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Abstract

An important aspect of mathematical modeling for controller design or system

performance evaluation is obtaining an appropriate model order that meets the

needs of the problem at hand. In modeling systems with distributed and discrete

mechanical components, a model builder needs to decide the number of compliant

elements to use to represent each distributed component — a potentially time-

consuming and error-prone process. Nonlinear component behavior, such as dry

friction and backlash, is present in most mechanical systems and further complicates

the modeling process.

An algorithm was developed previously to coordinate the synthesis of the minimum-

order linear system model that accurately characterizes the frequency response of

the system over a frequency range of interest 〈0, ωreq〉. This is accomplished by

iteratively determining which component refinement causes the smallest increase in

model spectral radius when a more complicated component submodel is used in the

system model. A more complicated submodel of this component is incorporated in

the system model, and the iterative process continues until any further increase in

model order results in poles beyond ωreq.

In the current research, this algorithm has been extended to synthesize models

of nonlinear systems. The extended algorithm follows a procedure similar to the

original algorithm, but uses describing-function theory to develop an amplitude-

dependent quasilinear representation of the nonlinear system model. The extended

algorithm synthesizes models that are also of minimum order. Algorithm operation

is demonstrated using a nonlinear modeling example. Extending the original model-

ing algorithm to synthesize minimum-order models of nonlinear systems represents

a significant extension of its utility, as a much broader class of modeling problems

can be tackled.
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1 INTRODUCTION

1.1 Scope

When developing a mathematical model of some physical device during the design pro-
cess, modelers, both human and automated, face a bewildering number and variety of
decisions. First and foremost, a modeler needs to decide the type of modeling formalism
to use, e.g., a continuum approach, the finite element method, or a discrete (lumped)
approach. Within a given formalism, a modeler faces additional decisions regarding the
appropriate model order, the effects to include in the model, and how to treat the inherent
nonlinearities involved in the physical process.

A great simplification results if the modeler represents a physical device in terms of
a continuous, state-determined model, implicitly assuming that the lumped-parameter
representation adequately describes the physical system under study. This representation
(also called a “state-space” model) allows the system to be described with a finite (often
low) number of state variables. The n state variables of such a representation are governed
by a set of n ordinary-differential equations. Even with this simplification, however, a
modeler still needs to decide on the appropriate order for the model, decide what effects
to include in the model, and decide how to model these effects.

While a general technique for identifying the effects to include in a model and their
mathematical representation is not available, a model-order deduction algorithm (MODA)
for selecting optimal model order does exist. MODA, described in Wilson and Stein
[1992], parses a set of components, each of which has one or more submodels associated
with it, and coordinates the synthesis of the minimum-order lumped-parameter model
that accurately predicts the frequency response of the system over a given frequency range
of interest. A limitation of MODA is its inability to be applied to systems with nonlinear
behavior. However, describing functions (DFs) provide a means to quasilinearize a model,
and MODA can be applied to these linearized models. The combination of DFs and
MODA to synthesize nonlinear models has produced a new algorithm, called Model-
Order-Deduction Algorithm for Nonlinear Systems (MODANS), which is the main topic
of this paper.

1.2 Background Overview

The algorithm described in this paper is intended for use in an automated modeling
environment. One important aspect of automated modeling is the determination of the
optimal model order for a state-determined system. This is a superset of the general
problem of parameter lumping; hence, some of the approaches in this area will be de-
scribed. System nonlinearities are accommodated via the use of describing functions to
develop quasilinear models, and so a discussion of this technique is also presented.

Automated modeling, defined here as the development of algorithms and software to
expedite one or more aspects of the modeling process, has begun to generate considerable
interest within the mechanical engineering community [Stein, 1991; Falkenhainer and
Stein, 1992], within the artificial intelligence community [de Kleer and Williams, 1991],
and within the multidisciplinary simulation community [Granda and Zeigler, 1993]. The
research in automated modeling encompasses software development, e.g., [van Dijk and
Breedveld, 1991; Delgado, 1993; Granda, 1993; Wilson and Stein, 1993]; algorithms to
derive symbolically the state equations from a bond graph [Macfarlane, 1989]; algorithms
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to simplify models [Rinderle and Subramaniam, 1991]; and strategies to automate the
modeling process [Stein and Tseng, 1991].

