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Abstract: In this paper we present and discuss all aspects of controlling a real-
world delay-time system application, the pulp bleaching process at Irving Paper
Ltd. The bleaching process was thoroughly studied and modelled. A delay-time
estimator was designed to tackle the problem of the long variable delay time,
which was considered the biggest challenge in this project. The model predictive
control (MPC ) strategy was chosen to control the bleaching process taking into
account its constraints, which were handled by incorporating a state of the art
optimization method, i.e., an interior point method, in the controller. The designed
MPC controller was implemented in the Irving Paper mill, in order to test and
demonstrate its performance and stability.
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1. INTRODUCTION

Pulp brightness is measured as reflectance in the
blue portion of the visible spectrum. Complete
reflectance provides a white color. Absorption of
any part of the visible spectrum by a material
will result in the perception of color by the eye.
Pulp brightness is measured against a magnesium
oxide (MgO) standard on a scale of 0-100, which
defines the ISO standard. Bleached kraft (white
printing paper), for example, has brightness values
ranging from 86 − 94 %ISO, unbleached kraft
(brown paper bags) has a brightness of 20 − 30
%ISO, and newsprint is around 55 %ISO. Pulp
darkness is due to lignin and lignin degradation
products, and the specific compounds which cause
light absorption (and therefore a colored pulp) are
termed chromophores (Dence and Reeve, 1996).
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The objective in the bleaching of mechanical pulps
is to selectively remove the color-contributing
groups while simultaneously preserving a high
pulp yield. This involves mainly the use of
bleaching agents such as hydrogen peroxide and
sodium hydrosulfite. Hydrogen peroxide is the
most widely used oxidative bleaching agent in me-
chanical pulp bleaching, particularly where high
brightness is desired.

The mechanical pulp bleaching process at Irving
Paper is mostly manually controlled, which de-
grades the quality of the produced paper due to
the variations in the pulp brightness. The objec-
tive of this research was to study the possibility
of controlling the pulp bleaching process at the
Irving Paper mill. This would improve the pulp
quality by minimizing the final pulp brightness
variability, and achieve some economical benefits
by minimizing the consumption of the bleaching
chemicals. In section 2 of this paper the bleaching
process and its dynamics are discussed. Process



modeling is thoroughly addressed in section 3. In
section 4 the process controller design is covered.
The simulation and implementation results are
demonstrated in sections 5 and 6. The research
conclusions are given in section 7.

2. PROCESS DESCRIPTION AND
DYNAMICS

The bleaching of mechanical pulp with hydro-
gen peroxide is usually carried out by pretreating
the pulp with pentasodium diethylenetriamine-
pentaacetic (DTPA) solution (an alkaline solu-
tion) to remove transitional metal ions in pulp,
then the pulp is mixed with an alkaline peroxide
bleaching solution (bleach liquor). The mixture of
pulp and liquor is then held in a bleaching tower
for several hours at temperatures that range from
60◦ to 82◦C. After exiting the tower, the pulp
pH is lowered by adding sulphur dioxide (SO2) to
prevent alkaline reversion and to decompose the
residual peroxide. Then the pulp is sent to the
paper machine or to dryers when produced as a
market pulp (Persley and Hill, 1996). The single-
stage medium-consistency peroxide bleach plant
as shown in figure 1 (Persley and Hill, 1996) is
typical.

Fig. 1. Flowsheet for single-stage peroxide bleach
plant.

The dynamic behavior of the bleaching process
is very complex and quite nonlinear, since many
variables affect the process dynamics such as
chemical dosages, pulp alkalinity (pH), pulp con-
sistency, retention time, production rate, and tem-
perature. Basically the bleaching process dynam-
ics can be divided into two parts. The first part
involves the chemical kinetics of the bleaching
reaction itself; compared with the time constants
of the pulp mixing and transport processes this
can be neglected.

The second part handles the dynamics of the
pulp transport and mixing in the continuous flow
system of the process, which mainly consists of
the chemical mixer and the bleaching tower. The
pulp stock is essentially in a state of plug flow
inside the tower. The flow system can therefore be

represented by a continuous stirred tank reactor
(CSTR) followed by a plug flow reactor (PFR).
Consequently the mathematical model of the flow
system assuming that the volume of the pulp
inside the tower is constant, is given by (Wen and
Fan, 1975):

˙Cko(t − Td(t)) =
Q(t)

VCSTR

(Cki(t) − Cko(t − Td(t)))

(1)

where Cki, Cko are the chromophores concentra-
tions at the tower inlet and outlet respectively,
Q(t) is the pulp flow, VCSTR is the volume of the
mixing part of the tower, and Td is the delay time
resulting from the pulp travel inside the plug flow
part of the tower.

