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ABSTRACT

This thesis presents a new equalizer structure, the asymmetric decision feedback

equalizer (ADFE).  The mean square error (MSE) and bit error rate (BER)

performance of the ADFE is analyzed and simulated.  The ADFE is shown to

have an identical MSE characterization, identical  MSE performance, and similar

BER performance, to the DFE.  The BER of the ADFE is estimated by simulation,

and by use of a finite discrete Markov process.

The ADFE is paired with a DFE to form the ADFE system, which equalizes

communications between two transceivers with an asymmetric distribution of

equalization complexity.  The performance of this system is examined under

various nonidealities including a mismatch in characterization signal-to-noise

ratios (SNR’s), timing error, adaptive training, finite precision arithmetic, and

measured indoor wireless channels.  Results stemming from the SNR mismatch

indicate the potential for improved BER performance of the DFE and ADFE

through a modification of MSE characterization.
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1. Introduction

1.1 Subject Area
This thesis deals with the subject of equalization for indoor wireless digital

communications.  A new equalizer structure and system are presented.  The

system achieves a significant asymmetry in the distribution of computational

complexity relating to equalization between two communicating transceivers.

The system performance is described in terms of mean square error (MSE) and

bit error rate (BER) performance.  The number of arithmetic operations required

for equalization, including adaptive training, are used to quantify the complexity of

the system.

1.2 New Results
This thesis introduces a new equalization structure, dubbed the asymmetric

decision feedback equalizer (ADFE).  A mean square analysis is formulated in a

manner which encompasses both the ADFE and the decision feedback equalizer

(DFE).  The minimum mean square error (MMSE) characterization of the ADFE

with and without a constraint on transmitted power is obtained.  The analysis of

the power-constrained ADFE also applies to the (DFE), and the two equalizers

are shown to have identical MSE performance and MMSE characterization,

under equivalent conditions.  The MMSE characterization of the ADFE with a

fractionally spaced forward filter (FS FF) is also given.

The bit error rate (BER) of the ADFE is accurately predicted by the use of a finite

discrete Markov process.  This model takes into account the effects of noise,

residual precursor intersymbol interference (ISI) and error propagation.  Some

results obtained by this model is verified by simulation.  Previous modeling of the

DFE feedback filter (FBF) by a Markov process does not accurately model

residual precursor ISI and noise filtering in all cases [Monsen2].
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The ADFE system is designed to equalize bidirectional time division duplex

(TDD) wireless communications with an asymmetric distribution of complexity

between the two communicating transceivers.  The ADFE system includes a

DFE, an ADFE, and efficient training algorithms.

The impact of timing error, adaptive training, and finite precision arithmetic on the

performance of the ADFE system is examined.

Joint timing error and training signal-to-noise ratio (SNR) mismatch are two non-

idealities which are particular to systems, such as the ADFE system, in which

reciprocity is exploited to characterize a pre-equalizer.  This thesis analyzes the

effect of these nonidealities on BER performance.  In addition, the effects of

timing error, adaptive training, and finite precision arithmetic in the ADFE system

are examined.

The SNR mismatch leads to some curious relationships between the training

SNR and BER performance.  In some cases, this result may be exploited to

improve DFE or ADFE performance through a modified MMSE characterization.

The investigation into finite precision effects includes a comparison with the

Gibbard precoder [Gibbard3], a modified Tomlinson-Harashima (TH) precoder

[Tomlinson] [Harashima].  An unexpected divergence in performance levels of

the ADFE and Gibbard precoder is discovered for a particularly harsh channel.

The performance of the ADFE system over an ensemble of indoor wireless

channels is determined by simulation, using a database of channel

measurements [Morrison1].  The mean BER and an approximate distribution of

the BER over the ensemble of channels is presented.
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1.3 Thesis Overview
Chapter 2 consists of background material which serves as a foundation for

many of the concepts and issues presented in this thesis.  It is divided into two

sections which provide a brief description of the major components of a wireless

digital communications system, and an overview of equalization.  This chapter is

directed towards those with a limited background in one or both of these areas.

Those seeking rigorous and detailed treatment of these topics are directed

towards the references, especially the texts [Haykin] [Proakis].  The reader who

is already familiar with these basics may wish to skip this chapter entirely.

Chapter 3 presents a brief definition and overview of asymmetric equalization.

Some previous work in this field is referenced.

Chapter 4 introduces a new equalizer structure:  the asymmetric decision

feedback equalizer (ADFE).  An ADFE, paired with a decision feedback equalizer

(DFE), forms the ADFE system which equalizes bidirectional data transmission.

Training of the ADFE system is described.  The computational complexity of the

ADFE is tabulated and compared with similar equalizers.  Finally, the merits of

applying fractionally spaced equalization to the ADFE are discussed and the

MMSE solution for the fractionally spaced ADFE is presented.

In Chapter 5, a finite discrete Markov process is used to model error propagation

in the ADFE, to determine the bit error rate (BER) performance under specific

conditions.  Results by Markov model and by simulation are compared.  The

extent and effect of error propagation in the ADFE is examined.

Chapter 6 examines the impact on performance of a few non-idealites expected

in the ADFE system:  SNR training mismatch, timing error, adaptive training, and

finite precision arithmetic.  While performance of an equalizer is often optimized

and measured in terms of mean square error (MSE), this chapter focuses on the

BER as a metric of performance.  In fact, the section on SNR mismatch reveals

some significant discrepancies between MSE and BER performance, along with
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the possibility of a modified MMSE characterization to improve BER

performance.

Chapter 7 applies the ADFE system to the equalization of measured indoor

wireless channels.  This gives a better indication of the performance that may be

expected in an implementation of the ADFE system.  The average BER

performance over an ensemble of channels is determined, as well as the

distribution of BER performance across the ensemble.  The performance is so

highly dependent on the characteristics of each channel that further investigation

quickly becomes more of a study in channel characteristics than in equalization.

Chapter 8, the conclusion, presents a summary of the results of this thesis and of

areas for future research.

The Appendix contains an example of a Matlab program which predicts the BER

of the ADFE over a particular channel by using a Markov model, as described in

Chapter 5.
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2. Background
The motivation for this thesis is the synthesis and investigation of equalization for

the target system described below.  Although many of the following concepts

have general application in the fields of digital communications and signal

processing, in this chapter they are considered only in relation to the target

system.

wired
networkwireless

communications

base
portable

portable

computers

printercomputer

Figure 2.1: Target System

The target system is an indoor wireless communications link intended to

supplement to coverage of an indoor wired computer network (LAN), as shown in

Figure 2.1.  The wired LAN may connect elements such as computers, printers,

storage devices, and other networks.  The wireless link allows access to the

network from portable computers (notebook PC’s).  A base station, equipped with

a wireless transmitter and receiver, serves as a gateway to the wired LAN.  Once

the base is installed, a portable requires no physical connection or setup to

access the network, and may be used anywhere within the range of the base.



6

The subject area of this thesis encompasses digital communications,

equalization, and signal processing.  The background material presented is

intended to allow one lacking familiarity with any of these fields to appreciate the

main issues associated with the equalization of the target system.

Section 2.1 presents a simplified model of a wireless digital communications

system as a means of reviewing the concepts thereof.  Section 2.2 is an overview

of methods of equalization.

2.1 Model for a Wireless Digital
Communications System

bits

carrier

antenna

modulator

demodulator

bits sample & hold
A/D converter

carrier

decision
device

RF amp

channel

equalizer

D/A conversion
& pulse shaping

symbol
encoder

RF amp &
bandlimiter

Figure 2.2: Wireless Digital Communications System

A model for a wireless digital communications system is shown in Figure 2.2.  In

its entirety, it is a discrete channel, in that its input and output are sequences of

discrete data symbols.  The symbols are henceforth assumed to be binary, or

bits.  The average probability that an output bit differs from the corresponding
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input bit is called the bit error rate (BER).  A system is usually required to achieve

a BER below a limit, which may typically range from 10−3 to 10−8 [Freeburg]

[Morris, page 2].

For analysis and simulation it is assumed that each element of the alphabet (0,1)

appears with equal and independent probability.  The resulting independence of

data symbols simplifies the characterization of the signal at subsequent stages.

2.1.1 Symbol Encoder

The symbol encoder maps a pair of input bits into a quadrature phase shift

keying (QPSK) symbol.  One suitable rule for this mapping is given in Table 2.1.

Table 2.1: Bit Representation of QPSK Symbols

input bits QPSK symbol a n( )
00 −1− j

01 −1+ j

10 +1− j

11 +1+ j

Alternative data modulations may include more or less bits per symbol, and may

include complex dependencies on previous symbols [Proakis, pp. 172-185].  One

QPSK symbol is generated every Tsym  seconds, and the symbol generated at

time t = nTsym  symbol is denoted a n( ).

2.1.2 D/A Conversion and Pulse
Shaping

This block, which follows the symbol encoder, performs digital to analog (D/A)

conversion and pulse shaping.  The QPSK symbols are converted from a

discrete-time digital representation to a continuous time signal.  If the pulse
shape is p t( ), then the output of the D/A pulse shaping block x t( ) is given by
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x t( ) = a n( ) p t − nTsym( )
n=−∞

∞
∑ . (2.1)

The pulse p t( ) is designed as a compromise between two criteria:

1. Frequency domain:  to bandlimit the signal x t( )
2. Time domain:  to avoid intersymbol interference in the received signal

Frequency Domain

Let P f( )  and X f( ) be the Fourier transforms of p t( ) and  x t( ), respectively.

P f( ) = p t( )e− j 2πft dt
−∞

∞

∫ , (2.2)

X f( ) = x t( )e− j 2πft dt
−∞

∞

∫ . (2.3)

The average power density spectrum of x t( ) is given by [Proakis, 193]

Φxx f( ) = 1
Tsym

P f( ) 2 Φaa f( )
(2.4)

where

Φaa f( ) = 1
2 E a* k( )a k + m( )[ ]

m=−∞

∞
∑ e

− j 2πf mTsym .

Given the definition of a n( ) as independent QPSK symbols, we have

Φxx f( ) = 1
Tsym

P f( ) 2
. (2.5)

Thus the frequency content and hence bandwidth of the transmitted signal is
determined by the pulse shape p t( ).  The bandwidth of p t( ) cannot be arbitrarily

limited, as P f( )  must have nonzero frequency components within the range

f ≤ 1
2Tsym

 in order to avoid time domain intersymbol interference (if p t( ) is a

baseband signal).
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Time Domain

Suppose we wish to form an estimate, â n( ), of  the original data sequence a n( )
by sampling the information signal ( x t( ) in this case).  This is expressed

mathematically as

â n( ) = x t − nTsym( )
= a k( ) p n − k( )Tsym( )

k =−∞

∞
∑

= a n( ) p 0( ) + a n − k( ) p kTsym( )
k =−∞
k ≠0

∞
∑ .

(2.6)

The desired symbol is given by a n( ) p 0( ) , while a k( ) p n − k( )Tsym( )
k =−∞
k ≠0

∞
∑  is

intersymbol interference (ISI), which degrades the accuracy of estimates and

may contribute to decision errors.  Additional processing may be used to reduce
the ISI, at the expense of undesirable complexity.  The pulse p t( ) is usually

designed so that p kTsym( ) = 0 for k≠ 0, to eliminate the ISI term from Equation

2.6.

In partial-response signaling, p kTsym( ) is allowed to be nonzero for more than

one value of k , and this controlled ISI is accounted for in data reception.  Partial-

response signaling, in conjunction with nonlinear receivers, may be used to

obtain desirable frequency-domain characteristics of the information signal x t( )
[Kabal].

Raised Cosine Pulse

As stated previously, p t( ) and x t( ) must be allowed to occupy the bandwidth of

at least 1 2Tsym( ) to avoid introducing ISI.  This minimal bandwidth is not

achievable in practice as it would require ideal (unrealizable) filters and perfect

synchronization in detection.  The filter and synchronization requirements can be
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relaxed by selecting a pulse with increased, or excess, bandwidth.  The raised

cosine (RC) pulse is chosen for use in this thesis [Proakis, pp. 535-536].  The

amount of excess bandwidth is controlled by a parameter β  which ranges from 0

to 1.  The time and frequency domain representations of the RC pulse are

described in Equations 2.7 and 2.8.

pRC (t ) =
Tsym

πt
sin

πt
Tsym








cos
βπt

Tsym








1− 4β2t 2

Tsym
2

, (2.7)

PRC (f ) =

 Tsym ,   0 ≤ f ≤
1− β( )

2Tsym

 
Tsym

2
1− sin

πTsym

β
f − 1

2Tsym
































,  

1− β( )
 2Tsym

≤ f ≤
1+ β( )

2Tsym

 0,   f >
1+ β( )

2Tsym
.





















(2.8)

p
t (
)

   = 0   
   = 0.35
   = 1.0 β

β
β

−1 0 1 2 3 4 5
−0.5

0

0.5

1

t Tsym

Figure 2.3: Raised Cosine Pulse (time domain)



11

P
f (
)

  

   = 0   
   = 0.35
   = 1.0 β
β
β

−1 −0.5 0 0.5 1

0

0.5

1

normalized frequency (f ⋅Tsym )

Figure 2.4: Raised Cosine Pulse (frequency domain)

Figures 2.3 and 2.4 illustrate the time and frequency domain characteristics of

the RC pulse for Tsym = 1 and β =0, 0.35, and 1.  A larger value of β  results in a

pulse which has greater bandwidth, but decays more rapidly in the time domain.

It is common practice to use a square root raised cosine (SQRC) pulse shape for

p t( ), and incorporate a matched filter at the receiver, to improve the SNR of the

received signal [Chennakeshu] [Hagmanns].  The matched filter has time and

frequency characterization identical to that of the SQRC pulse.

PSQRC (f ) = Tsym PRC (f ) , (2.9)

pSQRC t( ) =
1− β( )
Tsym

sinc
1− β( )t
Tsym











+ β
Tsym

cos
π t

Tsym
− π

4









 sinc

βt
Tsym

− 1
4











+ β
Tsym

cos
π t

Tsym
+ π

4









 sinc

βt
Tsym

− 1
4









 ,

(2.10)

where the sinc function is defined as

sinc x( ) =
sin π x( )

π x
. (2.11)
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A SQRC pulse with rolloff β = 0.35 is used in the IS-54 cellular radio standard

[TIA] and within this thesis.  The noncausal pulse can be approximated by

truncating and delaying the ideal RC or SQRC pulse.

2.1.3 Carrier Modulation

The carrier modulation of the information-bearing signal x t( ) is mathematically

expressed as multiplication by a complex sinusoid of the carrier frequency.

s t( ) = Re x t( )e j 2πfct[ ]. (2.12)

In the frequency domain, this has the effect of shifting the spectrum X f( ) from

being centered around zero frequency (baseband) to the carrier frequency

(passband).  A complex baseband signal will have a real passband

representation.  In practice, a complex baseband signal is represented in

Cartesian form by two signal channels: the in-phase (I) and quadrature (Q)

channels.  This doubles the information rate achievable with a real (as opposed

to complex) baseband signal, with no increase in the bandwidth of the

transmitted signal.

Equation (2.10) may be rewritten for implementation with real operations.

s t( ) = xI t( )cos 2 π fc t( ) − xQ t( )sin 2 π fc t( ), (2.13)

where xI t( ) = Re x t( )[ ] and xQ t( ) = Im x t( )[ ].

xI t( )

xQ t( )

s t( )

− sin 2π f c t( )

cos 2π f c t( )

Figure 2.5: I and Q Channels in Modulation
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The carrier frequency is chosen so as to allow for effective propagation of the

signal as an electromagnetic wave, and to avoid interference with transmission

from other devices.  Regulatory bodies control the use of the radio spectrum for

various devices and users.

2.1.4 RF Amplifier

Up to this point, the information has been represented digitally or as a low-power

voltage signal.  Before transmission, it is necessary to amplify the radio

frequency (RF, or passband) signal to achieve sufficient signal power at the

receiver.  A measure of the quality of a signal is the signal-to-noise ratio (SNR),

SNR = signal power
noise power

. (2.14)

Different SNR’s may be obtained by taking signal and noise power

measurements at different points in the system.  One of the most common is the

SNR at the input to the receiver.  In general, if the SNR is high, then the effect of

noise on the signal is small and will cause few or no errors in the detection of the

transmitted data.

The ideal RF amplifier accepts a passband voltage signal s t( )  as its input, and

produces an output s' t( ) which is a scaled version of the input.

s' t( ) = As t( ). (2.15)

Real amplifiers approximate this linear behavior to varying degrees, but introduce

nonlinearities such as saturation.  Linearity and power efficiency are usually

conflicting goals in amplifier design.  This work assumes ideal linear

amplification.