Parameter lumping refers to the process by which spatially distributed phenomena
are represented with a finite (usually low) number of discrete elements. Cannon [1967]

provides a thorough discussion of the process. Dorny [1993] describes parameter lumping
and provides a procedure for modeling translational systems. Huston [1990] describes
how to represent a distributed translational shaft with a lumped ‘finite-segment model’,
and how to determine the parameter coefficients of the latter. An alternative approach
to parameter lumping is the use of finite-mode bond graphs to represent distributed
behavior. This technique, invented by Karnopp [1968], is also described in [Margolis,
1985] and [Karnopp et al., 1990].

Describing functions provide a means for representing nonlinear behavior in terms
of amplitude-dependent “quasilinear” gains. The advantage of the DF approach is that
it often enables a straightforward generalization of linear analysis and design methods
to the nonlinear case. Gelb and Vander Velde [1968] and Atherton [1975] provide an
extensive background on their development and use. One class of DF techniques deals
with sinusoidal signals; this is called the sinusoidal-input DF (SIDF) approach. Some
examples of their use for control applications are given in [Taylor and Strobel, 1985] and
[Taylor and O’Donnell, 1990]. In this paper, we demonstrate the use of SIDFs to extend
MODA to handle the nonlinear case.

1.3 Model-Order-Deduction Algorithm

A model-order-deduction algorithm has been developed by Wilson and Stein [1992].
MODA coordinates the search for the combination of component submodels that re-
sults in the minimum-order model that accurately characterizes the frequency response
of the system over a given frequency range of interest 〈0, ωreq〉. MODA finds this model
by testing the effect on the spectral radius of a model of adding a more complex compo-
nent submodel to the overall system model. Eigenvalue analysis techniques are used to
calculate the spectral radius, the assumption being that the model is linear.

MODA is limited to synthesizing models of linear systems. Most electromechanical
systems are nonlinear, so MODA is thus quite restricted in its application. As MODA
relies heavily on linear-system properties such as eigenvalue analysis and spectral radius,
it cannot be used directly to synthesize nonlinear models. However, if the nonlinear
models are linearized appropriately, MODA can be used to synthesize a quasilinear model
with the same minimum-order properties as those found in the linear case. SIDFs,
described in the next section, are used to perform this quasilinearization.

1.4 Describing Functions

The basic idea of the describing function (DF) approach for studying and modeling non-
linear system behavior is to replace each system nonlinearity with a (quasi)linear term
whose “gain” is a function of “input amplitude”, where the form of input signal is as-
sumed in advance and the amplitude-dependence of the gain is based on that assumption
plus an approximation-error criterion. In this work, the signals are assumed to be sinu-
soidal; therefore the approach is called the sinusoidal-input DF (SIDF) method. This
technique is dealt with very thoroughly in a number of texts for the case of a single non-
linearity [Atherton, 1975; Gelb and Vander Velde, 1968]; for systems with more than one
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nonlinearity in an arbitrary configuration, the most general extensions may be attributed
to [Taylor, 1975; Hannebrink et al., 1977; Taylor, 1980]. These developments have been
presented in tutorial form in [Ramnath et al., 1980].

The SIDF approach can be used for two primary purposes: limit-cycle analysis [Tay-
lor, 1975; Hannebrink et al., 1977; Ramnath et al., 1980] and characterizing the in-
put/output behavior of a nonlinear plant [Taylor, 1980; Taylor, 1983]. It is the latter
application that serves as the basis for the research presented here. The basic equa-
tions of harmonic balance that result in such an SIDF-based I/O model for a nonlinear
plant are given in [Taylor, 1983]; in this paper, we will simply repeat the key equations
necessary to define a SIDF I/O model as follows:

The nonlinear plant under consideration is characterized by the general state-variable
differential equation and output equation

ẋ = f (x,u) , (1)

y = h (x,u) (2)

where x is an n-dimensional state vector, u is an m-dimensional input vector, and y is a
p-dimensional output vector. As stated previously, we are concerned with the behavior
of the plant in the presence of sinusoidal signals, so we take u and x to have the form

u(t) = uo + Re [a exp(jωt)], (3)

x(t) ≈ xc + Re [b exp(jωt)] (4)

where uo represents the operating point or “d.c. value” of u(t), and a is a complex-valued
vector designating the sinusoidal component amplitude and phase in the standard phasor
notation. In developing SIDF models the state variables are assumed to be approximately
sinusoidal, as indicated, where b is a complex amplitude vector and xc is the state vector
center value1. Then we neglect higher harmonics, to approximate the right-hand sides
of Eqns. (1,2) as follows:

f (x,u) ≈ fc(uo,a,xc,b)

