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Abstract: The robust control problem for nonlinear sys-
tems is discussed from the standpoint of the amplitude
sensitivity of the nonlinear plant and final control system.
Failure to recognize and accommodate this factor may give
rise to nonlinear control systems that behave differently for
small versus large input excitation, or perhaps exhibit limit
cycles or instability. Sinusoidal-input describing functions
(sidfs) are shown to be effective in dealing with amplitude
sensitivity in two areas: modeling (providing plant mod-
els that achieve an excellent trade-off between conservatism
and robustness) and nonlinear control synthesis. In ad-
dition, sidf-based modeling and synthesis approaches are
broadly applicable. Several practical SIDF-based nonlinear
compensator synthesis approaches are presented and illus-
trated via application to a position control problem.
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1 INTRODUCTION

A major cause for concern in nonlinear control is the am-
plitude sensitivity of the nonlinear plant and final control
system. It is well known that nonlinear control systems that
are designed without accounting for this factor may not ex-
hibit robust performance (e.g., may behave differently for
small versus large input excitation, or perhaps exhibit limit
cycles or instability). Modeling and synthesis methods that
accommodate plant amplitude sensitivity may thus provide
major benefits in the design of robust nonlinear control sys-
tems.

Various ways to deal with amplitude sensitivity exist in the
context of models for control system design. These include
replacing nonlinearities with linear elements having gains
that lie in ranges based on:

• nonlinearity sector bounds,

• slope bounds,

• random-input describing functions (ridfs), or

• sinusoidal-input describing functions (sidfs).

It is argued in Section 3 that frequency-domain plant in-
put/output models based on sidfs provide an excellent
trade-off between conservatism and robustness in this con-
text. In particular, it is shown by example that sector and
slope bounds may be excessively conservative, while ridfs
are generally not robust in the sense that a nonlinear control
system design predicted to be stable based on ridf plant
models may limit cycle or be unstable. An important at-
tribute of sidf-based frequency-domain models is that they
account for the fact that the effect of most nonlinear ele-
ments depends on frequency as well as amplitude; the other
techniques do not capture both of these traits.

Design approaches based on sidf models are all frequency-
domain in orientation. The basic idea of all methods pre-
sented in Taylor (1983), Taylor and Strobel (1984, 1985),
Taylor and Åström (1986) and Taylor and O’Donnell (1990)
is to define a frequency-domain objective for the openloop
compensated system and synthesize a nonlinear controller
to meet that objective as closely as possible for a variety of
error signal amplitudes (e.g., for small, medium and large
input signals where the numerical values associated with the
terms “small, medium and large” are based on the desired
operating regimes of the final system). The designs are then
at least validated in the time domain (e.g., step-response
studies); recent approaches have added time-domain opti-
mization to further reduce the amplitude sensitivity. The
methods presented in Section 4 follow this paradigm.

Modeling and synthesis approaches based on these princi-
ples are broadly applicable. Plants may have any number of
nonlinearities, of arbitrary type (even discontinuous or hys-
teretic), in any configuration. These methods are robust
in several senses: In addition to dealing effectively with



amplitude sensitivity, the exact form of each plant nonlin-
earity does not have to be known as long as the sidf plant
model captures the amplitude sensitivity with decent accu-
racy, and the final controller design is not specifically based
on precise knowledge of the plant nonlinearities. The re-
sulting controllers are simple in structure and thus readily
implemented, with either piece-wise linear characteristics or
fuzzy logic.

Several recent nonlinear compensator design approaches are
presented and illustrated via an application to a position
control problem. These synthesis techniques are based on
amplitude-dependent sidf models of the nonlinear plant
coupled with the synthesis of controller nonlinearities via
sidf inversion, and represent extensions and improvements
of methods and results reported previously (Taylor and
Strobel, 1984 and 1985; Taylor and Åström, 1986). One
breakthrough required for this work was devising a way to
synthesize nonlinear controllers with rate feedback (Taylor
and O’Donnell, 1990). Another was making a connection
that permitted extension to the direct synthesis of fuzzy-
logic controllers (Taylor and Sheng, 1996 and 1997).

The remainder of this paper is organized as follows: Section
2 defines sidf modeling; Section 3 outlines approaches and
issues in modeling for nonlinear control system design; Sec-
tion 4 presents several nonlinear controller configurations
and relates the corresponding number of “degrees of free-
dom” (dof) to the degree and form of the nonlinear plant
amplitude sensitivity and then describes two nonlinear con-
troller synthesis approaches; and Section 5 illustrates the
application of sidf-based approaches to a simply-stated but
difficult position control problem.

