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ABSTRACT

A mathematical procedure aimed to compensate Polarization Mode Dispersion by
reducing the root mean square pulsewidth of a signal through the optimization of the
launching and receiving statesof pol ari zation hasrecently been proposed. It istheobjective
of this thesis to explore the nature of such compensation method. Analytically exact
solutions are presented for the casein which the optical fiber consistsof one, two and three
segments of Highly-Birefringent (Hi-Bi) fiber. Numerical generated results are presented
for afiber consisting of an arbitrary number of segments of Hi-Bi fiber.

The solution of the mathematical procedure shows, inal cases, theexistence of two
setsof orthogonal input and output states of polarization which allow an output pulseto be
narrower than the input pulse. The cost for obtaining a narrower pulse at the output of the

fiber isapower loss.
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1 INTRODUCTION

11 MOTIVATION

In recent years, the exponential rise in the demand for high speed optical
communication sysems [1] has led to the introduction of multigigabit per second
communications equipment into the market [2]. The increase in the transmission rate and
the possibility of using optical amplification [3] to extend the communications link over
even longer distances have created new technical challenges. The bandwidth of the
communication system is limited by optical and eectrical components and also by the
properties of the optical fiber itself.

A mgjor limiting factor, known asPolarization ModeDispersion (PM D), constitutes
the ultimate impairment for the transmission of high speed optical signalsover the already
embedded optical fiber network [4].

Digital signals propagating through an optical fiber with PMD may be broadened
during transmission and asaconsequence spread beyond their all ocated bit slot and interfere
with neighbouring bits. The distortion introduced by PMD becomes rdevant for sysems
operating at datarates of 4.8 Ghit/sor higher [5] in the absence of chromatic dispersion[3].

In this thesis we examine the dependence of the frequency response of an optical
fiber with PMD on theinput and output statesof polarization of asignal transmitted through
it. Thegoal of our calculationswill beto prove the hitherto unnoticed fact that itispossible
to achieve maximum pul sewidth compression of asignal transmitted over an optical fiber

with PMD when itsinput and output states of polarization are adequately chosen.



1.2 THESIS CONTRIBUTIONS

This thesis solves for the first time, analytically and numericadly, a mathematical
formulation proposed by Chen et. al. [7] which allowsthe rms'-pul sewidth of asignal to be
minimized a the output of the fiber when PMD is the only impairment.

The solution of the mathematical andyss postulated by Chen et. a. [7] shows the
existence of two sets of input and output states of polarization which minimize the rms-
pulsewidth of the received signal. These states of polarization depend on the shape of the
transmitted signal. In general they are different from other commonly adopted [6] sets of
input and output states of pol arization which are used to minimize PM D induced distortion.

Here, weintroduce theideaof leveraging the dependence of the frequency response
of an optical fiber with PMD on the input and output states of polarization of the signal in
order to minimizeitsrms-pulsewidth at the output. Thisallowsusto perform the equivalent

of equalizationintheoptical domain by only adjusting the state of polarization of thesignal.

1.3 THESIS OVERVIEW
Chapter 2 givesan introduction to the concept of polarization mode dispersion. The
necessary toolsto represent an arbitrary state of polarization using Jones calculus and the
Poincaré sphere are presented. At the end, the statistical nature of PMD is described.
Chapter 3 presents in detail the mathematical formulations introduced by Chen et
a. [7] and the fundamental eigenvalue equationsrequired to minimize the rms-pulsewidth

of asignal at the output of an optical fiber with PMD. Algorithms which can recursively

! root mean square.



solve those eigenvalue equations are illustrated a the end.

Chapter 4 briefly describes the analytical model of an optical fiber with PMD.
Through simulation, the probability distribution function of the envelope of its complex
lowpass time impulse response [8] is shown to be Rayleigh.

