
Toward A Practical Multi-agent System for Integrated Control and
Asset Management of Petroleum Production Facilities

Atalla F. Sayda and James H. Taylor

Abstract— This paper addresses a practical intelligent multi-
agent system for asset management for the petroleum industry,
which is crucial for profitable oil and gas facilities operations
and maintenance. A research project was initiated to study the
feasibility of an intelligent asset management system. Having
proposed a conceptual model, architecture, and implementation
plan for such a system in previous work [1], [2], [3], we
define the autonomy, communications, and artificial intelligence
(AI) requirements of the component agents of such a system.
We also discuss the software implementation of such agents.
Furthermore, we describe a simple system prototype, and
conduct a real time simulation experiment to analyze the
prototype performance. Simulation results reveal that MATLAB
can be used to build high performance real-time multi-agent
systems, which can be used for many applications.

I. INTRODUCTION

Asset management and control of modern process plants
involves many tasks of different time-scales and complexity
including data reconciliation and fusion, fault detection,
isolation, and accommodation (FDIA), process model iden-
tification and optimization, and supervisory control. The
automation of these complementary tasks within an infor-
mation and control infrastructure will reduce maintenance
expenses, improve utilization and output of manufacturing
equipment, enhance safety, and improve product quality.
Many research studies proposed different combinations of
systems theoretic and artificial intelligence techniques to
tackle the asset management problem, and delineated the
requirements of such system [4], [5], [6].

Several research programs addressed the automation of
asset management in large complex systems, namely the
Pilots Associate (PA) program sponsored by the Defense
Advanced Research Projects Agency (DARPA) [7], [8], the
Rotorcraft Pilots Associate (RPA) program funded by the US
army [9], MAGIC (Multi-Agent-Based Diagnostic Data Ac-
quisition and Management in Complex Systems) developed
by a joint venture of several European universities and com-
panies [10], ISHM (Integrated System Health Management)
project developed by NASA for space applications [11],
AEGIS (Abnormal Event Guidance and Information System)
developed by the Honeywell led Abnormal Situation Man-
agement (ASM) Consortium in the United States [12], and
CHEM-CSS (Advanced Decision Support System for Chem-
ical/Petrochemical Manufacturing Processes) developed by

James H. Taylor is with the Department of Electrical & Computer
Engineering, University of New Brunswick, PO Box 4400, Fredericton, NB
CANADA E3B 5A3 jtaylor@unb.ca

Atalla F. Sayda is a PhD candidate with the Department of Electrical
& Computer Engineering, University of New Brunswick, PO Box 4400,
Fredericton, NB CANADA E3B 5A3 atalla.sayda@unb.ca

the European Community (EC) Intelligent Manufacturing
Systems (IMS) consortium [13].

Among all projects, AEGIS is the most important one,
which proposes a comprehensive asset management frame-
work from an industrial view point. AEGIS built on the
experience of military aviation research projects, especially
the Pilots Associate (PA) and the Rotorcraft Pilots Associate
(RPA) [14]. Although the 12 year old research program
has achieved several goals and developed a well established
abnormal situation management awareness and culture, it did
not address the automation of massive process data inter-
pretation and process fault diagnosis and accommodation,
which would be aimed to minimize the workload on process
operators [15].

In order to build on the AEGIS project experiences and
to incorporate the state of the art of fault diagnosis, artificial
intelligence (AI) and wireless sensor networks techniques, a
new asset management research project, PAWS (Petroleum
Applications of Wireless Systems), was initiated by a joint
venture of Atlantic Canadian universities and the National
Research Council of Canada (NRC) for oil and gas appli-
cations [1], [16], [2], [17], [18], [3], [19], [20], [21], [22],
[23], [24]. The PAWS project scope is to develop a control
and information management system which consists of two
subsystems. The first subsystem is a wireless sensor network
which will alleviate the need for data cables in offshore oil
rigs and improve flexibility for adding and reconfiguring sen-
sors. Wireless sensors will be used where permitted by safety.
The second subsystem intelligently manages the massive data
flow from oil rigs and interprets it so as to help operators
take more appropriate decisions during abnormal events and,
through intelligent control, improve process economics.