2 SIDF MODELING

The basic idea of the describing function (df) approach
for modeling and studying nonlinear system behavior is
to replace nonlinear elements with (quasi)linear descriptors
whose gains are a function of input amplitude. These de-
scriptors are governed by the form of input signal, which
is assumed in advance. This technique is dealt with very
thoroughly in a number of texts for the case of a single non-
linearity (Gelb and Vander Velde, 1968; Atherton, 1975);
for systems with multiple nonlinearities in arbitrary config-
urations, the most general extensions may be attributed to
Kazakov (1965) in the case of random-input dfs (ridfs) and
jointly to Taylor (1975, 1980) and Hannebrink et al (1977)
for sinusoidal-input dfs (sidfs). These developments have
been presented in tutorial form in Ramnath, Hedrick and
Paynter (1980).

The sidf approach can be used for two primary purposes:
limit cycle analysis and characterizing the input/output
(i/o) behavior of a nonlinear plant in the frequency do-
main (cf. Taylor, 1980). It is the latter application - called

sidf modeling hereafter - that serves as the basis for the
work presented here.

There are two methods for obtaining an sidf i/o model
of a nonlinear plant. One approach is to replace each
static nonlinearity in the plant differential equation set with
the corresponding describing function in analytic form and
then set up and solve the equations of harmonic balance.
The equations for determining an sidf-based i/o model in
this way are given in Taylor and Strobel (1984). Another,
more direct, technique for obtaining an sidf i/o model in-
volves simulation plus fourier analysis methods (cf. Taylor,
1982). In the specific method described in Taylor and Lu
(1993), fourier analysis is done in parallel with the simula-
tion (fourier integrals are evaluated as the nonlinear plant is
being integrated) which is very accurate and efficient. Us-
ing either approach, the designer can obtain the required
sidf i/o model in a straightforward manner. Finally, di-
rect measurement of the frequency response of a nonlinear
plant may be performed for a varity of amplitudes, using a
spectrum analyzer.

The key equations necessary to define an sidf i/o model
are as follows: The nonlinear plant is assumed to be char-
acterized by the general state-variable differential equation
set and output equation

ẋ = f(x, u) , y = h(x, u) (1)

where x is an n-dimensional state vector, u is a scalar input,
and y is a scalar output variable. We are concerned with the
behavior of the plant in the presence of sinusoidal signals,
so we take u and y to have the form

u(t)
∆
= u0 + Re[a exp(jωt)],

y(t)
∼

= yc + Re[c exp(jωt)] (2)

where u0 represents the operating point or “dc value” of u(t)
and a is the sinusoidal component amplitude. In developing
sidf models the state variables and y are assumed to be ap-
proximately sinusoidal (this should be validated); then the
corresponding components of y are characterized by yc, the
output center value, and c, the complex amplitude in stan-
dard phasor notation. The end result from either harmonic
balance or simulation plus fourier analysis is that we neglect
higher harmonics to approximate the sinusoidal-input i/o
relation corresponding to Eqn. (1) as follows:

c(jω; u0, a)
∼

=G(jω; u0, a)a (3)

where the sidf i/o model is explicitly determined by u0, a,
as the notation indicates. Note that Eqn. (3) is exact in the
fourier analytic sense (c(jω) representing the first harmonic
of y) if G(jω, a) is obtained by simulation plus fourier anal-
ysis; in addition, there is no need to argue that the inputs
to every nonlinearity are nearly sinusoidal in that case. To
simplify notation, in cases where the operating point is zero
the i/o relation is denoted G(jω, a).



3 MODELS FOR CONTROL DESIGN

Several techniques for dealing with amplitude sensitivity
were mentioned in Section 1. These include replacing each
plant nonlinearity with a linear characteristic having a gain
that lies in a range based on sector bounds, slope bounds,
random-input describing functions (ridfs), or sinusoidal-
input describing functions (sidfs). It was stated that sidf
i/o plant models provide an excellent trade-off between con-
servatism and robustness in this context; this is a vital point
that merits detailed discussion.

