
Tools for Modeling and Simulation of
Hybrid Systems – A Tutorial Guide

James H. Taylor

Department of Electrical & Computer Engineering

University of New Brunswick

Fredericton, NB Canada E3B 5A3

E-mail: jtaylor@unb.ca

12 August 1996

Revised: 4 September 1999

Overview: Previous research in the area of modeling and simulation of hybrid sys-
tems led to the development of a general hybrid systems modeling language (hsml),
a subset of which has been implemented by extending matlab. This brief tutorial
guide describes the algorithmic implementation of the hsml ideas and language con-
structs for dealing with state-event handling in continuous-time system components.
Specifically, we describe how the standard matlab model framework and integration
algorithms have been extended to support these phenomena, and present a number of
examples that illustrate the approach and demonstrate using the software within the
matlab environment. Note that the examples discussed here can be inspected and
run if you visit our distribution site, http://www.ece.unb.ca/jtaylor/HS software.html
and download all the files provided in (hybrid sim.zip); only a few results are given
here, to keep this guide reasonably short.

The present version of this guide has been revised, to reflect modifications that had
to be made to accommodate the syntax changes in matlab 5; the software has been
tested successfully on matlab 5.3, matlab 6.1, matlab 6.5 (release 13 for unix)
and matlab 7.4 (release R2007a for unix); if you have difficulty on other installations
please let me know.

We have extended this methodology to handle hybrid systems comprised of a mixture
of discrete- and continuous-time components. The main focus of that effort was
precise timing and coordination of state and time events during simulation. The
resulting software has not been tested sufficiently for distribution; it will be made
available on http://www.ece.unb.ca/jtaylor/HS software.html eventually . . .

1

1 Introduction

The hsml language [1, 2] was designed to support a broad definition of a hybrid
system, which we may express informally as being an arbitrary interconnection of
components that are arbitrary instances of continuous-time, discrete-time and logic-
based systems. Requirements for hsml focused particularly on the rigorous charac-
terization and execution of “events”, both discrete- and continuous-time, that cause
discontinuous changes in system trajectories and/or the model itself. In this respect,
there is much commonality between the hsml project and recent developments by
Elmqvist, Cellier et al. in the area of object-oriented modeling [3]; for a detailed view
of state-event handling see especially [4, 5].

This brief tutorial guide outlines the completion of the first phase in implementing
a subset of the hsml concept in a working modeling and simulation environment,
matlab [6]. Preliminary steps are documented in some detail in [7], and a short but
more up-to-date description may be found in [8]. Here we again focus narrowly on
the issues surrounding state-event handling in continuous-time components (ctcs)
and provide several illustrative examples to demonstrate the use and efficacy of the
approach.

Here we consider ctcs that may be represented as1:

ẋ = f(x, u, m, t)

y = h(x, u, m, t) (1)

where x is the state vector, y is the output vector, u is a numeric input signal
(continuous-time), m is comprised of a finite alphabet of numeric or symbolic input
variables that characterizes the “mode” of the model, and t is the time; in general
u and m are vectors. Of particular importance to the present exposition, the mode
input m is included to provide means of controlling the model’s structure and coor-
dinating its behavior with the numerical integration process in state-event handling,
as described below. Based on the types of physical phenomena of interest, we restrict
elements of m to take on the values −1 , 0 , +1.

In our implementation, state events are characterized by zero-crossings,

S(x, m, t) = 0 (2)

where S is a general expression involving the state, time and mode of the ctc model.
An arbitrary state change in the ctc model can be classified as a negative-going
event (i.e., one in which S becomes negative), an on-boundary event (S becomes
and remains equal to zero for a period of time), or a positive-going event. Note that
this framework provides partial support for models that undergo structural changes

1The specific class of ctc that can be modeled depends on the simulator’s integra-
tion methods; matlab cannot handle differential algebraic equations (daes), so we
have restricted ourselves to ordinary differential equations and simplified the variable
types in comparison with [1, 2, 7].

