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ABSTRACT:

A brief overview of modeling and simulation (m &s) technology is presented, describing the development of
m &s in a variety of industrial contexts, such as aerospace, manufacturing, and process industries. Typically
this occurs in phases: introduction of m &s, shaping m &s to meet an industry’s needs, and maturation. In
industry after industry m &s has become increasingly sophisticated, increasingly utilized, and increasingly
important – to the point that in industries where m& s is mature it is one of the keys to product design,
development, improvement, and, in the end, increased competitive position and profit margin.

The technical side of m& s is also discussed, in more detail. Important points include the selection of mod-
eling and simulation methods for various application areas, and the state-of-the-art in simulating dynamic
systems, with a particular focus on mechatronic systems. Emphasis is placed on rigorous techniques and
selecting the most appropriate method for a given problem. The final goal is to aid in making m&s an
effective tool for achieving the benefits mentioned above for mechatronic systems.
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1. Introduction

Computer-based modeling and simulation (m& s) has been under steady development for about 50 years
now. In one form or another, this methodology has become ever more important in an ever broadening arena
of applications. Here we overview a part of this wide field, the modeling and simulation of dynamical systems,
specifically, systems that can be appropriately modeled by ordinary differential equations (odes), partial
differential equations (pdes), and differential algebraic equations (daes). We will not deal with continuous-
time systems interfaced with discrete-time algorithms (dtas), as dtas can be faithfully emulated in a digital
simulation (including effects due to word length, execution time etc.) in a relatively straightforward manner.
Some aspects of the technical discussion of modeling are, of necessity, quite sketchy; the more comprehensive
presentation of simulation methods focusses primarily on ode systems.

Significant utilization of dynamic m& s has started at different times and progressed at different rates in
various application areas. As a generalization, the early years of m& s were focussed primarily on aerospace
and military applications – i.e., high-tech and expensive technological systems, where the engineering analysis
and design effort was substantial and the m& s effort was essential and could be afforded. Then m& s spread
to smaller high-tech and civilian arenas – robotics and transportation systems coming immediately to mind.
At the present, it is quite safe to state that m& s, in one form or another, is applied to almost every area of
human endeavor, from agriculture to biology to economics to manufacturing . . . to social systems to zoology
– although the approaches, the degree of maturity and the pervasiveness varies greatly from area to area.
Regarding affordability, in many applications today, most engineers feel that they cannot afford not to
perform m&s.

A scan of contemporary literature in the field reveals that the motivation and goals of m &s are essentially
simple and universal: m&s is utilized to understand the behavior and to improve the behavior of dynamic
systems. However, the specific focus and approach differs significantly from application to application. This
is due to (1) the different types of models required for studying different types of systems, and (2) the
different types of investigations that are undertaken. Therefore, in virtually every area, m &s has been
refined, extended and customized to meet the specific needs of that discipline. By now, these contributions
make up a corpus of techniques and tools/algorithms that is truly vast.



Finally, there are numerous driving forces for the rapidly increasing necessity and popularity of m& s. Five
general, dominant factors are:

• the increasing complexity of advanced technological systems;

• the continuing need to achieve better process or product performance;

• the growing need for competitive advantage, e.g., efficiency, economy;

• the phenomenal increase in available computer power and decrease in cost; and

• the coupling of m&s with other powerful computer-based methods, e.g., optimization.

These all provide strong motivation for m &s of mechatronic systems.

For a graphic and well-known illustration of these trends, we have only to look at the current standard
practices in the automotive industry: The performance (not only power and handling, but emission control,
safety, comfort, etc.) has increased greatly in the last 25 years, the complexity of the entire package
(engine/powertrain/chassis/features) has increased at least 10-fold in that same time-frame (if you still do
all your own car maintenance, please raise your hand), and the fuel economy vs performance ratio has (by
mandate) also increased significantly. This evolution led to a hundred-fold increase in m&s, including use
in conjunction with large-scale optimization.

For mechatronic systems the modern digital camera provides another well-known example. Over the last 50
years changes have been dramatic – my first camera had a fixed-focal integral lens and did not even have
a built-in light meter. Now we expect (or hope for) a 10x optical wide-angle zoom lens; a “smart portrait
system”, which automatically detects the subjects face, takes a picture when they smile and warns you if
they blinked, plus red-eye fix and face priority automatic exposure; an image stabilization system for both
camera shake and moving subjects, and more . . . the huge number of electro-mechanical components in a
modern digital camera (all super miniaturized) is staggering.

