the LMId agent has
to be invoked in response to a significant change in set point.
In addition, the threshold for declaring a fault also involves
on-line calculation. The FDIA agent performs these tasks and
all others autonomously.

V. WIRELESS NETWORK CONTROL COORDINATOR

Finally, we devised and implemented a wireless network
control coordinator (WNCC) to solve a serious problem:
if wireless paths are to be incorporated safely in process
control loops one must not allow control signals to suffer
slow data rates and variable time delays, both of which may
degrade the performance of the control loop or even lead



to instability. Those time delays, inherent to WSANSs, stem
from network delay and data latency, and depend on the
network configuration and loading. In addition, the sampling
rate also has a great impact on the performance and stability
of the closed-loop control systems, as mentioned, yet the data
rate should be minimized to conserve WSAN node battery
life and accommodate other wireless communications traffic.
These conflicting requirements must be reconciled as much as
possible; this was the goal of creating the WNCC [4], [17],
[18].

The WSAN Gateway (see Figure I) has the responsibility of
generating proposed network configurations, when the system
is started and after every relevant event, such as a node
outage or unbalanced network traffic. The WNCC then (1)
checks the proposed configuration to determine the time delay
which the control data packets will encounter, and rejects
any proposed configuration that would lead to poor closed-
loop system performance; and (2) determines the minimum
acceptable sampled data rate that does not degrade control loop
performance excessively. This latter task is done by comparing
the performance of the control system with wireless links over
the proposed configuration with that of an ideal hard-wired
control system and insisting that the behavior of the former
is not excessively degraded (according to a specified metric,
e.g., percent overshoot). This minimum acceptable data rate is
mandatory whenever the control loops are closed; they may
be open if the process is in steady state, in which case the
WSAN can work at a slower rate, as long as the process can
be monitored to detect disturbances or significant process drift
so loops can be closed and an appropriate sampling rate rein-
stated. This involves carefully coordinated interchanges among
the the WNCC, the WSAN Gateway and the Supervisor (which
controls the opening and closing of control loops); this must
be done at start-up and every time the WSAN reconfigures or
its performance changes, e.g., due to interference or a node
outage.

We demonstrated and validated the WNCC by applying it
to a jacketed continuous stirred-tank reactor model, a signifi-
cant third-order nonlinear model which has two control loops,
in a number of realistic scenarios, including data drop-outs,
node outages, heavy WSAN traffic, opening and closing con-
trol loops as needed, and accommodating unusual procedures
such as LMId. This is not the same as field testing, but it
demonstrated excellent coordination in all cases.

VI. SUPERVISORY CONTROL

A Supervisor prototype was developed to monitor and
control the activities of the other agents overviewed previously
and run the process effectively [19], [20]. It was designed to
interact with the agents realistically, taking into account that
the Supervisor is implemented in G2 [7], and it and the agents
would be distributed over a number of platforms. This required
a three-layered architecture, with (1) reactive agents (e.g.,
FDIA, LMId, etc.); (2) middleware using the remote memory
access (RMA) communication approach, which is part of the
message passing interface (MPI) communication library, to
address data communications between itself and other layers;
and (3) the artificial intelligence layer (i.e., the expert system-
based Supervisor). The active target RMA communication type

was chosen to achieve high reliability, i.e., data are moved
rigorously from the memory of one process to the memory of
another, and both are explicitly involved in the communication
[21]. Further detail may be found in [6].

The Supervisor was implemented in G2, wherein the ICAM
system internal and external behavior was to be codified in
its knowledge base [7]. The rule base was meant to capture
the desired system behavior in response to external events
and environment dynamic changes and to process operator
interactions. Therefore, we felt that it was crucial to carefully
design the rule-base of the supervisory agent to achieve overall
robust system performance.