3.1 SIDF and Linear Model Families

sidf modeling gives rise to a family of models that corre-
sponds to a range of input amplitude. Linear model fami-
lies (ẋ = Ax+Bu) can be obtained by replacing each plant
nonlinearity with a linear element having a gain that lies
in a range based on its sector bound or slope bound. We
will hereafter call these model families sector i/o models

and slope i/o models, respectively. (Robustness cannot be
achieved using one linear model based on the slope of each
nonlinearity at the operating point for design, so that alter-
native is not considered.)

From the standpoint of robustness in the sense of maintain-
ing stability in the presence of plant i/o variation due to
amplitude sensitivity, it has been established that none of
the model families defined above are sufficient basis for a
guarantee. The idea that sector i/o models would suf-
fice is called the Aizerman conjecture, and the premise that
slope i/o models are useful in this context is the conjecture
of Kalman; both have been disproven even in the case of a
single nonlinearity (for discussion, see Narendra and Taylor,
1973). Both sidf and ridf models similarly can be shown
to be inadequate for a robustness guarantee in this sense
(see also Narendra and Taylor, 1973).

Despite the fact that these model families cannot be used to
guarantee stability robustness, it is also true that in many
circumstances they are conservative (e.g., a particular non-
linearity may pass well outside the sector for which Aiz-
erman’s conjecture would suggest stability yet the system
is still stable). On the other hand, only very conservative
conditions such as the circle criterion (Narendra and Gold-
wyn, 1964) and the off-axis circle criterion (Narendra and
Cho, 1967) serve this purpose rigorously - however the very
stringent conditions these criteria impose and the difficulty
of extension to systems with multiple nonlinearities gener-
ally inhibit their use. Thus many control system designs are
based on one of the model families under consideration as a
(hopeful) basis for robustness. It can be argued that designs

based on sidf i/o models that predict that limit cycles will

not exist by a substantial margin is the best one can achieve

in terms of robustness (see also Atherton, 1981). In sidf-
based synthesis the frequency-domain design objective (see

Section 4) must ensure this.

Returning to conservatism, considering a static nonlinearity
and assuming that it is single-valued and its derivative ex-
ists everywhere, it can be stated that slope i/o models are
always more conservative than sector i/o models, which in
turn are always more conservative than sidf models. This
is because the range of an sidf cannot exceed the sector
range, and the sector range cannot exceed the slope range.
An additional argument that sector and slope model fami-
lies may be substantially more conservative than sidf i/o
models is based on the fact that only sidf models account
for the frequency dependence of each nonlinear effect. This
is especially important in the case of multiple nonlineari-
ties, as illustrated by the simple example depicted in Fig. 1:
Denoting the minimum and maximum slopes of the gain-
changing nonlinearities fk by mk and mk respectively, we
see that the sector and slope i/o models correspond to all
linear systems with gains lying in the indicated rectangle,
while sidf i/o models only correspond to a “gain trajec-
tory” as shown (the exact details of which depend on the
linear dynamics that precede each nonlinearity). In many
cases, the sidf model will clearly prove to be a less restric-
tive basis for control synthesis.

3.2 SIDF and RIDF Models

There are two basic differences between sidf and ridf mod-
els for a static nonlinearity (Gelb and Vander Velde, 1968;
Atherton, 1975): The assumed input amplitude distribution
is different, and sidfs can characterize the effective “phase
shift” caused by multivalued nonlinearities such as those
commonly used to represent hysteresis and backlash, while
ridfs cannot. These issues were discussed in some detail
in Taylor (1983); in particular, it was shown that the input
amplitude distribution issue is generally not a major con-
sideration. The importance of the phase shift issue may be
a matter of modeling judgment; hysteresis and backlash can
be modeled without the use of multivalued nonlinearities,
which would eliminate the second difference in distinguish-
ing between the two df methods.

However, there is a third difference (Taylor, 1983) that im-
pacts the i/o model of a nonlinear plant in a fundamental
way. This difference is related to how the df is used in
determining the i/o model; the result is that ridf plant
models (as usually defined, cf. Rajarao and Mahalanabis,
1970; Hedrick, 1976) do not capture the frequency depen-
dence of the system nonlinear effects.

This difference arises from the fact that the standard ridf
model is the result of one quasilinearization procedure car-
ried out over a wide band of frequencies, while the sidf
model is obtained by quasilinearizing at a number of fre-
quencies. This behavior is best understood via the simple
example from Taylor (1983) involving a low-pass linear sys-
tem followed by a saturation (unity limiter):



f(v) =

{

v , | v | < 1
sgn(v) , | v | ≥ 1

(4)

• Considering sinusoidal inputs of amplitude substan-
tially greater than unity, the following behavior is ex-
hibited: Low-frequency inputs are only slightly atten-
uated by the linear dynamics, resulting in heavy satu-
ration and reduced sidf gain; however, as frequency
and thus attenuation increases, saturation decreases
correspondingly and eventually disappears, giving a re-
sponse that approaches the output of the low-pass lin-
ear dynamics alone.