Simulation studies (Qian and Tessier, 1997) on the
mathematical model given by the kinetic model
and equation 1 have shown that the bleaching
process can be modeled by first order nonlinear
dynamics plus a delay time. The peroxide dosage
may be treated as the model input, and the
other variables such as pulp consistency and initial
brightness, SO2 dosage, etc. can be considered as
measured disturbances.

3. PROCESS MODEL IDENTIFICATION

Since the bleaching process is complex and time-
varying, neither mathematical modelling nor stan-
dard system identification methods can be applied
alone. Besides, if linear time-invariant models are
used in the identification procedure, the time vari-
ability of the flow system will result in inaccurate
linear time-invariant models with unacceptably
high variance of the parameters estimated. It often
happens that a model structure with a number of
unknown parameters can be derived from physi-
cal laws in most real-world processes such as the
bleaching process at Irving Paper mill. Identifica-
tion methods can then be applied to estimate the
unknown parameters.

Analysis of data records collected from the Irving
Paper mill and modeling simulation results have
shown that the bleaching process model can be
interpreted as three separate dynamics (Ni, July
2000, Nov 2001; Li and Court, July 2000, Jan
2001, Nov 2001, April 2002):

• A pure gain K represents the linearized
bleaching reaction kinetics, since the reaction
is essentially complete by the time the pulp
reaches the brightness sensor.

• A long variable delay time Td results from
the plug flow pattern of the bleaching tower.

• A first order dynamics with a time constant
τ due to the SO2 mixing process at the outlet
of the tower.

Zenger et al (Ylinen and Zenger, 1994; Zenger,
1995) introduced the concept of a variable delay
function, which can be used to estimate the delay
time even though the volume is varying. During



the time that a hypothetical concentration pulse
stays in the vessel, the volume of material must
pass through the vessel irrespective of the flow
changes. This can be stated mathematically as:

∫ t

t−Td(t)

Qout(τ)dτ = V (t − Td(t)) (2)

where t is the time at which the material exits
the reactor, Qout is the outflow, and Td is the
transport delay. Alternatively, the delay function
can be expressed in terms of inflow Qin by substi-
tuting V̇ (t) = Qin(t) − Qout(t) in equation 2:

∫ t

t−Td(t)

Qin(τ)dτ = V (t) (3)

An algorithm for time delay estimation can be
developed by using either equation 2 or 3 as
follows:

(1) Store the inflow measurements over a time
interval which equals the maximum retention
time of the reactor, with sampling time h.

(2) Measure the volume at time t and set the
counter k = t − h.

(3) Integrate the inflow backwards from k to t.
(4) If the integration result equals the volume at

time t then stop and Td(t) = t − k.
(5) Else set k = k − h and go to step 3.

Once the delay-time sequence has been estimated
for a certain data set, a least square fitting proce-
dure is then applied to estimate the model pa-
rameters. Figure 2 illustrates the identification
of the bleaching process, where the delay-time
sequence is estimated from the pulp inflow and
pulp level data as shown in the top plots. Then the
estimated delay-time sequence along with the per-
oxide dosage (input data) and the measured pulp
brightness (output data) sequences were incorpo-
rated in a least square identification method to
estimate the other models parameters as shown in
the bottom plots. The actual brightness sequence
(noisy trace) and the modeled brightness sequence
(solid trace) are plotted in the same figure.

Simulation results have shown that the gain of the
process is in the vicinity of 7, and the time con-
stant is in the vicinity of 50 minutes. The delay-
time estimation algorithm seems to have worked
well, because the transient parts of both the es-
timated and the real brightness responses take
place at nearly the same time, as illustrated in the
bottom plots. The results are not entirely accurate
because the effects of incoming pulp brightness
and SO2 dosage were not taken into consideration.
Identification results were significantly improved
when the SO2 dosage was considered as a second
input to the bleaching process model.