2

(e.g., changes in the definition or number of state variables) [13]; e.g., in the case
of mechanical subsystems engaging, the number of states decreases, which we can
model (inefficiently) by carrying along redundant or “dummy” states during the in-
tervals when the state-space dimension is reduced. Finally, we include provision for
instantaneous reset of the model state variables at an event, according to

x+ = x(t+e) = r(x(t−e), m, t−e) (3)

where r is also an arbitrary expression and te is the event time. This feature is useful
in resetting velocities after engagement to conserve momentum, for example.

Given the above problem definition, the correct handling of state events is as follows:

1. The model should not be allowed to switch during a numerical integration step.
Integrate as usual as long as the variable S does not change sign; each integra-
tion point is treated as a “trial” point until the sign condition is checked; if no
sign change has occurred, the point becomes “accepted”.

2. When a sign change is detected, the trial point is discarded and an iterative
procedure is initiated (within the simulator) to find the time step h∗ such that
S has just passed zero, e.g., for a positive-going event S ∈ (0, ε). The model is
not allowed to switch during this procedure.

3. The integrator produces an accepted point on the switching curve (Eqn. 2) and
then signals the model to switch (e.g., by changing mode from – 1 to 0 or +1
depending on the nature of the event).

4. States are reset, if necessary, and normal integration proceeds from that point.

This process requires coordination between the model and simulation package, as
illustrated below using matlab extensions.

2 Extended Model Schema

One significant extension needed in matlab for modeling and simulating state events
in ctcs is in the input/output structure of the model. The existing and extended
schema are depicted in Fig. 1:

The additional outputs are the state-event signal S (Eqn. 2) and the state-reset
vector x+ (Eqn. 3); the new input mode allows the numerical integration routine
to tell the model to switch according to the state event just detected. Again, note
that S and m (mode) may be vectors, to support multiple state events and switching
boundaries. Two examples are provided below to illustrate these extensions: a relay
switching system and an electro-mechanical system with stiction.

2.1 Relay Switching System Model

A simple example of the structure of this extended model is as follows (this is a listing
of relay seh.m, see Section 4.1):

3

�

�

�
x

t

ẋẋ = f(x,t)

�

�

�

�

�

�

x

mode

t

ẋ

S

x+

ẋ = f(x,t,mode)

S = S(x,t,mode)

x+ = r(x,t,mode)

(a) Standard matlab model schema

(b) Extended matlab model schema

Figure 1: matlab model input/output structures

function [xdot,phi,reset] = relay(t,x,mode)

% model of the relay switching system, d^2x/dt^2 = - sign(x) --

% "mode" switches when phi = x(1) passes through zero, and that

% instantiates the state event (causes the integrator to switch

% mode from -1 to 1 or vice versa). JH Taylor, 8 March 1996.

if isempty(mode), % initialization section

% Set phi (S) to be consistent with the IC, so that mode

% will be initialized correctly -- e.g., if x(1) = 0,

% then x(2) governs mode, i.e. x(2) > 0 => mode = +1 etc.

if x(1) == 0, phi = x(2);

else phi = x(1);

end

xdot = []; reset = []; % to prevent matlab 5 warning msgs!!

return

end

% Define the mode-dependent model and switching flag:

xdot(1) = x(2);

xdot(2) = -mode;

phi = x(1);

reset = []; % to prevent matlab 5 warning msgs!!

The initialization section (if isempty(mode), ... return, end) is vital. In it,
you must define the initial value of the switching function (S, but called phi in this
code) to be consistent with initial conditions on the state variables; to be safe you
should consider all eventualities (in this example we consider not only which side of
the switching boundary we are on if x1 6= 0 but which side we will move into if we
start on the boundary (x1 = 0)). The remaining code contains the mode-dependent
system differential equations (note that the relay will switch only when mode changes
from -1 to +1 or vice versa; we do not use the relation xdot(2) = -sign(x(1))!)
and the switching function (S = phi = x(1)).

4

2.2 Model of a System with Stiction

The following more detailed example shows how to exploit the three-level mode op-
tion and state reset in modeling an electro-mechanical system with stiction (see Sec-
tion 4.4):

function [xdot,phi,reset] = stiction(t,x,mode)

% electro-mechanical system with stiction and saturation

%

% mode switches from +/-1 to 0 when velocity passes through zero,

% and transitions back to +/-1 when there is sufficient torque to

% overcome stiction. States are x(1) = position, x(2) = velocity;

% the model is identical to Taylor & Strobel, 1985 ACC paper.

