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Abstract –The nonlinear dynamic behavior of a helicopter
is considered in this paper, using only real-time flight data
analysis. The main objective of this study is to character-
ize the vibration mechanism(s), based on the analysis of
the time-series data of the dynamical system, specifically
acceleration for two different airspeeds with a sampling rate
of 1024 Hz.

We explore the possibility of the presence of chaotic
behavior in the time-series data, using a systematic, detailed
approach. Some background in the theory of chaos in non-
linear dynamical systems is discussed, and techniques for
the identification of chaos in time-series data are presented.
Several topics including delay-coordinate embedding theory,
delay time and dimension calculation, and Lyapunov expo-
nent computation for chaotic systems are described. In each
section, time-series data sets from the helicopter are analyzed
and examined; in some sections classical examples such as
the Hénon Map and Lorenz System are also considered to
provide illustrative results. Finally, implications regarding the
possibility of chaotic behavior in the dynamical system is
discussed, and the next steps in this study are presented.

I. I NTRODUCTION

An understanding of the identification and control of
chaotic systems has improved tremendously in the last
decade [1]-[12]. Chaotic behavior occurs in systems with
nonlinear dynamics. The recognition of chaos in a complex
dynamical system is very complicated. An important char-
acteristic of a chaotic system is its sensitive dependence on
initial conditions.

Chaos may exist in classical systems (represented by math-
ematical models) or real-life systems. Examples of classical
systems include the logistic, tent and Hénon maps in the
realm of discrete systems, and the Lorenz and Rössler differ-
ential equations for continuous-time dynamical systems [2].
Some real-life systems in which chaos has been identified
are NMR laser data, human breath rate [3], among others. If
a system shows some signs of chaotic behavior, then it may
be controlled with some of the methods which are proposed
in the literature [3], [4], [5].

In most real-life systems, system behavior is characterized
by time-series data available from measurement. The first
step in the analysis of time-series data was introduced in
Geometry from a time series[6], in which state space
reconstruction of time-series data was proposed for the first
time.

In delay-coordinate reconstruction, the selection of time
delay and dimension are the most important issues [7],
[8]. By appropriate selection of time delay and embedding
dimension, the time-series data can be reconstructed in
the delay-coordinate state space. In this space, the chaotic
behavior of the nonlinear dynamical system can be studied.
A common method for the identification of chaos in state
space systems is to calculate the Lyapunov exponent [4].
In this paper, the time series of a helicopter flight data is
analyzed to investigate the possibility of chaotic behavior.

The organization of this paper is as follows. In Section II,
the delay-coordinate state space reconstruction of time-series
data is discussed. In Section III, the calculation of the optimal
time delay for delay-coordinate reconstruction is described
and carried out. In Section IV, the dimension calculation of
the reconstructed state space is addressed and also executed.
In Section V, the computation of Lyapunov exponent for
time-series data, and identification of chaos is considered
and results presented. In Section VI, the concluding remarks
about the helicopter data and the presence of chaos are
discussed.

II. STATE SPACE RECONSTRUCTION VIA

DELAY-COORDINATE EMBEDDING

In most cases, observations of a system are in the form of
time-series data, not a state space representation. However,
the most effective approaches for studying deterministic
dynamical systems involve describing the system in an
appropriate state space. For this reason, time-series data
should be converted into state space vectors. This procedure
is known asstate space reconstruction, which is based on a
theorem attributed to Takens [9].

For many physical systems, a state space flow model, is
not available; rather, observations of the system variables are
taken, including measurements of one or several quantities
which depends on the current state of the system. Given
a scalar signal,s(t), regularly sampled at time intervalτs

starting at some timet0, the nth sample can be represented
as:

sn = s(t0 + (n − 1)τs) + ηn , n = 1, 2, . . . (1)

where ηn is the measurement noise. A delay-coordinate
reconstruction can be formed by plotting the time series
versus a time-delayed version of it. For a 2-dimensional
reconstruction, we plot the delay vectoryn = (sn, sn−V ),
where V is the lag or sampling delay, i.e., the difference
between the adjacent components of the delay vector in



number of samples. For ad-dimensional reconstruction, the
delay vector,yn can be presented as:

yn = [sn, sn−V , · · · , sn−(d−2)V , sn−(d−1)V ]. (2)

If the dimension of the reconstructed space,d, is larger than
twice thebox counting dimension, m, of the attractor (or the
number ofactive degrees of freedom), the equivalence of
the spaces is guaranteed [9]. In some applications, a smaller
value ofd can also be sufficient [1].