4. CONTROLLER DESIGN

Model predictive control (MPC), an optimal con-
trol strategy, was chosen to control the mechani-
cal pulp bleaching process because it can handle
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Fig. 2. Delay time estimation results (top set)
and model parameter estimation results (bot-
tom).

a great variety of processes, including multivari-
able processes and delay-time systems. MPC orig-
inated in the late seventies and has developed con-
siderably since then. One may refer to many sur-
vey papers to get a better idea about the history
of the MPC control strategy such as (Morari and
Lee, 1999). Specifically, dynamic matrix control
(DMC ), see (Cutler and Ramarker, 1980), was
chosen among the MPC methods because of its
simplicity and efficiency. In fact, DMC has been
applied in many successful industrial applications
especially in the oil and chemical industries.

4.1 Dynamic matrix control

DMC is an optimal control strategy that uses a
step response model of a plant to predict the effect
of an input profile on the evolving state of the
plant. At each sampling instant, an optimal con-
trol problem is solved and its optimal plant input
profile is implemented until another measurement
becomes available. The updated plant information
is used to formulate and solve a new optimal
control problem, and the process is repeated.

The discrete-time response model of the plant is
y(t) =

∑
∞

i=1 gi∆u(t− i) where gi are the sampled
output values for the step input and ∆u(t) =
u(t) − u(t − 1) is the input increment, so the
prediction values along the horizon will be:



ŷ(t + k|t) =

∞∑
i=1

gi∆u(t + k − i) + n̂(t + k|t) (4)

Disturbances are considered to be constant n̂(t +
k|t) = n̂(t|t) = ym(t) − ŷ(t|t), where ym is
the measured output. The prediction of the out-
put sequence can be separated into two parts
(Camacho, 1999). One of them, the free response
f(t + k|t), corresponds to the evolution of the
present state of the process due to the past control
moves. The other part, the forced response, is due
to future control moves.

Now the prediction can be computed over the
prediction horizon NP , considering NU control
actions:

ŷ(t + 1|t) = g1∆u(t) + f(t + 1|t)

ŷ(t + 2|t) = g2∆u(t) + g1∆u(t + 1) + f(t + 2|t)

...

ŷ(t + NP |t) =

NP∑
i=1

gi∆u(t + NP − i) + f(t + NP |t)

hence the prediction can be expressed in terms of
the system’s dynamic matrix G, the control incre-
ments vector U , and the free response vector F as

Ŷ = GU +F , where G is made up of NU columns
of the system’s step response appropriately shifted
down in order.

The objective of a DMC controller is to drive the
future output sequence Ŷ as close to a specified
future reference trajectory W as possible in a least
square sense, with the possibility of the inclusion
of a penalty term on the input moves. The cost
function can be expressed as a function of the
future control sequence U as:

J(U) =
1

2
UT HU + bT U + c (6)

where H = 2(GT G + λI) is the hessian of J(U),
bT = 2(F − W )T G is a 1 × NU vector, c = (F −
W )T (F − W ) is a constant, and λ is a positive
constant that can be used to tune the DMC
controller to meet the required performance.

The optimal control increments can be obtained
analytically for the unconstrained case, which can
be given by U = (GT G + λI)−1GT (W − F ).
However most real-world processes are subject to
constraints, which originate from amplitude limits
in the control signal, slew rate of the actuator, and
limits on the output signal. They can be expressed
in terms of the control increments vector U as:

uminl ≤ TU + u(t − 1)l≤ umaxl (7a)

duminl ≤ U ≤ dumaxl (7b)

yminl ≤ GU + F ≤ ymaxl (7c)

where l is an NU × 1 vector whose all elements
are ones, and T is an NU × NU lower triangular
matrix whose non null entries are ones. In order to
solve the optimal control problem imposed by the
constrained DMC strategy, numerical optimiza-
tion algorithms have to be implemented.

4.2 Interior point methods

It is easy to show that the DMC optimal control
problem is a convex quadratic programming (QP)
problem, since the cost function is quadratic with
a positive definite hessian. Furthermore the con-
straints are linear inequalities which comprise a
convex set. There are several classes of algorithms
for solving the QP problem such as the barrier
function methods and the feasible direction ap-
proaches (Luenberger, 1984).

One popular scheme for solving a quadratic pro-
gram is the use of an interior point method.
Since the presentation of the new polynomial-time
algorithm by Karmarker in his landmark paper
in 1984, the new field of interior point methods
has witnessed rapid development and expansion
(Potra and Wright, 2000). Interior point meth-
ods have been chosen to solve the DMC optimal
control problem because they offer a number of
advantages over the popular active set approach
and other methods from a computational point
of view (Potra and Wright, 2000; Wright and
Nocedal, 1999): It is difficult for the active set
algorithm to exploit any structure inherent in the
QP problem without redesigning most of its com-
plex linear algebra operations. An interior point
approach, on the other hand, can exploit fully the
properties of the system arising for each problem
class. The active set approach is very efficient for
small and medium scale problems, whereas the
interior point approach is efficient for large scale
problems.

