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Abstract: Earlier research in the modeling and sim-
ulation of hybrid systems led to the development of
a general hybrid systems modeling language (hsml)
that has been described elsewhere. Effort is under-
way to implement this concept in software. First,
the standard matlab model framework and inte-
gration algorithms were extended to support state-
event handling in continuous-time components, in-
cluding approaches for dealing with vector-field
conflicts and changing model order and structure.
More recently, further extensions have been made
to handle embedded discrete-time components.

In this paper we describe the algorithmic implemen-
tation of the hsml ideas and language constructs for
dealing with state events and embedded discrete-
time modules in matlab. An example will be pre-
sented to show the efficacy of these extensions.
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1 INTRODUCTION

hsml, as described previously [1, 2, 12], was de-
signed to support a broad definition of a hybrid
system, which we may express informally as being
an arbitrary interconnection of components that are
arbitrary instances of continuous- and discrete-time
systems. Requirements for hsml particularly fo-
cused on rigorous characterization and execution
of “events”, both discrete- and continuous-time,
that cause discontinuous changes in system trajec-
tories and/or the model structure itself. In this re-
spect, there is much commonality between the hsml

project and recent developments by Cellier et al. in
the area of object-oriented modeling [3]; for a de-

tailed view of state events see especially [4, 5].

In conceiving and developing hsml, there was no
claim that one cannot rigorously model hybrid sys-
tems using certain other, extant languages. For ex-
ample, acsl [6] can be used to model and simulate
state events in hybrid systems with considerable
generality; however many other packages (espe-
cially commercially-supported ones) lack even the
basic provisions for state-event handling. Also, the
high-level features and strict semantics and syntax
formulated for hsml facilitate and enforce a higher
degree of rigor in hybrid systems modeling, thereby
ensuring a greater probability of model correctness.
For example, resetting the state after a state event
can be done in acsl, but not cleanly and safely.
The ideas and algorithmic requirements underlying
hsml can be translated into any modeling and sim-
ulation environments, assuming that a developer
can gain access to the necessary internal “machin-
ery”, as demonstrated in this presentation.

This paper describes our work to implement a sub-
set of hsml in a working modeling and simulation
environment, matlab [7]. It focuses on state-event
handling in continuous-time components (ctcs),
dealing with “time events” associated with the ex-
ecution of discrete-time components (dtcs), and
provides an illustrative example to demonstrate the
approach. The primary novel feature over the first
step [8, 9] is machinery for executing embedded
discrete-time algorithms.

The remaining parts are as follows: Section 2 out-
lines the hsml framework for hybrid systems model-
ing, Sections 3 and 4 overview state- and time-event
handling, respectively, Section 5 deals with the ex-
tensions needed in matlab for modeling hybrid
systems, and Section 6 describes modifications re-
quired in matlab’s numerical integration routines.



The final sections show the use of the new approach
on a simple switching hybrid system with discrete-
time “filters” and summarize the present status and
future directions of the hsml project.

2 HSML OVERVIEW

hsml is designed to be a rigorous and modu-
lar hierarchical scheme for modeling hybrid sys-
tems. At the lowest level hsml components are
“pure” continuous-time components (ctcs) and
discrete-time components (dtcs) [1]. These ele-
ments are assembled into composite components,
and then systems. Every component has an in-
terface and a body; its interface defines the en-
tities that are accessible from and to the out-
side, and the body describes the dynamic behav-
ior of the component. As described in [1, 2], the
interface section requires that the primary in-
put/output variables must be typed (‘signal’, ‘real’,
‘integer’, ‘boolean’ or ‘string’) and may be con-
strained as to range, broadly interpreted to be a
numerical range (<range> = (v min, v max)) or a
set (e.g., <range> = {"high", "medium", "low"}
for a string variable). In the body, the sections
declarations and assignments exist for specify-
ing internal variables and assigning parameter val-
ues, respectively. Beyond these general observa-
tions, a component is elaborated for the specific
component type (ctc, dtc) by adding distinctive
mandatory and optional sections; e.g., initial,
dynamics and output for a ctc.

Here we consider ctcs that may be represented as1:

ẋc = fc(xc, uc, ud,k, m, t)

yc = hc(xc, uc, ud,k, m, t) (1)

where xc is the state vector, yc is the output vector,
uc and ud,k are numeric input signals (continuous-
and discrete-time, respectively), m is comprised of
a finite alphabet of numeric or symbolic input vari-
ables that characterizes the “mode” of the model,
and t is the time; in general uc, ud,k and m are vec-
tors. There are implicit “zero-order holds” operat-
ing on the elements of ud,k and m, i.e., these inputs
remain constant between those times when they
change instantaneously. Of particular importance
to the present exposition, the mode input m is in-
cluded to provide means of controlling the model’s

1The specific class of ctc that can be modeled depends
on the simulator’s integration methods; matlab cannot han-
dle differential algebraic equations (daes), so we restrict our-
selves to ordinary differential equations and simplify the vari-
able types in comparison with [1, 2].

structure and coordinating its behavior with the nu-
merical integration process in state-event handling,
as described below.