A. Helicopter Flight Time Series Data

The dynamical system which is considered in this paper
is characterized by helicopter test flight data. Two sets of
data are examined, each comprised of acceleration signals
(calibration withheld) for two different airspeeds (also with-
held). The data are sampled when the active vibration control
system is switched off.

The time evolution of the first 1000 samples is shown in
Figure 1. As a preliminary investigation, the power spectrum
of these data was also calculated; the results are presented
in Figure 2. As shown in this figure, the highest amplitude
pertains to the blade passing frequency; however, we observe
that substantial power is also present over a broad range of
frequencies. The general sources of broad band frequency
content can be random noise or chaos; since the time-series
plots appear to be quite clean (Figure 1), the presence of
chaos in the time-series data may be suspected.
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Fig. 1. The time evolution of the first 1000 samples of flight data
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Fig. 2. Power spectrum of flight data

B. Hénon Map and Lorenz System

For the verification of the obtained results for the flight
data, two classical models are also addressed in this report.
Hénon Map and Lorenz System, respectively as a discrete
and continuous chaotic systems are selected. The Hénon Map
can be presented as:

{

xn+1 = 1 − ax2
n + yn

yn+1 = bxn,
(3)

wherea and b are equal to 1.4 and 0.3, respectively. The
Lorenz System can be formulated as:







ẋ = σ(y − x)
ẏ = x(R − z) − y

ż = xy − bz,

(4)

whereσ = 16.0, R = 45.92, and b = 4.0. The three state
variables of this system are two componenets of temperature
and one component of velocity in the convection problem.
For comparison of Lorenz System and the flight time-
series data, the time evolution and power spectrum of the
three states of this system are shown in Figure 3 and 4,
respectively.
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Fig. 3. The time evolution of the three states of Lorenz System
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Fig. 4. Power spectrum of the three states of Lorenz System

III. C ALCULATION OF OPTIMAL TIME DELAY

From a mathematical point of view, if an infinite amount
of infinitely accurate data is available, there is no limit on
the choice of sampling delay, except certain multiples of
the precise period of a periodic signal. These conditions
cannot be met in real-life data, and an optimal choice
of sampling delay plays an important role in the analysis
of the reconstructed system. An optimal sampling delay
should be large enough to give rather independent values
for sn andsn−V , and not too large that it gives completely
independentsn and sn−V . Two methods for the optimal
selection of sampling delay which give satisfactory results
in most applications are discussed below.
A. Time Delay Calculation: Autocorrelation Method

In this approach, the autocorrelation function of the signal
is used to identify the optimal value of sampling delay [10].
A commonly used rule of thumb [5] for the calculation of
sampling lag is to setV equal to the sampling lag required
for the autocorrelation function to become negative. The
problem with this approach is that it is only based on linear
statistics, and it does not account for any nonlinear dynamical
correlation.



The autocorrelation function of flight data is shown in
Figure 5. It should be noted that this function is periodic,
and only part of the first period is shown. The optimal value
of sampling delay based on this figure is betweenV = 14
andV = 15.
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Fig. 5. The autocorrelation function of flight data

B. Time Delay Calculation: Mutual Information Method

The other method for the calculation of sampling delay
is the using ofmutual informationfunction [7]. The orig-
inal concept of mutual information is based on Shannon’s
information theory, which gives a measure of the general
independence of two variables. In other words, this function
provides the information about the signal atsn+V given that
we knowsn. The sampling lag related to the first minimum
of mutual information function specifies the point where the
information aboutsn+V from knowledge ofsn is maximal,
or where the redundancy is least. In general, the sampling
lag value based on the autocorrelation function is not the
same as the value from the mutual information function. In
such cases, it is better to select an optimalV inside that
interval. Optimal values ofV can then be verified through
the visualization of the data in a two-dimensional embedding.