• A random input with rms value greater than one, on
the other hand, results in saturation at all frequencies,
so G(jω, a) is identical to the linear dynamics followed
by a gain less than unity.

Bode plots for this example were presented in Taylor and
Strobel (1984). The sidf approach captures both a gain
change and an effective increase in the transfer function
magnitude corner frequency, while the ridf model shows
only a gain reduction.

More striking differences were observed in a robotic arm
modeling study (Taylor and Strobel, 1984). In that case,
both experimental and simulation-derived ridf and sidf
i/o models were obtained and the difference between the
two df models was large, especially at low frequencies where
the magnitude was more than 12 dB higher for the sidf
model compared with the ridf case. Combining these ob-
servations, it is safe to say that one can easily find or devise
cases where sidf models predict limit cycles or instability
while ridf models may erroneously predict a good margin
of stability.

These examples show that ridf and sidf i/o models differ
in an important way. More specifically, they demonstrate
that control systems designed using sidf i/o models are
more likely to be robust than those designed using ridf
models. (Aside: By their very definition, ridfs were not
intended to serve as a basis for robust design; sidfs, being
Hopf bifurcation analysis tools, are more suitable.)

4 NONLINEAR CONTROL SYNTHESIS

The nonlinear controllers synthesized by the various sidf-
based methods discussed in Taylor and Strobel (1984, 1985)
and Taylor and Åström (1986) are all simple in structure,
being comprised of parallel paths made up of linear dynam-
ics in series with static nonlinearities that are readily im-
plemented (piece-wise linear functions of the input). Figure
2 depicts these and related controller configurations.

These controllers are characterized by “degrees of freedom”
(dofs), in the following sense: the 1-dof compensator (Fig.
2a) realizes a single amplitude-dependent gain over all fre-
quencies, while the 3-dof cases (Figs. 2b, 2c) provide the

ability to synthesize independent gain/amplitude relations
at low, middle and high frequencies corresponding to the
integral, proportional, and derivative terms respectively.
(Most other compensator types, e.g., the lead/lag compen-
sator, can be decomposed similarly.) It is clear that sim-
ple amplitude sensitivity problems can be addressed using
the 1-dof configuration; more degrees of freedom may be
needed if the amplitude dependence is complicated.

A 1-dof controller synthesis approach was described in Tay-
lor and Strobel (1984) and employed in Taylor and Åström
(1986); a more effective 3-dof approach was presented in
Taylor and Strobel (1985). Finally, we realized a more effec-
tive 3-dof configuration, having the derivative term as rate
feedback (Taylor and O’Donnell, 1990; see Fig. 2c). This
is motivated by the practical consideration that taking the
derivative of the reference input produces large plant input
signals if the reference can make abrupt changes; since the
final test of our sidf-based synthesis approaches is a step-
response study, the rate feedback configuration is definitely
preferable.

The two most recent sidf-based nonlinear control system
synthesis approaches are presented below. The first yields
a 3-dof algorithm with nonlinear rate feedback, which is de-
signed entirely in the frequency domain, and the second gen-
erates a fuzzy-logic controller based on the first result and
refined by time-domain optimization. In Section 5, these
methods are demonstrated on a position control problem.

Before proceeding, it is important to reiterate the premises
of the sinusoidal-input describing function design ap-
proaches that we have been developing:

1. The nonlinear system design problem being addressed
is the synthesis of controllers that are effective for
plants having frequency-domain i/o models that are
sensitive to input amplitude (e.g., for plants that
behave very differently for “small”, “medium” and
“large” input signals).

2. Our primary objective in nonlinear compensator design
is to arrive at a closed-loop system that is as insensitive

to input amplitude as possible.

This encompasses a limited but important set of prob-
lems, for which gain-scheduled compensators cannot be
used (gain-scheduled compensators can handle plants whose
behavior differs at different operating points but not
amplitude-dependent plants) and for which other ap-
proaches (e.g., variable structure systems, model-reference
adaptive control, global linearization) do not apply because
their objectives are different (e.g., their objectives deal with
asymptotic solution properties rather than transient behav-
ior, or they deal with the behavior of transformed variables
rather than physical variables).