% JH Taylor, 8 June 1996.

%

global v_in omega % parameters needed to define input signal

if isempty(mode), % initialization section

if abs(x(2)) == 0,

disp(’Initialized stuck ...’);

phi = 0; % => mode = 0

else

disp(’Initialized moving ...’);

phi = sign(x(2)); % => mode = +/-1

end

xdot = []; reset = []; % to prevent matlab 5 warning msgs!!

return

end

% model parameters

m_1 = 5.0; % Nm/v

delta = 0.5; % v

m_2 = 1.0; % Nm/v

f_v = 0.1; % Nms/rad

f_c = 1.0; % Nm

MoI = 0.01; % kg-m^2

% first, some preliminary calculations:

% saturate the input voltage -> electrical torque:

volts = v_in*sin(omega*t);

av = abs(volts); sv = sign(volts);

if av < delta, T_e = m_1*volts;

else T_e = (m_1*delta + m_2*(av-delta))*sv; end

% now, either execute the model or reset function:

icall = max(abs(imag(mode)));

if icall == 0, % models for dynamic equations and switching funs

if abs(mode) == 1, % motor moving:

xdot(1) = x(2);

xdot(2) = (T_e - f_v*x(2) - f_c*mode)/MoI;

5

phi = x(2);

else, % motor stuck:

xdot(1) = 0.0;

xdot(2) = 0.0;

% NB! phi == 0 until torque suffices for break-away

if (abs(T_e) - f_c) < 0, phi = 0;

else phi = (abs(T_e) - f_c)*sign(T_e); end

end

reset = []; % to prevent new warning msgs!!

elseif icall == 1, % corresp to state and/or phi reset

if abs(real(mode)) == 1 % we are going into "stuck" mode...

reset(1) = x(1);

reset(2) = 0.0; % do this so we EXACTLY stick

phi = 0; % => mode = 0

else % we are leaving "stuck" mode

reset = []; % no need to reset states...

phi = sign(T_e);

end;

xdot = []; % to prevent new warning msgs!!

else

error(’bad value of mode’)

end

The initialization part of this model is similar to that in the relay model above. The
added complexity in using the more advanced features of this example arise first in the
need to distinguish between the model being called for evaluating ẋ and S (xdot and
phi) and being called for state reset (reset). The state-event handling routines signal
this by making mode complex-valued when state reset is being requested, specifically
mode reset = mode + jay where jay =

√
−1. Within the code for evaluating ẋ and

S we have two cases (“stuck” and “moving”), which is quite transparent. The section
for state reset similarly has two cases, one in which state reset is actually implemented
(when going into “stuck” mode) and one where there is no need to reset (when leaving
“stuck” mode); again, the code is quite simple. We note, however, that the reset code
for phi needs the variable T e, which requires that the preliminary calculations be
done outside the model section, otherwise matlab will grumble that phi has the
wrong dimension (because it is returned with the value “empty”).

3 Extended Integration Schema

A second significant extension must be made in the matlab numerical integration
algorithms: neither those in matlab, i.e., ode23 and ode45, nor those in simulink,
i.e., gear, rk23 and rk45, can handle state events in the desired fashion. There are
three features needed to permit the matlab integration routines to deal with state
events:

6

1. the numerical integrator must coordinate with the extended model to set the
initial value of mode,

2. it must continuously test for the occurrence of state event(s) by watching for
zero crossings in the switching variable(s), and

3. the routine should permit state variables to be reset at a state event, in a
rigorously prescribed manner.

matlab code for such integrators may be inspected by listing files trap 101.m (a
simple fixed-step “trapezoidal” integration method) and ode45 101.m (an extension
of matlab’s ode45 variable-step Runge-Kutta-Fehlberg integrator). Both files are
provided with a reasonable level of commenting, for your guidance.

4 Example Applications

Two examples used in testing the above integration approach have been described
previously; these are an elementary switching relay system [7] and a double-switching
system with state reset [8]. Both of these are demonstrated in the files included in this
distribution. In addition, we include a switching relay with deadzone, to illustrate
the use of “on-boundary” event modeling (a case where mode = 0 for a period of
time); an electro-mechanical system with stiction and saturation, to provide further
insight into using the more advanced features of this framework; and finally a still
more realistic missile roll-control problem from Gibson [10].