Chapter 5 outlines the mathematical andyss followed in order to obtain the exact
solutions to the eigenval ue equations introduced in chapter three when a Gaussian-shaped
pulse is used as the input signal. The solution of the eigenvalue equaions is obtained
through exhaustive computer simulation using analytic formulas for the case in which the
optical fiber consistsof 1, 2 and 3 segments of highly-birefringent fiber. Finaly, the more
generic case of an opticd fiber made up by a large number (500) of sections of highly-
birefringent fiber isconsidered. The solution to the eigenvalue equations for such afiber
isnumerically cdculated and presented.

Chapter 6 studies the specid case in which only the input or output state of
polarizationisallowed to vary in order to minimize the rms-pul sewidth of the output signd.
Thefinal performance of varying both, input and output states of polarization, is compared
through computer simulation with the case in which only one of them is varied.

Chapter 7 givesasummary of the thesiswork and indicatesfuture lines of research.

The appendices contain the proof of mathematical expressions used throughout the
thesisas well as the anaytic formulas used in chapter 5. The simulation of afive channel
wavelength division multiplexing (WDM) system is presented and the M atlab code needed
to numerically solve the pulsewidth eigenval ue equations when the optical fiber consists of

an arbitrary large number of sections of highly-birefringent fiber is given.



2 BACKGROUND

Polarization Mode Dispersion, PMD, has increasingly dtracted the attention of
researchers, fiber manufacturers and system planners due to several reasons. Different
techniques have recently succeeded in keeping chromatic dispersion under control [3] and
chromati c dispersion compensation modul es have become commercially available, making
the previoudy neglected effects of PMD adominating factor. The introduction of optical
amplifiers has allowed a considerable increase in the length of the communications link
before electronic regeneration of the signal isrequired. This however, aso dlowed PMD
effects to accumulate over even longer distances. Researchersin the late 1980's and early
1990's redlized [9,10] that PMD would have to be addressed because of its significant
impact on the performance of multi-gigabit per second optical communication systems
operating over the embedded optical fiber network. The purpose of the present chapter is
to explain the phenomenon known as PMD and to provide readers with some of the key

concepts and tools used throughout the rest of this thess.

2.1 JoNEs CALCULUS

The state of polarization of a signa at any given frequency can be uniquely
represented by two parameters. Those parameters account for therel ative magnitude of the
horizontdly and vertically polarized components of the electric field and the phase lag
between them [11]. In general, asignal with agiven dectricfield, E(t), polarized along a
particular state of polarization has atotal vector field, E, given by

E=(A.e"x+ AeYEW), (2.1a)



where

JAZ+al=1 (2.2b)
and g, and ¢, are the absol ute phases of each component. The vectorsx and y representing
horizontal and vertical states of polarization in eq 2.1 are in general, “Jones vectors’
[11,12].
A Jones vector is essentially a 2 by 1 unitary vector with complex components. Each
complex component accounts for the magnitude and absol ute phase of the electric field
polarized in either the horizontal or vertical directions. Thus, a Jones vector, X,

representing some arbitrary state of polarization is given by
A ej ¥
£ = A ej*ry

¥
Asonly the relative phase between components is needed to define astate of polarization,

22)

eg. 2.2 can be dlightly modified and re-expressed as

j[%}[e'” CDS(DL)]

e’ sin(a)

5=¢€ 2.3)
where g= (g, - 9,)/2 and the magnitude components (A, and A,) are now afunction of the
anglea. The absolute phase term in the right hand side of eq. 2.3 can be neglected as the
phasedifference between the horizontal and vertical componentsisgivenby g Throughout
thisthesis, the Jones vector representing an arbitrary state of polarization, e, will be given

by :
[e'”’ cns(a)}

| e sin(a)

(2.4)

where both gand a arereal numbers. The sgnd in eqg. 2.1a can be more compactly



expressed in terms of the Jones vector e as
E = gE(t) . (2.5)
The use of Jones vectors to represent states of polarization provides a simple way
of mathematically manipulating signalswith aparticular state of polarization. However, it
becomes difficult to directly appreciate the changes in the state of polarization of asignal
when the complex elements of a Jones vector change. An alternative way of representing

astate of polarization is through the use of Stokes vectors.
2.2 STOKES VECTORS AND THE POINCARE SPHERE
The Stokes vectors offer a qualitative way of representing a state of polarization,

[12]. A Stokesvector isa4 by 1 vector with red elements,

S = . (2.6)

Ineq. 2.6, 5, representsthe total normalized power of thesignal, s, isthe difference
intheintensities of the horizontally and vertically polarized components of thesignal, s, is
the difference between the intensities of the components polarized with tilt angles [12] of
p/4 and 3p/4 rad. and s, is the difference between the left and right circularly polarized
components.