As part of the PAWS project, our team is developing
an intelligent control and asset management system (ICAM
system) in which several milestones have been achieved.
The conceptual model of an automated asset management
system, its architecture, and its behavioral model have been
defined [1], [2]. Furthermore, an implementation plan for
such system has been prepared, and the appropriate devel-
opment tools have been chosen [3]. This paper builds on
the previous work and proposes a general ICAM system
agent structure, and further defines the communication and
the artificial intelligence requirements of the ICAM system.
Furthermore, a real time simulation experiment is conducted
on a prototype of the ICAM system to test and confirm its
performance.

The paper is organized as follows: First, we describe
the structure of an ICAM system agent to achieve the best
autonomy in section 2. Then, we analyze the ICAM system

communication and artificial intelligence requirements in
sections 3 and 4 respectively. Then we discuss the ICAM
system agent implementation in section 5. Finally, we de-
scribe an ICAM system prototype, and discuss a real time
simulation experiment of such a prototype in section 6.

II. AUTONOMY REQUIREMENTS OF ICAM SYSTEM
AGENTS

Having proposed the ICAM system development plan in
previous work [3], it is crucial to design the agent structure
to achieve specific autonomy requirements in terms of an
overlapping scheme for communication and computation
along with ease of prototyping and deployment. The Message
Passing Interface (MPI) communication model meets the
autonomy requirements by offering many advantages such as
expressivity, ease of debugging, and most importantly high
performance [25], [26]. MPI is a specification and a library
which provides the infrastructure for communications among
several parallel computational processes. MPI gives system
designers the freedom to implement their own protocols that
best fit their systems’ requirements. In order to reconcile
efficient computation with ease of prototyping requirements,
the ICAM system is deployed as distributed interconnection
of MATLAB computational agents, which runs on a network
of several Windows XP workstations. Distributed MATLAB
sessions exchange messages by using a newly developed
MPI communication protocol. Exchanged messages have
two roles; a control role to achieve internal coordination
with other agents, and a numerical data processing role to
achieve the best interaction with the external environment
(e.g,, offshore oil processing rigs).

ICAM Agent

MATLAB Script

MPI communication task RMA

Communications

Switch (Task)

 Case T1;

 ...

 Case Tn;

G2 expert system

communication task

Blackboard

MATLAB workspace

G2

Communications

Fig. 1. ICAM system agent deployment structure

Figure 1 shows the structure of a general agent of the
ICAM system. The general agent is implemented as a
MATLAB m-script, which runs two communication tasks and
a computational one. The computational task represents the
agent’s main functionality (e.g., model ID, fault detection
and isolation, etc...). The first communication task is an MPI
remote memory access (RMA) protocol, which provides the

basic buffered messaging capabilities with minimum over-
head (refer to the next section for more details). Furthermore,
a public memory window is embedded in the protocol for
remote access by other agents. The memory window will
act as a black board for direct transfer of complex numerical
data structures among agents. This design decision was made
after investigating the advanced features of the newest MPI
2.0 library [27], and to meet the blackboard functionality
described in the behavioral model of the ICAM system.
The second communication task manages the connection
with the main system supervisor (i.e., G2 expert system).
The proposed agent structure paves the way to design and
to rapid prototype any complex multi-agent system for
many applications. This definitely enables system designers
to implement any communication protocol in addition to
exploiting the full power of the MATLAB simulation and
development environment.

III. ICAM SYSTEM COMMUNICATIONS REQUIREMENTS

MPI communication library offers many communication
modes and protocols giving system designers the freedom
and flexibility to implement their communication specifica-
tions and protocols. The MPI library specifies synchronous,
buffered, ready, and nonblocking communication modes.
In the synchronous mode, communicating processes are
blocked till a message transfer operation is completed. How-
ever, the non-blocking mode does not block the communi-
cating processes, which allows more flexible implementation
in terms of communication/computation overlap. Buffered
mode gives designers more manageability over communi-
cation buffers; whereas the ready mode guarantees correct
message sending operation if a matching receiving operation
is posted.

