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Abstract —The nonlinear dynamic behavior of a helicopter In delay-coordinate reconstruction, the selection of time
is considered in this paper, using only real-time flight datdelay and dimension are the most important issues [7],
analysis. The main objective of this study is to charactef8]. By appropriate selection of time delay and embedding
ize the vibration mechanism(s), based on the analysis dimension, the time-series data can be reconstructed in
the time-series data of the dynamical system, specificalthe delay-coordinate state space. In this space, the chaoti
acceleration for two different airspeeds with a samplirtg ra behavior of the nonlinear dynamical system can be studied.
of 1024 Hz. A common method for the identification of chaos in state

We explore the possibility of the presence of chaotispace systems is to calculate the Lyapunov exponent [4].
behavior in the time-series data, using a systematic,lddtai In this paper, the time series of a helicopter flight data is
approach. Some background in the theory of chaos in noanalyzed to investigate the possibility of chaotic behavio
linear dynamical systems is discussed, and techniques forThe organization of this paper is as follows. In Section I,
the identification of chaos in time-series data are presentghe delay-coordinate state space reconstruction of tenes
Several topics including delay-coordinate embeddingrheo data is discussed. In Section Ill, the calculation of thémak
delay time and dimension calculation, and Lyapunov expdine delay for delay-coordinate reconstruction is destib
nent computation for chaotic systems are described. In eaghd carried out. In Section IV, the dimension calculation of
section, time-series data sets from the helicopter argyze@l the reconstructed state space is addressed and also &kecute
and examined; in some sections classical examples suchlasSection V, the computation of Lyapunov exponent for
the Hénon Map and Lorenz System are also considered tioe-series data, and identification of chaos is considered
provide illustrative results. Finally, implications reging the  and results presented. In Section VI, the concluding resark
possibility of chaotic behavior in the dynamical system isibout the helicopter data and the presence of chaos are
discussed, and the next steps in this study are presented.discussed.

Il. STATE SPACE RECONSTRUCTION VIA

. INTRODUCTION DELAY-COORDINATE EMBEDDING

An understanding of the identification and control of In most cases, observations of a system are in the form of
chaotic systems has improved tremendously in the lastne-series data, not a state space representation. Hgweve
decade [1]-[12]. Chaotic behavior occurs in systems witthe most effective approaches for studying deterministic
nonlinear dynamics. The recognition of chaos in a complestynamical systems involve describing the system in an
dynamical system is very complicated. An important charappropriate state space. For this reason, time-series data
acteristic of a chaotic system is its sensitive dependence should be converted into state space vectors. This proeedur
initial conditions. is known asstate space reconstructipwhich is based on a

Chaos may exist in classical systems (represented by matheorem attributed to Takens [9].
ematical models) or real-life systems. Examples of classic For many physical systems, a state space flow model, is
systems include the logistic, tent and Hénon maps in th#ot available; rather, observations of the system varsaaite
realm of discrete systems, and the Lorenz and Rossler-difféaken, including measurements of one or several quantities
ential equations for continuous-time dynamical systenjs [2which depends on the current state of the system. Given
Some real-life systems in which chaos has been identified scalar signals(t), regularly sampled at time interval
are NMR laser data, human breath rate [3], among others.dfarting at some time,, the nth sample can be represented
a system shows some signs of chaotic behavior, then it mag:
be controlled with some of the methods which are proposed
in the literature [3], [4], [5]-

In most real-life systems, system behavior is charactérizevhere n,, is the measurement noise. A delay-coordinate
by time-series data available from measurement. The firgtconstruction can be formed by plotting the time series
step in the analysis of time-series data was introduced irersus a time-delayed version of it. For a 2-dimensional
Geometry from a time serieff], in which state space reconstruction, we plot the delay vecto), = (sn, sn—v),
reconstruction of time-series data was proposed for the fiwhere V' is the lag or sampling delayi.e., the difference
time. between the adjacent components of the delay vector in

sn=8to+(n—11s)+n,, n=1,2,... Q)



number of samples. For @&dimensional reconstruction, the wherea andb are equal to 1.4 and 0.3, respectively. The

delay vectory, can be presented as: Lorenz System can be formulated as:
Yn = [Sn7 Sn—V, " " Sn—(d—2)V> Snf(dfl)V]' (2) .I' = U(y - .I')
y=z(R—2)—y 4)

If the dimension of the reconstructed spadgis larger than
twice thebox counting dimensiqmn, of the attractor (or the
number ofactive degrees of freedom), the equivalence ofvhereo = 16.0, R = 45.92, andb = 4.0. The three state

the spaces is guaranteed [9]. In some applications, a sma@riables of this system are two componenets of temperature
value ofd can also be sufficient [1]. and one component of velocity in the convection problem.