Any arbitrary state of polarization can berepresented asapoint in aCartesian three-
dimensional space with axes s, s, and s,. Each axis corresponding to one of the stokes

parameterss,, s, and s, and ranging from -1 to +1. The Poincaré sphere [11] isapowerful



7

tool for the visualization of any state of polarization. The center of the Poincaré sphere
coincides with the origin of the three
dimensional Cartesian space with axes
S, S, and s; and itsradiusisequal to s,.
Any fully polarized signal [12,13] can
be represented as a point on the surface
of the Poincaré sphere as indicated in
fig. 21. All the linear states of

polarization lie on the equator of the

sphere and all the left (right) [12,13]

Fig 2.1 The Poincaré sphere[14].
elliptical and circular statesof polarization arelocatedintheupper (lower) hemisphere. The

states of polarization where the p/4 (3p/4) tilt angle dominates over the 3p/4 (p/4) tilt angle
fall intheright (left) half of the Poincaré sphere. Finally, all the points between the equator
and the poles on the sphere represent elliptical sates of polarization and the north (south)
pole represents left (right) circularly polarized light [11-13]. It is possible to obtain the
Stokes vector components for a given state of polarization from its corresponding Jones
vector [11-13] by using

g = cos’(a) - sin®(a)
- , (2.7
%, = 2cos(a)sin(o ) cos(2y)

g = 2cos(o)sin(o)=in(2y)
wherea and gare the parameters of the Jones vector in eg. 2.4. Throughout thisthesis, the

Jones vector representation of a state of polarization is used for quantitative calculations

whilst the equivalent Stokes vector and the Poincaré sphere are used for the qualitative



representation of the state of polarization.

2.3 BIREFRINGENCE IN OpTICAL FIBERS
A single mode fiber operating in the HE,; mode, actually supports two degenerate

modes which are orthogonally

Elliptical
polarized [3]. Thesedegenerate core Optical modes
modeswill have the same mode @ @
: 1 Stress
index, n*, only when the core of [deal HEX,, HEY,,
thefiber isperfectly cylindrica, Elliptical
efiber isperfectly cylindrica cladding

(i.e. it has a uniform diameter) m
Bend Geometrical
The degeneracy is @

Stress Stress

broken if the core exhibitssome a) b)
Fig. 2.2 a) Extrinsic and b) Intrinsic mechanisms of

degree of asymmetry. The fiber birefringence.

causes of ellipticity in the core can beintrinsic (non uniform stress introduced during the
drawing or cooling stage of fabrication) or extrinsic (stressintroduced by cabling, micro or
macro-bending, twisting side pressure, ec.) [15].

The former cause is more common with older fiber which was made with less

geometrical control than nowadays, while the latter one can occur due to environmental

A particular mode propagates within a fiber with an effective refractive index :
n =y (w)/k,, wherey (w) isthe propagation constant, k,=w/c is the free space wave
number, w is the angular optical frequency and “c” isthe speed of light [3].
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factors (temperature changesfor example, [16-18]) or during the cabling process. Oncethe
symmetry of the core has been altered, the two degenerate supported modeswill experience
a different mode index, i.e. the fiber will become Birefringent. The difference between
these two indexes is known as the degree of birefringence, Dn; = |n, - n|. Asaresult of
Birefringence, asignd launched into thefiber at aparticular state of polarization, e, will be
splitinto two identical, linearly polarized signals having their electric field vectors digned
with the symmetry axes of the fiber.