The mutual information ofz(t) variable from Lorenz
System is shown in Figure 6. The first minimum of this
function is aroundV = 4. This function is almost flat for
higher values ofV . The projection of the time-series data
of Lorenz System in a 2-dimensional embedding space also
verfies the optimal sampling delay ofV = 4.
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Fig. 6. The mutual information function ofz(t) in the Lorenz System

The mutual information of flight data is illustrated in
Figure 7. This function has a flat minimum aroundV = 14
to V = 17. Any value in this range should be a good choice
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Fig. 7. The mutual information function of flight data

for the sampling delay. From the visualization of data in two-
dimensional delay coordinates , the optimal value ofV =14
to 16 can be verified.

IV. RECONSTRUCTEDSTATE SPACE EMBEDDING

DIMENSION

The embedding dimension,d, is the lowest integer di-
mension which unfolds the attractor in the projected space
with no overlaps. Based on the embedding theorem [9], if
the dimension of the attractor defined by the orbits in the
original space ism, then the attractor can be unfolded in an
integer dimensional space of dimensiond whered > 2m.
The false nearest neighbors approach [8] which is one of the
most common technique for dimension calculation is used in
this paper. The delay-coordinate dimension of the flight time-
series data is calculated with this approach. The result of this
calculation is presented in Figure 8. As shown in this figure,
the value of false nearest neighbors is very close to zero
for d = 6. This value will be selected for delay-coordinate
state space reconstruction of flight data. The delay-coordinate
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Fig. 8. Calculation of embedding dimension of flight data by false nearest
neighbors approach

dimension of Lorenz System is also calculated by using the
false nearest neighbors approach. Based on these results, a
value of d = 3 can unfold the Lorenz System.This value
is equal to the actual dimension of system,m = 3. In
the following analysis, the value ofd = 3 is used as the
mimimum embedding dimension of Lorenz System.

V. LYAPUNOV EXPONENTS

In general, the trajectory of a dynamical system starting
at an arbitrary initial point can end up at a stable fixed point
(sink), a stable closed trajectory (periodic sink), a chaotic
orbit, or it may become unstable [2]. A chaotic orbit can be
defined as continuously unstable behavior of the system. At



any point of such an orbit, there are points arbitrary near, that
will move away from each other during further iterations.
This behavior is in marked contrast to that of a stable
limit cycle, where nearby points converge. To discriminate
between these phenomena (stable limit cycles and chaotic
orbits), the Lyapunov number (or Lyapunov exponent) can
give us a useful measure of the convergence or divergence
(chaotic behavior) of the system’s orbits. The Lyapunov
number is defined as the average per-step divergence rate
of nearby points along a system’s orbits, and the Lyapunov
exponent is the natural logarithm of the Lyapunov number.

In a one-dimensional map, a single Lyapunov number
gives a measure of separation rates of nearby points along
the real line. For maps on<m for m > 1, however,
nearby points may diverge in one direction and converge
in another. Therefore, in anm-dimensional map, each orbit
hasm Lyapunov numbers. These numbers measure the rate
of expansion/contraction from the current point alongm

orthogonal directions. In general, themaximal Lyapunov
number/exponent is the most important one for identifying
chaotic behavior of a system.

The Lyapunov exponent is the average of exponential
expansion/contraction rates over the whole time-series data.
This value can be measured as the average rate of the
expansion/contraction,Dl, versus time steps,∆k. In this
calculation, only the points in theε-neighborhood of each
initial point are considered [11].

A. Calculation of the Maximal Lyapunov Exponent for
Hénon Map and Lorenz System

For verification of our analysis in the computation of max-
imal Lyapunov exponent,λ1, two classical chaotic examples
are examined. As an example of a discrete system, the value
of λ1 for Hénon Map by the approach of [11] is calculated.
The plots ofDl for this map ford = 2, 3, 4, and several
values ofε is shown in Figure 9. The reported value ofλ1

in [12] is equal to 0.418. A dashed line with this slope is
shown in Figure 9. As can be seen, the slope ofDl for
different values ofd and ε is very close to the slope of the
dashed line.
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Fig. 9. Maximal Lyapunov exponent calculation of Hénon Mapby the
approach of [11]

The maximal Lyapunov Exponent ofx(t) and z(t) of
Lorenz System is also computed by using the approach of
[11]. The value ofDl is calculated ford = 3, 4, 5, 6, and

several values ofε. Due to space limitation, only the plots
for z(t) are illustrated in Figure 10. The slope ofDl for x(t)
is in accordance with the reported value in the literature,
λ1=1.5, [12]. The dashed line in plots of Figure 10 has a
slope equal toλ1 = 1.14. The fluctuation ofDl in these
plots are related to the values ofd > 3 and small values of
ε.
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Fig. 10. Maximal Lyapunov exponent calculation ofz(t) in the Lorenz
System by the approach of [11]

B. Calculation of the Maximal Lyapunov Exponent for Flight
Data

The flight data set is also analyzed by using the method
explained in [11]. The sampling delay ofV = 14, and the
minimum dimension ofd = 6 are selected. The value of
Dl(∆k) is calculated for different values ofd andε.