2.1.5 Antenna

The antenna is a passive circuit construction of conductors which converts its

input electrical signal into electromagnetic waves which propagate through

surrounding media.  Antennas may be designed to accommodate a selected
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signal bandwidth and direction of transmission.  The principle of reciprocity as

applied to antennas states that antenna characteristics such as selectivity of

bandwidth and direction will be identical whether an antenna is used for

transmission or reception.  Antenna diversity, or the use of multiple transmit

and/or receive antennas to improve transmission, is not investigated in this work,

although the concepts in this thesis can be generalized to multiple antenna

transceivers.

2.1.6 Channel

The wireless channel may refer to the media traversed by the signal between

transmission and reception.  It also refers to the their effect on the signal.  This

effect is commonly modeled by a channel impulse response (CIR) and additive

white Gaussian noise.

Channel Impulse Response

The received signal is the convolution of the transmitted signal with the CIR h t( ).
The CIR generally introduces time dispersion into the signal, which may result in

ISI.  A CIR with ISI has a frequency response H f( ) (the Fourier transform of

h t( )) which is nonconstant (excepting a phase shift due to constant delay) over

the bandwidth of interest.  Thus, ISI is the time domain manifestation of

frequency selective fading.

The nature of a wireless channel may change significantly with movement of the

transmitter, receiver, or any other surrounding objects.  This causes the CIR to

vary with time.  Such variation may be neglected over a sufficiently short interval

of time, known as the coherence time of the channel.  The coherence time

depends on the rate of movement and the carrier frequency.

The channel attenuates the transmitted signal.  A uniform attenuation across the

entire signal bandwidth is known as flat fading.  While this does not distort the

signal, it is impossible to recover the loss in SNR, unless a method such as

antenna diversity is used to obtain an alternate channel.
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Noise

Noise generally refers to distortion which is independent of the signal of interest.

It arises from sources such as other RF transmitters, electrical devices, and

background electromagnetic emissions.  Noise is also introduced by analog

circuitry at the transmitter and receiver.  Analog and digital circuitry also introduce

distortions, such as quantization and amplifier nonlinearities, that have are

difficult to analyze.  These effects are often modeled as independent noise.

The noise statistics will vary with time and place.  It is a common practice to

model the combined effect of all noise sources as additive white Gaussian noise

injected into the received signal.

2.1.7 Receiver Antenna

The receiver antenna converts the electromagnetic waves in its vicinity into

electrical signals.  The principle of reciprocity may be applied to the

concatenation of transmit antenna, CIR, and receive antenna, to conclude that

their net impulse response will be identical for signal transmission in either

direction.  This is useful for different signals utilizing the same carrier frequency,

and over periods of time in which the CIR does not change appreciably.

2.1.8 RF Amplifier and Bandlimiter

The received signal is filtered to remove components outside of the bandwidth of

the desired signal, and amplified.

2.1.9 Automatic Gain Control

Automatic gain control (AGC) scales the received signal so as to ensure a

relatively constant average power.  This allows analog and digital elements to

minimize distortion due to effects such as thermal noise, quantization noise, and

saturation.  AGC error can result in an arbitrary scaling of the received signal
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which may contribute to data errors if the data symbols are distinguished by

magnitude.

2.1.10 Carrier Demodulation

Carrier demodulation recovers the baseband signal from the passband signal by

multiplication with a sinusoid of the carrier frequency.  The baseband signal has

both I and Q components.  Bandpass filtering is required as part of demodulation

to remove undesired harmonics.  Many systems incorporate heterodyning, in

which the received signal is first demodulated to an intermediate frequency (IF),

then to baseband.

2.1.11 Synchronization and Sampling

The signal experiences some delay in traversing the channel, and the receiver is

required to implicitly estimate this delay in synchronizing itself to the received

signal.  Synchronization is complicated by the time dispersion introduced by the

CIR, which causes the signal that is transmitted at any instant to arrive at the

receiver over a range of delays.  The sampling instant, or timing phase, may be

chosen to coincide with the peak of a received symbol pulse, or to maximize the

received signal power, or by some other criterion.  Little or no information is lost

in discarding the signal content between samples, as the signal has previously

been bandlimited. Qureshi presents a more analytical discussion of the

implications of timing phase [Qureshi, pp. 1372-1373].

Although the CIR h t( ) is physically a continuous function of time, it may be

represented by a sampled equivalent h n( ) if we are only interested in the

received signal after sampling.  For a given h t( ), different h n( ) are available,

depending on the timing phase.  A hypothetical example of a CIR and one

available sampled equivalent are shown in Figure 2.6.
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Figure 2.6: Continuous and Sampled CIR

Unless otherwise specified, the sampling period is equal to the symbol period

Tsym .  In some instances, it is desirable to sample at a higher rate.

If the sampled CIR has more than one nonzero sample, then it is usually

necessary to choose which one corresponds to the main arrival or ray.  All other

nonzero elements represent ISI.  ISI previous to the main ray is precursor ISI,

while that following the main ray is postcursor ISI.  In Figure 2.6, if h 2( )  is

chosen as the main ray, then h 1( ) is a precursor, and h 3( ) , h 4( ), and h 5( )  are

postcursors.

2.1.12 Equalization

Equalization has been defined in a general sense as “any device or signal

processing algorithm that is designed to deal with intersymbol interference.”

[Proakis, 554].  An equalizer may be located at the receiver (a post-equalizer) or

at the transmitter (a pre-equalizer or precoder).  A brief overview of equalization

is found in Section 2.2.  Equalization may be omitted if the amount of ISI is small

enough that system performance is satisfactory without an equalizer.

2.1.13 Detection

The detector applies a decision rule to its input to estimate the original data

sequence.  The simplest rule is to choose the data symbol closest to each input
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sample.  Detection may be an integral part of the equalizer itself.  The detected

symbols are converted to their bit representation.

2.1.14 Criteria for Evaluation of a Digital
Communications System

A wireless digital communications system may be characterized and evaluated

by its performance and the required resources.

Performance:

Data rate is the (equivalent) number of bits which are transmitted and

received per second.

Error performance is usually indicated by the bit error rate (BER), which is

the average probability of a received bit being in error.  The distribution of

bit errors may also be of interest, as some error-correcting schemes are

more effective against independent rather than correlated errors.  The

BER is often given as a function of the SNR at the input to the receiver.

Other performance criteria include outage, range of operation, and

resistance to intentional interference (antijamming).  Not all criteria are

relevant for all systems.

Resources:

Bandwidth is the range of frequencies occupied by the transmitted signal.

To avoid mutual interference, wireless transmissions must be sufficiently

separated by some means, such as time, space, or frequency, or code, in

the case of spread spectrum signals.

Power is required to generate the transmitted signal and to operate

components at the transmitter and receiver.  Power consumption is

especially of concern for battery powered portable units.
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Complexity may be roughly described as the number and sophistication of

basic elements required to implement the system.  Since this thesis

focuses on digital equalization, complexity is usually expressed in the

number of arithmetic operations required by equalization.

Size and Weight - The size and weight affect the mobility and convenience

of use of portable transceivers.

Cost - The financial of designing, producing, and utilizing a

communications system can serve as a general indicator of the resources

required.

2.1.15 System Model for Analysis of
Equalization

In order to focus on the equalization of a wireless communications system, some

parts of the system are simplified.  Figure 2.7 illustrates the simplified model of a

one-way (or half-duplex) system which will be used for the most of this thesis.

QPSK
symbols

noise

d̃ n( )a n( )
CIRpre-equalizer

transmitter channel receiver

equalizer decision
device

Figure 2.7: Simplified Model of Communications System

The pre-equalizer or (post) equalizer may be optional.  The equalizers and CIR

introduce a delay ∆  between transmitted and received symbols.  The correct or
desired received symbol at time n  is a n − ∆( ) , or d n( ).

Modeling of the transmitted signal and channel is simplified through use of the

baseband equivalent [Proakis, pp. 148-153].  This may be roughly described as
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removing the steps of carrier modulation and demodulation, and shifting the CIR

from the passband to the baseband.  H f( ) is effectively replaced by H f − fc( ).
Although the (passband) CIR will be real, its baseband equivalent may be

complex.  Thus, the signal and channel are represented by their complex

baseband equivalents throughout the system.  The benefit of doing so is to

eliminate many redundant computations from time-domain analysis and

simulation.

The CIR and all signals are discrete-time, usually at a sampling rate of 1Tsym .

Samples of the Gaussian noise are independent, with the following probability

distribution for both the real and imaginary parts [Proakis, page 23].

p x( ) = 1
2 π σv

exp
−x 2

2 σv
2







(2.16)

where σv
2 is the variance of the noise.

Full Duplex Communications

The model of a communications system shown in Figure 2.2 illustrates one-way,

or half-duplex, communications.  To achieve bidirectional or full duplex

communications, each of the two communicating transceivers must have a

transmitter and a receiver.  Transmission from the base to the portable is called

the forward link, and transmission from the portable to the base is called the

reverse link.

portablebase

transmitter receiver

transmitterreceiver

channel

channel

forward link

reverse link

Figure 2.8: Full Duplex Wireless Communications System
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Full duplex communications in a wireless system requires separation of forward

and reverse link transmission.  This separation may be accomplished in time,

frequency, code (spread spectrum), or even signal polarization.  Separation in

time, by alternating between forward and reverse link transmission, is known as

time division duplex (TDD).

2.2 Equalization
Equalization originated with the use of linear circuits (loading coils) to

compensate for, or equalize, the non-ideal frequency response of twisted-pair

telephone lines [Qureshi, page 1349].  This is a form of equalization by channel

inversion, in which the frequency response of the equalizer is inversely

proportional to that of the channel.

Equalization has since come to include signal processing applied to compensate

for ISI.  ISI is the time-domain manifestation of a nonconstant frequency

response.  Digital processing for equalization is often performed in the discrete

time domain.  All equalization in this thesis will be performed in this domain.

2.2.1 The Linear Transversal Equalizer

x n( )

y n( )

w0 w1 wNw −1

z −1 z −1 z −1

x n( ) y n( )w

Figure 2.9: Linear Transversal Equalizer
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The simplest digital equalizer is the linear transversal equalizer, shown in Figure

2.9.  It implements the following convolution:

y n( ) = wk x n − k( )
k =0

Nw −1

∑ . (2.17)

The wk  are the filter coefficients or tap-weights.  The transversal filter may be

represented by the vector w,

  
w = w0 w1 L wNw −1[ ]. (2.18)

Variations on the Transversal Equalizer

Other structures, such as the lattice [Haykin, pp. 357-358] may be used to

implement the same arithmetic operation with more desirable numerical

properties, such as reduced sensitivity to finite precision arithmetic.

The transversal equalizer is usually placed at the receiver, but may also be used

as a pre-equalizer, located at the transmitter [Lucky].  This may introduce

undesirable time and frequency domain variations in the power of the transmitted

signal.

A linear feedback equalizer [Proakis, pp. 572-576], implementing Equation 2.19,

is possible, but is generally only useful when the filter coefficients are not
adaptive.  The output y n( ) is given by

y n( ) = w j x n − j( )
j =0

Nw −1

∑ + bk y n − k( )
k =1

Nb

∑ . (2.19)

The performance of a linear feedback equalizer is nearly equivalent to that of a

transversal equalizer.  A feedback equalizer with predetermined and fixed

coefficients may allow for equalization with fewer overall coefficients.  If the

equalizer is to be adaptive, the feedback equalizer must be carefully monitored

for stability.
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Zero Forcing Criterion

Some  means must be established for determining the equalizer coefficients wk .

The zero forcing (ZF) criterion [Qureshi, pp. 1352-1353] [Proakis, pp. 555-561]

provides a solution for the filter coefficients which minimizes the peak intersymbol

interference in the equalized signal.  For example, suppose a ZF transversal

equalizer with 8 taps is applied to the following CIR (Figure 2.10).

h
n (

)

0 2 4 6 8 10

0

0.5

1

n
Figure 2.10: CIR of Channel to be Equalized

Figure 2.11 shows the CIR and equalizer frequency responses.  The equalizer

approximates the inverse of the channel frequency response, which reduces the

ISI in the equalized signal.  In doing so, the equalizer introduces a high gain

around a normalized frequency of 0.2, which will amplify the additive noise.  The

net result is a reduction in ISI at the expense of a reduction in SNR.  In cases

such as this example where the channel frequency response is close to or equals

zero at one or more frequencies (a spectral null), the ZF equalizer is not effective.
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Figure 2.11: Equalizer and Channel (frequency domain)

The effective channel after equalization, q n( ), (Figure 2.12), is the convolution of

the CIR and the equalizer taps.  The frequency response, Q f( ), is shown in

Figure 2.13.

q
n (
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0

0.5

1

    n
Figure 2.12: Equalized Channel (time domain)
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Figure 2.13: Equalized Channel (frequency domain)

Wiener solution

The Wiener solution [Haykin, pp. 158-185] [Qureshi, pp. 1352-1365]  is closely

related to ZF, but is slightly more robust.  It is also known as the minimum mean

square error (MMSE) criterion, as it seeks the equalizer which minimizes J , the

mean-square value of the error signal.

J = E e n( ) 2



. (2.20)

The error signal e n( ) is the difference between the equalizer output y n( ) and the

actual data symbol d n( ).

e n( ) = d n( ) − y n( ). (2.21)

This solution minimizes the combined error due to ISI and additive noise.  When

the SNR is high, the noise is of little effect and the Wiener equalizer approaches

the ZF equalizer.  Figure 2.14 illustrates the frequency responses of an 8-tap

Wiener equalizer at varying SNR’s, for the CIR shown in Figure 2.10.
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Figure 2.14: Frequency Response of Wiener (MMSE) Equalizer

Although this Wiener solution will have lower mean-square error (MSE) than the

ZF solution, both are unable to effectively equalize the given channel due to the

severity of the ISI, or alternatively, the near null in the channel frequency

response.

Minimum Probability of Error (MPE) Characterization

The MPE criterion yields the equalizer characterization which minimizes the

probability of a decision error [Shamash].  Although viewed as superior to the ZF

or MMSE criteria, MPE is considerably more complex.

Fractionally Spaced Equalization

An equalizer with a tap spacing Teq  of less than Tsym  is known as a fractionally

spaced equalizer (FSE) [Gitlin1].  The optimal linear equalizer is equivalent to a

Tsym  spaced equalizer (TSE) with an infinite number of taps and a (continuous

time) receiver filter matched to the received signal characteristics (including

channel distortion) [Qureshi, page 1358].  In practice, a FSE is generally superior

to a TSE as the former can adaptively synthesize an excess bandwidth matched

filter.  As well, a finite-length FSE is better able to synthesize an arbitrary delay

characteristic to compensate for non-ideal timing phase than a finite TSE

[Ungerboeck].
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It might seem that a FSE would require more taps than a TSE, by a factor of

Tsym Teq , so that the time spans of both equalizers are equal.  However, the

FSE can often equalize more effectively than the TSE, with little or no increase in

the number of taps.  A system employing a FSE may enjoy a compensatory

reduction in complexity due to relaxed synchronization requirements.  FSE/TSE

comparisons often use the same number of taps for both equalizers.

2.2.2 The Decision Feedback Equalizer

Structure of the DFE

w f

wb

d̃ n( )x n( )
y n( )

DD

Figure 2.15: Decision Feedback Equalizer

Although decision feedback equalizer (DFE) is classified as a nonlinear

equalizer, its structure is closely related to the linear transversal equalizer.  It is
characterized by Nf  forward  coefficients, and  Nb  feedback coefficients.  The

DFE implements the following input/output relation:

y n( ) = wf j( ) x n − j( )
j =0

Nf −1

∑ + wb k( )d̃ n − k( )
k =1

Nb

∑ . (2.22)

While the quantized data symbol d̃ n( ) is the most useful output in practice, the

estimated symbol prior to quantization is used for analysis of the MSE

performance.  The decision device (DD) selects as its output the data symbol

closest to its input.  Equation (2.23) gives the quantization rule for QPSK.
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Re d̃ n( )[ ] =
−1, Re y n( )[ ] < 0

+1, otherwise





Im d̃ n( )[ ] =
−1, Im y n( )[ ] < 0

+1, otherwise.





(2.23)

When a decision error is made, so that d̃ n( ) ≠ d n( ) , this erroneous input to the

FBF will result in generate an output which exacerbates, rather than cancels,

subsequent ISI.  This generally increases the probability of subsequent decision

errors.  This effect, known as error propagation, also complicates the analysis of

the DFE.  Error propagation is considered to have little impact on BER

performance at high SNR’s as the BER performance degradation due to error

propagation may be overcome with a small increase in SNR.