4.1 Relay Switching System

The following state equations define the simple relay switching system:

ẋ1 = x2

ẋ2 = −sign(x1)

The extended matlab model (Fig. 1) for this system is provided above (Section 2.1).
The macro run relay demonstrates handling this model using trap 101 and com-
pares those results with a run using SimuLink [9]; we note that the rk45 algorithm
from SimuLink seems to be particularly inaccurate with this model, due to missing
the state events by a large margin2.

4.2 Relay with Deadzone Switching System

The model for the relay switching system is modified slightly by the introduction of
a deadzone,

ẋ1 = x2

ẋ2 = −rdz(x1)

2In matlab 5 this comparison can’t easily be made, since running SimuLink from a command

line is no longer permitted.

7

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
relay: xdot(1) = x(2); xdot(2) = − sign(x(1));

x(1)

x(
2) Seven cycles of oscillation!

___ = Algorithm TRAP_101

_ _ = SimuLink RK45

Figure 2: State-event Handling, Simple Relay System

where

rdz(x1) =

{

sign(x1) , |x1| > 1
0 otherwise

In modeling this component, we have used one mode and the concept of “on-boundary
events”, so mode = – 1 corresponds to x1 < −1, mode = + 1 corresponds to x1 > 1,
and mode = 0 corresponds to |x1| ≤ 1; this means that the definition of the switching
function depends on mode. We could have used two switching boundaries and modes,
but the single-mode approach is presented as an illustration and for its elegance.

The macro run rdz again shows the integration of this model using trap 101 and
compares the results with a run using matlab; we note that the ode45 algorithm
seems to be quite accurate with this model, but is very susceptible to “creeping”, i.e.,
reducing the stepsize to a very small value to handle integration errors associated with
discontinuities (state events) that are not signaled and captured as in our scheme. To
conserve space, this result is not shown; please execute run rdz to see the plots and
timing comparisons.

4.3 Twin Relays with State Reset

For this example we have two uncoupled systems of the form:

ẋ1 = x2

ẋ2 = −sign(x1)

and similarly for x3, x4, with state events defined by

S1 = x1 ; S2 = x3

8

and a reset definition akin to the bounce of a ball with coefficient of restitution 0.8,

xc(t
+

e) = col [x1(t
−

e) 0.8 × x2(t
−

e) x3(t
−

e) 0.8 × x4(t
−

e)]

(assuming both switchings occur simultaneously). This model presents several chal-
lenges: It is easy to pick initial conditions that make the state events simultaneous,
and there is always a finite time when the switching rate becomes infinite. In the
simulations executed by the macro run rdz, we choose the initial condition x(0) =
[0.25 ; 0 ; -0.25 ; 0] so the state events are simultaneous and the switching
times tk have the limiting value t∞ = 6.363963. Note that we cannot compare inte-
gration accuracy or times with standard matlab integrators in this example as we
did above, because they cannot handle a problem with state reset.

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1
twin_ball_reset (two "relays" with state reset); simultaneous SEs

time

x(
t)

date = 17−Mar−96 ; dt = 0.0025

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−1

−0.5

0

0.5

1
TRAP_101 = 3−level mode state−event handler

x(1), x(3)

x(
2)

, x
(4

) x0(1) = 0.25

x0(3) = −0.25

Figure 3: State-event Handling, Twin Relays with Reset

3If the reset coefficient is α = 0.8 then the switching time tk for one of the uncoupled systems

for initial condition [x 0 ; 0] is tk = 2
√

2x 0{1/2 + α + α2 + . . . + αk−1}, so

t∞ =
√

2x 0
1 + α

1 − α

9

4.4 Electro-mechanical System Model

The following state equations define the dynamics of an electro-mechanical system
with saturation and stiction:

ẋ1 = x2

ẋ2 = Tm/J

Tm = stick(Te, x2) =

{

Te − fvx2 − fcsign(x2) , x2 6= 0 or |Te| ≥ fc

0 , x2 = 0 & |Te| < fc

Te = sat(v) =

{

m1v , |v| < δ
(m1δ + m2(|v| − δ))sign(v) , |v| ≥ δ

where Te is the “electrical torque”, a saturated function of the input voltage v, Tm is
the stiction model, and the physical parameters are as defined in the model code, e.g.,
J = MoI (section 2.2). The macro run stick demonstrates running this model using
trap 101 and compares those results with a run using matlab’s ode45 integrator; we
note again that this algorithm gives rise to the “creeping solution” problem unless the
tolerance is substantially reduced (from 1.e-06 to 0.005 in this macro); unfortunately
this results in rather undesirable “chattering” behavior that is readily apparent in
the simulation plots where the motor should be stuck (e.g., t ≈ 1.6 and 4.8 seconds).

0 1 2 3 4 5 6

−15

−10

−5

0

5

10

15

stiction model: M*xdotdot = F_a − f_v*xdot − f_c*mode

time

x(
t)

, x
do

t(
t)

v_in = 0.6

omega = 2

__ , _ _ => trap_101, dt = 0.05

... , _._. => ode45, tol = 0.005

Figure 4: State-event Handling, Electro-mechanical System

10

4.5 Missile Roll-Control System Model (Gibson)

The following problem is posed by Gibson [10], and a describing-function solution for
limit cycle conditions is provided in [11]. We repeat the problem formulation from
the latter citation (converted to si units):

Assume a pair of reaction jets is mounted on the missile, one to produce torque about
the roll axis in the clockwise sense and one in the counterclockwise sense. The force
exerted by each jet is F0 = 445 N and the moment arms are R0 = 0.61 m. The
moment of inertia about the roll axis is J = 4.68 N·m/sec2. Let the control jets and
associated servo actuator have a hysteresis h = 22.24 N and two lags corresponding
to time constants of 0.01 sec and 0.05 sec. To control the roll motion, there is roll and
roll-rate feedback, with gains of Kp = 1868 N/radian and Kv = 186.8 N/(radian/sec)
respectively. The block diagram for this system is shown in Fig. 5, and the model is
listed in the Appendix.

Kp

Kv

1

(1+s/100)(1+s/20)

�

�

���

�

h

F0

R0

1
J s

1
s

Kp

��
�	

��
�	

� � � � � � � �

�

�

Hydraulic Servo Amp.

φc e φ̇ φ

+

+

−

Figure 5: Block Diagram, Missile Roll-Control Problem [Gibson]

A highly rigorous digital simulation using ode45 101 to capture the switching char-
acteristics of the hysteretic relay yielded ALC = 0.130, ωLC = 23.1 rad/sec, as shown
in Fig. 6. In Gibson, it is said that an analog computer solution yielded ALC = 0.135
rad and ωLC = 22.9 rad/sec, which agrees quite well with the result depicted in Fig. 6;
the describing function solution [11] confirms these simulations, giving ALC = 0.124
rad, ωLC = 24.36 rad/sec.

5 Conclusion

The methodology, algorithms and examples presented above provide a direct demon-
stration of our approach and software for state-event handling in continuous-time
components. We have applied this technique to models of several electro-mechanical
systems, including those exhibiting backlash and stiction, and in every case we have
obtained excellent results (accurate solutions without excessive computational bur-
den). These algorithms are being extended to deal with more comprehensive hybrid
systems, i.e. those with both continuous- and discrete-time components [12].

11

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

time

φ

Roll control problem from Gibson −− φ(t)

φ = 0.130

t = 1.671 t = 1.943

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
−6

−4

−2

0

2

4

6

8

φ

φ
−

 d
ot

Roll control problem from Gibson −− φ−dot vs φ

Figure 6: Missile Roll-Control Simulation Result

This brief tutorial is intended to supplement the demonstration models and macros
provided with this distribution. These models may be studied and the macros ex-
ecuted to learn more about the features of this software. If you have problems or
questions about the use of these integration routines, please let us know and we will
try to supply further assistance.

References

[1] Taylor, J. H. “Toward a Modeling Language Standard for Hybrid Dynamical
Systems”, Proc. 32nd ieee Conference on Decision and Control, San Antonio,
TX, December 1993.