In 1989 Mehrotra described a practical imple-
mentation which is considered the most efficient
algorithm for LP problems, see (Mehrotra, 1992).
Mehrotra’s predictor-corrector algorithm builds
on the theory of all primal-dual interior point
algorithms together with other ideas from opti-
mization and numerical analysis. It also incor-
porates a number of heuristics that have been
developed during ten years of computational ex-
perience. Mehrotra’s algorithm can be extended
to convex QP problems (refer to (Wright and
Nocedal, 1999) for further mathematical details).
This has made it attractive for many applications
such as optimal control and model predictive con-
trol (Wright, 1997; Rao et al., 1997). Mehrotra’s
algorithm has been incorporated in the DMC con-
troller of the bleaching process.

5. SIMULATION RESULTS

The mechanical pulp bleaching process at Irving
Paper mill is a very complex process. For the
sake of simplicity, the bleaching process is handled
as a SISO system whose input and output are
the peroxide dosage and the final pulp brightness
respectively. Since the bleaching process has a
variable delay time, a delay-time estimator is em-
bedded in the DMC controller. A combination of a
Smith predictor and feed-forward techniques has
been embedded in the controller to compensate
for the incoming pulp brightness variations (i.e.,
disturbance), and hence improve the performance



of the controller. The objective of the simulation
is to study the nominal and robust performances
of the DMC controller.

As far as the nominal performance, when a stair
signal is applied to the reference input at different
points on the variable delay-time history, the final
brightness exactly tracks the reference brightness
signal at different delay times, as illustrated in
figure 3 (top plots). This demonstrates that the
DMC controller works well even though the delay
time is varying.

In order to study the behavior of the system in
the presence of disturbances, a disturbance in
the incoming pulp brightness was applied at the
time instant t = 2000 min as shown in figure
3 (bottom plots). When there is no feedforward
compensation included in the DMC controller,
the effect of the disturbance appears on the final
brightness response (dash-dotted line) after some
delay time and lasts for a long time (more than
500 min) before it is completely rejected. However
the disturbance is immediately rejected when the
feedforward plus smith predictor technique is in-
cluded in the DMC controller (solid line), and the
system performance is improved in comparison
with the previous case. This is obvious from the
peroxide dosage response (control signal) where it
responds to the disturbance earlier in the feedfor-
ward compensated case.
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Fig. 3. Nominal performance: tracking behavior
(top set), disturbance rejection (bottom set)

As for the robust performance, when the process
has a gain uncertainty of ∓20%, the final bright-

ness response to a step at the reference input is
markedly different from the nominal case. The
final brightness does not track the reference for
a fairly long time (an additional process delay
time) as shown in figure 4 (top plots). It finally
corrects itself, stepping up or down according to
the sign of the uncertainty, and eventually gets
back to track the reference. This implies that the
DMC controller sets the peroxide dosage for the
nominal case for some time, and then it corrects
the dosage according to the sign and size of the
gain uncertainty. The system response does not
show much difference, when the time constant of
the bleaching process is perturbed by ∓20%, as
can be seen in figure 4 (bottom plots).
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Fig. 4. Robust performance: ∓20% gain uncer-
tainty case (top two plots), ∓20% time con-
stant uncertainty case (bottom plots)

When introducing a delay-time uncertainty of
∓5% in the process, as can be observed in figure
5 (top two plots), the final brightness starts to
exhibit peaking “blips” every 500 minutes, which
only slowly decay. In order to explain those blips
let’s consider the −5% case, in which the bright-
ness response occurs earlier than expected. This
implies that the early measurement of the bright-
ness will cause an error in the estimation of the
free response in the DMC control algorithm. This
in turn causes an error in the optimal control
action in the form of a downward blip. Hence
a blip in the brightness response will arise after
some delay time that will result in another error,
and the story will be repeated. Fortunately the
blips decay after some time, which indicates that



the system is still stable. If the size of the delay-
time uncertainty is increased to ∓10%, the ampli-
tude of the oscillation in both the final brightness
response and the peroxide dosage is increased.
The system in this situation becomes unstable as
illustrated in figure 5 (bottom plots). It can be
concluded that the delay-time uncertainty must
be small in order to obtain a high performance
from the DMC controller and preserve its stability.
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Fig. 5. Robust performance: ∓5% delay-time un-
certainty case (top plots), ∓10% delay-time
uncertainty case (bottom plots)