. : i _ For comparison of Lorenz System and the flight time-
A. Helicopter Flight Time Series Data series data, the time evolution and power spectrum of the
The dynamical system which is considered in this papehree states of this system are shown in Figure 3 and 4,
is characterized by helicopter test flight data. Two sets gkspectively.
data are examined, each comprised of acceleration signals

z=uzy — bz,

(calibration withheld) for two different airspeeds (alsahw 40 40 80
held). The data are sampled when the active vibration cbn™®,, e |

system is switched off.

The time evolution of the first 1000 samples is shown
Figure 1. As a preliminary investigation, the power speattr. _-o —_20 20
of these data was also calculated; the results are prese
in Figure 2. As shown in this figure, the highest amplituc ~*“% 260 206 (o 300 200 % 100 200
pertains to the blade passing frequency; however, we observ
that substantial power is also present over a broad range of Fig. 3. The time evolution of the three states of Lorenz Syste
frequencies. The general sources of broad band frequency
content can be random noise or chaos; since the time-series
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plots appear to be quite clean (Figure 1), the presence ,, v(O 209
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I1l. CALCULATION OF OPTIMAL TIME DELAY

From a mathematical point of view, if an infinite amount
of infinitely accurate data is available, there is no limit on
; the choice of sampling delay, except certain multiples of
the precise period of a periodic signal. These conditions
cannot be met in real-life data, and an optimal choice
of sampling delay plays an important role in the analysis
of the reconstructed system. An optimal sampling delay
should be large enough to give rather independent values

Fig. 1. The time evolution of the first 1000 samples of flightada

Amplitude

0 005 o1 015 02 02 03 03 04 045 05 for 5. ands,_y, and not too large that it gives completely

Normalized frequency f/fs with fs=1024 .
independents,, and s,,_y. Two methods for the optimal

Fig. 2. Power spectrum of flight data selection of sampling delay which give satisfactory result
in most applications are discussed below.
B. Henon Map and Lorenz System A. Time Delay Calculation: Autocorrelation Method

For the verification of the obtained results for the flight In this approach, the autocorrelation function of the signa

data, two classical models are also addressed in this repdstUsed to identify the optimal value of sampling delay [10].
Hénon Map and Lorenz System, respectively as a discrefecommonly used rule of thumb [5] for the calculation of

and continuous chaotic systems are selected. The Henon MESTPIiNG 1ag is to sev” equal to the sampling lag required
can be presented as: for the autocorrelation function to become negative. The

) problem with this approach is that it is only based on linear
{ Tpy1 =1 —ax;, +Yn (3) statistics, and it does not account for any nonlinear dynami
Ynt1 = by, correlation.



The autocorrelation function of flight data is shown i . Mutual Information of the Flight Data

Figure 5. It should be noted that this function is periodi%7
and only part of the first period is shown. The optimal valtx ,
of sampling delay based on this figure is betwéén= 14
andV = 15.
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Fig. 7. The mutual information function of flight data
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to 16 can be verified.
Fig. 5. The autocorrelation function of flight data IV. RECONSTRUCTEDSTATE SPACE EMBEDDING
DIMENSION
B. Time Delay Calculation: Mutual Information Method The embedding dimensioni, is the lowest integer di-