Some forms of the DFE include a pre-equalizer (a transversal filter) at the

transmitter [Salz] [Salazar] [Yang].  Salazar [Salazar] obtained a formulation for

the DFE in which the FF contributes to the reduction of the postcursor ISI.  The

DFE may incorporate a fractionally spaced FF.  Belfiore and Park [Belfiore]

present a useful review of the DFE along with a modified DFE structure.

Heuristic Explanation

The following heuristic explanation may assist in understanding the rationale for

decision feedback equalization.  Consider that the ISI component of the equalizer

input is deterministic, as it is completely determined by the CIR and the data

sequence d n( ).  With a perfect knowledge of both, an equalizer could perfectly

reconstruct the precursor and postcursor ISI component of the received signal.

The ISI may be subtracted from the received signal to yield the desired data

sequence corrupted only by additive noise.  The noise is not enhanced, as it

would be in the case of a linear equalizer.  Such a method of removing ISI

without enhancing the additive noise would form a highly effective equalizer.

However, this requires knowledge of the data sequence prior to equalization and

detection.  Mueller and Salz [Mueller] investigate the consequences of such ISI

cancellation with prior knowledge of some of the data symbols.
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The DFE exploits the equalizer’s knowledge (with presumably high probability of

correctness) of previously detected symbols to cancel the effect of their ISI on the

current symbol.  Thus, the feedback filter (FBF) removes postcursor ISI.  The

forward filter (FF) is itself a linear filter, which reduces only precursor ISI.  It is

worth mentioning that the FF is dependent on, and will alter, the postcursor ISI in

the CIR. Thus, the FBF coefficients are usually not the negative of the CIR

postcursors.

Minimum Mean Square Error Characterization and
Performance

As with the linear equalizer, the mean square error (MSE) of the DFE is defined

as the mean square value of the difference between the desired and estimated

symbols (Equations 2.20, 2.21).

The MMSE is the minimum achievable MSE, given a CIR, noise power, and DFE

with Nf  forward taps and Nb  feedback taps.  The MMSE coefficients are the FF

and FBF coefficients which yield the minimum mean square output error.  MSE

analysis of the DFE usually neglects the effect of error propagation by assuming

that all past decisions (the input to the FBF) are correct.

An infinite DFE has a FF and FBF with infinite taps.  Although not realizable, the

infinite DFE is sometimes simpler to analyze, and may be approximated by a

DFE with a sufficient number of taps.  From Salz [Salz] the MMSE of an infinite-

length DFE may be shown to be

Jmin = exp Tsym ln
N0

H f( ) 2 + N0












df

− 1
2Tsym

1
2Tsym

∫
























. (2.24)

N0 is the power spectral density of the complex additive white Gaussian

noise.

H f( ) is the Fourier transform of the sampled CIR;
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H f( ) = h n( )e− j 2π f n .
n=−∞

∞
∑

Salz also showed that given a CIR and SNR, an infinite DFE will always achieve

a MMSE equal to or less than an infinite linear equalizer.

The solution for the MMSE and MMSE coefficients for a non-infinite DFE is given

in Chapter 4.  The ZF solution is also applicable to the DFE, but with suboptimal

MSE performance.

Bit Error Rate Performance

Error propagation complicates the BER analysis of the DFE.  The BER may be

determined analytically through the use of relatively benign assumptions, such as

complete precursor cancellation by the FF [Austin].  If one wishes to avoid these

assumptions, simulation is a recourse for estimating the BER performance of the

DFE over a given channel.

The MMSE or ZF coefficients are usually applied to the DFE.  The minimum

probability of decision error (MPE) characterization of the DFE has been

discovered [Shamash] [Belfiore].  This solution has found little application due to

the computational complexity involved, and the satisfactory BER performance of

the simpler MMSE DFE.

Based on the preceding heuristic explanation of the DFE, and its MSE

performance, one might expect that the DFE achieves BER performance superior

to that of the transversal equalizer.  Although analytical results or proof of this are

not generally attainable, simulations indicate that this is true.  The DFE is

significantly superior to the transversal equalizer for channels with spectral nulls.
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2.2.3 Other Nonlinear Equalizers

TH Precoder

d̃ n( )
y n( )

w f

wb

mod DDmoda n( )

noise

CIR

Figure 2.16: Tomlinson-Harashima Precoder

The Tomlinson-Harashima (TH) precoder [Tomlinson] [Harashima] is closely

related to the DFE.  In this context, the mod operator is a function which differs

from the usual mathematical definition of modulo arithmetic, as follows:

If y = mod x  then

y = x + 2kM ,

such that −M ≤ y < M (2.25)

and k  is an integer.

M  is usually set to twice the largest data symbol coordinate.  Other values of M

are possible [Gibbard1, pp. 74-75].  For complex arithmetic, M  is determined and

this mod operator is applied independently to each coordinate.  For example, if
M = 2 then mod 2.5 − j 3 = 2.5 − 4( ) + j −3 + 4( ) = −1.5 + j .

The ZF characterization of the TH precoder is identical to that of a DFE under

equivalent conditions [Pottie].  It has been demonstrated that the MMSE DFE

coefficients, approximated by adaptive training, may be applied to the TH

precoder with similar BER performance [Ebel] [Gibbard3].

An advantage of TH precoding is that a communications link with a TH precoder

at the transmitter does not suffer from error propagation as would a DFE.  This

property is useful when the data has been coded for error correction [Proakis,

page 440].
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Viterbi Decoding

The Viterbi algorithm (VA) is “a maximum likelihood sequence estimator of the

state sequence of a finite-state Markov process observed in memoryless noise”

[Qureshi, page 1366] [Forney].  Although originally developed for use in decoding

convolutional codes, it can also be applied to equalization.

The VA estimates the most likely sequence of transmitted data, rather than

estimating the data symbol-by-symbol.  It offers performance superior to that of

the DFE or TH precoder, at the expense of increased complexity.  The

complexity is proportional to mL−1, where m  is the size of the symbol alphabet

and L is the length of the sampled CIR (including the transmit and receive filters).

2.2.4 Adaptive Equalization

In a wireless communications system, the channel characteristics (CIR, noise

power) are generally unknown.  As well, the channel may be time-varying.

Hence, an equalizer must be adapted to the channel, and possibly updated at

regular intervals.  This equalizer training is generally accomplished by

transmitting a known data sequence (the training sequence).  At the receiver, a

training algorithm is applied to the desired and received signals to characterize

the equalizer.  An estimate of the CIR may or may not be formed as an

intermediate step.

When the equalizer has been characterized, useful data may be transmitted,

equalized, and detected.  In most situations, the detected data has a high

probability of equality to the transmitted data, and can be used to continue

adaptive training.  This is referred to as decision-directed training.  Blind

equalization trains the equalizer without the benefit of an initial training sequence

[Proakis, pp. 587-593].  Decision-directed training and blind equalization are not

investigated in this thesis.
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Implicit Method

The implicit method of training computes equalizer coefficients without forming an

explicit estimate the CIR as an intermediate step.  The LMS and RLS algorithms

may be used to estimate the MMSE characterization of the linear equalizer or the

DFE.

Least Mean Squares (LMS)

The LMS algorithm [Haykin, pp. 299-304] is one of the least complex training

methods, in terms of operations per training symbol.  It utilizes a stochastic

estimate of the gradient of the MSE as a function of the equalizer tap weights.

The weights are iteratively updated to reduce the MSE, according to the
estimated gradient and a step-size parameter, µ .  The length of training

sequence required for convergence is generally longer than other methods, and
varies according to µ  and χ , the eigenvalue spread of the autocorrelation matrix

of the received signal.  If the spectrum of the channel has one or more nulls, χ
will be large, and convergence difficult to achieve.  If µ  is too large, the algorithm

may be become unstable.  LMS training may be applied to the linear equalizer or

DFE.  The LMS algorithm is generally not suitable for an mobile wireless channel

because it cannot converge quickly enough to track changes in the channel.

Least Squares Methods

Least-squares (LS) methods yield a direct solution for the equalizer coefficients

that minimize the sum of squared estimation errors for each training symbol.

Over a reasonable training interval and conditions, this solution converges to the

MMSE solution.  LS methods are available in varying degrees of computational

complexity.  The explicit LS solution requires O N 3( )  arithmetic operations to

obtain the LS solution for an N -tap equalizer.  The Recursive Least Squares

(RLS) algorithm uses the matrix inversion lemma to recursively update the LS

solution for each training symbol, with  O N 2( ) operations per training symbol

[Haykin, pp. 480-485].  The ‘fast’ LS methods yield a recursive solution with

O N( ) operations per training symbol [Haykin, pp. 570-678].
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LS methods converge rapidly, requiring a number of training symbols on the

order of the number of taps, and are relatively insensitive to the eigenvalue
spread of the channel ( χ ).  The main concerns with LS methods are

computational complexity and stability.

The RLS algorithm [Haykin, page 485] is used to investigate adaptive training of

the equalizers in this thesis, except where least squares channel estimation

(LSCE) is specified.

An approximate initialization of the RLS algorithm is obtained by

P 0( ) = δ−1INf +Nb

where δ  is a small positive constant.  A typical value, assuming that AGC scales
the received signal u n( ) to approximately unity magnitude, is δ = 0.01.

INf +Nb
 is the identity matrix of dimensions Nf + Nb .

w 0( ) = 0

For each symbol of the training sequence n = 1,2,... compute

π n( ) = UH n( )P n − 1( )

κ n( ) = λ + π n( )U n( )

k n( ) =
P n − 1( )U n( )

κ n( )

α n( ) = d n( ) − wH n − 1( )U n( )

w n( ) = w n − 1( ) + k n( )α* n( )

P n( ) = 1
λ

P n − 1( ) − k n( ) π n( )( )

u n( ) is the received signal,

  u n( ) = u n( ) u n − 1( ) L u n − Nf + 1( )[ ]T
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d n( ) is the training symbol received at time n ,

  
d n − 1( ) = d n − 1( ) d n − 2( ) L d n − Nb( )[ ]T

U n( ) =
u n( )

d n − 1( )










  wf = wf 0( ) wf 1( ) L wf Nf − 1( )[ ]T  is the FF tap-weight vector.

  
wb = wb 1( ) wb 2( ) L wb Nb( )[ ]T  is the FBF tap-weight vector.

w n( ) =
wf

wb









  is the combined tap-weight vector at time n .

A superscripted H indicates Hermitian transposition, and the asterisk indicates

complex conjugation.

Explicit Method

The explicit method of training first estimates the CIR (and possibly noise power

or statistics), then computes an appropriate set of equalizer coefficients from this

estimate [Shuckla] [Crozier1].  LMS [Shukla] or LS methods [Crozier2] may be

used for the channel estimation.  Explicit training has received both positive

[Shuckla] and mixed [Gibbard1] reviews in the literature.  Implicit training is more

prevalent in practice.  Explicit training is more useful where the sampled CIR is

rapidly varying, with a small number of significant precursor and postcursors.

Training of Fractionally Spaced Equalizers

The LMS algorithm [Gitlin2] and LS algorithms [Falconer] [Cioffi] are applicable to

fractionally spaced equalizers (transversal and DFE).

This thesis uses a straightforward modification of the RLS algorithm for training of

the fractionally spaced DFE.  u n( ) is the received signal with a sampling period

of Teq  (rather than Tsym ), and the training computations are performed once per
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training symbol.  Otherwise, this fractionally spaced RLS algorithm is identical to

the Tsym  spaced version described previously.

2.3 Conclusion
While this overview of communications and equalization is by no means

complete, it is hoped that it will assist the reader in understanding the relevance

and implications of the remainder of this thesis.  Many crucial parts of the

communications system have been omitted, so as to emphasize those parts that

have more relevance to equalization.  The references given in this chapter,

especially the texts ([Proakis], [Haykin]), provide greater depth of coverage of

these topics to the interested reader.
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3. Asymmetric
Equalization

This chapter defines and reviews the concept of asymmetric equalization, and

some previous research in this area.

3.1 Asymmetric Complexity
The complexity of equalization may be roughly defined as the number and

sophistication of components or arithmetic operations required for its

implementation.  This complexity may have a significant effect on the size,

weight, cost, and power requirements of a transceiver.  For example, Gibbard

estimates that equalization of an indoor wireless link is commercially feasible at

data rates of up to about 20 Mb/s, using 2 high-performance programmable DSP

chips (LSI Logic L64260 high speed versatile FIR filter) which would consume 3

watts power [Gibbard1, pp. 100-101].

Symmetric and asymmetric equalization refer to the distribution of complexity

between transceivers.  Symmetric equalization implies an equal distribution of

complexity.  Asymmetric equalization implies an unequal distribution, and more

specifically refers to an intentional shift of complexity from one transceiver to the

other, while maintaining effective equalization of both links.  Full asymmetry is

achieved if all complexity relating to equalization is transferred to one transceiver.

Asymmetric equalization utilizes pre and post-equalization.  In general,

asymmetry is achieved by using pre-equalization and post-equalization at the

base to equalize the forward and reverse links with little or no equalization

performed at the portable.  Figure 3.1 illustrates a hypothetical fully asymmetric

system.
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channel

forward
link

data

BASE PORTABLE

channel

reverse
link

data

pre-equalizer

equalizer

Figure 3.1: Asymmetric System

The complexity of equalization may be divided into two main parts:  (1)

characterization of the adaptive equalizer, and (2) processing or equalization of

the data signal.  Reciprocity may be useful in reducing the complexity of

characterization, by using the same or similar parameters for pre and post-

equalization.

3.2 Target System
This thesis investigates equalization of an indoor wireless communications

system, which will be referred to as the target system.  It is intended to permit

wireless access to wired computer network via a portable computer equipped

with a wireless transceiver.  This transceiver is referred to as the portable.  The

portable communicates with the wired network through a fixed base station,

referred to as the base.

It is assumed that equalization is required to mitigate the effects of ISI, as is

generally the case for indoor wireless communication at symbol rates above 1

MHz [Despins].  As the portable or its surroundings may move during

transmission, the channel is time variant and adaptive equalization is required.

This thesis will only consider the case of a single base and portable.  The

extension to multiple portables and/or base stations is likely in a real system, but
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not considered here.  Another potentially useful extension is to equip the base

with multiple antennas.

Data transmission is in time-division duplex (TDD) format, alternating between

forward and reverse link frames.  Both links utilize the same carrier frequency so

that the passband CIR’s are identical, according to the principle of reciprocity.

The frames are of sufficiently short duration so that the channel changes little

over a pair of subsequent frames.  Thus, adaptive equalization parameters

determined at the beginning of a reverse link frame will be applicable up to the

end of the next forward link frame.

In the target system, the base is stationary and its size and weight are of little

concern.  The size and weight of the portable must be minimized so that it is

convenient to transport and use.  The base has electrical power available from

fixed connections, while the portable must rely on batteries.  The batteries

contribute to the size and weight of the portable, and require charging.  One base

may serve a number of portable units, so the cost of the portables will have a

greater effect than that of the base on the overall cost of the system.

Thus, it is desirable to apply asymmetric equalization to the target system to

reduce the complexity of the portable.

3.3 Previous Results
There are some proposals and results for asymmetric equalization extant in the

literature, although it is often not termed as such.  The term asymmetry, or

asymmetric signal processing, was first applied to the shifting of equalization

complexity by Gibbard et al. [Gibbard3].  The reader is cautioned that the terms

asymmetry or asymmetric are used otherwise in the literature.  For example, it

has been used to refer to an imbalance between the I and Q channels [Sari], or

differing forward/reverse link data rates [Stephens].



40

Zhuang et al. [Zhuang1] propose an asymmetric system employing a linear pre-

equalizer and a DFE.  Reciprocity is exploited in the characterization of the pre-

equalizer.  Another system by Zhuang et al. [Zhuang2] uses nonlinear phase

precoding.

Other asymmetric systems have been proposed, which also exploit reciprocity to

characterize the pre-equalizer [Karr] [Korevaar].

Gibbard System

Gibbard
Precoder

FBF

MOD FF channel

forward
link

data

BASE PORTABLE

MOD DD

DD FF

FBF

channel

reverse
link

dataDFE

Figure 3.2: Gibbard System

Gibbard et al. [Gibbard3] propose an asymmetric system with a DFE and a

modified TH precoder, or Gibbard precoder, located at the base (Figure 3.2).  A

TH precoder normally incorporates a FF at the receiver, but the Gibbard precoder

locates the FF at the transmitter, with similar effect.