+ Re [A(uo,a,xc,b) · b exp(jωt)]

+ Re [B(uo,a,xc,b) · a exp(jωt)] (5)

h (x,u) ≈ hc(uo,a,xc,b)

+ Re [C(uo,a,xc,b) · b exp(jωt)]

+ Re [D(uo,a,xc,b) · a exp(jωt)] (6)

Minimum mean square approximation error is obtained when the real vectors fc and hc

and the matrix set {A, B, C, D} are obtained by taking the first two terms of the Fourier
expansions of the elements of f (x,u) and h (x,u) with x,u of the form indicated in
Eqns. (3,4). This approach has been discussed and illustrated in detail in [Atherton,
1975; Gelb and Vander Velde, 1968; Ramnath et al., 1980]. The DF arrays fc,hc and
{A, B, C, D} in Eqns. (5,6) provide the quasilinear representation of the nonlinear plant
in Eqns. (1,2) for a particular amplitude and frequency; the constant or d.c. portion of the
model is described by fc and hc, while the matrix set {A, B, C, D} (which conforms to the

1The center value xc is generally not the equilibrium associated with uo, as the sinusoidal signal

component gives rise to offsets due to rectification effects.
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usual linearized model notation) characterizes the plant response to the sinusoidal input
component. The two signal components (d.c., first harmonic) are coupled, as the above
notation suggests, due to the failure of superposition in nonlinear systems. Setting up
the SIDF arrays in Eqns. (5,6) in analytic form is often a simple matter: A wide variety
of SIDFs for single-input nonlinearities have been catalogued, and handling multi-input
nonlinearities has been dealt with in some detail in [Taylor, 1975; Ramnath et al., 1980].

The use of SIDFs to determine the approximate response of a nonlinear plant in
the multiple nonlinearity case is treated in a modern algebraic setting in [Taylor, 1980].
Applying the conditions of harmonic balance to the quasilinear model given in Eqns.
(5,6) leads to a set of nonlinear algebraic equations that can be solved to obtain xc,b as
determined by uo,a as follows:

fc(uo,a,xc,b) = 0, (7)

b = [jωI − A(uo,a,xc,b)]−1B(uo,a,xc,b)a (8)

These 2n nonlinear algebraic equations (n of which are complex-valued) can be solved
readily using standard computer routines; for example, MINPACK [More et al., 1980]

has proven to be an excellent package for this application. In this case, one should be
careful to ensure that A does not have eigenvalues on or very close to the imaginary axis;
otherwise limit cycles may exist in addition to the response to the sinusoidal input, in
contradiction to the assumptions underlying Eqns. (3-6).

The sinusoidal component of the plant response can then be characterized by the
input-amplitude-dependent matrix “transfer function”

G(jω;uo,a) = C(jωI − A)−1B + D (9)

where the SIDF matrices are explicitly determined by uo,a, since xc,b are eliminated
using Eqns. (7,8). To simplify notation, in cases where the operating point uo is zero,
the I/O relation will be denoted G(jω;a). The center xc can usually be taken to be zero
as well, resulting in the following simplified version of Eqn. (8):

b = [jωI − A(a,b)]−1B(a,b)a (10)

This modern algebraic method for determining the “frequency response” for a nonlinear
plant (Eqn. (9)) serves as one basis for nonlinear controller design [Taylor and Strobel,
1985; Taylor and O’Donnell, 1990]; it is also directly applicable to the extension of MODA
as detailed below.

2 DESCRIPTION OF ALGORITHM

The requirements of MODANS are identical to those of the original MODA. This section
begins with a review of these requirements, which are discussed in more detail in Wil-
son and Stein [1992]. Similarly, to coordinate model synthesis, MODANS, like MODA,
requires component submodel-synthesis algorithms (SSAs) to synthesize the individual
component submodels. These are also reviewed in this section; a more thorough discus-
sion is again available in [Wilson and Stein, 1992]. This section closes with a discussion
of the operation of MODANS.
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2.1 Algorithm Requirements

MODANS coordinates the synthesis of a lumped-parameter model of a nonlinear, dis-
tributed physical system, using as input a geometric description of the system. The
resulting model should meet the following criteria: (1) the model parameters and coef-
ficients should be directly related to the component dimensions and material constants;
(2) the sum of the individual inertias in the model should equal the total inertia of the
actual system; and (3) the model should be the minimum-order model that characterizes
all of the poles within a frequency range of interest 〈0, ωreq〉.