The other method for the calculation of sampling delaynension which unfolds the attractor in the projected space
is the using ofmutual informationfunction [7]. The orig- Wwith no overlaps. Based on the embedding theorem [9], if
inal concept of mutual information is based on Shannonthe dimension of the attractor defined by the orbits in the
information theory, which gives a measure of the generalriginal space isn, then the attractor can be unfolded in an
independence of two variables. In other words, this fumctiointeger dimensional space of dimensidrwhered > 2m.
provides the information about the signalsat, - given that The false nearest neighbors approach [8] which is one of the
we knows,,. The sampling lag related to the first minimummost common technique for dimension calculation is used in
of mutual information function specifies the point where théhis paper. The delay-coordinate dimension of the flighetim
information abouts,, v from knowledge ofs,, is maximal, series data is calculated with this approach. The resuttisf t
or where the redundancy is least. In general, the sampliglculation is presented in Figure 8. As shown in this figure,
lag value based on the autocorrelation function is not thiée value of false nearest neighbors is very close to zero
same as the value from the mutual information function. Ifior d = 6. This value will be selected for delay-coordinate
such cases, it is better to select an optirfralinside that state space reconstruction of flight data. The delay-coateli
interval. Optimal values of/ can then be verified through
the visualization of the data in a two-dimensional embegdin

The mutual information ofz(¢) variable from Lorenz
System is shown in Figure 6. The first minimum of this
function is around/ = 4. This function is almost flat for
higher values ofi’. The projection of the time-series data
of Lorenz System in a 2-dimensional embedding space also
verfies the optimal sampling delay &f = 4. o z S EMBEDDING DiMENSION 3 i

False Nearest Neighbors for the Flight Data
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Fig. 8. Calculation of embedding dimension of flight data blgé nearest

Mutual Information of the Loren; SysT[em neighbors approach
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dimension of Lorenz System is also calculated by using the
false nearest neighbors approach. Based on these results, a
value ofd = 3 can unfold the Lorenz System.This value

is equal to the actual dimension of system, = 3. In

the following analysis, the value af = 3 is used as the

w mimimum embedding dimension of Lorenz System.
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V. LYAPUNOV EXPONENTS

Fig. 6. The mutual information function af(¢) in the Lorenz System In general, the trajectory of a dynamical system starting
at an arbitrary initial point can end up at a stable fixed point
The mutual information of flight data is illustrated in (sink), a stable closed trajectory (periodic sink), a cltaot
Figure 7. This function has a flat minimum aroulid= 14  orbit, or it may become unstable [2]. A chaotic orbit can be
to V = 17. Any value in this range should be a good choicelefined as continuously unstable behavior of the system. At



any point of such an orbit, there are points arbitrary nbat, t several values of. Due to space limitation, only the plots
will move away from each other during further iterationsfor z(¢) are illustrated in Figure 10. The slope bf for z(t)
This behavior is in marked contrast to that of a stablés in accordance with the reported value in the literature,
limit cycle, where nearby points converge. To discriminaté;=1.5, [12]. The dashed line in plots of Figure 10 has a
between these phenomena (stable limit cycles and chaosiope equal to\; = 1.14. The fluctuation ofD; in these
orbits), the Lyapunov number (or Lyapunov exponent) caplots are related to the values @éf> 3 and small values of
give us a useful measure of the convergence or divergence

(chaotic behavior) of the system’s orbits. The Lyapunov

number is defined as the average per-step divergence o d';"sx'ma' Lyapunov Exponent ofodr:tze Lorenz System
of nearby points along a system’s orbits, and the Lyapur - : et - :
exponent is the natural logarithm of the Lyapunov numbe - 2
In a one-dimensional map, a single Lyapunov numkt o ~ b
gives a measure of separation rates of nearby points al o a,
the real line. For maps o™ for m > 1, however, - , ~ .
nearby points may diverge in one direction and conver - .
in another. Therefore, in am-dimensional map, each orbi
hasm Lyapunov numbers. These numbers measure the | Ak Ak

of expansion/contraction from the current point alomg
orthogonal directions. In general, theaximal Lyapunov
number/exponent is the most important one for identifyii
chaotic behavior of a system.