The performance of the modified TH precoder is close to that of a normal TH

precoder, which is also close to that of the DFE.  The Gibbard system has been

shown to effectively equalize the indoor wireless multipath channel.

A high degree of asymmetry is achieved as the only equalization function

implemented at the portable is the modulo operation.  Reciprocity is exploited by
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using the DFE parameters to directly characterize the precoder FF and FBF.

Thus, additional training is not required for the forward link equalization.

The precoder is shown to advantageously shape the power spectrum of the

transmitted signal.  Transmit power is reduced at frequencies corresponding to

deep spectral nulls in the CIR.  This is a property of the MMSE (or LS) FF.

Two drawbacks of the Gibbard system are the computational requirements at the

base, and the AGC sensitivity at the portable.  The pre-equalizer requires more

full-precision multiplications per symbol than does the DFE, since the input to the

precoder FBF is not quantized data symbols.

As the FF associated with the forward link is located at the transmitter, it is

unable to adaptively correct for amplitude variations in the received signal.  Thus

the portable must have very precise AGC because any scaling of its received

signal will change the effective modulo operator levels.  An AGC error of 1 dB

may cause a tenfold increase in the BER [Gibbard3].

3.4 Conclusion
Asymmetric equalization is desirable when the complexity of one transceiver

(typically the portable) is to be minimized at the expense of the other (the base).

It can be achieved by combining conventional equalizers, such as the DFE and

TH precoder.  Reciprocity may be useful in the characterization of asymmetric

equalization systems.
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4. The ADFE
This chapter introduces a new equalizer structure, dubbed the asymmetric

decision feedback equalizer (ADFE).  The ADFE system, which employs a DFE

and an ADFE to equalize bidirectional communications, is also introduced.  The

MSE characterization and performance of the ADFE is analyzed and compared

with that of the DFE in Section 4.2.  Section 4.3 presents the training of the ADFE

system.  Section 4.4 outlines the adaptive training of the ADFE system, and

Section 4.5 analyzes the inclusion of a fractionally spaced forward filter in the

ADFE and the ADFE system.

4.1 ADFE and ADFE System

data channel

FBF

FF DD

Figure 4.1: ADFE

The asymmetric decision feedback equalizer (ADFE) is an equalizer which

consists of  a FF at the transmitter, and a FBF at the receiver.  It is similar to the

DFE, described in Chapter 2, which consists of a FF and FBF at the receiver.  In

both equalizers, the FF reduces precursor ISI and the FBF cancels postcursor

ISI.
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Figure 4.2: ADFE system

The ADFE system is a means of equalizing TDD communications between a

base and portable.  It includes a DFE to equalize the reverse link, and an ADFE

to equalize the forward link.  As will be shown, the adaptive characterization and

the execution of the FBF at the portable may be simplified considerably.  This

simplification of the portable unit results in a highly asymmetric equalization

system.

4.2 MSE Characterization and
Performance of ADFE

The MSE often serves as a useful metric of performance of an equalizer, as it

usually leads to a much more tractable analysis than does the BER.  This section

deals with the MSE optimization and performance of the ADFE.  The effect of

error propagation is neglected.
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ADFE Without Power Constraint

a n( )
y n( )

d n( )

e n( )

v1 n( )

h w f

z −∆

z −1wb

+

w f

Figure 4.3: DFE Model

An initial investigation into the MSE performance of the ADFE with an optimum

and infinite-length FF, and no constraint on transmitted power, may be made

using Equation 2.24.

Jmin = exp Tsym ln
N0

H f( ) 2 + N0












df

− 1
2Tsym

1
2Tsym

∫
























. (2.24)

v2 n( )

a n( )
y n( )

d n( )

e n( )

v1 n( )

h w f

z −∆

z −1wb

+

w f

Figure 4.4: Modified DFE Model
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The DFE of Figure 4.3 may be modified by adding another noise source, v2 n( ),

which is not filtered by wf .  The reason for this modification is to obtain a MSE

model that applies to the ADFE.  As the CIR (h) and the FF ( wf ) represent linear

convolutions, they may be commuted without otherwise affecting the system.

Figure 4.3, which incorporates these modifications, approaches an ADFE with

noise v2 n( ), as the power in the noise v1 n( )  approaches zero.  The MMSE of

the ADFE is indicated by the following limit, based on Equation 2.24:

Jmin,ADFE = E v2
2 n( )[ ] + lim

N0→0
exp Tsym ln

N0

H f( ) 2 + N0












df

− 1
2Tsym

1
2Tsym

∫
























. (4.1)

The limit approaches zero as long as H f( ) 2 ≠ 0.  This MMSE ADFE equalizer is

apparently related to the ZF-DFE [Ebel, page 29], as both endeavor to eliminate

ISI without regard for noise.  This result would not be desirable in an

implementation of the ADFE, as the transmit power spectrum may become very

large for frequencies over which H f( ) 2
 is small.  As this analysis places no

constraint on the transmitted power, the optimum FF may introduce an arbitrary

power gain in the transmitted signal and alter the SNR.

ADFE with Power Constraint

For the remainder of this thesis, a modification will be incorporated into the ADFE

to allow for a more realistic analysis.  A gain factor, equal to the inverse of the

norm of the FF, is introduced following the FF.  This gain constrains the

transmitted power so that the received SNR is independent of the FF.  An inverse

gain is inserted at the receiver, as shown in Figure 4.5.

This modification reflects the practical limitation of transmitted power.  A real

system has many gains which are usually not explicitly represented in the

analysis of post-equalizers (such as the DFE) because the FF may introduce an

arbitrary gain without affecting the SNR.
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v n( )

a n( )
y n( )

d n( )

e n( )hw f

z −∆

z −1wb
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Kf

Kf = wf
T w f

Kf
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Figure 4.5: ADFE Model with Constrained Transmit Power

With these two complementary gains, the magnitude of the equalized signal is

approximately equal to that of the desired signal.  If phase modulation (such as

BPSK or QPSK) is used, it is not necessary in practice to estimate and

implement the gain at the receiver, as the output of the decision device is a

function of the phase (not magnitude) of its input.  However, this gain is

necessary for the MSE analysis.

a n( )
y n( )

d n( )

e n( )h w f

z −∆

z −1wb

+

wvv n( )

Figure 4.6: DFE / ADFE Model

Figure 4.6 is equivalent to the modified ADFE of DFE, depending on the
definition of the noise filter wv .  Thus, the following MSE analysis of Figure 4.6 is

applicable to either equalizer.  This analysis assumes BPSK data with real

signals and filters, but may be extended to encompass complex signals and

filters.
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Representations of Filters

  wf = wf 0( ) wf 1( ) L wf Nf − 1( )[ ]T  is the FF of the equalizer.

  
wb = wb 1( ) wb 2( ) L wb Nb( )[ ]T  is the FBF of the equalizer.

  h = h 0( ) h 1( ) L h Nh − 1( )[ ]T  is the sampled channel impulse response.

h k( ) = 0 for k < 0 and k ≥ Nh.

wv  shapes the noise input to the decision device.

wv =
wf DFE

wf
T wf 0Nf −1

T




T

ADFE







z −k  is a delay of k  samples.

As all filters are causal, ∆  is the synchronization delay between transmitted and

detected symbols.

Representations of Signals

a n( ) is the sequence of transmitted data symbols.

P a n( ) = −1( ) = 0.5,
P a n( ) = 1( ) = 0.5,
E a n( )a n − k( )[ ] = δ k( ),

  

A(n) =

a(n) a(n − 1) L a(n − Nf + 1)

a(n − 1) a(n − 2) L a(n − Nf )

M M O M

a(n − Nh + 1) a(n − Nh ) L a(n − Nf − Nh + 2)


















,

d n( ) is the desired symbol, or the symbol to be detected at time n .

d n( ) = a n − ∆( ),

  
d n − 1( ) = d n − 1( ) d n − 2( ) L d n − Nb( )[ ]T .

v n( )  is additive white Gaussian noise.
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E v n( )[ ] = 0,

E v n( )v n − k( )[ ] = δ k( )σv
2,

E v n( )a n − k( )[ ] = 0,

  v n( ) = v n( ) v n − 1( ) L v n − Nf + 1( )[ ]T .

u n( ) is the received signal without the noise component, in the ADFE.  It is the

received signal filtered by the FF and without the noise component, in the DFE.

u n( ) = hT A n( ) wf .

y n( ) is the equalized signal, and the input to the decision device,

y n( ) = u n( ) + wv
T v n( ) + wb

T d n − 1( ).

e n( ) is the error signal,

e n( ) = d n( ) − y n( ).

The MMSE coefficients wf  and wb , which minimize the mean-square error, J ,

are sought.

J = E e2(n)[ ], (4.2)

J = E d (n) − u(n) − wv
T v n( ) − wb

T dNb (n − 1)( )2



 , (4.3)

J = E d 2(n)[ ] + wf
T E AT (n)hhT A(n)[ ]wf +

wb
T E dNb (n − 1)dNb

T (n − 1)[ ]wb − 2 wf
T E d (n)AT (n)[ ]h

−2 wf
T E AT (n)hdNb

T (n − 1)[ ]wb

+wv
T E v n( ) vT n( )[ ]wv .

The following correlation matrices may be used to simplify the above expression.

  

R1 = E AT (n)hhT A(n)[ ] =

rhh (0) rhh (1) L rhh (Nf − 1)

rhh (1) rhh (0) L rhh (Nf − 2)

M M O M

rhh (Nf − 1) rhh (Nf − 2) L rhh (0)


















,
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rhh (k ) =
j =0

Nh−k −1

∑ h( j )h( j + k ),

  

r2 = E d (n)AT (n)[ ]h =

h(∆)

h(∆ − 1)

M

h(∆ − Nf + 1)


















,

R3 = E AT hdT (n − 1)[ ],

  

R3 =    

h(∆ + 1) h(∆ + 2) L h(∆ + Nb )

h(∆) h(∆ + 1) L h(∆ + Nb − 1)

M M O M

h(∆ − Nf + 2) h(∆ − Nf + 3) L h(∆ − Nf + Nb + 1)


















,

J = 1+ wf
T R1wf + σv

2 wv
T wv + wb

T INb wb − 2 wf
T r2 − 2 wf

T R3 wb . (4.4)

For both the DFE and ADFE, wv
T wv = wf

T wf .

J = 1+ wf
T R1 + σv

2 INf( ) wf + wb
T INb wb − 2 wf

T r2 − 2 wf
T R3 wb . (4.5)

The expression for J  may be rendered more compact by combining some

matrices as follows:

w =
wf

wb









 R =

R1 R3

R3
T INb









 p =

r2

0Nb











D  is a diagonal matrix with Dii =  
1,  i = 1,2,...,Nf

0,  i = Nf + 1,Nf + 2,...,Nf + Nb .




J = 1+ wT R + σv
2 D( )w − 2 wT p . (4.6)

Jmin, the minimum mean-squared error, is obtained when [Haykin, pp. 165-171]

w = wMMSE = R + σv
2 D( )−1

p . (4.7)
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The MMSE coefficients wMMSE  identical whether the equalizer is a DFE or an

ADFE.

Jmin = 1− wMMSE
T p. (4.8)

The MMSE, Jmin, is also the same for the DFE and ADFE.  In fact, the MSE in

the case of nonoptimal coefficients is also the same for both equalizers (Equation

4.6).  The ISI component of the error signal e n( ) is identical for both equalizers,

while the noise component is white for the ADFE, and coloured by wf  for the

DFE.

The equivalence of wMMSE  and Jmin for the DFE and ADFE applies when the

sampled CIR, synchronization delay, SNR, and number FF and FBF taps are

identical for both equalizers.  The equivalence of J  also requires that the

equalizer coefficients w  be identical for both equalizers.

In the ADFE system it is desirable to exploit this equivalence result for the

characterization of the ADFE FF.  Reciprocity can guarantee the same

continuous time CIR on the forward and reverse links, over a sufficiently short

time interval.  However, it is not always possible to guarantee identical an SNR

and timing synchronization.  The effect of a forward/reverse link SNR mismatch is

examined in this chapter and in Chapter 6; the issue of timing in the ADFE

system is addressed in Chapter 6.

4.3 ADFE System Training
In the ADFE system, the channel conditions are initially unknown and time-

varying.  Adaptive training is alternated with data transmission to allow the

equalizers to adapt to changing channel conditions.  Training and data

transmission is composed of four steps:

1. Reverse Link Training:  The portable transmits a synchronization and

training sequence.  Any predetermined data sequence of sufficient length

will serve as a training sequence, provided that it is nearly white (its
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magnitude frequency domain representation is nearly constant).  The base

receives this signal, and adapts its synchronization, AGC, and DFE

coefficients.  RLS training is used to achieve equalizer convergence with a

relatively short training sequence.

2. Reverse Link Data Transmission:  The portable transmits a frame of data,

which is received, equalized, and detected by the base.

3. Forward Link Training:  The base uses the FF coefficients from the DFE to

directly characterize the  ADFE FF.  A gain factor may be incorporated to

achieve a desired level of output power.  The base transmits a

synchronization and training signal, which is pre-equalized by the FF.  The

training sequence is designed for reduced-complexity LSCE at the

portable [Crozier2].  The portable estimates the combined impulse

response of the channel and FF, and the negative of the postcursor ISI is

transferred to the FBF coefficients.

4. Forward Link Data Transmission:  The base transmits a frame of data.

Pre-equalization by the FF reduces precursor ISI in the received signal,

and the FBF at the portable cancels postcursor ISI.

The equalization complexity at the portable is reduced to channel identification,

simple synchronization, and implementation of a FBF.  As is shown in Section

4.4, the complexity involved is minimal.

In practice, a “fast” RLS algorithm might be used for reverse link training, in order

to reduce the computational complexity.  A plethora of algorithms and variants,

including lattice structures [Ling] are available.  They generally achieve

convergence similar to RLS, but introduce the problem of instability arising from

finite precision arithmetic.  The RLS algorithm is used for adaptive training in this

thesis, and the selection or design of a more suitable replacement is left to future

research.
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The lengths of the training sequences will depend on the number of equalizer

taps and the nature of the channels.  A rule of thumb for LS based training

algorithms is to use at least twice as many training symbols as equalizer taps.

Chapter 6 presents simulation results on the required lengths of training

sequences for the ADFE system.

SNR Mismatch

The FF coefficients obtained by reverse link training are an estimate of MMSE

coefficients based on the reverse link CIR and SNR.  The forward link CIR is

identical to the reverse link CIR, due to reciprocity and the assumption of

identical timing phase.  The forward link SNR may differ from that of the reverse

link due to differing transmit powers and interferers.  Thus, the ADFE FF is

characterized for a different SNR than it will be applied to.  The following scenario

demonstrates the effect of this SNR mismatch on MSE performance.

Forward Link:  The MMSE equalizer coefficients, wDFE , are determined

for the reverse link.  In practice, they would be approximated by the

portable transmitting a known training sequence and the base applying an

adaptive training algorithm.

Reverse Link:  The base uses wDFE  to directly characterize the ADFE FF.

The remote determines the MMSE FBF by adaptive training.  The forward

link SNR is different from the reverse link SNR.  As both transmit powers

are normalized to unity, this difference is reflected entirely in the noise

power.
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Table 4.1: ADFE System Forward/Reverse Link Parameters

reverse link (DFE) forward link (ADFE)

noise power σv,DFE
2 σv,ADFE

2

optimal coefficient vector wDFE wADFE

coefficient vector used wDFE wDFE

MMSE Jmin,DFE Jmin,ADFE

actual MSE Jmin,DFE JADFE

correlation matrices R , p R , p

The non-optimum (due to the SNR mismatch) forward link MSE, JADFE , may be
expressed in terms of the forward link MMSE, Jmin,ADFE , and the coefficient

error, wADFE − wDFE  [Haykin, page 171].

JADFE = Jmin,ADFE

+ wADFE − wDFE( )T R + σv,ADFE
2 D( ) wADFE − wDFE( ). (4.9)

If wADFE  is close to wDFE , as may be expected if σv,ADFE
2  and σv,DFE

2  are both

small, then the MSE penalty will also be small.

The values of the forward and reverse link MSE may also be compared.

JADFE − Jmin,DFE = σv,ADFE
2 − σv,DFE

2( ) wDFE
T D wDFE

= σv,ADFE
2 − σv,DFE

2( ) wf ,DFE
2
,

(4.10)

where wf ,DFE  is the vector of (MMSE) DFE FF coefficients, such that

wDFE =
wf ,DFE

wb,DFE










.
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If the forward link SNR exceeds the reverse link SNR ( σv,ADFE
2 < σv,DFE

2 ), then

Jmin,ADFE < JADFE < Jmin,DFE (4.11)

and the forward link MSE performance, although suboptimal, exceeds that of the

reverse link.