2. Modeling Overview

Modeling is not the primary focus of this presentation, so what follows is, of necessity, merely an informal
review of basic ideas. This will provide the context for the discussion of simulation methods later. First,
some terminology:

1. “Hard” modeling – using scientific principles (Newton’s law, Kirchhov’s laws, laws of thermodynamics,
reaction kinetics, etc.) to derive an analytical model. The feasibility of doing so varies a great deal from
one discipline to another. This procedure may be said to be “easy” for electro-mechanical systems (e.g.,
robotics) and “very difficult or impossible” in some biological application areas. In fact, these lines
are not entirely clear, since some biological phenomena can be modeled readily from first principles,
and some effects in electro-mechanical systems cannot (friction being a notorious example). Of course,
someone who has spent a year or more developing and validating a realistic, detailed model of a robot
might disagree with the characterization “easy”, but by that is meant only that the physical principles
and approach are well established.

2. “Soft” modeling – using formal or informal fitting techniques plus intuition to match a mathematical
model’s behavior to empirical data/observations. The Lotka-Volterra competition equations [1] for
population dynamics are a well-known “classical” example of this process.

3. Model identification – A large number of methods and software packages exist for model identification,
informally described as determining model structure (e.g., order) and parameters based on time-series
data of an object’s or process’ input/output behavior. These include frequency response (nonpara-
metric) modeling, regression, least squares techniques, maximum likelihood, instrumental variables –
for a comprehensive coverage, see Ljung [2].

Developing a system model may well involve a combination of the above approaches. “Hard modeling”
produces a so-called “white box” model, and a model based solely on determining the parameters of a
model of assumed (nonphysical) structure is called a “black box” model. Obviously, a combination of hard
and soft modeling or model identification produces a “grey box” model; this is done quite commonly.

The modeling process outlined above produces a set of odes, daes or pdes that characterize the continuous-
time part of the system (process) plus perhaps dtas describing the behavior of digital components interacting
with the process. Since dtas can be faithfully emulated in a digital simulation (including effects due to word



length, execution time etc.) in a relatively straightforward manner we only focus on handling continuous-
time systems or the continuous-time part(s) of systems. After a few general comments regarding daes and
pdes, we further restrict our attention to odes.

First, we distinguish between odes and daes as follows: A generic form of a set of daes and output equations
may be expressed as: 0 = Fc(xc, ẋc, uc, t) (1)

yc(t) = Hc(xc, ẋc, uc, t) (2)

where xc is the state vector, yc is the output vector, uc is the input signal (continuous-time), and t is time; in

general uc is a vector. We observe that the Jacobian Fẋc

∆
= ∂Fc/∂ẋc is usually identically singular; otherwise

the system in Eqs. (1,2) can be treated as an ode set [3].

The form in Eqs. (1,2) is called a fully implicit dae [3]; without imposing additional conditions or constraints,
it generally cannot be solved by any existing numerical code. In fact, determining if such a model is solvable
[3, 4] and arriving at consistent initial conditions [3, 5] is a complicated matter. To achieve a practical
definition of the class of continuous-time models to be treated, we need to specialize the form in Eqs. (1,2)
in some manner:

• Most simply, we may replace the dae form in Eqs. (1,2) with the following ode set:

ẋc(t) = fc(xc, uc, t) (3)

yc(t) = hc(xc, uc, t) (4)

Such models have been the focus of most commercial modeling and simulation environments in the
last five decades [6, 7, 8, 9].

• Next most simply, we may replace the form in Eqs. (1,2) with the following constrained ode set:

ẋc(t) = fc(xc, zc, uc, t) (5)

0 = gc(xc, zc, uc, t) (6)

yc(t) = hc(xc, zc, uc, t) (7)

where constraint variables zc have been added along with constraint equations Eqs. (6). Models of
this form are called semi-explicit daes. It has been shown that ode solvers can be used for simulating
this simplest class of daes [10, 11]

It is important to note that the choice of continuous-time model form is not hard-and-fast; rather, it is
a matter of judgment about what is required to attain suitable “realism”. Very basic decisions regarding
realism include not only the model type, but also what order of model is needed (how many state variables)
and what nonlinearities need to be included. Such decisions may also effect solvability; for example, it is
usually not a good practice to develop an ode model that includes both very fast and very slow dynamics
(called a “stiff” model [12]), since they are hard to simulate, with some solvers taking a lot of computer
time, other solvers failing completely.