At each frequency, aphaselag isintroduced between those two componentsdue to
the fact that each one propagates through the fiber experiencing different mode indexes.
This progressive slippage of the two orthogonally polarized modes will, in turn, cause the

overall state of polarization of

the signal to evolve with
distance (refer to fig. 2.3),

effectively tracing out acircle ’\;\4 % Q é}/"d) O C"j\‘

on the surface of the Poincaré

Ly

sphere. <

The distance over -
Fig. 2.3 Beat length, L; [14].
which the state of polarization
undergoesafull rotation onthePoincaré sphere (i.e. experiences aphase shift of 2p between
its components) is called the Beat Length and it isdefined as L,=| /Dng,. Fibersfor which
Dn, islarge (~ 10*) arecalled Highly-Birefringent (Hi-Bi) fibers. Ingeneral, the net effect

of launching asignal with an arbitrary state of polarization into a piece of Hi-Bi fiber will
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bethat of obtaining two replicas of the input signal, polarized at different orthogonal states
of polarization and with arelative time shift between them. Theinput stateof polarization
which yields the lowest value of n is called the fast input state of polarization and it is
customarily represented ase,. Likewise the input state of polarization which yields the
highest value of n is known as the slow input state of polarization, e,,
In general, asignal with astate of polarization e,, (e, ), launched into a birefringent optical
fiber will come out of it polarized dong e,, (e,). For the special case of aHi-Bi fiber, e,,
=e,,, €, = g, and both coincide with the symmetric axes of the fiber.

Thissignal splitting and time del aying phenomenon isknown as Polarization Mode
Dispersion, PMD and to date, representsthe ultimate hurdle for the massive depl oyment of

multi-gigabit per second optical communication systems.

2.4 FIRST ORDER POLARIZATION MODE DISPERSION

During the mid 1980's [6] the necessary concepts and andytical tools required to
describe PMD were introduced. In areal optical fiber, the degree of birefringence, Dn,
does not remain constant throughout its length but changes randomly as a result of
fluctuationsin the core shape and non-uniform stressactingonit [20]. Infact, areal optical
fiber can be thought asbeing a“ specid” Hi-Bi fiber which has been cleaved into segments
of random length and then fusion spliced back with random fusion anglesin between each
segment.

There exists, however, a any given frequency w two input, e,.(w) and e, (w), and
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two corresponding output, e,,(w) and e, (w), statesof polarization which render the shortest
and the longest propagation time through thefiber. Thedifferenceinthetransmissontime
of two signals polarized along the states of polarization producing the shortest and longest
propagation times is known as the Differential Group Delay (DGD) and it is usually
represented [6] asDt =t, -t.. Wheret, (t.) represents the longest (shortest) transmission
time.

In the absence of polarization dependent losses, the input (output) states of
polarization e,.(w) and e, (w), (&,.(w) and €, (w)) are mutually orthogonal?, i.e., <e,,(w),
e, (W)>=0, (<g,.(W), & (W)>=0). These statesof polarization are commonly [6] referred
to as Principal States of Polarization (PSPs). The differential transmission time of two
undistorted signals polarized along mutually orthogonal states of polarization constitutes
what it is known asthefirst order effect of PMD.

Boththe PSPsand the DGD are assumed to beindependent of frequency if only first
order PMD effects are being considered. When a signal with an electric field E,(t) and
polarized along a state of polarization|j islaunched into abirefringent optical fiber which
exhibitsonly first order PMD effects, the vector field of the signal at the output of thefiber,
E... [20], isgiven by

E =g Eotbtr e do Bt e, (29
wheretheinput state of polarization, j , was expressed interms of the orthonormal basis of

the input PSPs according to

2 The inner product of two complex vectors u and v is defined as <u,v> = u*v and “+”
represents the transpose complex conjugate (Hermitian) of avector or a matrix.