The effect of SNR mismatch on BER performance is examined in Chapter 6.

4.4 Computational Complexity
In this and subsequent chapters, the ADFE is shown to have performance very

close to that of the DFE.  The principal difference between the two is the amount

and distribution of computational complexity.  In this section, the complexity of

training and of execution (equalization subsequent to training) in the ADFE

system is addressed.

 

All figures for computational complexity are approximate, as they are based on

simplifying assumptions such as 4 real multiplications per complex multiplication

(a complex multiplication can be done with 3 real multiplications), and N

additions to sum N  numbers (N  numbers can be summed using N − 1 additions).

Training

Characterization of the ADFE system equalizers requires the rapid convergence

available from LS based algorithms.  The base uses RLS, or a “fast” RLS

algorithm.  The operations (multiplications and additions) required for training an

N -tap equalizer range from O N( ) to O N 2( )  per training symbol [Haykin].

The portable uses LSCE channel estimation for training.  If a training sequence

with ideal correlation properties is used, the portable requires only one signed

complex addition per training symbol per tap.  As these ‘ideal’ sequences have a

length which increases logarithmically with the number of taps, it may be
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necessary to use a non-ideal sequence, and suffer a slight decrease in accuracy

and/or increase in complexity [Crozier2].

Execution

The FF and FBF filters which compose the ADFE are both transversal FIR filters.

Such filters would normally require a complex multiplication and addition per tap,

but the nature of signals within the ADFE allows for some simplification.  Table

4.2 compares the execution complexity of the DFE, Gibbard precoder, and ADFE

for unidirectional transmission.  The figures given are the number of real

multiplications, additions, and modulo operations required per QPSK symbol.

The ADFE FF and FBF, and the DFE FBF are implemented with signed additions

replacing multiplications, as their inputs are QPSK symbols.  The mulitplications

are the most expensive of these operations in terms of execution time and/or

hardware complexity; the modulo and addition operations are roughly equivalent
in complexity.  Each equalizer has Nf  FF taps and Nb  FBF taps.

Table 4.2: Computational Complexity of Equalizers

transmitter receiver

mult add mod mult add mod

DFE - - - 4Nf 4Nf + 4Nb -

Gibbard 4Nf + 4Nb 4Nf + 4Nb 2 - 2

ADFE - 4Nf - - 4Nb -

The filters which have QPSK symbols as inputs may also be implemented by

using an index, formed  from the bit representation of input symbols, to look up

the filter output in a table.  If separate tables are used for the real and imaginary

parts, the ADFE FF and FBF can be implemented with 4 table lookups and 2 real

additions per QPSK symbol.  The table initialization requirements are N ⋅ 2N +1

real additions for a filter with N  complex taps.  It is possible to implement

subsections of a filter with table lookup and sum the outputs of each section.
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Table 4.3 compares the operations required at the base and portable for 3

equalization systems (bidirectional transmission).  They use a DFE, Gibbard

precoder, and ADFE, respectively, to equalize the forward link.  All use a DFE to

equalizer the reverse link.  The number of real operations required to equalize

one QPSK symbol on each of the forward and reverse links are tabulated.

Table 4.3: Computational Complexity of Equalization Systems

base portable

mult add mod mult add mod

DFE/DFE 4Nf 4Nf + 4Nb - 4Nf 4Nf + 4Nb -

Gibbard 8Nf + 4Nb 8Nf + 8Nb 2 - 2

ADFE 4Nf 8Nf + 4Nb - - 4Nb -

The complexity of the DFE/DFE system is divided evenly between base and

portable.  The other two systems are asymmetric, with a concentration of

complexity at the base.  While the Gibbard system achieves a higher degree of

asymmetry than the ADFE system, the ADFE system has much looser AGC

requirements, which may further simplify the portable.  The ADFE also requires

fewer overall multiplications than the other two systems.  In some situations, it

might be feasible to equalize both the forward and reverse links with an ADFE, so

that no multiplications are required for execution of the equalizers.  In this case,

however, both transceivers would be required to train a FF, which does require

multiplications and is fairly complex.

4.5 Fractionally Spaced Equalization
Reverse Link

The DFE may incorporate a fractionally spaced (FS) FF.  It is expected that this

would  improve performance, or reduce synchronization complexity, by rendering

the DFE essentially insensitive to small (less than Tsym ) variations in timing

phase.  It would also allow the FF to independently manipulate the frequency
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response of the excess bandwidth [Qureshi, page 1365].  Training and

equalization are implemented in much the same manner as for a Tsym  spaced

(TS) FF.  The FS FF may require more taps than a TS FF.

The DFE FBF usually operates with Tsym  spaced sampling, as its input is the

detected data sequence.

Forward Link

The ADFE FF may also be implemented with fractional spacing, being directly

characterized by the DFE FS FF.  The synchronization advantages of the FSE

would be lost in the forward link, since the portable must establish

synchronization independent of the base.  However, the benefit of advantageous

shaping of the excess bandwidth of the transmitted signal would be retained.  In

any case, once the FS FF is obtained for the DFE, it is simpler to re-use it for the

ADFE than to determine a TS FF therefrom.

As in the reverse link, the forward link FBF operates with Tsym  spaced sampling.

However, a fractionally spaced CIR estimate may be useful, as it would allow

synchronization and training to be combined.  A choice of the synchronization

would be made based on the CIR, and then Tsym  spaced postcursor ISI would

be extracted to characterize the FBF.  The ensuing relaxation in synchronization

requirements might offset the increased complexity of FS channel estimation.

MSE Analysis

The MSE analysis of a DFE or ADFE may be generalized from a TS FF to

fractional spacing, with some minor changes to the notation and results.  As in

Section 4.2, the ADFE is constrained to unity transmit power, and the FF is of

finite length.  The MMSE and MMSE coefficients are identical for the DFE and
ADFE, and e n( ) is coloured for the DFE and white for the ADFE.

Analysis of a FSE is  complicated by the need to account for at least two different

sampling periods:  Tsym , the symbol period, and Teq , the sample period of the
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fractionally spaced FF, and the sampling of other fractionally spaced signals.  In

this analysis, all signals and filters (except the FBF) are represented in discrete

time with a sample period of Teq .  Signals that are normally defined at intervals

of Tsym  (such as a n( ) and d n( )) are upsampled and zero-interpolated.  Some of

the vectors and matrices are redefined to accommodate the combination of Teq

and Tsym  spacing.

In this case, the expression a ≡ b mod s( ) implies that a = b + Ks  where K  is an

arbitrary integer.  This differs from the mod operator of the TH precoder.

s = Tsym Tf  is a positive integer (other formulations of the FSE with rational s

are also possible).

a n( ) =
±1, n ≡ 0 mod s( )
0, otherwise.





  
d n − s( ) = d n − s( ) d n − 2s( ) L d n − Nb s( )[ ]T

y n( ) = u n( ) + wv
T v n( ) + wb

T d n − s( )

J = E e2 n( )[ ], n ≡ ∆ mod s( )
(4.12)

R1 is a matrix with elements

R1 i , j( ) =
k +i −∆≡1 mod s( )

k =0

Nh −1

∑ h k( )h k − i + j( ), i , j = 1,2,...,Nf . (4.13)

  

r2 =

h(∆)

h(∆ − 1)

M

h(∆ − Nf + 1)



















R3 is a matrix with elements

R3 i , j( ) = h js − i + ∆ + 1( ),
i = 1,2,...,Nf

j = 1,2,...,Nb .
(4.14)
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w =
wf

wb









 R =

R1 R3

R3
T INb









 p =

r2

0Nb











D  is a diagonal matrix with Dii =  
1,  i = 1,2,...,Nf

0,  i = Nf + 1,Nf + 2,...,Nf + Nb .




J = 1+ wT R + σv
2 D( )w − 2 wT p (4.15)

wMMSE = R + σv
2 D( )−1

p
(4.16)

4.6 Conclusions
In this chapter, the ADFE and the ADFE system were introduced.  The MSE

performance and MMSE characterization of the ADFE with and without a

constraint on transmitted power was given.  The analysis of the power-

constrained ADFE was formulated to also encompass the DFE, and it was shown

that both equalizers share the same MSE performance and MMSE coefficients,

under equivalent conditions.

An efficient method of adaptively training the DFE and ADFE in the ADFE system

was presented.  Efficient LSCE [Crozier2] is directly applicable to training the

portable, while a fast RLS algorithm may be selected for training the base.

A potential SNR mismatch in the ADFE system is discussed and the ensuing

MSE degradation is quantified.

The computational complexity, measured in the number of arithmetic operations,

is tabulated for the DFE, Gibbard precoder, ADFE.  As well, the complexity of

three different systems, employing each of these three equalizers on the forward

link, is compared.  Although the ADFE system does not achieve as high a degree

of asymmetry as the Gibbard system, it has looser AGC requirements at the

portable and reduced overall complexity.
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The MMSE characterization and performance of the fractionally spaced ADFE

was also presented.
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5. Markov Model of Error
Propagation

While the BER may be close to the ultimate measure of performance of a digital

communications system [Belfiore] it is very difficult to determine for a DFE

system, due to error propagation (Section 5.1).  Section 5.2 describes how

simulation is used to estimate BER performance of equalizers in this thesis.

Section 5.3 presents an exact method of modeling error propagation in the

ADFE.  This method leads to interesting results for the correlation of decision

errors, which are presented in Section 5.4.

5.1 Decision Errors in the DFE
A decision error occurs when the output of the decision device differs from the

desired symbol, which happens when distortion drives the input to the decision

device closer to another symbol value than to the desired symbol.  The signal

input to the decision device experiences distortion due to noise, precursor ISI,

attenuation of the desired signal, and postcursor ISI.  With the assumption of a

linear AWGN channel, the noise distortion will be Gaussian, but not white, as it is
filtered by the forward filter wf .

The precursor ISI is non-Gaussian, and arises from imperfect precursor

cancellation by the forward filter.  Although an infinite ZF FF will eliminate

precursor ISI, its overall performance is inferior to that of the MMSE FF, due to

noise amplification.

The MMSE FF may reduce the magnitude of the equalized main ray.  Although

this may appear to be counterproductive, it does reduce the mean-squared error

by suppressing noise.  In most cases, the effect of this attenuation is small,

especially when the SNR is high.  For example, this attenuation is equivalent to a
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multiplicative factor of 0.9629 for a [1 2 1] sampled CIR with many (50) forward

taps, and a SNR of 20 dB.  Although the attenuation affects the MSE, it will not

affect the probability of bit error if the quantizer output depends only on the sign

of its input, as in BPSK or QPSK signaling.

Non-ideal values of the feedback coefficients wb , or an insufficient number of

feedback taps, will give rise to non-Gaussian postcursor ISI at the decision

device.

Analysis of DFE decision errors may be simplified by assuming that at the input

to the decision device the noise is Gaussian and white, that there is no precursor

ISI, and that the feedback taps are of sufficient number and exact values to

eliminate postcursor ISI [Altekar] [Monsen2] [Austin].

If a decision error is made (i.e. d̃ n( ) ≠ d n( )) then the feedback filter will

contribute to, rather than remove, postcursor ISI.  The net effect is to double the

postcursor distortion.  This effect is known as error propagation.  It has a

significant effect on the error performance of the DFE, and complicates the

analysis considerably.

Austin [Austin] used a finite discrete Markov process to model the effect of error

propagation and predict the BER of a DFE system.  As the number of states

required grows exponentially with the number of significant postcursors, this

method is impractical if the number of precursors, postcursors, and equalizer

taps is moderately large.

Subsequent authors [Altekar] [Duttweiler] have used a reduced state

representation of error propagation to derive upper bounds on the probability of

error.
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5.2 BER Estimation by Simulation
For many equalizers, including the DFE, simulation is used to estimate BER

performance under specific conditions.  Digital and analog signals within the

system  are represented digitally within a simulation program which runs on a

computer.  Simplifications such as additive white Gaussian noise and the

baseband equivalent CIR are used to reduce the number of computations and to

supplement the imperfect knowledge of the system being modeled.

The detected data symbols are compared to the desired (transmitted) ones and

bit errors are counted.  The BER is simply the ratio of bit errors to the total

number of transmitted bits.  Due to the random nature of error events, it is

desirable to collect a significant number of errors to improve the accuracy of this

estimate of the BER.  At low bit error rates, the number of transmitted bits (and

the computational load) can become quite large.  For example, to collect 100 bit

errors for a BER of 10−5 requires transmission of 107  bits.  In this thesis, at least

100 errors are collected per BER estimate, unless otherwise stated.  If a

maximum number of bits (typically 107) is transmitted before 100 errors are

collected, the simulation is halted and no BER result is presented for that

particular trial.

Data is transmitted in frames of at least 2000 symbols (BPSK or QPSK).  While

using finite-length data frames will interrupt error propagation, the effect should

be negligible at low error rates.  In any case, an implementation of the ADFE

system would also regularly interrupt data transmission in either direction to

accommodate TDD transmission.

5.3 Error Propagation in the ADFE
The Markov state model may be applied to the ADFE without any need for

assumptions regarding the statistics of filtered noise, nor precursor elimination.

Although not applied in this thesis, the assumptions of precursor elimination and
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ideal feedback coefficients could be used to reduce the number of states.  The

following model is assumed for analysis of the ADFE in this thesis.

v n( )

y n( )

wb k( )

q k( ) ˜ d n( )d n + ∆( )
u n( )

Figure 5.1: ADFE System

wf k( ), k = 0,1,...,Nf − 1 are the pre-equalizer coefficients.

h k( ), k = 0,1,...,Nh − 1 is the channel impulse response.

d n + ∆( ) are data symbols to be transmitted.

v n( )  is the additive white Gaussian noise.

The pre-equalizer and channel impulse response are combined by convolution to
form q k( ) .

q k( ) = h j( )wf k − j( )
j =0

Nh −1

∑ , (5.1)

Nq = Nh + Nf − 1, (5.2)

u n( ) = q k( )d n + ∆ − k( ) +v n( )
k =0

Nq −1

∑ , (5.3)

y n( ) = u n( ) + wb k( )d̃ n − k( )
k =1

Nb

∑

= q k( )
k =0

Nq −1

∑ d n + ∆ − k( ) +v n( ) + wb k( )d̃ n − k( )
k =1

Nb

∑ ,

(5.4)

d̃ n( ) =
−1, y n( ) ≤ 0

+1, y n( ) > 0.





(5.5)
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The state of the system may be defined by

  

Sj =
d n − ∆ − k( ), k = 0,1,...,Nq −1

d̃ n − k( ), k = 1,2,...,Nb









=
d n + ∆( ) d n + ∆ −1( ) L d n + ∆ −Nq +1( )

d̃ n − 1( ) d̃ n − 2( ) L d̃ n − Nb( )











.

(5.6)

For simplicity, BPSK is assumed for this analysis, and all signals are assumed to

have no imaginary component.  Other modulations such as QPSK may be

represented with complex arithmetic, with an increased number of system states.

As each data symbol may take on the values ±1, and the number of states is

2
Nq +Nb .  Each state has four nonzero transition probabilities as d n + ∆ + 1( ) = ±1

and d̃ n( ) = ±1.  The nonzero transition probabilities are

Pij = P d̃ n( ) = −1, d n + ∆ + 1( ) = −1 Si  ( )
= 1

2 P y n( ) ≤ 0 Si( ).
(5.7)

y n( ) is a Gaussian random variable with mean

my = q k( )d n + ∆ − k( )
k =0

Nq −1

∑ + wb k( )d̃ n − k( )
k =1

Nb

∑ (5.8)

and variance

σy
2 = E v 2 n( )[ ]. (5.9)

Thus the four transition probabilities are given by

P d̃ n( ) = −1, d n + ∆ + 1( ) = ±1 Si  ( ) = 1
4 erfc

my

2 σy









 (5.10)

and

P d̃ n( ) = +1, d n + ∆ + 1( ) = ±1 Si  ( ) = 1
4 erfc

−my

2 σy









 . (5.11)
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The state transition matrix may be filled in by computing the probabilities of all

possible transitions.  The state probabilities Pi  and BER can be computed from

the transition matrix.  This BER includes the effects of ISI, noise, and error

propagation.  Figure 5.2 compares ADFE BER results obtained by Markov model

and by simulation.