Among pre-specified MPI protocols, designers can choose
from several protocols such as the Eager, the Rendezvous,
and the One-sided protocols for implementation. The Eager
protocol can be used to send messages assuming that the
destination can store. This protocol has minimal startup
overhead and is used to implement low latency message
passing for smaller messages. The Eager protocol has ad-
vantages in terms of programming simplicity, and reduction
of synchronization delays. However, it requires significant
buffering, additional buffer copies, and more CPU involve-
ment at the destination. The Rendezvous protocol negotiates
the buffer availability at the receiver side before the message
is actually transferred. This protocol is used for transferring
large messages when the sender is not sure whether the
receiver actually has the buffer space to hold the entire
message. This protocol is safe and robust, and may save in
memory. However, it requires more complex programming
and may introduce synchronization delays.

The One-sided protocol (i.e., remote memory access
(RMA) protocol) moves data from one process to another
with a single routine that specifies both where the data is
coming from and where it is going. Communicating agents
using this protocol must have a designated public memory
(i.e., blackboard), which can be remotely accessed. This

protocol has nearly the best performance compared to others
in terms of synchronization delays, however it requires a
very careful synchronization planning process [27]. Having
described the communication design options available in the
MPI library and according to the high performance MPI rec-
ommendations [28], it is our opinion that the ICAM system
communications should meet the following requirements:
• In order to avoid dead locks, synchronization time, and

serialization problems, the non blocking communication
mode can be used.

• To address the message size and scalability issues, the
Rendezvous protocol would be the perfect candidate
among the other MPI protocols.

• The problem of buffer contention and achieving fairness
in message passing can be resolved by having large
communication buffers.

• The one-sided protocol can be also implemented to
augment ICAM system communication performance by
enabling agents to have their own private blackboards,
as was discussed in the previous section.

IV. ARTIFICIAL INTELLIGENCE (AI) REQUIREMENTS OF
ICAM SYSTEM

The artificial intelligence (AI) requirements of the ICAM
system have to address different issues such as coordinat-
ing the system’s internal behavior (i.e., how the different
agents interact) versus managing the external manufacturing
process. The choice of the appropriate AI paradigm is
very crucial to the high performance and real-time issues.
Different AI paradigms (e.g., rule based expert systems,
case based reasoning (CBR) systems, neural nets (NN),...)
have different strengths and disadvantages. Another issue is
the intelligence distribution; locally within the agent versus
globally within the system. Obviously knowledge specific to
agent activity will be embedded at the agent level. However,
global system intelligence should address the internal system
coherence and its external interaction with the environment
[23].

When it comes to selecting an appropriate AI paradigm,
we were at first attracted by the case-based reasoning (CBR)
approach, as it promised to meet the high performance, learn-
ing and real-time requirements of the ICAM system [1], [2].
The CBR paradigm is a novel problem-solving strategy and
machine learning technique. In principle, it solves problems
by retrieving a “nearest neighbour” past problem from its
case base, evaluating any differences, and adapting the past
problem solution to handle the new circumstances. Every
new problem that is handled successfully is added to the
case base; if the new solution is a failure that information
is also stored. While this approach is apparently systematic
and easily automated, there are several major drawbacks:
(1) developing an algorithm to extract a “nearest neighbour”
problem is domain-specific and may be very difficult, and
(2) “adapting the past problem solution to handle the new
circumstances” is also much easier said than done. Although
many CBR programs were developed during the 80’s and
mid 90’s [29], the CBR development process slowed greatly

due to the problems mentioned above (and others), so we
are shifting to another paradigm.