6. IMPLEMENTATION RESULTS

The DMC controller was implemented and tested
on the bleaching process at the Irving Paper mill,
to demonstrate its performance. It was imple-
mented as an advisor, so the tests were made in
a semiautomatic way, i.e., the control program
was not allowed to write the optimal peroxide
dosage directly to the process controller; rather,
the test was done by applying a step change at
the brightness reference input and having a mill
operator change the peroxide dosage of the real
bleaching process according to the recommended
dosage of the control advisor.

A step change of 4%ISO was applied at the refer-
ence input at time instant t = 418 minutes, which
caused in a change in the final brightness response
at time instant t = 700 minutes, as shown in figure
6 (bottom plots). Both the recommended peroxide
dosage and the actual one (top plot in the bottom
set) were simulated by using a brightness model

that has the same parameters used in the control
advisor. The simulated brightness responses were
then plotted along with the measured final bright-
ness after removing the bias (bottom-most plot).
The estimated delay time from the volume and
flow data are also shown (top 3 plots).
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Fig. 6. Test results: the estimated delay time
(top 3 plots), brightness and peroxide dosage
responses (bottom plots)

Clearly the bottom plot reveals two interesting
and yet significant observations:

(1) Neither the simulated nor the measured
brightness response tracked the set point.
This is due to the inaccurate measurement of
the final brightness sensor, which resulted in
an apparent gain uncertainty in the bleach-
ing process. However, the DMC controller
increased the peroxide dosage at t = 770
minutes to compensate for the gain uncer-
tainty. As a result, the simulated brightness
response was changed at time instant t =
1090 minutes to attempt to track the set
point. This indicates that the DMC controller
can handle gain uncertainty, as the robust
performance simulation has shown; however,
the operator did not allow the real peroxide
dosage to follow the recommended peroxide
dosage, for economic considerations.

(2) It is interesting to observe that the change in
the real brightness response occurred earlier
than it was supposed to. In other words, it
should have occurred at the same time as the
simulated brightness response. This implies



that there was delay-time uncertainty during
the test. The effect of the uncertainty is also
clear in the recommended peroxide dosage
where a downward blip took place at the
same time of the uncertainty. This result is
identical to what was observed in the robust
performance simulations. The reason for the
delay-time uncertainty is because the pulp
level inside the bleaching tower was decreas-
ing during the test, which caused the bright-
ness change to happen earlier than antici-
pated. This, in turn, raises questions about
the performance of the delay-time estimator
for use in real time control.

7. CONCLUSIONS

Control of the pulp bleaching process at the Irving
Paper mill is a significant application, demon-
strating the challenges and difficulties of dealing
with a real-world delay-time process. The bleach-
ing process was thoroughly studied and modeled
as first order dynamics plus a variable delay time.
A delay-time estimator was designed to tackle
the problem of the long variable delay time. The
estimator proved to be reliable for offline identifi-
cation purposes and quite acceptable for real time
control purposes under certain conditions.

A model predictive control (MPC) strategy was
chosen to control the bleaching process taking
into account its constraints, which were handled
by incorporating a state-of-the-art of optimiza-
tion method, i.e., an interior point method, in
the controller. The designed MPC controller was
implemented in the real-world bleaching process
at the Irving Paper mill, in order to test and
demonstrate its performance and stability. Imple-
mentation and simulation results were in excellent
agreement, and showed that the MPC controller
can be successfully applied to processes that have
delay-time uncertainty less than ∓7%.

Several strategies could be implemented to im-
prove the performance of the DMC controller dur-
ing periods of considerable delay-time uncertainty
(i.e., when the pulp level in the bleaching tower
is rapidly varying). One scenario would be to
schedule the pulp outflow in the future, so that the
prediction of the pulp outflow would be practically
realizable. In terms of operational flexibility, this
may not be desirable. Alternatively, a state event
handler could be incorporated in the controller,
so if the pulp flow is steady then the handler
would switch the DMC controller on, otherwise,
the process would be controlled manually. Finally,
a new delay-time estimator, which integrates the
pulp outflow forward in time and thereby can
anticipate the time of response to a set point
change could be incorporated in the controller, to
eliminate the “blips” observed in figure 5.
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