Markov model
simulation  

0 5 10 15 20

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

SNR (dB)

Figure 5.2: Markov Model and Simulation Results

Table 5.1 Parameters for Figures 5.2 - 5.4

CIR [ 1 2 1 ]

equalizer ADFE
Nf

Nb

3

1

characterization MMSE

The BER in the absence of error propagation may be determined from the state

probabilities as the probability of a bit error given no prior errors.  Figure 5.3

shows the BER of the ADFE with and without error propagation.
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Figure 5.3: BER with and without Error Propagation

In the range from 15 to 20 dB SNR, the BER increases by approximately a factor

of 5 due to error propagation.  However, the SNR penalty (the increase in SNR

required to compensate for error propagation) is small (about 1 dB) because the

BER curve becomes steep for higher values of the SNR.

This method of modeling error propagation may be applied to the ADFE with a

FS FF.  In this case, the number of states is 2
Nq +Nb  where Nq  is the number of

contiguous nonzero elements in the Tsym  spaced convolution of the FF and CIR.

5.4 Error Event Correlation
The error event function ε n( )  is defined to assist in the examination of error

propagation and correlation.

ε n( ) =
0, d̃ n( ) = d n( )
1, d̃ n( ) ≠ d n( ).






(5.12)

The error event autocorrelation function, φεε k( ), is defined as follows.
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φεε k( ) = E ε n( ) ε n − k( )[ ]
= P ε n( ) = 1, ε n − k( ) = 1( ).

(5.13)

Two properties worthy of mention are:

1. The zeroth lag autocorrelation is the average probability of bit error, or the

BER.

2. If errors are independent, then the autocorrelation at all nonzero lags is

the probability of error squared.

The second property may be used to examine the degree of correlation between

errors.  If the autocorrelation is close to the error probability squared, then errors

are nearly independent.  For this reason, the squared error probability is shown

for comparison in the following graph.
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Figure 5.4: Autocorrelation of Error Event function

Figure 5.4 sheds further light on the nature of error propagation in the ADFE.  At

higher SNR’s, the probability of a single error is only slightly greater than that of

two or three consecutive errors.  This would indicate that error propagation has a
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significant impact on performance.  However, these probabilities decrease

sharply with increasing SNR, hence the small SNR penalty.

This high probability of errors following an initial error may significantly affect the

performance of error-correcting codes applied to the data stream.  Such codes

generally perform best against uncorrelated errors [Proakis, page 440].

Interleaving of the data stream may be required to decorrelate error events.

5.5 Conclusion
In this chapter, a Markov model was shown to effectively model the effects of

additive noise, residual precursor ISI, and error propagation to determine the

BER performance of an ADFE link with a small number of CIR samples and

equalizer taps.  In addition, information on error propagation was extracted from

the state transition matrix and an error event correlation function was defined and

plotted.  The program used to implement these computations is listed  in the

Appendix.

The speed of computation and accuracy of results are two principal advantages

of this method over simulation.  One caveat for the Markov model is that it may

yield unreasonable results, such as a negative BER, when the expected BER is

small (lower than 10−9).  This is probably due to the limited (albeit high)

numerical precision used to initialize and solve the state transition matrix.
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6. Non-Idealities
As implementation of the ADFE system to establish its performance is beyond

the scope of this thesis, modeling and simulation are used to predict

performance.  The accuracy of these results is limited by the accuracy and

completeness of the models.

The simplified model of a communications system, shown in Figure 2.7 and

applied in Chapter 5, may serve as an initial indication of the performance of the

ADFE.  However, this model omits a number of non-idealities which are expected

in a real system.  It is of interest to examine the effect of these non-idealities on

system performance, as measured by BER, to achieve a better indication of how

a full implementation would behave.

Each section of this chapter considers only one, or a few, non-idealities.  This

piecemeal approach has the advantage of limiting the complexity and quantity of

results.  The disadvantage is that the results are less conclusive, as the

combined effect of multiple nonidealities is not given.  The intent of this chapter is

not to provide an exhaustive tabulation system performance under real

conditions, but rather to indicate the probable extent of degradation due to

expected non-idealities.

Section 6.1 examines the effect of SNR mismatch on BER and MSE.  Although

this effect stems from reverse link training in the ADFE system, it is manifested

only on the forward link.  Hence, this investigation is confined to the ADFE.

Certain conditions are shown to precipitate an improvement, rather than

degradation, in BER performance due to an SNR mismatch.  The concept of a

SNR mismatch was introduced in Section 4.3.

Section 6.2 examines the effect of timing error on BER performance of the ADFE

system forward and reverse links.  The performance of synchronous and
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fractionally spaced equalizers is compared.  As well, a joint timing sensitivity

peculiar to some asymmetric systems is introduced and examined.

Section 6.3 presents results based on adaptive training for characterization of the

equalizers of the ADFE system.

Section 6.4 examines the effect of finite precision arithmetic on the performance

of the ADFE, along with comparison to the Gibbard precoder.

6.1 SNR mismatch
In the ADFE system, the forward link is pre-equalized by a FF which is adaptively

characterized by the reverse link CIR and SNR.  While the principle of reciprocity

implies that the forward link CIR will be identical to the reverse link CIR, the SNR

will probably differ.  This SNR mismatch is investigated by determining the

performance of an ADFE at an execution SNR (the forward link SNR), which

differs from the MMSE characterization (reverse link) SNR.

As the role of the forward link (ADFE) FBF is to cancel postcursor ISI, it is

determined entirely by the FF and CIR, and is independent of the forward link

SNR.  For this reason, the FF is of greater interest in investigating the effect of

SNR mismatch and is given greater emphasis in the following results.

Figures 6.1 and 6.2 illustrate the effect of the SNR mismatch on MSE and BER

performance.  As one would expect, Figure 6.1 indicates that the minimum MSE

is obtained when the characterization SNR and execution SNR are equal.  A

SNR mismatch appears to introduce a moderate degradation.
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Figure 6.1: MSE Performance of ADFE with SNR Mismatch

The BER results are not so straightforward.  For the given CIR, it appears to be

advantageous to characterize or train at a fixed SNR of about 10 dB, regardless

of the execution SNR.  This illustrates the discrepancy between the MMSE and

MPE criteria.
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Figure 6.2: BER of ADFE with SNR Mismatch
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Table 6.1: Parameters for Figures 6.1, 6.2

equalizer ADFE

CIR [ 1 2 1 ]

delay 1
Nf

Nb

4

1

data format BPSK

BER Markov model

equalizer characterization MMSE

Further experiments reveal that the effect of SNR mismatch varies considerably

with CIR and equalizer.  A thorough analysis might be able to extract the

underlying principles and derive algorithms for enhancing performance of real

systems, but that is beyond the scope of this work.  Instead, the remainder of this

section illustrates some of the implications of the SNR mismatch under different

conditions, with some hypotheses regarding the causes.

SNR Mismatch with Other Channels

Consider the sixteen different sampled CIR’s represented by ±1 ±2 ±2 ±1[ ].  As

it is expected that a CIR and its negative will exhibit identical performance, eight

are chosen (leaving behind their negatives) to form a subset of CIR’s for further

investigation of SNR mismatch.

These eight CIR’s are grouped into pairs, for ease of viewing and comparison,

according to the following criteria in descending order of priority:

1. BER performance under SNR mismatch

2. similarity of magnitude frequency spectrum (symmetry about the

normalized frequency f = 0.25)

For each pair of channels, three figures are shown:

1. BER versus characterization SNR
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2. magnitude of the frequency spectra of the CIR’s

3. magnitude of the frequency spectra of the FF’s (characterized at 20 dB

SNR)

As BER performance over these channels varies considerably, the execution

SNR’s are adjusted to bring the BER’s into ranges which meet reasonable

performance objectives yet do not exhibit numerical problems (see Section 5.4).

Table 6.2: Parameters for Figures 6.3 - 6.11

equalizer ADFE

CIR A

B

C

D

E

F

G

H

[  1  2  2  1 ]

[ -1  2 -2  1 ]

[ -1 -2  2  1 ]

[ -1  2  2 -1 ]

[ -1  2  2  1 ]

[  1 -2  2  1 ]

[  1  2  2 -1 ]

[  1  2 -2  1 ]

delay 1
Nf

Nb

4

2

data format BPSK

BER Markov model

equalizer characterization MMSE
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Figure 6.3: BER of ADFE with SNR Mismatch (execution SNR 21 dB)
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Figure 6.5: Frequency spectra of ADFE FF (characterized at 20 dB SNR)
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Figure 6.6: BER of ADFE with SNR mismatch (execution SNR 15 dB)
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Figure 6.7: Frequency Spectra of CIR’s
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Figure 6.8: Frequency Spectra of ADFE FF (characterized at 20 dB SNR)
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Figure 6.9: BER of ADFE with SNR Mismatch
(execution SNR:  13 dB for CIR E, 19 dB for CIR F)
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Figure 6.10: Frequency Spectra of CIR’s
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Figure 6.11: Frequency Spectra of ADFE FF (characterized at 20 dB SNR)
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Fourth Pair of Channels (G, H)
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Figure 6.9: BER of ADFE with SNR Mismatch
(execution SNR:  18 dB for CIR G, 13 dB for CIR H)
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Figure 6.10: Frequency Spectra of CIR’s
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Figure 6.11: Frequency Spectra of ADFE FF (characterized at 20 dB SNR)
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Although the magnitudes of precursors and postcursors are identical for all of

these six channels, the BER performance varies considerably.  Channels A and

B exhibit an especially curious BER sensitivity to SNR mismatch. Channels C, D,

F, and H  have good BER performance at any training SNR above about 10 dB.

Channel A, Revisited

Figure 6.12 shows the BER versus characterization SNR for CIR A, for the ADFE

and DFE.  The number of FF taps is increased from 4 to 5.  This does not appear

to alter the general shape of the BER curve.

ADFE (Markov model)

DFE  (simulation)  
ADFE (simulation)  
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Figure 6.12: BER of ADFE and DFE with SNR Mismatch

It appears that the Markov model results are supported by simulation of the

ADFE, and also that the DFE exhibits a similar sensitivity to SNR mismatch.

Figure 6.13 examines a number of signal components (residual precursors, MSE,

FF norm, FBF) within the DFE/ADFE which are related to BER performance.

Variations in any of these parameters which coincide with the BER minima may

indicate the cause of these minima.
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Table 6.3: Parameters for Figures 6.12, 6.13

equalizer ADFE, DFE

CIR [  1  2  2  1 ]

SNR 21 dB

delay 1
Nf

Nb

5

2

data format BPSK

BER Markov model and simulation

equalizer characterization MMSE

For both the DFE and ADFE, residual precursor ISI is defined as the precursor

ISI present in the convolution of the FF and CIR.  The residual precursor metric is

the squared sum of the magnitudes of the residual precursor ISI.  This metric is

normalized by the magnitude of the main ray of the convolution of the FF and

CIR.  As the SNR is high, it is suspected that this peak distortion (to borrow the

term from zero forcing equalization) may play a dominant role in decision errors.
Hence, this metric, rather than the L2 norm, is used to indicate the degree of

residual precursor ISI.  A metric greater than unity would indicate that a decision

error may be caused by residual precursor ISI alone.

The MSE is the mean square error in the estimated (unquantized) equalizer

output.

The FF norm is the L2 norm of the FF coefficients.  This serves as an indication

of the (effective) noise amplification, based on the DFE/ADFE model of Figure

4.6.

The FBF metric is the squared sum of the absolute values of the FBF

coefficients.  As with the residual precursor ISI, this metric is selected instead of
the L2 norm as it is expected to be more indicative of decision errors, and error

propagation as well.
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Figure 6.13: Signal Components within DFE/ADFE

The only parameter whose behavior appears to correlate with BER behavior is

the residual precursor metric.  There appears to be an abrupt change in slope of

this curve at 1.4 dB and 15 dB, the locations of the BER minima.  The results

shown in Figure 6.13 do not seem to provide sufficient information to draw

conclusions regarding relationship of BER to characterization SNR.  Such

knowledge, if obtained, might provide insight into the general problems of SNR

mismatch and nonlinear feedback equalizer performance.

6.2 Sensitivity to Timing Error
Timing or synchronization involves both the timing phase and the choice of the

main ray (of the sampled CIR).  This section investigates the effect of timing error

on the reverse and forward links of the ADFE system, for equalizers with a Tsym

spaced and fractionally (Tsym /2) spaced FF.  Variable timing is obtained from the

CIR by interpolation with an RC (TSE) or SQRC (FSE) pulse shape followed by

resampling.  The received signal energy before (down) sampling is maintained

constant, to simulate the effect of a constant SNR at the receiver input.  Thus, the

SNR after sampling will vary with the timing phase of the receiver. All equalizer

coefficients are permitted to adapt to the timing error imposed as it is presumed

that the timing phase will be maintained constant during training and reception.
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Reverse Link (DFE)

In the ADFE system, the base receiver must establish an appropriate

synchronization (timing phase and choice of main ray) to the reverse link signal,

prior to or as part of the DFE training.  This choice of timing will affect the reverse

link performance.  Figure 6.14 illustrates the effect of varied  synchronization on

the BER of the reverse link, for a DFE with a TS FF and a FS
 
FF.
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Figure 6.14: BER Timing Sensitivity of Reverse Link (DFE)

Table 6.4: Parameters for Figures 6.14 - 6.17

CIR [ 1 2 1 ]

SNR 15

delay 1
Nf

Nb

5

1

data format BPSK

FF, FBF characterization MMSE

DFE BER

ADFE BER

simulation

Markov model, except as noted

For the selected channel, the DFE FF is able to synthesize the appropriate timing

over a fairly wide range of delays.  Despite the prediction of Qureshi [Qureshi,
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page 1373], there is no apparent advantage in timing sensitivity from using a FS

FF.  However, it would be rash to draw a general conclusion without investigation

of different channels, SNR’s, and filter lengths.

Forward Link (ADFE)

On the forward link of the ADFE system, the task of synchronization is shared to

some degree by transmitter and receiver, as the choice of main ray is

predetermined by the FF at the transmitter (at the base).  This may simplify

synchronization at the portable.  However, as the receiver (at the portable) must

synchronize to the predetermined main ray, the receiver has practically no

freedom in selecting the main ray.  As the receiver has no FF, there is no

opportunity to synthesize a delay characteristic, and very little timing error can be

tolerated.

Figure 6.15 shows the effect of forward link timing error on the forward link

performance.  The reverse link timing, used to characterize the FF, is fixed at the

near-optimal values (by inspection) of −2Tsym  for the TSE and 0 for the FSE.
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Figure 6.15: BER Timing Sensitivity of Forward Link (ADFE)

The timing sensitivity of the ADFE receiver might be reduced by employing a

fractionally spaced channel estimator.  A simple heuristic could select a main ray

with minimal relative residual precursor ISI, possibly taking into account the



84

amount of postcursor ISI.  The increased complexity of training, due to the

increased number of taps, might be compensated for by an improvement in

performance and simplification of synchronization.

Joint Timing Error

 Joint timing error refers to the effect of timing error in the characterization of the

FF on the ADFE (the forward link of the ADFE system) performance.  This timing

error in the FF arises from timing error during reverse link training of the DFE FF

and FBF, as the FF is re-used for the forward link.

The previous experiment, involving forward link timing error, assumed suitable

values for the reverse link timing, which is applied to the FF characterization.

This filter is characterized according to the CIR, timing phase, and delay

established in reverse link training, and is subsequently made part of the effective

forward link channel for the purposes of timing recovery, training, and data

transmission.  A poor choice of reverse link timing will be reflected in the forward

link performance.

Figure 6.16 illustrates the effect of reverse link timing (used to characterize the

FF) on the forward link ADFE performance.
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Figure 6.16: BER Joint Timing Sensitivity of Forward Link (ADFE)
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The FSE seems to impart the benefit of reduced sensitivity of the forward link to

reverse link (training) timing error.  There is no apparent explanation for why the

TS DFE (Figure 6.14) exhibits less timing sensitivity than the TS ADFE (Figure

6.16).  One might ask if this is an erroneous conclusion, due to the ‘noisy’ nature

of the DFE simulation results.  The ADFE curves are much smoother as they are

determined by Markov model.  Because of this question, the ADFE BER timing

sensitivity was also determined by simulation, and the result is shown in Figure

6.17.
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Figure 6.17: Joint BER Timing Sensitivity of Forward Link, by Simulation

Although ADFE results by simulation are not as smooth as those by Markov

model, the Tsym  spaced ADFE sensitivity to reverse link (training) timing is still

evident in Figure 6.17.  This supports the hypothesis that the TS ADFE is more

sensitive to timing error (in the FF) than is the TS DFE.