[2] Taylor, J. H. “A Modeling Language for Hybrid Systems”, Proc. ieee/ifac Sym-
posium on Computer-Aided Control System Design, Tucson, AZ, March 1994.

[3] Elmqvist, H., Cellier, F. E. and Otter, M., “Object-Oriented Modeling of Power-
Electronic Circuits Using Dymola”, Proc. CISS’94 (First Joint Conference of
International Simulation Societies), Zurich, Switzerland, August 1994.

[4] Cellier, F. E., Elmqvist, H., Otter, M. and Taylor, J. H., “Guidelines for Mod-
eling and Simulation of Hybrid Systems”, Proc. ifac World Congress, Sydney
Australia, 18–23 July 1993.

12

[5] Cellier, F. E., Otter, M. and Elmqvist, H., “Bond Graph Modeling of Variable
Structure Systems”, Proc. ICBGM’95 (Second International Conference on Bond
Graph Modeling and Simulation), Las Vegas, Nevada, January 1995.

[6] matlab User’s Guide, The MathWorks, Inc., Natick, MA 01760.

[7] Taylor, J. H. “Rigorous Handling of State Events in matlab”, Proc. 4th (ieee
Conference on Control Applications, Albany, NY, 28–29 September 1995.

[8] Taylor, J. H. and Kebede, D., “Modeling and Simulation of Hybrid Systems”,
Proc. IEEE Conference on Decision and Control, New Orleans, LA, 13–15 De-
cember 1995.

[9] simulink User’s Guide, The MathWorks, Inc., Natick, MA 01760.

[10] J. E. Gibson, Nonlinear Automatic Control, McGraw-Hill Book Co., New York,
NY, 1963.

[11] J. H. Taylor, “Describing Functions”, article No. 2409 in Electrical Engineering
Encyclopedia, John Wiley & Sons, Inc., New York, 1999.

[12] Taylor, J. H. and Kebede, D., “Modeling and Simulation of Hybrid Systems in
matlab”, Proc. IFAC World Congress, San Francisco, CA, July 1996.

[13] Taylor, J. H. A Rigorous Modeling and Simulation Package for Hybrid Systems,
US National Science Foundation SBIR Report, Award No. III-9361232, Odyssey
Research Associates, Inc., June 1994 (available only from the author).

Appendix: Model for Gibson’s Missile Roll-Control Problem

function [xdot,phi,reset] = relay(t,x,mode)

%% version of Gibson roll-control problem suitable for

%% simulation via ode45_101 (using modes)

%

% JH Taylor - 24 March 1999

%%% converted to SI units

% states x1 = phi, x2 = phidot, x3, x4 = servoamp model states

% define the servoamp dynamics (convert transfer fn to state space)

% A = [0 1 ; -2000 -120]; B = [0 ; 1]; C = [2000 0]; D = 0;

h = 22.24; F0 = 444.8; % thruster "relay" constants (Newtons)

J = 4.68; % N-m/sec^2; = 3.45 lb-ft/sec^2

R0 = 0.6096; % m; = 2 ft

Kp = 1868; % N/rad; = 420 lb/rad

Kv = 186.8; % N/(rad/sec); = 42 lb/(rad/sec)

13

% initializes the mode in ode45_101

if isempty(mode);

e = 2000*x(3);

if e > h, phi(1) = 1.0;

elseif e < -h, phi(1) = -1.0;

else error(’sorry - cannot initialize properly . . .’);

end;

xdot = [];

reset = [];

return;

end;

% actual model and switching logic

e = 2000*x(3);

icall = max(abs(imag(mode)));

if icall == 0, % dynamic equations and switching funs

xdot(1) = x(2);

thrust = F0 * mode;

xdot(2) = R0*thrust/J;

xdot(3) = x(4);

Uamp = - Kv*x(2) - Kp*x(1);

xdot(4) = -2000*x(3) -120*x(4) + Uamp;

if mode == 1, phi(1) = e + h;

elseif mode == -1, phi(1) = e - h;

else error(’sorry - mode should never be 0!!’);

end

reset = [];

elseif icall == 1, % corresp to possible state reset

xdot = [];

phi(1) = NaN;

reset = [];

disp([’switching at t = ’,num2str(t)])

else

error(’bad value of mode’)

end

% end of relay with hysteresis model

14