Traditional rule-based systems have a few well-known
drawbacks, such as difficult knowledge acquisition, lack of
a memory of tackled problems or previous experience, poor
inference efficiency, ineffectiveness in dealing with excep-
tions and novel situations and lack of learning mechanisms,
to name a few. However, the development of new software
standards and technologies for rule-based expert systems
continued to progress. Such development has enabled rule-
based expert systems to overcome many of their drawbacks,
and to compete with the CBR AI paradigm. In fact, if we
can limit ourselves to “crisp” problems then the “nearest
neighbour” problem does not arise, and we can use rules to
define a case base, and retrieve and implement solutions.
Semi-automated procedures can also be implemented to
allow operators or process engineers to enter new cases and
thus implement a limited form of learning.

Among the industrial rule-based expert system shells, the
G2 real-time expert system shell from Gensym Corporation
is considered the most versatile real-time expert system shell,
as it integrates many software technologies and standards
[30]. The G2 platform uniquely combines real-time reason-
ing technologies, including rules, work flows, procedures,
object-oriented modeling, simulation, and graphics, in a
single development and deployment environment. G2 can
transform real-time operations data into automated decisions
and actions, and can maintain an understanding of the
behavior of processes over time. This would enhance the
whole ICAM system performance, and enable the ICAM
system to intelligently coordinate its internal behavior and
interact with the external industrial process as well. We
have refined our AI requirements analysis, and designed the
general structure of the ICAM system intelligent supervisory
agent and its software implementation using the G2 expert
system development environment [23].

V. ICAM AGENT IMPLEMENTATION

Having analyzed the autonomy and communication re-
quirement of ICAM agents, the general implementation of
these agents can then be designed, as shown in figure 2.

The general ICAM agent implementation starts its main
Matlab script and its associated graphic user interface (GUI).
After the ICAM agent is instantiated and its buffers are
initialized, the MPI communication environment and the
G2 expert system link are initialized. The agent’s specified
computational task is started.

Once the computations are done, the communication tasks
are executed based on the agent’s internal state and decisions.
If the agent decides that it requires further deliberation about
its internal state or its response to the external environment,
then messages are exchanged with the ICAM system super-
visor (i.e., the G2 expert system). On the other hand, if the
agent requires more data for better awareness of the external
environment, then it would exchange messages with other
agents through its MPI link. if the computational task is done,
the task is ended; if not, the computation loop continues to

MPI Communications

with other agents

ICAM Agent Start

Initialize MPI

environment

Start agent Matlab task

and its associated GUI

Do computations

Agent's

decision?

Destroy ICAM agent

Communications with G2

expert system

Finalize MPI environment

No

Yes

Initialize G2 expert system

connection

End Matlab task and GUI

Close G2 expert system

connection

Matlab task

done?

Requires deliberationRequires data

Fig. 2. ICAM agent implementation flow chart

execute. The MPI environment is finalized, and the G2 expert
system link is disconnected when the ICAM system shuts
down.

VI. THE ICAM SYSTEM PROTOTYPE

In order to have the ICAM system requirements deployed
in a real-world system, a prototype has to be developed.
Figure 3 illustrates the simplified ICAM system prototype.
Data from the external plant are received by the statistical
data monitoring agent, which preprocesses the data by re-
moving undesired discrepancies. When the data statistical
preprocessor detects a change in the operating point or an
abnormal change in data, it alerts the model ID and FDI
agents to further identify the nature of the data change. If the
change is in the process operating point, the FDI agent asks
the model ID agent to update the process model parameters.
If the change is a process fault (i.e., a sensor or actuator
fault), the FDI agent detects the nature of the fault and
notifies the ICAM system supervisor for further processing.
For every event that occurs, the supervisor is notified, which
in turn monitors and assesses the logical behavior of the
system.

The FDI agent exploits the generalized parity space (GPS)
to generate a set of directional residuals, from which process
faults can be determined [31], [16], [20], [32], [24]. The
model ID agent implements the recursive least squares (RLS)
with forgetting factor technique. The supervisory agent is a
G2 real time expert system, which codifies the ICAM system
internal and external behavior in its knowledge base [30].
The external plant model represents an oil production facility,
which separates oil well fluids into crude oil, sales gas, and
water [19].