State events are characterized by zero crossings,

S(xc, m, t) = 0 (2)

where S is a general expression involving the state,
time and perhaps the mode of the ctc. An arbi-
trary state change in the ctc can be classified as
a negative-going event (i.e., one in which S be-
comes negative), an on-constraint event (where
S remains equal to zero until another state event
occurs), or a positive-going event. Note that
this framework provides support for models that
undergo structural changes (e.g., changes in the def-
inition or number of state variables) [12]; e.g., in the
case of mechanical subsystems engaging, the num-
ber of states decreases. Finally, we include provi-
sion for instantaneous reset of the model state vari-
ables at an event, according to

x+
c = xc(t

+
e ) = r(xc(t

−

e ), m, t−e ) (3)

where r is also an arbitrary expression and te is
the event time. This feature is useful in resetting
velocities after engagement to conserve momentum,
for example.

In the present effort, a dtc is a general algorithm
which we can characterize in terms of internal vari-
ables called “discrete states” and outputs that also
change discretely (instantaneously) at each execu-
tion:

x+

d,k(tk) = fd(xd,k, ud,k, m, tk)

y+

d,k(tk) = gd(x
+

d,k, ud,k, m, tk) (4)

where xd,k is the discrete state vector, k is the in-
dex corresponding to the discrete time point tk at
which the state takes on the new value x+

d,k, ud,k is

the input vector, and y+

d,k is the output. Note that
there are implicit “sampling” operators on ud,k if
continuous-time variables are involved. The times
tk are usually – but not necessarily – uniformly
spaced (tk = t0 + k ∗ Ts where Ts is the “sampling
period”); in any case, we assume that the update
times can be anticipated. (In future extensions pro-
vision will be made for computational delay δk be-
tween the sample time and the output change; this
may be modeled with varying degrees of realism,
from a fixed delay time to an actual emulation of
the computational burden required in handling the
computations. Also, note that while the above ap-
pears in the form of a discrete-time controller or
Kalman filter algorithm, we ultimately have other
more general “logic-based” component formulations
in mind [1, 2, 12].)
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3 STATE-EVENT HANDLING

The hsml features for modeling state events are
designed to permit the accurate and efficient in-
tegration of ctcs that may exhibit discontinuous
behavior such as relays switching and mechanical
components engaging/disengaging. The difficulty
is this: If the simulation environment blindly in-
tegrates a ctc with state events, then the switch-
ing point is typically “over-shot”, i.e., the numeri-
cal integration routine steps from a point tk before
switching to tk+1 after the discontinuity, trusting
its automatic step-size-control algorithm to make
the transition by detecting a large error, decreasing
the step size until error is acceptable, and continu-
ing on to tk+2, etc. This produces an invalid point
x(tk+1) that is not on the same trajectory as x(tk).
How accurate this point is depends on the quality of
the variable step-size algorithm; an earlier example
[8] shows that matlab’s ode45 is quite good but
simulink’s rk45 is not.

Also, using an integration routine without provision
for catching and handling state events correctly pro-
duces inefficient simulations as well as inaccurate
ones. The continual process of decreasing and in-
creasing the step size leads to excessively long sim-
ulation runs. Finally, a third problem also arises in
state-event handling: the possibility that the states
might have to be reset at the event. Most simu-
lation software does not permit this, or permits it
only as a “hack”. Correct treatment of these is-
sues is illustrated in the examples in [8, 9] and in
Section 7.

The appropriate handling of state events is this:

1. The model should not be allowed to switch dur-
ing a numerical integration step.

2. The integration routine should not integrate
past the switching point.

3. State reset should only be permitted as a part
of state-event handling.

This requires coordination between the model and
simulation package, that is achieved in hsml via
flag variables S in the model (these signal the in-
tegrator that a state event has been overshot), and
the model input variable m that can be used to
control model switching. State-event handling then
proceeds as follows:

1. Integrate as usual as long as the flag variable
does not change sign. Each integration point is
treated as a “trial” point until the sign condi-

tion is checked; if no sign change has occurred,
the point becomes “accepted”.