The first requirement ensures that the connection between the actual system and the
model is direct. In this manner, an engineer using the model during the iterative design
and analysis cycle can relate changes in the dimensions and material constants of the
actual system to (1) changes in the model parameters and coefficients and to (2) changes
in predicted system performance. The second requirement is motivated by a need to
include each component inertia in the system model, because these inertias affect the
dynamic response of the system and material strength and power requirements.

The third requirement is motivated by two common model applications: the use
of model to predict system response to wide-band excitation and the use of a model to
design a closed-loop controller. Karnopp et al. [1990] discuss the use of a model to predict
system response to a system input with known frequency content. They recommend
that a model of a component should only be accurate to two to five times the maximum
excitation frequency in the input. In the current context, accurate means that the model
contains sufficient modal information to predict how the actual system would respond to
frequencies in a range 〈0, 5 ωmax〉. In this case, the frequency of 5 ωmax can be referred
to as ωreq, the upper limit of the frequency range of interest.

Controller design also places frequency-related requirements on the model. In partic-
ular, it is well known that the model must accurately characterize the frequency response
of the compensated system beyond the important crossings of the negative-real axis, to
ensure that stability is guaranteed via the Nyquist criterion at least, and preferably that
adequate bandwidth, gain- and phase-margins are achieved. In this application, ωmax

and ωreq are thus determined by closed-loop system performance requirements and may
have to be determined iteratively as part of the design process.

In either application, a frequency range of interest must be considered as key infor-
mation in the modeling process. Thus, ωreq drives the required model spectral radius, i.e.,
the state-determined system model must include all system poles with Euclidean norm
less than or equal to ωreq. In practice, MODANS will synthesize a model whose spec-
tral radius ρmodel (also referred to as model bandwidth) is generally smaller than ωreq;
however, any increase in model order will result in a model bandwidth greater than ωreq.
Thus, the model that MODANS synthesizes is able to respond accurately to excitations
with a frequency content defined by 〈0, ωreq〉.

2.2 Submodel-Synthesis Algorithms (SSAs)

SSAs are not part of MODANS; however, they are used by the algorithm during system
model synthesis. SSAs are component-specific sets of instructions that describe how a
geometrical description of a component is to be modeled. An important feature of an
SSA is its ability to synthesize more than one component submodel, the idea being that
more complex submodels are required for more accurate models. The SSAs use a variable
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called rank to control the complexity of the submodel. As an example of a simple SSA,
consider the torsional shaft and its corresponding lumped-parameter model shown in
Figure 1.

J1
K1

Kn

Jn+1

Figure 1: Torsional Shaft and Physical Model

Referring to Figure 1, the SSA for the torsional shaft relates the dimensions and
material properties of the shaft to the individual inertias and compliances by the following
equalities:

Jshaft =
ρ × π × L × D4

32
(11)

Ji =
Jshaft

N + 1
(12)

Kshaft =
G × π × D4

32 × L
(13)

Ki = N × Kshaft (14)

N ≥ 0 (15)

where Kshaft = the torsional spring rate of the shaft
N = the rank associated with the shaft lumped-parameter model
L = the length of the shaft
D = the diameter of the shaft
G = the shear modulus of the shaft
Jshaft = the torsional inertia of the shaft
Ji = inertia coefficients in the lumped-parameter model
Ki = spring rate coefficients in the lumped-parameter model

Note that for the shaft, the lumped-parameter model rank N equals the number of
torsional springs in the lumped-parameter physical model of the shaft. SSAs for other
components are described elsewhere [Wilson and Stein, 1992].

2.3 Algorithm Operation

MODANS uses two nested loops to coordinate model synthesis: an outer incremental loop
that coordinates the increase of model order, and an inner iterative loop that determines
which component of the system configuration should be modeled with a more complicated
submodel. The iterative loop determines this component by identifying it as the weak-
dynamic-link (WDL) component of a configuration:
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The WDL component of a configuration is the component that causes the
smallest increase in ρmodel when a more complicated component submodel
is incorporated in the system model, i.e., when the component’s rank is in-
creased.

The steps in the iterative loop to determine the WDL component within an M -component
configuration are: For i = 1 to M –

1. Change rank of componenti

2. Use the component SSAs and submodel assembly routines to synthesize a system
model (linear or nonlinear)

3. Use the system model to generate a state matrix:

(a) if the system is linear: A is directly available as a constant;

(b) if model nonlinearities exist: solve Eqn. 10 for b and A(a,b) based on the
value of a.