ICAM system supervisor

(G2 expert system)

Fault detection &

isolation

Model

identification

Oil production

facility model

Data statistical

pre-processor

Knowledge base

Control flow

Data flow

Fig. 3. ICAM system prototype

A. ICAM system prototype simulation

To analyze the performance of the ICAM system prototype
in terms of computation and communication utilization, a
simple simulation experiment was conducted, as illustrated
in figure 4. We tested two agents of the ICAM system
prototype for simplicity. The two agents are executed on two
PC machines connected to a Windows-based local network.
The first agent is an oil production facility model, which was

Two-phase

oil separator agent

Oil well

Oil & water mix

P

I-12

I-1
3

I-1
4

Oil &

water

Gas

Gas

LCL 1

PCL 1

ICAM system TCP/IP

network

Model identification

agent

Fig. 4. ICAM system prototype simulation

thoroughly developed as a test-bed for the ICAM system
verification and validation [19]. The model consists of 10
states, 5 manipulated variables, 5 controlled variables, and
17 auxiliary measured inputs and outputs (e.g., disturbances,
product quality variables, etc....). The second agent in the
experiment is a model identification agent, which incorpo-
rates the recursive least squares (RLS) with forgetting factor
ID technique. A second-order multi-input single-output au-

Profile Summary
Generated 28-Dec-2006 14:49:35 using real time.
Function Name Calls Total Time Self Time* Total Time Plot

(dark band = self time)
eufix1yRT 1 360.054 s 313.620 s
separator>sep_ode 2867 45.919 s 0.251 s
fzero 2867 45.106 s 6.638 s
inline.subsref 93309 38.436 s 8.748 s
inlineeval 93309 29.688 s 29.688 s
MPIConnect (MEX-function) 2870 0.500 s 0.500 s

Fig. 5. The two-phase oil separator model agent performance profile

Profile Summary
Generated 28-Dec-2006 14:49:36 using real time.
Function Name Calls Total Time Self Time* Total Time Plot

(dark band = self time)
MPIConnect (MEX-function) 2868 359.159 s 359.159 s
rarx 5736 0.031 s 0.031 s

Fig. 6. The model identification agent performance profile

toregressive with exogenous input (ARX) model structure
was used with a forgetting factor of 0.98. The simulation
experiment was conducted in real time with a sampling
period of 100 milli-seconds, and a time span of 6 minutes.
The exchanged messages between agents included all the
37 process variables of the whole production facility model.
We focused on the identification of the first process of the
production facility model, which is a two-phase oil separator.
The two-phase oil separation process separates light-weight
hydrocarbon gases from oil-well fluids. The liquid level of
the separator is controlled by manipulating the liquid outflow
valve (as indicated by the LCL1 control loop in figure 4).
Additionally, the separator pressure is controlled via the gas
discharge valve (as indicated by the PCL1 control loop in
figure 4). The model ID agent receives data messages from
the two-phase separator agent and identifies the separator
model recursively in real time. The RLS identification was
applied twice every sampling period, in the sense that one
output was identified at a time as a function of the two inputs.

B. Simulation results

The performance of each agent in the experiment was
measured by using the Profiler functionality in MATLAB,
in which the total time of every code line is calculated in
real time. Figure 5 illustrates the profile summary of the
first agent (i.e., the oil production facility model agent).
The first agent used our first-order fixed-step Euler ordinary
deferential equation (ODE) solver, which was developed to
meet the real time and MPI communication requirements.
The most important functions in the table are the ODE solver
(i.e., the first line in the table), the separator ODE model (i.e.,
the second line), and the MPI communication protocol (i.e.,
the last line). The first observation to be noticed is that the
total time of the ODE solver was 360.054 seconds, which
equals the total simulation time (i.e., 6 minutes). Only a time
of 0.5 second is consumed by the MPI communication task,
as indicated by the total time of the MPIConnect function,
although it was called 2870 times during the simulation. This
verifies the high performance of the developed ICAM agent
despite its implementation in Matlab.