One way to avoid a stiff model is to convert the “very fast dynamics” into algebraic constraints, thereby
converting stiff equations (3,4) into daes Eqs. (5,6,7). In some cases this may be trivial (e.g., neglecting the
fast dynamics associated with a servomotor’s inductive lag is simply done by setting the inductance to 0 and
eliminating the corresponding current as a state variable) or easy – for example, if the states are separable
into fast and slow states, xfast , xslow then:

x = [ xfast xslow ]T

ẋfast = ffast(xfast, xslow, t) (8)

ẋslow = fslow(xfast, xslow , t)

yields the semi-explicit dae set
ẋslow = fslow(xfast, xslow , t)

0 = ffast(xfast, xslow, t) (9)

Where such a direct state decomposition is not feasible, the conversion process is not as simple but still
worthwhile and done routinely in some applications, such as modeling aircraft engines. Some stiff system
integration algorithms perform such a decomposition automatically [12].



Another problem that gives rise to daes or that requires a clever work-around is the existence of “algebraic
loops”. A simple example of this problem – and a common source of difficulty – is the standard control
system where the open loop transfer function is not strictly proper (i.e., the numerator order is the same as
the denominator order). Consider the open-loop transfer function G(s) = (s + 1)/(s + 10) with input u and
output y in a unity feedback system with command input r; a model for the closed-loop system is:

ẋ = −10x + u

y = −9x + u (10)

u = r − y

Evidently there is a circularity in these equations, as one must know u to evaluate y and vice versa. In
many environments (e.g., matlab, Simnon) you are not allowed to program an ode model with algebraic
loops; however, Eq. 10 may be treated as a dae, or the work-around is to include some additional strictly
proper dynamics in the loop, such as 100/(s + 100). This could represent actuator or sensor dynamics, for
example.

The fundamental distinction between pdes and odes is that the former represent variation over both time
and space (in one, two or three dimensions) rather than time alone – hence the need for partial derivatives,
∂/∂t as well as ∂/∂x and perhaps ∂/∂y and ∂/∂z. An alternative nomenclature is distributed-parameter

model for a set of pdes and lumped-parameter model for a set of odes – in other words, the physical
phenomena take place over a spatial distribution in a pde but are “lumped” into single points in space in
an ode.

Digital simulation of a pde set is itself a vast discipline, far beyond the scope of this presentation. Over
the past 50 years very powerful techniques and algorithms have been developed for their solution, finite
element methods and software being the best known and most utilized [13]. Here we merely observe that,
as in the case of contrasting odes and daes, the decision to model using pdes is again not firm. Instead,
the requirement for realism for the problem being studied is the basis for selecting the modeling approach.
For example, if one is modeling a mechanical drive system containing a flexible shaft, one may assume
that the shaft is so rigid that flexibility may be ignored, or one may represent the flexibility using one
lumped-parameter spring, or several such springs, or one may use a pde representation. Considering the
n lumped-parameter spring model, n = 0, 1, 2, . . . , the n = 0 option corresponds to a rigid shaft, n =
1 accounts for the first resonant peak in a lightly damped assembly, etc. The basis for choosing n is the
required bandwidth (or fast transient response) needed in the studies to be performed using the model.
For ultimate fidelity one would have to choose n quite large – or use a pde representation. This is often
unnecessary in many applications, however.

3. Simulation Overview

There are in fact two main considerations regarding the appropriate approach to be taken in simulating
a dynamic system on a digital computer: the first is what language to employ in representing the model,
and the second is what algorithm(s) to use to solve it. By “solve”, in the context of odes, we informally
mean the following: given an initial condition, x0, t0 and an input signal (or vector of signals), u(t) defined
for [t0 , tf ] where tf is the desired solution final time, and generate the corresponding solution, which we
denote x(t; x0, t0, u(τ ∈ [t0 , tf ])) for t ∈ [t0 , tf ]. For daes and pdes the term solve has a directly analogous
meaning; hereafter, we will deal only with odes.