12

p=(pre, e, t@Te, e,
=€, teo g, _ (2.9)

The constants ¢, and ¢ represent the projection of ] onto e,, and e, respectively, i.e., c, =
j 'e,andc =j "e, Fromeq. 2.8itisclear that unless,c,=0orc =0ort, =t _, thereceiver
will “see” two signalswith different magnitudes arriving at different times. Thelatter will
cause intersymbol interference (1SI) when Dt isroughly equal to or greater than one tenth
of the bit period [21], refer tofig. 2.4. Egs. 2.8 and 2.9 also tell usthat, for agiven Dt, the

worst interference will be introduced whenj fallsbetweene,, ande, .

Prneipal State of »
Folarization (F5 F) B, lied
! op siznal
£ [equal to wector snam
of the polan=ation states]

\ Dirction of
propagation

| Principal 3 tate of

Polariztion (F5F)
Fig. 2.4a Signal a the input of an optical fiber with first order PMD

o

“Fast” state of - : -
S gy Dispersed
polarization . O % Optical Signal

Group Delay
“Blow” state of

polarization
Fig. 2.4b Signal at the output of an optical fiber with first order
PMD.

;A
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Thetimeduration of E;(t) will also influence the amount of interferencegenerated.
A return to zero (RZ) coding scheme is for example, more resstant to first order PMD
impairments than anon return to zero (NRZ) coding [22]. Infact, the bit error rate (BER)
in an Intensity Modulated / Direct Detection (IM/DD) sysem has been shown to strongly
depend on theinput state of polarization and Dt, [21]. A conservative design guidelinefor
a10 Gbpssystemwith first order PMD alowsfor amaximum value of only eight psfor Dt
inorder to permit apower penalty of only 1dBm during 20 mn every year while maintaining
aBER of 10° [21].

The next important concept to be introduced before describing second order PMD
effectsis that of mode coupling. As mentioned before, areal fiber can be mode led by a
large number of segments of Hi-Bi fiber of random Iength and with random fusion angles
between them. Each one of those segments has its own PSPs and a portion of the sgnal
propagates on each of them. At the boundary between the sections, the signal will be
resolved into new pairs of local PSPs belonging to the next segment. The process of
rotating the optical field into the new PSPs of the following segment is known as mode
coupling and it does not introduce any lossin the power of the signal whenever polarization
dependent losses (PDL) are negligible.

It is the mode coupling phenomenon which makes the DGD and the PSPs of the
fiber to be frequency dependent [19]. The mode coupling process also allowsthe DGD to
grow proportionally to the square root of the length of the link [23]. The DGD does not
grow linearly with length in highly mode coupled fibers because occasionally, the coupling

between segments reduces the accumulated DGD, i.e., when the slow PSP of one segment
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isvery nearly aligned with the fast PSP of the next or previous segment the DGD of both

segments will cancel each other out.

2.5 SECOND ORDER POLARIZATION MODE DISPERSION
Asindicated in the previous section, both the DGD and the PSPs are assumed to be
independent of frequency (at least within the spectrd range of the signal) when only first
order PMD effectsareconsidered. Inredlity however, the DGD and the PSP are frequency
dependent to some extent. The linear frequency dependence of the DGD and the PSPs
constituteswhat it isknown assecond order PM D effects[6,24-26]. Theimplications[24],
sysemsimpact [9,27-30] and pul sewidth effects[24,30,31] dueto second and higher order
PMD have been thoroughly studied.
According to Poole et al. [6,24], an optical fiber exhibiting PMD can be treated as alinear
medium described by a complex 2 by 2 transfer matrix T(w), and in the absence of
polarization dependent losses that matrix is given [6] by
T(w) =" Uw), (2.10)
where b(w) isin general a complex number given by
Bw)=-2p+jw @) (211)
Z is the transmission distance, r represents the fiber loss and y (w) is the propagation

constant. In eq. 2.10, U(w) isaunitary matrix defined [6] as

U= [ ulfm) ui(m )} : (2.12)
—uy(w) u (@)
where |u,(W)F + Ju,(W)F = 1. The Jones vector notation can be used to represent the vector

field E;,, of area lowpass signal [8], E,(w), polarized along j at the input of an optical
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fiber,
E, =E_(w)p . (2.13)
Aswe aretreating thefiber as alinear medium, the complex lowpass vector signal [79] at
the output of the fiber can be expressed by

E,, =T(Aw)E, =" U(A0)E,, (214
where Dw = w + w, and w,, is the optica angular carrier frequency.