4.1 3-DOF Nonlinear Controller Synthesis

An outline of the synthesis algorithm for the nonlinear pi
plus rate feedback (pi+rf) controller is as follows:

1. Select sets of input amplitudes and frequencies that
characterize the operating regimes of interest.

2. Generate sinusoidal-input describing function models
of the plant corresponding to the input amplitudes and
frequencies of interest.

3. Design amplitude-dependent rate-feedback gains using
an extension of the D’Azzo and Houpis (1960) algo-
rithm, devised by Taylor and O’Donnell (1990).

4. Convert these linear designs into a piece-wise linear
characteristic, by sinusoidal-input describing function
inversion (adjusting the slopes and breakpoints so the
nonlinearity’s sinusoidal-input describing function fits
the gain / amplitude data from Step 3 with minimum
mean square error).

5. Find sinusoidal-input describing function models for
the nonlinear plant plus nonlinear rate-feedback com-
pensation.

6. Design pi compensator gains using the frequency-
domain sensitivity minimization technique described in
Taylor and O’Donnell (1990).

7. Convert these linear designs into a piece-wise linear pi
controller, also by sinusoidal-input describing function
inversion.

8. Develop a simulation model of the plant with nonlinear
pi+rf control.

9. Validate the design through step-response simulation.

Since these steps are described in some detail in Taylor and
O’Donnell (1990) we do not provide more detail here.

4.2 Fuzzy-Logic Controller Synthesis

Fuzzy-logic-based or fuzzy control has a long record of de-
velopment and application. For the purposes of this presen-
tation, we merely point out the well-established connection
between one standard form of fuzzy control – where the
decision variables are “error” and “error-rate-of-change” –
and proportional plus derivative (pd) control (Tong, 1977).
In many applications, this idea is implemented by using op-
erator heuristics to describe what the linguistic variables
such as “large-negative”, “small-negative”, “zero”, “small-
positive”, “large-positive” mean in terms of membership
functions for error and error-rate-of-change, and then to de-
scribe the appropriate control action to take (level of plant
input to apply) under various circumstances, e.g., “if error
is large-negative and error rate is small-positive then con-
trol is small-positive”. Of course, the details such as the
number of linguistic variables etc. vary from application to
application; however, this general idea is the basis for an
important class of fuzzy-logic controllers (flcs). A second

type of flc corresponds in the same analogous way with pi
control.

As mentioned, in many applications the set of fuzzy rules
is based on operator heuristics. In other cases, the control
engineer may be the source of this knowledge. While these
approaches have proven to be effective in numerous appli-
cations, there are many circumstances where the fuzzy logic
rulebases are difficult or impossible to generate in this fash-
ion. In these cases, a model-based approach for generating
the set of fuzzy rules may be more appropriate. Situations
where the system dynamics are too fast for a human oper-
ator to be able to cope and too nonlinear for the engineer
to write a rulebase by intuition would seem to be two cases
in point, and electromechanical systems with nonlinear fric-
tion would be a prime example (Section 5).

Our approach for fuzzy-logic controller synthesis uses the
above purely sinusoidal-input describing function-based de-
sign as a starting point, exploiting the fact that a single-
input / single-output fuzzy-logic rulebase can implement a
piece-wise linear characteristic, if the membership functions
are selected suitably. An example of this is shown in Fig. 3,
for one of the nonlinearities used in the illustrative applica-
tion. The following steps are added to the recipe provided
above for the nonlinear pi+rf controller:

1. Modify Step 4 above, to generate a rate-feedback flc
instead of a piece-wise linear one.

2. Modify Step 7 above, to generate flcs for the propor-
tional and integral channels, instead of piece-wise linear
ones.

3. Optimize and validate the design through recursive
step-response simulation.

Again, these steps are described in some detail in Taylor and
Sheng (1996, 1997), so we do not provide much detail here.
The main area of difference is in the use of time-domain

optimization to refine the behavior of the preliminary flc
design generated as outlined in Section 4.1. It should be
emphasized that the availability of this preliminary design
which already closely achieves the objective of reduced sen-
sitivity to input amplitude is critical to the success of the
optimization step – without this starting point, there is lit-
tle hope that optimization by itself could achieve a viable
design.