2. When a sign change is detected, the trial point
is discarded and an iterative procedure is ini-
tiated (within the simulator) to find the step
h∗ such that the flag variable is zero (within
a small tolerance ε “on the other side”). The
model still does not switch during this proce-
dure (so no invalid points are produced).

3. The integrator produces an accepted point just
past the switching curve (Eqn. 2) and then sig-
nals the model to switch (e.g., by changing m

from 1 to – 1 or vice versa if the boundary is
to be crossed, or to 0 if the trajectory is to be
confined to the boundary for some time inter-
val).

4. The integrator then calls the model to deter-
mine if a state reset is desired, and if so exe-
cutes it.

5. Normal integration proceeds from that point
until the next state event is encountered.

This procedure is illustrated below using matlab

extensions.

4 TIME-EVENT HANDLING

The approach and conventions needed to handle
time events are much simpler than those required
for state events. After all, we are merely emulating
the execution of a computer algorithm in a digital
setting (but without real time considerations). As
we are implementing this feature, we assume that
each dtc will “notify” the higher-level system inte-
gration block (sib) about the next execution time,
t exec (te,k). This is done at the beginning of the
simulation and at every subsequent dtc execution.
The sib determines the earliest of the anticipated
time events (if there is more than one dtc), and sig-
nals the numerical integrator to stop at that time.
At that point the sib is invoked with t = te,k and
it thus executes the appropriate dtc(s), handling
priority issues as required. At each dtc execution
this process is updated and continued until the end
of the simulation run.

5 EXTENDED MODEL SCHEMA

The above outline of hsml’s approach for char-
acterizing state and time events provides a clear
roadmap for implementation in a software package.
So far, we have focused on matlab for this purpose,
since it is so readily extensible.
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Significant extensions are needed in matlab for
modeling and simulating state and time events. For
state-event handling in ctcs, we modified the in-
put/output structure of the model substantially,
as depicted in Fig. 1: The new input variable m
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(a) Standard matlab model schema

(b) Extended matlab model schema

Figure 1: matlab model input/output structures

(mode) allows the numerical integration routine to
request that the model switch according to the state
event just detected. One additional output variable
S is the flag variable (S in Eqn. 2) that signals a
state event (S will change sign or be set to 0 at
such an occurrence), and another output variable
r is included to permit state reset (Eqn. 3). Note
that S and m may be vectors, to support multiple
state event mechanisms (switching conditions).

The inclusion of embedded dtcs in hybrid system
models necessitates a further increase in complex-
ity in comparison with Fig. 1 (b). We have re-
cently adopted a modular model-building scheme
much closer to the conceptual design of hsml (and
reminiscent of simnon [10]). This scheme is por-
trayed in Fig. 2 (at end of paper). In this diagram,
observe that:

• The Numerical Integrator (ni – see [8, 9]) must
now serve as the “memory” for the aggre-
gate discrete-component states (xd) and for the
dtc’s times of next execution te, a vector hav-
ing dimension equal to the number of dtcs.
The ni has the new requirement of stopping
exactly at tn, the earliest of the elements of
te, and the “System Integrator Block” (sib)
has the responsibility of executing the correct
dtc(s) when t = tn.

• If multiple dtcs are to be executed at tn, then
the sib has the responsibility of calling them

in the correct order.
• The continuous-time dynamics can reside in

the sib if they are simple (see example); if it
is helpful to make several ctcs, then one can
do this as diagrammed; note that this necessi-
tates ctcs having inputs and outputs that are
defined at the interface, as shown.

6 EXTENDED MATLAB INTE-

GRATORS

Significant extensions must also be made in the
matlab numerical integration algorithms. There
are three features needed to permit the matlab

integration routines to deal with state and time
events:

1. the numerical integrator must coordinate with
the extended model to establish the initial val-
ues of m and te;

2. the routine must continuously test for the oc-
currence of events by:
(a) ensuring that t stops at tn for a time

event, and/or
(b) watching for zero crossings in S, iterating

exactly to the switching point and then
changing m; and

3. it must execute a state reset operation after a
state event, if it is called for by the model.

To support this functionality, the following conven-
tions are imposed: The value of m for initializa-
tion is “empty” (m = [ ]). The model must re-
turn the appropriate value of S, based on the stip-
ulated initial condition x0. From this information,
the integration routine will set m = sign(S). Dur-
ing normal integration the value of m’s elements
will be −1, 0, 1. When a state event is detected
and determined2, the corresponding element of m

is switched; then it is temporarily made complex
and the model should respond by returning the re-
set value r (Eqn. 3) or r = [ ] if no reset is to be
done. Finally, that element of m is returned to
−1, 0, 1 and numerical integration is resumed with
the indicated mode change.