The total time of the separator ODE model is 45.919 sec-
onds due to the fact that a nonlinear optimization problem is
solved every sampling period [19]. The number of separator
ODE model calls is 2867, which is three less than the number
of the MPI communication function calls. This is because
the MPI communication function had to be called to end the
computation task of the second agent, and to initialize and
finalize the MPI communication task.

Figure 6 illustrates the performance of the second agent
(i.e., the model identification agent). It is very interesting
to notice that the communication task in the second agent
consumed the largest amount of time (i.e., indicated by the
self time of the MPIConnect function). This is due to the
global synchronization between the two agents. The recursive
autoregressive model identification algorithm (i.e., the rarx
function) consumed only 0.031 seconds, although it was
called 5736 times. The number of the model identification
function calls was twice the number of the MPI communi-
cation function calls. This is because only one output of the
2×2 separator process was identified at a time, as explained
in the previous section.

The experiment was repeated to study the network activity,
as shown in figure 7. The bit transfer rate of the 100 Mbps
network spiked up to 395 Kbps during the MPI environment
initialization. Then the bit rate settled down to 100 Kbps
during the normal operation of the ICAM system prototype.
Once the computation and communication tasks at each
agent ended up the bit rate decreased to a level of 20 Kbps.
The bit rate spiked up to 50 Kbps and then decreased to a
level of less than 10 Kbps during the shutdown of the ICAM
system prototype.

Fig. 7. Network utilization during simulation

Figure 8 shows the identification results of the model ID
agent during the experiment, which validates the model ID
agent performance in a distributed real time environment.
The liquid level and separator pressure set points of the two-
phase separator process in the first agent were stepped up by

20% simultaneously at time t = 30 sec. The model ID agent
identified the model of the 2×2 two-phase separator process.
As indicated by the top plots of figure 8. The estimated liquid
level and gas pressure process variables (i.e., the dash-plus
trace) exactly match the real-time simulated process variables
(i.e., the dashed trace), which are received from the first
agent. The bottom plots of figure 8 show the control actions
of the two-phase separator during the experiment.

14:45:36
140

150

160

170

180

190

Time (sec)

V
se

p−
liq

 (
ft3)

Separator liquid volume & its setpoint

14:45:36
1.6

1.65

1.7

1.75

1.8
x 10

5

Time (sec)

F
ou

t se
p−

liq
 (

B
P

D
)

Separator liquid outflow

14:45:36
620

640

660

680

700

720

740

760

Time (sec)

P
se

p−
va

p (
P

S
I)

Seprator vapor pressure & its setpoint

14:45:36
135

140

145

150

155

160

165

Time (sec)

F
ou

t se
p−

va
p (

M
S

C
F

D
)

Separator vapor outflow

setpoint
output
estimated output

setpoint
output
estimated output

Fig. 8. Model identification agent simulation results

VII. CONCLUSIONS

As part of the PAWS project, we have demonstrated good
progress in the design and development of the ICAM system.
The ICAM agent structure was designed to achieve auton-
omy requirements in terms of best communication and com-
putation overlapping scheme. Based on the message passing
interface (MPI) communication standard, the communication
requirements of the ICAM system were analyzed. In order
to guarantee a robust and coherent system performance,
the ICAM system’s artificial intelligence requirements and
tools have been introduced in a separate work [23]. The
software implementation of the ICAM agents was discussed.
An ICAM system prototype was described and demonstrated.
A real time simulation experiment was conducted on two
agents of the prototype to analyze its performance in a real
time distributed environment. The simulation experiment re-
sults demonstrated good performance, which will be further
assessed after the comprehensive ICAM system prototype
has been built. More importantly, the experiment results
supported our requirements analysis and design decisions
to use MATLAB and the MPI communication standard to
develop and rapidly prototype real time distributed multi-
agent systems. We believe that the ICAM system will pave
the way to real intelligent multi-agent systems for many
applications.