This foregoing investigation of joint timing sensitivity has assumed near-optimal

reverse link timing, which affects the characterization of the ADFE FF.  An

investigation of the effect of combined forward and reverse link timing error on

the forward link performance was performed, using the parameters of Table 6.4.

The results, best presented in three dimensions with BER as a function of the two

timing errors, are not shown here.  Figure 6.16 illustrates a slice of this surface

with at zero forward link delay.  When the reverse link delay is varied in either
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direction, the BER at any reverse link delay increases rapidly, after the manner

shown in Figure 6.15.

6.3 Adaptive Training
The ADFE system uses RLS training (or a “fast” RLS variant) to characterize the

DFE, and the ADFE FF.  LSCE is used to characterize the ADFE FBF.  These

forms of training approximate the MMSE solution.  The MMSE solution itself is

used in most parts of this thesis for simplicity and in order to isolate the

examination of other factors from training.  It is valuable to compare the

performance of adaptive training with MMSE characterizations to validate this

substitution and to examine the required training length for a selected channel.

Figures 6.18 and 6.19 compare equalizer BER performance with MMSE

characterization and adaptive training.  While MSE is often used to evaluate

equalizer convergence, the BER is more indicative of actual performance.  It was

shown in Section 6.1 that subtle differences in MSE characterization and

performance may have a significant impact on BER performance.
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Figure 6.18: DFE Adaptive RLS Training
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Table 6.5: Parameters for Figure 6.18

equalizer DFE

CIR [ 1 2 1 ]

SNR 17 dB

delay 1
Nf

Nb

4

1

data format BPSK

BER simulation

FF, FBF characterization RLS
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Figure 6.19: ADFE FBF Adaptive LS Training

It appears that equalization with adaptive training is able to approximate the BER

performance of MMSE coefficients, provided that a training sequence of sufficient

length is used.  An equalizer with more taps would generally require longer

training to converge, but the required training length is expected to be linear with

the number of taps.  A rule of thumb for LS training is that the training sequence

be about twice the number of equalizer taps.
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Table 6.6: Parameters for Figure 6.19

equalizer ADFE

CIR [ 1 2 1 ]

SNR 17 dB

delay 1
Nf

Nb

4

1

data format BPSK

BER Markov model

FF characterization RLS (320 training symbols)

FBF characterization LSCE

6.4 Finite Precision
The accuracy of the output of equalizer structures in the ADFE system is affected

by the precision of the input data and that of the internal arithmetic operations.

The relationship between numerical precision and performance is difficult to

analyze, especially if the metric of performance is the BER.

The effect of finite precision arithmetic was modeled by including into the FIR

structures (FF, FBF) a nonlinear and memoryless quantization operation.  The

effect of finite precision on training is not analyzed.

The quantization operation is defined as follows:

Let B   be the effective number of bits (precision) of the quantizer.

Let C  be the low saturation level of the quantizer.

Let D  be the high saturation level of the quantizer.

Define 2B  equidistant points between C and D (inclusive) as the set of

quantizer levels.

The quantizer output Q x[ ] is the quantizer level which is closest to its

input x .
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The quantization operation was incorporated into the FIR structure by quantizing

the operands and products of all multiplications, and the filter output itself.  One

possible effect not modeled is that of quantizer saturation, due to an intermediate

sum lying outside of the saturation levels.  A fixed-point implementation of an

equalizer could easily (with little added complexity) avoid this undesirable effect

by using extended precision to represent intermediate sums.

If an FIR filter has coefficients w k( )  and an input signal x n( ) , the effect of finite

precision is modeled as follows:

wQ k( ) = Q w k( )[ ]
xQ n( ) = Q x n( )[ ]

yQ n( ) = Q wQ k( )xQ n − k( )
k =0

Nw −1

∑











.

(6.1)

yQ n( ) is the output of the finite-precision arithmetic FIR filter.

Figure 6.20 illustrates the quantizer input/output characteristic for B = 4 bit

precision, with saturation levels C = −10 and D = 10.
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Figure 6.20: Quantizer Input/Output Characteristic
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For the results of this section, the saturation levels of the quantizer were fixed at

C = −10 and D = 10.  In all cases, the quantizer inputs were never outside of

these bounds, so that quantizer saturation was not an issue.

Figures 6.21, 6.22, and 6.23 illustrate the performance of the ADFE and Gibbard

precoder with finite precision arithmetic.  Results for the Gibbard precoder are

included as its performance with finite precision arithmetic is of interest, for

comparison with the ADFE.  The highest precision of 128 bits is beyond the

internal precision of the computer used to implement the simulation (about 52),

so this region of the figures reflects performance with high-precision floating-point

arithmetic.

ADFE            
Gibbard precoder

1 2 4 8 16 32 64 128
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10
0

B
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precision in bits

Figure 6.21: Equalizer Performance with Finite Precision Arithmetic
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Table 6.7: Parameters for Figure 6.21

equalizer ADFE, Gibbard Precoder

CIR [  1  2  2  1 ]

SNR 24 dB

delay 1
Nf

Nb

3

2

data format BPSK

BER Markov model (ADFE)

simulation (Gibbard)

equalizer characterization MMSE

The Gibbard precoder is  expected to have performance similar to that of the

ADFE, in the absence of AGC error.  The impaired performance of the Gibbard

precoder does not seem to stem from finite precision, as performance does not

approach that of the ADFE, even at the highest precision.  In fact, in an additional

trial at full precision (not shown), the BER of the Gibbard precoder was still about

10−2.

Figure 6.22 illustrates the results of a subsequent experiment to determine if the

performance of the Gibbard precoder will improve with more FF taps and

increased SNR.
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Figure 6.22: Equalizer Performance with Finite Precision Arithmetic

Table 6.8: Parameters for Figure 6.22

equalizer ADFE, Gibbard Precoder

CIR [  1  2  2  1 ]

SNR 27 dB

delay 1
Nf

Nb

5

2

data format BPSK

BER Markov model (ADFE)

simulation (Gibbard)

equalizer characterization MMSE

Figure 6.23 illustrates another experiment comparing the ADFE and Gibbard

precoder, with a different (less severe) channel.  In this case, both equalizers

performed satisfactorily at higher precisions.  This difference from the two

previous situations (Figures 6.21, 6.22) indicates that the poor performance of

the Gibbard precoder may be due to the choice of CIR.
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Figure 6.23: Equalizer Performance with Finite Precision Arithmetic

Table 6.9: Parameters for Figures 6.23, 6.24

equalizer ADFE, Gibbard Precoder

CIR [ -1  2  2 -1 ]

SNR 11 dB

delay 1
Nf

Nb

3

2

data format BPSK

BER Markov model (ADFE)

simulation (Gibbard)

equalizer characterization MMSE

The [ 1 2 2 1 ] channel is particularly difficult to equalize, and the MMSE FF

leaves behind a significant amount of residual precursor ISI, which may degrade

the performance of the Gibbard precoder.  The residual precursor ISI may be

seen in Figure 6.24, which shows the convolution of the FF and CIR.  q 0( ) is the

main ray, and the preceding rays are the residual precursor ISI.
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Figure 6.24: Residual Precursor ISI (convolution of FF and CIR)

Based on the suspicion that the Gibbard precoder may be especially sensitive to

residual precursor ISI, a further experiment was carried out in which a CIR with

precursor ISI (one ray) is equalized by a Gibbard precoder and ADFE with a

single-tap FF.  As both equalizers will be incapable of mitigating the precursor, it

is hoped that this situation will simulate the effect of residual precursor ISI.  The
CIR is p 2 2 1[ ], where p  is varied to control the amount of unresolved

precursor ISI.
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Figure 6.25: Equalizer Performance with Residual Precursor ISI
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Table 6.10: Parameters for Figure 6.25

equalizer ADFE, Gibbard Precoder

CIR [ p   2  2  1 ]

p  is the abscissa

SNR  12 dB

delay 1
Nf

Nb

1

2

data format BPSK

BER Markov model (ADFE)

simulation (Gibbard)

equalizer characterization MMSE

The results of Figure 6.25 do not support the hypothesis that the Gibbard

precoder is more sensitive to unresolved precursor ISI than the ADFE.

6.5 Conclusions
This chapter has presented results on the effect of some expected non-idealities

on the performance of the ADFE system:  training SNR mismatch, timing error,

adaptive training, and finite precision.  In general, reasonable levels of any non-

ideality were shown to have little or no deleterious effect on BER performance.

The Gibbard precoder was found to suffer from an error floor over a particular

channel, for which the ADFE does not.  This difference in performance is

unexpected, and its cause is not understood.

The results of this chapter are not exhaustive, as each non-ideality is considered

separately, and a  few  cases, such as the effect of finite precision on the DFE,

are not covered.  As well, a real system may suffer from other non-idealities not

conceived of in this thesis.
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SNR mismatch

It is difficult to generalize about the impact of SNR mismatch on performance.

The degree of effect appears to vary significantly over different channels, even

those with similar magnitudes of precursor and postcursor ISI.

Results indicate that MSE-based characterization of the DFE or ADFE may be

improved by manipulating the effective characterization SNR.  It is

straightforward to do so if adaptation consists of explicitly estimating the CIR and

SNR.  If implicit methods are used, then the training SNR may be lowered by

injecting noise into the received signal during training.  A similar effect might be

achieved via the tap-leakage algorithm [Gitlin] or manipulation of the RLS

forgetting factor.

In much of the literature, it seems that an underlying, tacit assumption is applied

to the design and analysis of equalizers:  MSE performance approximates MPE

performance, and hence MMSE characterization is a reasonable approximation

of MPE characterization.  Although the Saltzburg bound [Saltzburg] may be used

to relate MSE to BER performance, the bound is apparently not tight in all cases.

The results of this section on SNR mismatch raise two caveats regarding this

assumption:

1. BER performance may be significantly improved, in some situations,

through a modified MSE criterion.  This means that MMSE is not a close

approximation for MPE characterization.  This point is supported by the

results shown in Figure 6.3, in which the BER may be reduced from

9.8 ×10−4 (characterization SNR equal to the execution SNR of 21 dB) to

1.6 ×10−5 (characterization SNR of 2.8 dB).  As the BER results vary

considerably across the small number of contrived channels used, further

investigation is recommended prior to generalization.

2. Factors which have a very subtle effect on MSE performance may have a

significant effect on BER performance.  An example of this situation may
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be seen by comparing Figures 6.12 and 6.13.  The MSE curve gives no

hint to the significant fluctuations in BER.

Modified characterization by manipulation of training SNR may also be beneficial

for  equalizers such as the DFE, ADFE, TH precoder, Gibbard precoder, and

linear equalizer.

Timing Error

The effect of timing error on the ADFE system was examined.  On the reverse

link, as expected, the FS DFE was fairly insensitive to timing error.  However, the

TS DFE did not demonstrate much sensitivity to timing phase either.  This result

was not expected, as the principal reason for the popularity of the FS equalizer is

reduced sensitivity to timing phase.  This particular result might be due the

unique nature of the selected CIR, or to the use of BER (rather than MSE) as a

metric of performance.

On the forward link, the ADFE receiver requires accurate timing to within a

fraction of Tsym .  This sensitivity might be alleviated by combining fractionally

spaced channel estimation with a simple heuristic for choosing the main ray.  The

forward link is subject to reverse link timing error in training the FF.  This joint

timing error has an effect on the ADFE similar to that of timing error on the DFE.

One difference is that the TS ADFE is quite sensitive to the timing phase, while

the TS DFE is not.

The relative merits of TS and FS equalization for the ADFE system will depend

on the nature of the channel and the difficulty associated with establishing good

timing.  In general, use of a FSE will relax the timing requirements (at least on the

forward link), while possibly requiring a greater number of FF taps.

Adaptive Training

As expected, RLS training of the DFE and ADFE was demonstrated to converge

to a solution with performance virtually equivalent to the MMSE characterization.
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It remains to formulate and investigate an algorithm which incorporates the

advantages of the SNR mismatch (see Section 6.1) into adaptive training.

Finite Precision

Based on a model of a finite precision arithmetic implementation, the ADFE and

Gibbard precoder do not appear to suffer from extreme sensitivity to finite

precision arithmetic.  A more complete examination of this topic might include a

greater variety of channel conditions, including measured CIR’s.

For one CIR, the Gibbard precoder suffered from an error floor unrelated to finite

precision.  As this scenario involved a significant amount of residual precursor

ISI, a further experiment was carried out to compare the performance of the

ADFE and Gibbard precoder with a controlled amount of residual precursor ISI.

As this experiment revealed no significant difference in performance, it is still not

clear why the Gibbard precoder exhibited the error floor over one channel.  The

difference between the two equalizers may be dependent on the choice of CIR.
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7. ADFE System
Performance over
Measured Channels

7.1 The Indoor Channel Database
In order to gain a better indication of the ADFE system performance in an actual

implementation, simulations were performed over measured channels.  These

channels were selected from a database of channel measurements prepared by

Morrison and Tholl [Morrison].  The database contains indoor channel

measurements from two different office buildings at varied locations and

transmitter/receiver separations.  For this work, channels from one building

having a transmitter/receiver separation of 30 metres were selected.

There are 1500 different channel measurements from one building (the Alberta

Government Telephones, or Telus, offices)  having a transmitter/receiver

separation of 30 metres (the largest separation available in the database).  For

the simulations in this chapter, 200 or 300 CIR’s were uniformly sampled from

this set of 1500.  As channel ordering in the database corresponds to physical

location of transmitter/receiver, this sampling should give a subset of channels

with maximum independence.

The channel information in the database is stored as complex samples of the

channel frequency response from 900 MHz to 1300 MHz.  Each channel

underwent the following processing to yield a (time domain) baseband equivalent

CIR with a suitable sampling rate.

1. The channel spectrum is delay-pass filtered [Morris, page 20] with a

Kaiser window.  The stopband is defined as a segment of the time domain
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CIR which contains noise and a spurious signal component which is likely

due to crosstalk between the test equipment connections.

2. The channel spectrum is downsampled in the frequency domain to

effectively truncate the CIR in the time domain.

3. The channel energy is normalized across the full bandwidth of 400 MHz.

This step is performed to remove the effect of flat fading, while preserving

narrowband fading characteristics [Gibbard2].  Because of this

normalization, the SNR must be considered an average SNR across the

ensemble of channels, each channel will may introduce a gain or penalty

in SNR, according to its frequency characteristics.

4. A SQRC matched filter characteristic (with rolloff β = 0.35) is applied to

the channel, still in the frequency domain.

5. A portion of the signal, in the frequency domain, is truncated, effectively

reducing the sampling rate in the time domain.  The truncated portion of

the spectrum has a value of zero, due to the matched filter applied in the

previous step.

6. The channel spectrum information is transformed into the time domain (via

the inverse fast Fourier transform) to yield the CIR with a sampling rate of

Tsym 2 with a symbol rate of 1Tsym = 50 MHz.

7.2 Method of Simulation
Error Collection

During simulation, measures were taken to ensure that sufficient errors were

accumulated for each point on the BER curve, while reducing unnecessary

computations.  A BER for each of the 200 channels was determined at a reduced

SNR, in order to estimate the relative performance over each channel at the

desired SNR.  The ‘worst’ channel (highest BER at reduced SNR) was simulated
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at the desired SNR until at least 100 bit errors were collected.  The number of

transmitted bits for this simulation was recorded. Each of the remaining channels

was then simulated (at the desired SNR) until either 100 errors were collected or

the number of transmitted bits reached the number transmitted for the ‘worst’

channel.  The average BER for the ensemble of channels was then computed.

This method ensured that errors from all channels are weighted equally, and that

at least 100 errors are collected per average BER.  It took about a week for a

DEC Alpha workstation to generate the simulation results for this chapter, using a

combination of Matlab and C programs.

Adaptive Training

The DFE was characterized with RLS training, using a training sequence of 100

QPSK symbols.  The ADFE FF was also characterized in the same way.  The

ADFE FBF was characterized according the method described in Section 4.3,

except that RLS channel estimation was used instead of computationally efficient

LS channel estimation.  The reason for this change of method is that a training

sequence with ideal autocorrelation properties would be excessively long (on the

order of 216), given the number of FBF taps (16).  A realistic approach to

implementation, given a large number of FBF taps, might utilize a training

sequence of reasonable length with near-ideal autocorrelation properties.  M-

sequences satisfy these requirements, with the possibility of low-complexity

training [Crozier2].  In these simulations, all training sequences consisted of 100

(randomly determined) QPSK symbols.  This length was deemed sufficient to

allow the equalizers to converge during training.