However, as the MATLAB-based agents were developed
with sophisticated logic to deal with most anticipated ICAM
tasks there came to be little left for the Supervisor to do other
than run test scenarios [9]. Therefore, the Supervisor design
and implementation process was suspended in its preliminary
stage after developing the extensive infrastructure mentioned; it
was, in fact, quite rudimentary, only running simple scenarios
to test interactions between it and various ICAM agents and
among the reactive agents themselves. Given that the MATLAB-
based agents incorporate substantial local intelligence includ-
ing inter-agent communication and coordination; that the inter-
action between the G2-based Supervisor and MATLAB-based
agents is so slow and cumbersome; and that the rule-based
capabilities of G2 are so under-utilized; it makes sense to cease
its development at this time.

VII. AN EVENT-BASED SOLUTION

Based on our critique of the present ICAM implementa-
tion, it seems wise to seek an alternative to the G2-based
Supervisor. Considering the obvious importance of “events” in
the operation of ICAM, e.g., occasionally needing to perform
linear model identification after the operating set-point has
changed significantly, dealing with sporadic gross errors in data
transmission, performing FDIA upon occurrence of a failure,
and handling all the random events in the WSAN (interference,
congestion, variable time delays, node outages and WSAN re-
configuration) it is compelling to seek an event-based solution.
In fact, the WNCC (see Section V) was implemented with an
event-based control idea, namely, when the process was in
steady state the WNCC informed the Supervisor that it could
open the loops to ease congestion in the WSAN, and when the
process started to deviate from steady state the WNCC told
the Supervisor that it must close the loops. We are particularly
motivated to adopt this strategy for the entire ICAM system by
the land-mark publication by Miskowicz [22], which presents
many approaches and successful applications.

We plan to retain the two-level hierarchical control scheme
used before: An Event-based Supervisor (EBS) will send set
points wirelessly to local PID control loops implemented in
their own processors located at the process convenient to the
corresponding sensor-actuator pair. One innovation is that the
EBS will generate a progression of several future PID set
points, using Model Predictive Control (MPC) [23] to define
the short-term strategy for maneuvering the process controlled
variables; this should give the local PID controllers a degree
of robustness should the WSAN delay or drop the next PID



set point. (We assume (reasonably, given the capabilities of
modern microcontrollers, digital signal-processing chips and
field programmable gate arrays) that the local PID controller
modules will have this capability.)

Furthermore, the contention between the WSAN require-
ments and limitations (minimizing data rates, random delays
and drop-outs) and the control loops (maintain performance
and avoid instability with regular and sufficiently fast sam-
pling) will be addressed by adopting the event-based control
strategy described by Arzén [24] and, in more generality, in
Heemels et al [25]. In our context, event-based sampling is
commonly used in the process industry (e.g., when statistical
process control is used); a new control action is only calculated
when a predefined deviation has occurred. The resulting two-
level control system with MPC and event-based PID control
should be more agile, and the overall system much less
cumbersome.

Finally, to test our plan and approach we will implement
a prototype event-based ICAM system solely in MATLAB,
as a proof of concept. If, as we anticipate, the prototype
successfully overcomes the difficulties we encountered in the
first implementation, these ideas may be useful as a road-map
for other similar industrial automation and control projects.

VIII. SUMMARY AND CONCLUSIONS

The ICAM system developed in the first phase of our effort
was very comprehensive, and was designed to automate all the
functionality required for asset management in a broad context.
One general principle emerged rather early in our work:
knowledge about algorithms and numerical methods should
be incapsulated in the MATLAB agents, while knowledge
about situation assessment and asset management could be
embedded in the Supervisor. Although the use an expert system
Supervisor made good sense methodologically we found that it
was impractical when implementing the system in a real-world
context, with various ICAM components hosted on different
machines, due to the excessive overhead involved.

Very briefly, much was accomplished in the first phase of
the ICAM project, and much learned. We came to realize that
developing ‘“smart agents” in MATLAB is effective in many
ways: testing, debugging, extension and refinement were easy,
and execution was much faster than could be accomplished
with the Supervisor managing the process. We now believe
that the ICAM architecture is sound, and that reimplementing
the Supervisor as an event-based controller is the best way
forward.
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