The Lyapunov exponent is the average of exponen
expansion/contraction rates over the whole time-seri¢s. d
This value can be measured as the average rate of
expansion/contraction];, versus time stepsjik. In this
calculation, only the points in the-neighborhood of each 77 77
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initial point are considered [11]. Ak Ak

A. Calculation of the Maximal Lyapunov Exponent forFig. 10. Maximal Lyapunov exponent calculation oft) in the Lorenz
, System by the approach of [11]
Hénon Map and Lorenz System

For verification of our analysis in the computation of max- ) ) )
imal Lyapunov exponent;, two classical chaotic examples B. Calculation of the Maximal Lyapunov Exponent for Flight
are examined. As an example of a discrete system, the valgata
of \; for Hénon Map by the approach of [11] is calculated. The flight data set is also analyzed by using the method
The plots of D, for this map ford = 2,3,4, and several explained in [11]. The sampling delay & = 14, and the
values ofe is shown in Figure 9. The reported value ©f minimum dimension ofd = 6 are selected. The value of
in [12] is equal to 0.418. A dashed line with this slope isD;(Ak) is calculated for different values of ande.

shown in Figure 9. As can be seen, the slopeliffor In the approach followed from [11], the value B (Ak)
different values ofd ande¢ is very close to the slope of the is calculated for neighborhood sizesef 6 ande = 8, and
dashed line. five different dimensions! = 6,7,--- , 10, resulting in 10
cases. All the plots are presented in Figure 11.
o MAXIMAL LYAPUNOV EXPONENT FOR HENON MAP In this figure, we note that a similar behavior is obtained

in each case. The initial strong fluctuation b§ are due
to the presence of quasiperiodicity in the dynamical system
Underlying these fluctuations, a distinct linear increase i
apparent, as shown by the dashed line. The slope of this line
gives the estimated value of the maximal Lyapunov exponent.
The average calculated value of maximal Lyapunov exponent
from Figure 11 is\; = 5.7 x 103 1/time step or\; = 5.84
= 1/second. It should be noted that in real-life time series,
the number of data points and sampling time can also have
Fig. 9. Maximal Lyapunov exponent calculation of Henon Mapthe Some effects on the computed Lyapunov exponent. For the
approach of [11] consideration of this case, a new data set by removing
every other point of the original data is created. By using
The maximal Lyapunov Exponent of(¢t) and z(¢) of the same approaches, the new optimal sampling dé&fay,
Lorenz System is also computed by using the approach ahd embedding dimension, are estimated. The plots for
[11]. The value ofD; is calculated ford = 3,4,5,6, and the new data set for four different values of dimension,

I L I I I I I L
o 2 a 6 8 10 12 14 16
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One of the major characteristics of chaotic systems is their
sensitive dependence of their trajectory to the initialdien
tions. Two trajectories with very close initial conditionan
move apart completely. This characteristic can be quadtifie
by the Lyapunov exponent; in particular, chaotic systems
have a maximal Lyapunov exponent greater than zero. In
order to calculate the Lyapunov exponent, the given time-
series data were used to reconstruct a state space represent
tion. The delay-coordinate embedding approach was used for
this purpose. The selection of sampling delay and dimension
of the embedding space were the main considerations; these
are thoroughly discussed.

The optimal sampling delay for the flight time-series
d—6,7 - 10 are presented in Figure 12. The dashega;ta was c?lcula_\ted u_ls_ihng the| autlocqrrelation an_(;l_ r(r;ul;ual
line has the slope of; = 9.6F — 3 1l/time step or 4.92 " orma_t|0n unctions. The fina s€ ect|0n_was verfec by
1/second. From this figure, it can be concluded that thmspegtmg the data embeddgd n a 2-d|men_5|onal delay-
sampling time can have some small effects on the calculat gordmate state space. The d|men§|on of the flight data was
value of\, ¢ mputed by the false nearest neighbors approach. These

' parts of the analysis are well understood and appear to have
produced significant new understanding and results.

The Lyapunov exponent of the embedded system was cal-
culated by the methods proposed in the literature and using
software supplied by the authors. The maximum Lyapunov
exponent derived from the flight data was equali\o =
5.7+ 103 1/time step or\; = 5.84 1/second. This value
is greater than zero, and shows the exponential divergence
of nearby points. As a result, the system appears to have a
chaotic behavior. This work is still considered specukativ
and further study, including methods of noise reduction, is
planned.
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Fig. 11. Maximal Lyapunov exponent calculation for the ftiglata by the
method of [11]
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