Data Transmission and Retraining

Data was transmitted in frames of 2000 QPSK symbols.  In the data transmission

subsequent to a training, the filters (and CIR) were kept constant.  The number of

data frames between equalizer retraining began at one, and was increased by

one frame after each retraining.  If T represents a (re)training and D represents a

data frame, then they are arranged as follows:

T D T DD T DDD T DDDD T DDDDD T DDDDDD T DDDDDDD ...
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The number of data frames between retraining was increased thusly so that a

moderate number of retrainings would take place for each channel, whether

small or large number of data frames were transmitted.  This helped to reduce

the computational burden of simulating transmission of many frames (at low error

rates), while ensuring that performance is effectively averaged over a number of

retrainings.

Number of FF/FBF Equalizer Taps

An excessive number of  FF and FBF taps were used, to ensure that

performance was not limited by the lengths of equalizer filters. A reasonable

implementation of the ADFE system would likely use the minimum number of

taps required to effectively equalize the channel.  This minimum could be

determined for any filter by conducting additional BER simulations in which the

number of filter taps is varied.  Table 7.1 compares the numbers of (TS) FF and

FBF taps selected in other trials involving channels from the same indoor channel

database.

Table 7.1:  Summary of DFE Filter Lengths

method of FF/FBF taps symbol rate data modulation

Gibbard [Gibbard3] 9/13 50 MHz QPSK

Morris [Morris] 5/11 37.5 MHz QPSK

Ebel [Ebel] 12/12 20 MHz 16-QAM

Synchronization

Receiver synchronization was based on a perfect knowledge of the channel, by

choosing the main ray to be the first ray with magnitude greater than 0.7 times

the magnitude of the largest ray [Ebel, pp. 114-117].  A fractionally spaced FF

was used to allow the DFE to synthesize optimal or near-optimal timing.  The

ADFE receiver had its synchronization automatically set in agreement with the

timing established by the FF.  In practice, synchronization of the ADFE receiver
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should be simple due to the minimum-phase nature of the effective FF-CIR

combination.

7.3 Simulation Results
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Figure 7.1: Average BER for Measured Channels

Table 7.2: Parameters for Figure 7.1

equalizer ADFE and DFE, both with
fractionally spaced (Tsym 2) FF

CIR 200 channel measurements

delay set according to CIR
Nf

Nb

20

16

data format QPSK, Tsym = 20ns

BER simulation

equalizer characterization RLS training

Figure 7.1 shows the average BER as a function of (average) SNR for the ADFE

system.  The dashed line indicates the BER for QPSK transmission in an AWGN
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channel with no ISI.  As Figure 7.1 only shows the average BER over the

ensemble of channels, one might wonder what sort of distribution of BER’s this

average is composed of.  Figure 7.2 illustrates this distribution, at a fixed

(average) SNR of 11 dB.  The histogram is normalized so it approximates the

BER probability distribution over the ensemble of channels.

10
−6

10
−4

10
−2

10
0

0

0.1

0.2

p(
B

E
R

)

BER

Figure 7.2: BER Distribution

Table 7.3: Parameters for Figures 7.2, 7.3

equalizer ADFE with fractionally spaced
(Tsym 2) FF

CIR 300 channel measurements

SNR 11 dB

delay set according to CIR
Nf

Nb

20

16

data format QPSK, Tsym = 20ns

BER simulation

equalizer characterization MMSE

The simulation program used to obtain the above data was required to collect at

least 100 bit errors per channel to estimate a BER.  The number of transmitted

bits per channel was restricted to 2 ×107  bits, after which simulation is halted
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(see Section 5.2). Hence, it is not possible to estimate a BER below 5 ×10−6, as

the maximum number of bits are transmitted before 100 errors are collected.

Since it is then possible to conclude that the BER is no more than 5 ×10−6, this

BER is assigned as an upper bound.  Figure 7.3 is based on the same raw

results as Figure 7.2, but without the restriction that 100 bit errors must be

collected to estimate a BER.  The lowest bin shown is composed entirely of

channels which had no errors after transmission of 2 ×107  bits.
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Figure 7.3: BER Distribution (relaxed error requirements)

The above figure shows a tail of BER’s extending down below 10−6, indicating

that there are a few channels which are very favorable to data transmission.  This

tail must be viewed with some suspicion as it is based on the collection of very

few errors.  The leftmost bin represents the channels for which zero errors were

collected.  Except for Figure 7.3, no other results or figures in this work are based

on this questionable interpretation of BER results.

Although the average BER is 1.66 ×10−2, the BER over any given channel can

easily vary from  10−5 to  10−1..  This may have a significant effect on the system

performance and design requirements, since most communication systems

require that a level of BER performance be met with high probability.
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As an aside, it is curious to note that the average BER of 1.66 ×10−2 at 11 dB

SNR for the Figure 7.3 is slightly inferior to the adaptive ADFE of Figure 7.1,

which has a BER of 1.07 ×10−2 at 10 dB SNR.  This discrepancy may be due to

the uncertainty in BER estimation by simulation.

Figures 7.4 through 7.7 show four baseband equivalent channels from the set

used in Figure 7.2.  Each figure illustrates the discrete-time CIR (sampled at

Tsym 2) used for simulation.  These channels represent the 0, 33, 66, and 100th

percentiles of BER performance.  The channel at the 0th percentile is the lowest

BER, which is the best BER performance.  Table 7.4 specifies the BER for each

of the four channels, for the conditions specified in Table 7.3.

Table 7.4:  BER of Selected Channels

BER Percentile of BER Figure

≤ 5 ×10−6 0 7.4

9.0 ×10−4 33 7.5

1.1×10−2 66 7.6

2.4 ×10−1 100 7.7
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Figure 7.4: Indoor Channel Impulse Response
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A casual examination of the four preceding channels hints at a relationship

between BER and the energy of the CIR (fading).  The variation in CIR energy is

entirely due to the normalization of the CIR energy within the 400 MHz
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bandwidth, prior to bandlimiting to 67.5 MHz.  Although this normalization may

contribute to the variation in BER over the different channels, it may not be the

only cause.  In the plots of the four selected channels, the amount of ISI appears

to be inversely correlated with the CIR energy and BER performance.

Figure 7.8 plots the relationship between CIR energy (the squared magnitude of

the sampled CIR) and BER for the set of 300 channels.
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Figure 7.8: BER Performance versus Energy of CIR

7.4 Conclusions
BER curves indicate that the ADFE system is able to satisfactorily equalize data

transmission over a number of measured indoor channels.  The average BER

begins to drop sharply at higher SNR’s.  This result should be taken with caution,

as the BER distribution at one SNR indicates that one will often encounter

performance better or worse than the average.  Other factors such as diversity

and error correcting codes may play a major role in determining the ultimate

system performance.

Although efforts were taken to ensure that this use of the measured channels

should effectively model the channels and fading that a full implementation would

encounter, there are a number of additional factors to consider.  Some of these
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factors may be SNR mismatch, joint timing sensitivity, finite precision in training

and equalization, realistic synchronization, jitter, and Doppler fading.

Despite these shortcomings, this chapter offers a partial glimpse of the expected

performance of the ADFE system in an indoor office environment.  The

performance is so highly dependent on the CIR and fading that most of these

results tell as much or more about the nature of the channel than about equalizer

performance.
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8. Conclusion

8.1 Summary of Thesis
This thesis has presented a new equalization structure, the Asymmetric Decision

Feedback Equalizer (ADFE), and a system for asymmetric equalization, the

ADFE system.  Following background material on digital communications and

equalization, the ADFE was subjected to the usual analyses of MSE and BER

performance.  The BER analysis was facilitated by application of a finite discrete

Markov process to model the effects of noise, residual precursor ISI, and error

propagation.  The effects of SNR mismatch, timing error, adaptive training, and

finite precision arithmetic on BER were determined by modeling and simulation.

These investigations turned up some results which were unexpected, especially

in the area of SNR mismatch.  The BER performance of certain equalizers over

some channels can be improved markedly by changing the SNR of training, or

MMSE characterization.

As ADFE system is intended for application in an indoor wireless LAN, the

performance of the ADFE system was determined by simulation using an

ensemble of measured indoor wireless channels.  Although the average

performance over the ensemble is satisfactory and predictable, its variation from

one channel to another is considerable.  Judicious exploitation of this variation

might enhance the performance of a system, while its neglect may hamper

performance.

8.2 Topics for Further Research
There are many areas which could or should have been addressed within this

thesis, but were not.  Some of these are absent due to constraints of time or of

computing resources, while others extend into subject areas that are beyond the

scope of this thesis to handily encompass.



111

Most of the tests and simulations in this thesis could be expanded upon by

varying the CIR, SNR, and equalizer type and size.  The effect of finite precision

arithmetic on the adaptive training and execution of the DFE could be

investigated.  As suggested in Chapter 6, it may be beneficial to combine

fractionally spaced channel estimation with a simple synchronization heuristic in

the ADFE receiver.  The appropriate or optimal number FF/FBF taps required to

achieve a desired level of BER performance could also be investigated.

A prototype implementation of the ADFE system would be useful to verify its

performance.  Such a project would involve many design considerations such as

data rate, number of FF/FBF taps, performance level, and expected severity of

multipath ISI.  A specific algorithm for reverse link training would need to be

chosen or designed, and a non-optimal forward link training sequence chosen, as

the optimal sequences are too long if the number of FBF taps is not small.  More

extensive and specific analysis and simulations would be needed along the way

to facilitate these and other design decisions.

Some interesting results in this thesis were presented as an initial indication of

new and interesting phenomena in the hope that they may be properly

investigated in other works.  One of the most significant of these is the SNR

mismatch, which may find use as a compromise between MMSE and MPE

characterizations.  An understanding of the strange BER behavior of Figure 6.12

may lead to greater insight into fundamental principles of equalization and data

errors.  In any case, it may be desirable to seek alternatives to MMSE

characterization and analysis of equalizers, as the simplicity of MSE analysis

may not always justify the penalty in BER performance.

Finally, the range of performance of the ADFE system over measured indoor

channels could certainly bear more rigorous and complete investigation.  This is

a factor which may affect performance of a system more than the equalizer itself,

but which is much harder to analyze due to its statistical nature.
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To summarize, this thesis presents some promising results for the ADFE and

SNR mismatch, which require further research and experimentation to verify their

ultimate usefulness.
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Appendix
This appendix contains a listing of a Matlab function entitled “markov” which

computes the BER and error pattern probabilities for an ADFE.  Two other

functions are included (“base2num” and “num2base”) which are used by

“markov” and are listed in this Appendix.

The comment sections at the beginning of each function specify the input and

output parameters and other information for the function.

Listing of markov.m
function [ Pe, p2, p1 ] = markov( h, wf, wb, snr, delay, verbose )

% [ PE, P2, P1 ] = MARKOV( H, WF, WB, SNR, DELAY, VERBOSE )

%

% This function models precursor ISI, noise, and error propagation in the ADFE

% as a 1st order Markov process.  The state is defined by previously

% tranmitted and detected symbols.  All input arguments must be real, and BPSK

% data is assumed.

%

% PE is the average probability of bit error.

%

% P2 (optional) is the vector of error state probabilities.  P2 is printed out along

% with the accompanying error pattersn if MARKOV4 is called with no output

% arguments.  Each element of P2 is the probability of the error state given

% by one less than the binary representation of the element index, as follows:

%

% 0000 means no errors

% 1000 means one error was just made

% 1110 means 3 errors were just made

% etc.
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%

% P1 (optional) is the probability of error assuming correct past decisions

% (i.e. neglecting error propagation).

%

% H is the sampled channel impulse response (sampled at the symbol rate).

%

% WF is a vector of the FF coefficients.

%

% WB is a vector of the FBF coefficients.

%

% SNR is the signal to noise ratio, in dB, assuming that the norm of H is 1.

% The variance of the noise is given by 10 ^ ( -SNR / 20) / SQRT(2) .

%

% DELAY specifies which is the main ray of H.  H(DELAY+1) is taken to be

% the main ray.  If DELAY == [] then an appropriate delay value will be computed

% by this function.

%

% VERBOSE is a flag which if present and nonzero causes additional information

% to be output during execution of the function.

%

if exist( 'verbose' ) ~= 1

verbose = 0;

end;

if ( delay == [] )

delay = find( abs( h ) > 0.7 * max( abs( h ) ) );

delay = delay( 1 ) - 1;

end;

delay2 = delay + length( wf ) - 1;

%%%%%%%  The pre-equalizing filter and the linear channel will be combined

%%%%%%%  into a single equivalent linear system called q.
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r2 = sqrt( 2 );

sigma = 10 ^ ( -snr / 20 ) * norm( wf ) * norm( h ) / r2;

nb = length( wb );

wb = wb(:);

q = conv( h, wf );

nq = length( q );

q = reshape( q, nq, 1 );

if nb + delay2 > nq

q = [ q; zeros( nb + delay2 - nq, 1 ) ];

nq = length( q );

end;

ns = 2 ^ ( nq + nb ); % number of states

P = sparse( [], [], [], ns, ns, 4*ns );

for row = 1 : ns

if verbose & ( rem( row, 100 ) == 0 )

fprintf( 1, 'processing row %d/%d.\n', row, ns );

end;

present_state = num2base( row-1, 2, nq + nb );

a = present_state( 1 : nq )' * 2 - 1;

d = present_state( nq + 1 : nq + nb )' * 2 - 1;

for next_tx = [ -1 1 ]

for next_rx = [ -1 1 ]

next_a = [ next_tx; a( 1 : nq - 1 ) ];

next_d = [ next_rx; d( 1 : nb - 1 ) ];

next_state = ( [ next_a; next_d ] + 1 ) / 2;

 num =  - next_rx * ( q' * next_a + wb' * d );

 den = r2 * sigma;

 if num == 0 & den == 0

 den = eps;

end;

prob = 0.25 * erfc( num / den );
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col = base2num( next_state, 2 ) + 1;

P( row, col ) = prob;

end;

end;

end;

%%%%%%%%  now P is the probability transition matrix

I = sparse( 1 : ns, 1 : ns, 1 );

P = P' - I;

row = 1;

P( row, : ) = ones( 1, ns );

x = zeros( ns, 1 );

x( row ) = 1;

p = P \ x;

% p2  is a vector of state probabilities,

% where 0000 means no errors

% 1000 means one error was just made

% 1110 means 3 errors were just made

% etc.

ns2 = 2 ^ nb;   % reduced number of states

p2 = zeros( ns2, 1 );

state2 = zeros( 1, nb );

for k = 1 : ns

state1 = num2base( k-1, 2, nq + nb );

a = state1( 1 : nq );

d = state1( nq + 1 : nq + nb );

state2 = xor( a( delay2 + 1 : nb + delay2 ), d );

j = base2num( state2, 2 ) + 1;

p2( j ) = p2( j ) + p( k );

end;
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Pe = sum( p2( ns2/2 + 1 : ns2 ) );

state1 = [ 1; zeros( nb-1, 1 ) ];

state2 = zeros( nb, 1 );

p1 = 1 / ( 1 + p2( base2num( state2, 2 ) + 1 ) / p2( base2num( state1, 2 ) + 1 ) );

if nargout > 2 & wb(nb) ~= 0

error( 'The last feedback tap must be zero to determine P1' );

end;

if nargout == 0

fprintf( 1, 'error pattern  probability\n' );

for k = 1  : ns2

state = num2base( k - 1, 2, nb );

fprintf( 1, '%1d', state );

fprintf( 1, '   %g\n', p2( k ) );

end;

fprintf( 1, '\nProbability of bit error: %g\n', Pe );

if wb(nb) == 0

fprintf( 1, 'Probability of bit error without error propagation: %g\n', p1 );

end;

end;

Listing of base2num.m
function x = base2num( v, base )

% X = BASE2NUM( V, BASE )

%

% Converts a vector containing the base BASE representation to

% a number, X.

%
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x = 0;

power = 1;

for i = length( v ) : -1 : 1

x = x + v( i ) * power;

power = power * base;

end;

Listing of num2base.m
function v = num2base( x, base, digits )

% V = NUM2BASE( X, BASE, DIGITS )

%

% Converts number X into a vector containing the base BASE representation

% of X.  DIGITS specifies the length of V, or the number of digits to use.

% The number is right-justified in V, with zero padding as necessary.

% For example, NUM2BASE( 5, 2, 4 ) returns the binary representation

%

% [ 0 1 0 1 ]

%

v = zeros( 1, digits );

for i = 1 : digits

v( 1, digits - i + 1 ) = rem( x, base );

x = fix( x / base );

end;