3.1. Simulation Languages

Most users take advantage of an off-the-shelf modeling and simulation environment, in which case the
language is given. Well-known ground-breaking languages for modeling odes include the SCi Continuous
System Simulation Language (cssl [14]), the Advanced Continuous Simulation Language (acsl [6]) and
Simnon [7]. In the 1980s and 1990s the number of languages and environments proliferated, including
extensions along traditional lines, e.g., matlab-based software such as matrixx[15] and more innovative
approaches, including object-oriented languages such as omola [16] and dymola [17]. In this same period
several competing graphical modeling systems were developed and marketed, most notably MathWorks’
SimuLink [8] and Integrated Systems’ SystemBuild [9], where one assembles the model using interconnected
blocks, picked, placed and connected graphically. Still more recently, at least in many disciplines, Math-
Works’ products have become dominant, with matlab serving as a strong formulaic language (for which



one writes the ode set as a function in an m-file and uses one of the numerical integrators such as ode45),
and SimuLink. The choice of a formulaic or a graphical modeling language is largely a matter of personal
preference, although many feel that writing the odes directly permits more control and assurance of the
outcome.

3.2. Simulation Algorithms

Turning to the question of algorithms, which in terms of quality simulation is the most important question,
one must consider the type of system being studied. To make the issues clear, we continue to focus entirely
on the simulation of odes. Several important categories should be noted:

1. Continuous system models, Mc – ideally, the nonlinearities and the input signals in fc (Eq. 3) should
be continuous and differentiable so that the solutions x(t; x0, u(τ ∈ [t0 , t])) can be fit accurately with
high-order polynomials.

2. System models with discontinuities, Md – either the nonlinearities or the input signals (or both) may
make instantaneous changes in value (examples: a signum function or “ideal relay” nonlinearity, a
square-wave input).

3. System models with multi-valued nonlinearities, Mmv – the nonlinearities may include effects such as
hysteresis, so, for example, the value of a nonlinearity may depend not only on the current value of its
input(s) but “where it’s been recently”.

There are several major families of integration algorithms, and their strengths and limitations make them
more or less suitable for the categories of system models defined above.

1. Continuous system models – formerly, predictor / corrector methods [18] were considered to be the best

choice for systems in Mc. They were derived to provide the best fit of an nth-order polynomial to a
number of past solution points, as well as to achieve desired stability properties (stability in the sense
of integration errors not growing as more integration steps are taken). For an mth order algorithm the
general idea is: given xk−m, . . . xk−1, xk and corresponding past derivatives, we first predict to obtain
xp,k+1, then calculate ẋp,k+1, and finally determine the corrected point xc,k+1.

2. Discontinuous system models – for models in Md the best choices are Runge-Kutta methods. These
do not use past points and polynomial fitting, rather they “explore” the derivative vector field taking
several fractional and whole steps from tk to tk+1, then they combine the resulting derivatives to

generate the final result. For example, a standard 4th-order Runge-Kutta algorithm starts with xk

and ẋk and then executes three explorations (two with half steps, one with a full step) and then
combines the resulting derivatives to obtain the final result [18].

Note that error estimates and step-size adjustment is available for both modern predictor / corrector
methods as well as Runge-Kutta methods.

3. System models with multi-valued nonlinearities – for models in Mmv effects such as hysteresis degrade
the performance of classical Runge-Kutta methods. The problem is that the output of a hysteretic
nonlinearity is unknown unless you know its input’s past history. For example, in a relay with hystere-
sis, Fig. , if the input x enters the region −δ < x < +δ from the right then the output φ(x) = F , while
if it enters from left then φ(x) = −F . We have introduced the concepts of “state-event handling”,
“switching surfaces” and “modes” to address this problem.