4. Compute ρmodel using A or A(a,b)

5. If ρmodel is minimum for this iteration, componenti is the WDL component.

In Step 5 above, it’s important to note that the WDL component will change as model
complexity increases. For example, in a three-inertia-two-shaft system, shafti may be
the WDL component during the first iteration. In most cases, shaftj (j 6= i) will be the
WDL component during the second iteration.

The incremental loop is fairly straightforward:

1. Use the iterative loop to identify the WDL component

2. Increase the rank of the WDL component; calculate ρmodel

3. If ρmodel ≤ ωreq, repeat steps 1 and 2

4. If ρmodel > ωreq, decrease the rank of the most recent WDL component

Step 4 is necessary, because the first three steps may synthesize a model with ρmodel >
ωreq, whereas the goal is to synthesize a model that includes only modes at frequencies
less than or equal to ωreq.

3 USE OF ALGORITHM

Experiments were performed to test the viability of using MODANS to synthesize non-
linear state-determined system models. Three experiments were performed. The first
entailed using MODANS in a simulated automated-modeling program, i.e., the steps
that such a program (if it incorporated the algorithm) would perform in synthesizing a
model were mimicked and the models that it synthesized were recorded. The second and
third experiments studied the effect of changing the excitation on model bandwidth. In
the second experiment a large excitation amplitude at several input frequencies was used;
conditions were identical for the third experiment, except a smaller excitation amplitude
was used.
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3.1 Step-by-step Model Synthesis

MODANS was used to synthesize a model of the drive train in Figure 2, whose component
dimensions and material properties are given in the Appendix. The upper bound of the
frequency range of interest, ωreq, was set at 10 radians/second.

The gear teeth in Figure 2 have backlash and a non-zero compliance. A plot of the

GP1
F1

S1

S2

Figure 2: Drive Train with Nonlinear Behavior

translational force developed between the teeth vs. the relative deflection between the
teeth is shown in Figure 3.

δ (2x)

k

Force

Deflection

Figure 3: Force at Gear Interface vs. Deflection

To synthesize a model of the drive train, MODANS first uses its iterative algorithm
to find the first WDL. This algorithm sequentially increases the rank of each component
in the configuration, and the resulting ρmodel is calculated for each model. The results
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for the first iteration of model synthesis for the drive train Figure 2 are summarized in
Table 1.

Rank of Component 1 Rank of Component 2 Rank of Component 3 ρmodel

1 0 0 45.18
0 1 0 0.782
0 0 1 2.21

Table 1: Model bandwidths during Pass 1

In Table 1, the “010” model (i.e., the model that resulted from a rank-0 model of
the first shaft, a rank-1 model of the gear pair, and a rank-0 model of the second shaft)
has the smallest bandwidth. At this point the incremental algorithm determines that
ρmodel < ωreq, and the 010 model becomes the starting point for the second pass of
MODANS. The results from the second pass are given in Table 2.

Rank of Component 1 Rank of Component 2 Rank of Component 3 ρmodel

1 1 0 51.64
0 1 1 2.528

Table 2: Model bandwidths during Pass 2

During the second pass of the algorithm, the 011 model has the minimum bandwidth.
Note that during this iteration, the rank of the gear pair is not increased – which, ac-
cording to the algorithm, would be expected. The rank is constant, because the gear pair
is a bounded-rank component ([Wilson, 1992, p. 24] discusses this type of component),
and it has achieved maximum rank . In this case, a submodel of an order greater than
that associated with the rank-1 gear pair model is not available.

To continue with the model synthesis process, the incremental algorithm determines
that ρmodel < ωreq, and uses the 011 model is the starting point for the third pass of
MODANS. The iterative algorithm is called for each of the configuration components
whose rank can still be increased. The results from the third pass of MODANS are
presented in Table 3.

Rank of Component 1 Rank of Component 2 Rank of Component 3 ρmodel

1 1 1 51.64
0 1 2 11.26

Table 3: Model bandwidths during Pass 3

During the third pass of the algorithm, an increase in the rank of each component
results in ρmodel > ωreq. As the goal is to synthesize a model that estimates all modes up
to and including ωreq (but not beyond this frequency), the incremental algorithm would
determine that the 011 model, obtained during pass 2, is the optimal model.
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3.2 Effect of Different Excitations on Model Bandwidth