VIII. ACKNOWLEDGEMENT

This project is supported by Atlantic Canada Opportunities
Agency (ACOA) under the Atlantic Innovation Fund (AIF)
program. The authors gratefully acknowledge that support

and the collaboration of Cape Breton University (CBU),
the National Research Council (NRC) of Canada, and the
College of the North Atlantic (CNA). The authors also
acknowledge the support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) for funding
the first author’s research.

REFERENCES

[1] J. H. Taylor and A. F. Sayda, “Intelligent information, monitoring,
and control technology for industrial process applications,” in The
15th International Conference on Flexible Automation and Intelligent
Manufacturing (FAIM), Bilbao, Spain, July 2005.

[2] ——, “An intelligent architecture for integrated control and asset
management for industrial processes,” in Proc. IEEE International
Symposium on Intelligent Control (ISIC05), Limassol, Cyprus, June
2005.

[3] A. F. Sayda and J. H. Taylor, “An implementation plan for integrated
control and asset management of petroleum production facilities,”
in IEEE International Symposium on Intelligent Control ISIC06.
Munich, Germany: IEEE, October 4-6 2006.

[4] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, and K. Yin, “A
review of process fault detection and diagnosis part 1, 2, 3,” Computer
& Chemical Engineering, vol. 27, no. 3, pp. 293–346, 2003.

[5] R. J. Patton, “Fault-tolerant control systems: The 1997 situation,”
in IFAC Symposium on Fault Detection Supervision and Safety for
Technical Processes, R. J. Patton and J. Chen, Eds., vol. 3. Kingston
Upon Hull, UK: IFAC, August 1997, pp. 1033–1054.

[6] P. M. Frank and B. Köppen-Seliger, “New developments using AI
in fault diagnosis,” Engineering Applications of Artificial Intelligence,
vol. 10, no. 1, pp. 3–14, 1997.

[7] R. L. Small and C. W. Howard, “A real-time approach to information
management in a pilot’s associate,” in Proceedings of Digital Avionics
Systems Conference. IEEE/AIAA, 14–17 Oct 1991, pp. 440–445.

[8] S. B. Banks and C. S. Lizza, “Pilot’s associate: a cooperative,
knowledge-based system application,” IEEE Expert, vol. 6, no. 3, pp.
18–29, June 1991.

[9] C. A. Miller and M. D. Hannen, “Rotorcraft pilot’s associate: Design
and evaluation of an intelligent user interface for cockpit information
management,” Knowledge-Based Systems, vol. 12, no. 8, pp. 443–456,
Dec 1999.

[10] B. Köppen-Seliger, T. Marcu, M. Capobianco, S. Gentil, M. Albert,
and S. Latzel, “MAGIC: An integrated approach for diagnostic data
management and operator support,” in Proceedings of the 5th IFAC
Symposium Fault Detection, Supervision and Safety of Technical
Processes - SAFEPROCESS05, Washington D.C., 2003.

[11] J. Schmalzel, F. Figueroa, J. Morris, S. Mandayam, and R. Polikar,
“An architecture for intelligent systems based on smart sensors,” IEEE
Transactions on Instrumentation and Measurement, vol. 54, no. 4, pp.
1612–1616, August 2005.

[12] T. Cochran, P. Bullemer, and I. Nimmo, “Managing abnormal situ-
ations in the process industries parts 1, 2, 3,” in NIST Proceedings
of the Motor Vehicle Manufacturing Technology (MVMT) Workshop,
Ann Arbor, MI, 1997.

[13] S. Cauvin, “Chem: Advanced decision support system for chemi-
cal/petrochemical manufacturing processes,” in CHEM Project Annual
Meeting. Lille, France: http://www.chem-dss.org/, 25-26 March 2004.