7 EXAMPLE APPLICATION

The extensions to matlab outlined above were im-
plemented and tested using (among others) the fol-
lowing simple switching system:

2We determine zero crossings by embedding a modified
version of matlab’s fzero algorithm in the integrator [9].
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function [xdot,S,r,xd,t_exec] = ...

twin_ball(t,x,m,xd,t_exec)

% mode = [] at init. -> S(0), t_exec(0)

if mode == [],

for i=1:2,

if x(2*i-1) == 0, S(i) = x(2*i);

else S(i) = x(2*i-1);

end

end

[junk,t_c1] = dfilt1(t,0,0,mode);

[junk,t_c2] = dfilt2(t,0,0,mode);

t_exec = [ t_c1 ; t_c2 ];

return

end % of initialization

icall = max(abs(imag(mode)));

if icall == 0, % real => DTC, x_dot & S eval.

if t = t_exec(1),

x_d1 = xd(1); u_d1 = x(1);

[x_d1,t_c1] = dfilt1(t,x_d1,u_d1,mode);

xd(1) = x_d1; t_exec(1) = t_c1;

end % of DTC # 1 processing

if t = t_exec(2),

x_d2 = xd(2); u_d2 = x(3);

[x_d2,t_c2] = dfilt2(t,x_d2,u_d2,mode);

xd(2) = x_d2; t_exec(2) = t_c2;

end % of DTC # 2 processing

xdot(1) = x(2); xdot(2) = -mode(1);

xdot(3) = x(4); xdot(4) = -mode(2);

S(1) = x(1); S(2) = x(3);

else % complex => x or S reset

reset = x;

for i=1:2, % reset x at mode change:

if abs(imag(mode(i))) == 1,

reset(2*i-1) = 0;

reset(2*i) = 0.8*x(2*i);

end

end

end

This model represents two independent switching
systems, with dynamics ẍ = ±1 in both cases and
with an 80% loss of “velocity” at each switching [9]
with two digital filters added to track states 1 and
3. While this model is simplistic, it is a challenging
test because the state events occur more and more
frequently and can be made simultaneous. The new
features of this model compared with a standard
matlab model are: a section to be called with m=
[ ] to aid in initializing m correctly (based on S),
the additional input variable m and output variable
S to provide the coordination for state-event han-
dling described previously, the second new output
reset, to contain the state reset (if desired), plus
the inputs and outputs to accommodate the two

dtcs.

In previous work [8] a standard matlab model and
a standard simulink model (based on the sfunc

formalism [11]) were prepared for the illustrative ex-
ample, to permit comparisons against the extended
first-phase integration approach with respect to ac-
curacy and efficiency of simulation. The gener-
ated results showed that ode45 could catch a simple
relay-switching state event quite accurately (due to
its superior error/step-size-adjustment algorithm),
while the simulink model integrated using rk45
provided a poor result (erratically missing the state
event by a substantial amount). Using the uncom-
piled (m-file) version of ode45, it took about 10
to 15 times longer to run that example compared
to our approach and routine. For the extensions
presented here, we cannot make such comparisons,
since neither approach can handle state events with
reset.

Figure 3 depicts the results of running a 6.4-second
simulation with initial condition x0 = [ 0.25 ; 0

; -0.25 ; 0 ] using our latest integration routine
with state-event handling, reset and dtc execution
protocols. There are no comparative results, since
the model cannot be handled by other matlab or
simulink routines.
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Figure 3: Illustration of State-event Handling, Re-
set and dtc Execution

8 CONCLUSION

The matlab implementation presented above pro-
vides a demonstration of hsml in general and of
the importance of careful time- and state-event
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handling in particular. Introducing the concept
“mode” and the carefully prescribed “reset” proto-
col are both contributions toward making the mod-
eling and simulation of switching in continuous-
time systems more systematic and rigorous. Re-
cently added machinery for the execution of em-
bedded discrete-time components further increases
the level of generality in modeling and simulation
of hybrid systems.

Extending this modeling approach and associated
numerical integration routines can be pursued in
several obvious ways, e.g., they can be inserted into
more sophisticated modeling environments (like the
simulink framework). A more important extension
would involve the development of a “hsml com-
piler”, that would take the more rigorous hsml for-
mulations and autocode extended matlab models.
(See Section 2, e.g. typing and constraining in-
put/output variables.) In a more technical vein,
handling vector-field conflicts (situations where the
solution must remain on the surface S = 0 because
the ODE vector is “into” the surface on both sides)
is not completely treated in the above approach. In
short, much remains to be done!
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Figure 2: New matlab model component input/output structures
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