During the first pass of the algorithm, the results of which are reported in Table 1, the
inclusion of the gear-train compliance led to the model with the lowest bandwidth. To test
the sensitivity of the bandwidth of this “010” model to changes in the excitation frequency
and amplitude, two experiments were performed. In the first, the input amplitude was
set to 200 N-m, and the excitation frequency was given values of 10, 20, and 40 rad/sec.
Model bandwidth and the maximum relative displacement between the compliant gear
teeth were recorded. The resulting model bandwidths and displacements are tabulated in
Table 4, which indicates that higher input frequencies result in lower model bandwidths.
Note that the model bandwidth for the zero-backlash case (i.e., for a linear compliance

Amplitude ωin ρmodel Max Displacement
200 1 0.825 15.65
200 10 0.814 0.0503
200 20 0.782 0.0125
200 40 0.639 0.003

Table 4: Model bandwidths for 200 N-m input magnitude

between the gears) is 0.825 rad/sec.
In the second experiment, the input amplitude was set to 50 N-m, and the same

excitation frequencies were used. As before, model bandwidths and gear displacements
were recorded, and the resulting model bandwidths and displacements are tabulated
in Table 5. In Table 5 the change in input frequency from 10 rad/sec to 20 rad/sec

Amplitude ωin ρmodel Max Displacement
50 10 0.782 0.0125
50 20 0.639 0.003
50 40 0.709 0.00078

Table 5: Model bandwidths for 50 N-m input magnitude

corresponds to a decrease in the model bandwidth. Conversely, the change in input
frequency from 20 rad/sec to 40 rad/sec corresponds to an increase in model bandwidth.
This anomaly will be explained in the next section.

4 DISCUSSION

This paper presents an algorithm that coordinates the synthesis of a state-determined
system mathematical model from a high-level physical system description. This algo-
rithm, MODANS, employs two algorithmic loops. The outer, supervisory loop increases
model order until any subsequent increase in model order results in a model bandwidth
greater than the required model bandwidth. The inner, iterative loop identifies the WDL
component, i.e., the component that causes the lowest increase in model bandwidth
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when a more complicated component submodel is used in the overall system model.
MODANS is intended for use with any unidimensional system with distributed and dis-
crete components. To coordinate model synthesis, MODANS will need to be supported
by submodel-synthesis algorithms, which build submodels of the individual components,
and a collection of describing functions to represent nonlinear component behavior in the
models.

The response characteristics of linear systems, such as the placement of the eigenval-
ues and the transfer function, are independent of the input. The same cannot be said for
nonlinear systems or the quasilinearized models that MODANS synthesizes. Both the
frequency and the amplitude of the input signal affect the response characteristics of the
quasilinear model. As shown in the previous section, depending on the input signal and
the particular nonlinearities being represented in the model, response characteristics may
asymptotically approach equivalent linear model behavior (Table 4), or conversely, may
diverge from this behavior (Table 5). Both of these cases are discussed in the following
section. After that, a discussion of related research is presented, followed by a sug-
gested application for MODANS. This section closes with a discussion of recommended
extensions to MODANS.

4.1 Effect of Input Signal Amplitude on Model Bandwidth

In Section 3.2 a constant-amplitude, variable-frequency input excitation was used to
study how this frequency variation would affect model bandwidth. As excitation fre-
quency was decreased the corresponding model bandwidth approached the model band-
width for the zero-backlash (linear) case. This tendency can be attributed to the fact
that the lower input frequency results in larger excursions of the states, including the
relative displacement between the gears. This relatively large displacement (15,000 times
that of the backlash) resulted in an operating condition that was primarily in the linear
region of gear operation. Hence, the describing function representation of the compliance
between the gears resulted in a coefficient almost identical to that of the zero-backlash
gears. Conversely, as the excitation frequency was increased and state displacements
decreased, the describing function representation of the gear backlash and compliance
was that of a more compliant spring. Hence, the model bandwidth decreased as the
excitation frequency increased.

In Table 5 model bandwidths and gear displacements are reported for the case of an
input amplitude of 50 N-m and excitation frequencies of 10, 20 and 40 rad/sec. In the
change of 10 to 20 rad/sec, model bandwidth changed from 0.782 to 0.639. Based on the
logic in the previous paragraph, this trend is expected, because higher input frequency
corresponds to smaller state excursions. When the input frequency was set at 40 rad/sec,
model bandwidth increased to 0.709 rad/sec. Furthermore, the eigenvalue locations
used to calculate this bandwidth were 0.5 ± 0.5j. Such a result is counter-intuitive for
two reasons: model bandwidth was expected to decrease, and system eigenvalues were
expected to lie solely on the imaginary axis (as the system had no dissipative elements).