In the approach followed from [11], the value ofDl(∆k)
is calculated for neighborhood sizes ofε = 6 andε = 8, and
five different dimensionsd = 6, 7, · · · , 10, resulting in 10
cases. All the plots are presented in Figure 11.

In this figure, we note that a similar behavior is obtained
in each case. The initial strong fluctuation ofDl are due
to the presence of quasiperiodicity in the dynamical system.
Underlying these fluctuations, a distinct linear increase is
apparent, as shown by the dashed line. The slope of this line
gives the estimated value of the maximal Lyapunov exponent.
The average calculated value of maximal Lyapunov exponent
from Figure 11 isλ1 = 5.7 ∗ 10−3 1/time step orλ1 = 5.84
1/second. It should be noted that in real-life time series,
the number of data points and sampling time can also have
some effects on the computed Lyapunov exponent. For the
consideration of this case, a new data set by removing
every other point of the original data is created. By using
the same approaches, the new optimal sampling delay,V ,
and embedding dimension,d, are estimated. The plots for
the new data set for four different values of dimension,
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Fig. 11. Maximal Lyapunov exponent calculation for the flight data by the
method of [11]

d = 6, 7, · · · , 10 are presented in Figure 12. The dashed
line has the slope ofλ1 = 9.6E − 3 1/time step or 4.92
1/second. From this figure, it can be concluded that the
sampling time can have some small effects on the calculated
value ofλ1.
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Fig. 12. Maximal Lyapunov exponent computation for half of the flight
data

VI. CONCLUSION

A complete analysis of a helicopter flight data has been
performed in order to investigate the possibility of chaotic
behavior. The motivation of this study is to find the vibra-
tional characteristics of a helicopter during flight, and to
determine the best way to reduce these vibrations. Two sets
of flight data related to the acceleration of helicopter for
different airspeeds were considered. The data were sampled
at fs=1024 Hz at the nominal rotor speed offn = 3.57 Hz,
when the active vibration control of helicopter is switched
off.

As a first step, the time-series data was inspected in the fre-
quency domain. The blade passing frequency of5fn=17.85
Hz has the highest amplitude in the power spectrum of
the data; however, significant power over a broad range of
frequencies is also present. The general sources of broad
band frequency content can be random noise or chaos. For
this reason, the presence of chaos in the time-series data may
be suspected.

One of the major characteristics of chaotic systems is their
sensitive dependence of their trajectory to the initial condi-
tions. Two trajectories with very close initial conditionscan
move apart completely. This characteristic can be quantified
by the Lyapunov exponent; in particular, chaotic systems
have a maximal Lyapunov exponent greater than zero. In
order to calculate the Lyapunov exponent, the given time-
series data were used to reconstruct a state space representa-
tion. The delay-coordinate embedding approach was used for
this purpose. The selection of sampling delay and dimension
of the embedding space were the main considerations; these
are thoroughly discussed.

The optimal sampling delay for the flight time-series
data was calculated using the autocorrelation and mutual
information functions. The final selection was verified by
inspecting the data embedded in a 2-dimensional delay-
coordinate state space. The dimension of the flight data was
computed by the false nearest neighbors approach. These
parts of the analysis are well understood and appear to have
produced significant new understanding and results.

The Lyapunov exponent of the embedded system was cal-
culated by the methods proposed in the literature and using
software supplied by the authors. The maximum Lyapunov
exponent derived from the flight data was equal toλ1 =
5.7 ∗ 10−3 1/time step orλ1 = 5.84 1/second. This value
is greater than zero, and shows the exponential divergence
of nearby points. As a result, the system appears to have a
chaotic behavior. This work is still considered speculative,
and further study, including methods of noise reduction, is
planned.
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