[14] E. L. Cochran, C. Miller, and P. Bullemer, “Abnormal situation
management in petrochemical plants: can a pilot’s associate crack
crude,” in Proceedings of the 1996 IEEE National Aerospace and
Electronics Conference, NAECON, vol. v2. Dayton, OH, USA: IEEE,
Piscataway, NJ, USA, May 20-23 1996, pp. 806–813.

[15] A. Ogden-Swift, “Reducing the costs of abnormal situations . . . the
next profit opportunity,” in IEEE Advanced Process Control Appli-
cations for Industry Workshop (APC2005), Vancouver, Canada, May
2005.

[16] M. Omana and J. H. Taylor, “Robust fault detection and isolation
using a parity equation implementation of directional residuals,” in
IEEE Advanced Process Control Applications for Industry Workshop
(APC2005), Vancouver, Canada, May 2005.

[17] W. Larimore, in Multivariable System Identification Workshop. Fred-
ericton, New Brunswick: University of New Brunswick, 31 October
– 2 November 2005.

[18] C. Smith, C. Gauthier, and J. H. Taylor, in Petroluem Applications
of Wireless Sensors (PAWS) Workshop. Sydney, Nova Scotia: Cape
Breton University, 22–23 August 2005.

[19] A. F. Sayda and J. H. Taylor, “Modeling and control of three-phase
gravity separators in oil production facilities,” in the American Control
Conference (ACC), New York, NY, 11-13 July 2007.

[20] M. Omana and J. H. Taylor, “Enhanced sensor/actuator resolution
and robustness analysis for fdi using the extended generalized parity
vector technique,” in Proc. American Control Conference (ACC).
Minneapolis, Minn.: AACC, 14-16 June 2006.

[21] J. H. Taylor and M. Laylabadi, “A novel adaptive nonlinear dynamic
data reconciliation and gross error detection method,” in IEEE Confer-
ence on Control Applications, Munich, Germany, October 4-6 2006.

[22] M. Laylabadi and J. H. Taylor, “Anddr with novel gross error detection
and smart tracking system,” in 12th IFAC Symposium on Information
Control Problems in Manufacturing, Saint-Etienne, France, May 17-19
2006.

[23] A. F. Sayda and J. H. Taylor, “An intelligent multi agent system for
integrated control and asset management of petroleum production fa-
cilities,” in The 17th International Conference on Flexible Automation
and Intelligent Manufacturing (FAIM), Philadelphia, USA, 18-20 June
2007.

[24] M. Omana and J. H. Taylor, “Fault detection and isolation using the
generalized parity vector technique in the absence of a mathematical
model,” in IEEE Conference on Control Applications (CCA), Singa-
pore, 1-3 October 2007.

[25] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel
programming with the message-passing interface, 2nd ed., ser. Sci-
entific and Engineering Computation, J. Kowalik, Ed. Cambridge,
Massachusetts: MIT Press, 1999.

[26] W. Gropp and et al, MPI: The Complete Reference. The MIT Press,
1998, vol. 2.

[27] W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced features
of the message-passing interface, ser. Scientific and Engineering
Computation. Cambridge, Massachusetts: MIT Press, 1999.

[28] W. Gropp and E. Lusk, “Tuning MPI applications for peak per-
formance,” www.mcs.anl.gov/Projects/mpi/tutorials/perf, Argonne Na-
tional Laborary.

[29] K.-D. Althoff, E. Auriol, R. Barletta, and M. Manago, “A review of
industrial case-based reasoning tools,” Al lntelligence, Oxford, UK,
Tech. Rep., 1995.

[30] G2 for Application Developers Reference Manual, 8th ed., Gensym
Corporation, Burlington, Massachusetts, December 2005.

[31] N. Viswanadham, J. H. Taylor, and E. C. Luce, “A frequency domain
approach to failure detection and isolation with application to GE21
turbine engine control system,” Control Theory and Advanced Tech-
nology, vol. 3, no. 1, pp. 45–72, 1987.

[32] M. Omana, “Robust fault detection and isolation using a parity
equation implementation of directional residuals,” Master’s thesis,
University of New Brunswick, 2005.