Closer scrutiny reveals that this anomalous behavior was caused by the fact that
the amplitude of the relative displacement between the gears was smaller than the gear
backlash (0.001 meter) for ωin = 40 rad/sec – see Table 5. Thus, in reality, at the 50
N-m / 40 rad/sec input condition the second gear would not be driven; the SIDF is set
to zero and the resulting degenerate model gave rise to spurious eigenvalues which were
not located on the imaginary axis.
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As in most engineering analysis, the onus is on the user (or the automated-modeling
software) to ensure that spurious results are not accepted with blind faith. In this case,
one may easily guard against this by including a check in the automated-modeling soft-
ware for conditions such as the input amplitude to a backlash being below the threshold
δ (Fig. 3). To cite another example, one can also check that the predicted forces (or
torques) that act on an inertia must be larger than the magnitude of the dry friction (if
it exists) that will resist its motion.

4.2 Related Research

This research addresses the problem of choosing the appropriate complexity of component
submodels which are to be included in a larger system model. Other work in this area
includes an algorithm developed by Wilson and Stein [1992], finite-mode bond graphs
[Karnopp et al., 1990], and a heuristic method to determine how many segments are
needed to model a distributed component [Dorny, 1993].

For linear systems, the functionality of MODANS is identical to the algorithm devel-
oped by Wilson and Stein [1992]. The principle difference between these algorithms is
MODANS’ added capability to synthesize minimum-order, quasilinearized models of sys-
tems whose components submodels exhibit nonlinear behavior. The hill-climbing search
strategy and the quantity of models tested, both discussed in [Wilson and Stein, 1992],
are identical for the two algorithms.

As discussed in Section 2.2, submodel-synthesis algorithms are used to obtain com-
ponent submodels. For distributed components such as the torsional (and translational)
shaft, the method of dividing the component into N + 1 inertial elements and N com-
pliant elements is known as finite-segment modeling [Huston, 1990]. With MODANS, N
(the component rank) is increased until any subsequent increase results in ρmodel > ωreq.
Finite-mode bond graphs [Karnopp et al., 1990] provide a method to obtain a component
submodel that does not involve the iterative procedure of MODANS. The technique of
Karnopp et al. involves solving a partial-differential equation with a series solution and
truncating this solution at a specific modal frequency. A bond graph of this truncated
solution is created and used to represent component dynamics in the system model. In
that modal damping can easily be added to the model, this method has an advantage
over finite-segment model. Furthermore, the model, which is obtained from an exact
solution to a partial-differential equation, is more accurate for higher modal frequen-
cies. However, finite-segment models are generally sufficient for fundamental modes of
distributed components, they are simpler — their coefficients are readily related to com-
ponent dimensions and material properties (a key advantage), and, if necessary, modal
damping can be added to the system matrix.

Dorny [1993] provides a heuristic for determining the number of lumped elements
that are needed to model a distributed component. He states that “a distributed object
must be subdivided into segments at least 10 times shorter than the wavelength of the
[a] propagating wave.” For a sinusoidal input acting on a distributed torsional shaft, the
maximum segment length can be determined by the following equation:

Lseg ≤
2π

√

G/ρ

10 × Fexcitation

(16)

where Lseg = the length of the segment
G = the shear modulus of the segment

13



ρ = the density of the segment
Fexcitation = torsional excitation frequency

If ωreq is used as the excitation frequency, Eqn. 16 can be used to determine the number
of lumped inertias needed to model a torsional shaft.

Although the finite-mode bond graphs and the heuristic discussed in the previous
paragraph both provide methods for modeling distributed components, neither provides
a criterion or methodology for accommodating nonlinear component behavior in a model.

4.3 Applications

MODANS synthesizes system models that meets specific criteria; the intermediate mod-
els obtained during this synthesis process contain useful design information. When
MODANS identifies a WDL component, this is an indication that this component causes
the next mode (generally a structural resonance) in a system model. If the modal fre-
quency caused by this component is too low, an engineer can make the appropriate
changes to this component, e.g., alter the material, a physical dimension, or even a non-
linear characteristic such as backlash, so that the modal frequency is increased. In this
manner, the intermediate models that MODANS synthesizes also become useful design
tools.

MODANS provides a means of systematically selecting the required complexity of
component submodels within a larger system model. As a by-product, the required
complexity of the system model is also determined. MODANS is intended to be used
in an automated-modeling program. With such a program, a user would be expected
to provide a system-configuration description, a desired ρmodel or other model criteria,
and a specific input amplitude and frequency. The program would then use MODANS
to build the system model.