4. State-event Handling

A state event is defined as an instantaneous change in the model when an event happens. We see in Fig.
that the nonlinearity φ(x) switches from +F to −F when the input x passes from x = −δ + ǫ to x = −δ− ǫ.
As shown in Fig. , there are in essence two models, one with φ(x) = +F and the other with φ(x) = −F .
We switch from the model in which φ(x) = +F to the alternative model φ(x) = −F when the switching
function S = x + δ goes through zero. In our approach [19, 20] our extended integrator supports this by (1)
iterating to find the exact value of x for which S = 0, (2) changing the mode appropriately (e.g., from +1
to −1 for the state event under discussion).

Clearly state-event handling requires a more complex model structure – we must provide the model with
the input mode, m, and define the outputs S and x+ = r(x, t, m), i.e., the state reset if it is required, as it
would be if two gears switch from disengaged to engaged and total angular momentum must be preserved.
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Figure 1: Illustration of switching and modes

This extended schema allows our simulation algorithms to handle state events rigorously. The corresponding
software is based on combining a standard numerical integrator such as matlabs ode45 with the matlab

zero-finding algorithm fzero (with permission). The routines, along with numerous examples, are available
on my web site http://www.ece.unb.ca/jtaylor/ under Simulation Software.

Example Application

The extensions to matlab outlined above were implemented and tested using a number of simple switching
systems [19, 20]. In addition, we demonstrated the modeling and simulation of a much more realistic (and
difficult) application, control of a nonlinear model of an electro-mechanical testbed [21, 20]; the model was
composed of two subsystems: a drive subsystem (a DC motor with coulomb friction, a gear train with
backlash, and an elastic shaft) and a wheel/barrel subsystem (including an inertial wheel, also with coulomb
friction, and a flexible gun barrel). Here, in the interest of brevity and clarity, we will focus on simpler
continuous-time dynamics, a model for a missile roll-control system due to Gibson [23].

The model depicted in Fig. 3 assumes a pair of reaction jets is mounted on the missile, one to produce torque
about the roll axis in the clockwise sense and one in the counterclockwise sense. The force exerted by each jet
is F = 100 lb and the moment arms are r = 2 ft. The moment of inertia about the roll axis is 3.45 lb-ft/sec2.
Let the control jets and associated servo actuator have a hysteresis h = 5 lb and two lags corresponding
to time constants of 0.01 sec and 0.05 sec. To control the roll motion, there is roll and roll-rate feedback,
with gains of 420 lb/radian and 42 lb/(radian/sec) respectively. In the original formulation, the controller
was analog; here however we have modeled it as a digital algorithm wherein the rate signal is generated by
numerical differentiation; the sampling time is fast, to emulate the analog control with reasonable fidelity.

The hysteretic relay action was modeled rigorously using modes. The relay output corresponds to F = 100 m
where m takes on values of ±1, and the switching function is

S(e, m) =

{

e + h , m = 1 ;
e − h , m = −1

(11)
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where e is the relay input (output of the hydraulic servo amplifier, Fig. 3).

Analog simulation and describing function analysis predict that this system should exhibit limit cycles [23].
Simulation results for the digital controller are depicted in Fig. 4. According to Gibson, the amplitude and
frequency of the limit cycle oscillation should be ALC = 0.135 rad, ωLC = 22.9 rad/sec, which agrees quite
well with these hybrid simulation results (ALC = 0.130 rad, ωLC = 23.1 rad/sec).

6. Conclusion

The discussion of modeling, simulation (languages and algorithms) and state-event handling presented above
provides a framework for rigorous m &s of mechatronic systems, where realistic models are inherently
nonlinear, often discontinuous (due to friction effects, for example), and likely to contain multi-valued
components (such as relays). The importance of careful time- and state-event handling was particularly
emphasized. Introducing the concepts of mode and switching function plus the carefully prescribed
“reset” protocol are signicant contributions toward making the modeling and simulation of switching in
mechatronic systems more systematic and rigorous. These features permit the study of systems that are
difficult for the standard matlab integrators such as ode45, which usually consume a large amount of
processing when a switch occurs, because switching leads to making the step-size extremely small to provide
a solution the meets the error criterion. Machinery for the execution of embedded discrete-time components
further increased the level of generality available for modeling and simulation hybrid systems - but that
software is not robust enough to distribute. The key factor in these developments is the ability to guarantee
the correct timing of state- and time-events, so that questions such as “does the discrete-time component
execute just before or after the relay switches” can be answered with high reliability.
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