Even with a good preliminary design, it is important to pose
the optimization problem correctly to achieve the desired
result and a solvable problem. First, the objective function
Φ is expressed in terms of a target insensitive unit step
response h∗(t) as:

Φ =

I
∑

i=1

K
∑

k=1

wk(h(tk; ai)/ai − h∗(tk))2 (5)



where h(tk; ai) denotes the step response of the control sys-
tem to a step of amplitude ai at the integration time steps
tk, and wk are weighting factors to permit trade-offs be-
tween features of the transient response (e.g., overshoot)
and those of the steady-state solution (e.g., the amount of
steady-state offset).

The amplitudes ai, i = 1, 2, . . . I may be selected to be
the same as in the sinusoidal-input describing function de-
sign stage, or they may differ; it is important, however,
that they be roughly consistent. We found in the applica-
tion outlined below that weights had to be higher after the
initial transient, to alleviate the effect of “sticking”; in gen-
eral, the selection of these weights will be application and
scenario specific. Most importantly, the target insensitive
step response h∗(t) must be approximately achievable by
the controlled plant. Here we have adopted a simple strat-
egy for selecting it appropriately: define h∗(t) to be the
average of the normalized step responses achieved by the
preliminary flc. More advanced strategies are presented
in detail Taylor and Sheng (1998).

5 POSITION SERVO EXAMPLE

The nonlinear plant from Taylor and Strobel (1985) was
used to provide a test case for the approaches outlined
above. In brief summary:

• The nonlinear plant is a simple model of a position
control system with torque motor saturation and stic-
tion (Fig. 4); these effects are notoriously difficult to
handle.

• The i/o behavior of a feedback system with the first-
cut linear pid controller (Taylor and Strobel, 1985) is
shown in Fig. 5, top half. These time-histories show the
response of the system to step inputs of different am-
plitudes (the responses are normalized by dividing the
response by the input step amplitude); clearly there is
substantial amplitude dependence, i.e., “sticking” for
small amplitude inputs and excessive overshoot caused
by saturation and integral wind-up for large step in-
puts. These problems cannot be solved by a linear
change of the loop gain: if the gain is reduced, then
the offsets due to sticking will be worse; if the gain is
increased, then the excessive overshoot caused by inte-
gral windup will be aggravated.

• The i/o performance of the sidf-based nonlinear con-
troller (Taylor and O’Donnell, 1990) is depicted in Fig.
5, bottom half. While the design procedure only fo-
cussed on minimizing open-loop sensitivity in the fre-
quency domain, the substantial reduction in closed-
loop step-response amplitude sensitivity is noteworthy.

• Finally, the behavior of a feedback system with a non-
linear flc synthesized by the combined sidf and time-
domain optimization approach is portrayed in Fig. 6.

Since this synthesis method is based explicitly on the
final objective of making the closed-loop system insen-
sitive to amplitude in the time domain, it is not sur-
prising that it exhibits even less amplitude sensitivity
than the purely sidf-based design.

6 SUMMARY AND CONCLUSION

A detailed discussion of sinusoidal-input describing function
modeling as the basis for robust nonlinear control system
design was presented. This was done to provide a perspec-
tive from which to compare and evaluate various modeling
approaches in this context.

Several recently-developed nonlinear control system synthe-
sis approaches based on sidf modeling and sidf inversion
were presented and shown by example to provide substan-
tial benefit in terms of producing nonlinear control system
designs that are insensitive to the amplitude of the refer-
ence input. The resulting nonlinear controllers have three
degrees of freedom (3-dof), i.e., three nonlinear elements
that can independently influence the amplitude sensitivity
of the compensated system at high, middle and low fre-
quencies, thus providing a good deal of flexibility in meet-
ing this objective; the use of nonlinear rate feedback also
provided improved performance compared with earlier re-
sults. In terms of generality, observe that these approaches

only require that the nonlinear plant model can be simulated

with sinusoidal inputs and that it should produce a periodic

response – a mild restriction indeed.

Finally, we observe that the stated objective of amplitude
insensitivity in terms of frequency- and step-response ad-
dresses one specific but common control system require-
ment, which might aptly be called performance robustness.
This is merely one aspect of robust nonlinear control, and
thus it is not particularly meaningful to compare the scope
and efficacy of these approaches with other techniques such
as model reference adaptive control, sliding mode control,
and linearizing transforms which do not and can not address
this problem.
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Figure 5: Control System Performance with Linear and
Nonlinear (sidf-based) Compensator (Fig. 2c)
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