MODANS predecessor algorithm, MODA, has already been successfully implemented
in an automated-modeling software called “Model-Building Assistant” (MBA) [Wilson
and Stein, 1993], which used linear component models to synthesize linear system models.
Much of the MBA program architecture [Wilson, 1992] can be reused with MODANS;
however, the desire to model nonlinear component behavior will require some modifica-
tions in the program. Whereas MBA simply had to calculate the spectral radius of a
constant coefficient state matrix, a program using MODANS will require the following
additional steps to synthesize a quasilinearized state matrix (for which eigenvalues can
be calculated):

1. Nonlinear component behavior will need to be represented as unknown SIDF coef-
ficients in a system state matrix.

2. The quasi-steady-state response of a set of nonlinear state equations will need to
be determined via solution of Eqn. 10.

3. This response will be used to determine the numerical values of the coefficients of
the quasilinear state matrix.

4.4 Extensions

In the modeling of actual physical systems, several situations may arise that have not been
addressed in the current research. Some of these situations are: inertial elements may be
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separated by very stiff compliances with backlash and a large number of nonlinearities
may be present in the actual system.

MODANS uses a describing function technique to approximate nonlinear behavior.
In the case of inertial elements separated by a compliance and backlash, a higher value of
the zero-backlash compliance replaces the original compliance. If the model bandwidth
caused by this linearized compliance is the lowest during a given MODANS iteration,
this compliance will be included in the model. Cases may arise, however, in which the
compliance between the inertial elements may be very low (resulting in a very high fre-
quency model bandwidth), but backlash may still be present. If this backlash is not
included in the model, an overly optimistic prediction of system behavior may result2.
The high-frequency model bandwidth may necessitate excessively small integration in-
tervals or a large number of data points. Further research is needed to determine how
to handle such cases. One possible solution is to modify MODANS so that it leaves the
compliance out of the model, but kinematically couples the inertias during contact and
uncouples them inside of the backlash.

A large number of potential nonlinearities is another problem facing modelers. Closer
attention to real-world phenomena invariably results in fewer cases of linear behavior.
Indeed, linear behavior is perhaps more of a convenient mathematical abstraction than a
precise description of real-world behavior. Yet during the modeling and analysis process,
a few key nonlinearities (or even a single one) are generally sufficient to depict the phe-
nomena. The automated identification or ranking of the most significant nonlinearities
in a system model is a topic that merits further research – it is likely, based on the results
presented here, that SIDF methods will provide the means of meeting this need.

5 CONCLUSION

The main contribution of this research is an algorithm, MODANS, that coordinates
the synthesis of mathematical models of linear and nonlinear systems. This algorithm
was developed by modifying a linear model-order-deduction algorithm. The original
algorithm relies on the linear-system property of spectral radius to determine which
poles to include in a model. While this property cannot be directly used with nonlin-
ear systems, describing function theory can be employed to quasilinearize the nonlinear
model and the idea of model spectral radius can be employed in that generalized setting.
To synthesize a minimum-order model, MODANS first synthesizes a nonlinear set of
state equations. Next, describing functions are used to obtain an amplitude-dependent,
constant-coefficient state matrix. The spectral radius is then calculated from this state
matrix, and used as a basis for determining the need to include a more complicated
component submodel in the system model.

In the Results section, MODANS was used to synthesize a model that accurately
characterizes the frequency response of the system over a given frequency range of in-
terest. We believe that MODANS can be used to coordinate the model synthesis of
any unidimensional system, linear or nonlinear, that contains distributed and discrete
components. Provided that appropriate component submodel-synthesis algorithms exist,
MODANS can be used on any set of components.

2Reduced backlash generally results in improved system behavior.
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APPENDIX : MODEL PARAMETERS FOR THE
EXAMPLE IN SECTION 3

All units in SI, e.g., inertia = kg/m2

Shaft 1

Inertia of S1: 1
Stiffness of S1: 1000
Gear Pair

Inertia of Gear 1: 1
Radius of Gear 1 / Radius of Gear 2: 0.5
Stiffness of Gear 1 / Gear 2 Interface: 500
Backlash of Gear 1 / Gear 2 Interface: 0.001
Inertia of Gear 2: 16
Shaft 2 Inertia of S2: 10
Stiffness of S2: 100
Flywheel Inertia of F1: 64

18