According to the phenomenol ogical approach introduced by Poole and Wagner [6],
asgnd of agiven frequency w, launched into abirefringent optical fiber on one of itsinput
PSPst thefrequency, e, .(w), will come out at the other end polarized on one of the output
PSPs at that frequency, g, .(w), and with agiven phase g, ., (w).

Let us, for the sake of simplicity, assume that, ] corresponds to one of the input
PSPs at the carrier frequency, i.e.,] =e,.(w,). Withthe use of eq. 2.13, eg. 2.14 can be
expressed as

E ot = € VU (A0)E, (0)8 4 © ) (2159
or dternatively,

E,u = |Eoge(@)|e = @a, (), (2150)
where |E,. .(W)| is the magnitude of the complex lowpass output signal. The output phase,
Jouts(W) can be expanded ina Taylor seriesaround the carrier frequency and gpproximated
by the first threeterms as

B ()= 8,00 + 8,400 + %E‘m,ziém : (2.16)

where dw = w - w, and Q. , = d" Qo (W)/OW' | ., n=0,1,2. Thefirst termin the right
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hand side of eg. 2.16 isan arbitrary phase and can be neglected, the second term represents
the transmission time of the signal and the third term represents the frequency dependence
of the transmission time, commonly known aschromatic dispersion®[3]. Thus, asignal of
a given frequency transmitted along the slow input PSP, e, (w), will experience a
transmissiontimeof t . = q,,,, and will be polarized along &,.(w) at the output of the fiber.
Likewise, asignd of a given frequency transmitted along the fast input PSP, e, (w), will
experienceatransmissiontimeoft =q,,, andwill bepolarized dong e, (w) at the output
of the fiber.

Therefore, if q,,,. * O then thedifferential group delay will depend on frequency,
which is one of the second order effects of PMD. The other effect being the frequency
dependence of the input and output PSPs.

Both second order effectsareactually correlated [29] in such away that when <Dt >
is high*, the rate of change of e, .(w) with frequency is low and vice versa[28,29]. The
impact of second order PMD on the pulsewidth of the signal at the output of the fiber has
recently been studied in both, the frequency [30-33] and the time domain [34]. It has
generally been concluded that, whenever <Dt> is less than one tenth of the bit period,
second order PMD effect can be neglected [28]. However, second order PMD effects may
also interact with the chromatic dispersion of the fiber and introduce fluctuations on the

transmission performance of the system [33]. When second order PMD is not negligible,

%When the chromatic dispersion is exclusively owed to PMD it is known as polarization
dependent chromatic dispersion.

*Where <*> meansthe average of “+” over frequency.
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the frequency content of the signal becomes a concern [35,36] and low chirp® modulation
techniques (such as the use of external modulators) are required.

Ananalysisof theprobability of experiencing a“ performanceoutage’ (whenthebit
error rate increases beyond 10°) due to first and second order PMD effects [37] shows
however, that if <Dt> £ T/10 (where“T” isthebit period), arelatively high laser chirp will
not cause additiona system degradation due to second order PMD.

Nevertheless, it is the frequency dependence of the input and output PSPs which
causes most of theharmful effectsfor an IM/DD system, [27,29,33,38] and can even render
acoherent system useless[3] or considerably diminish the effectivenessof several recently

proposed first order compensation schemes [31,39-51].

2.6 THE STATISTICAL NATURE OF POLARIZATION MODE DISPERSION

Theintersymbol interference caused by pulse spreading dueto PMD has adifferent
originfromthe ISI caused by the chromatic dispersion in thefiber [52]. Thelatter oneis
deterministic, grows linearly with distance and can be compensated by using dispersion
compensating fiber [53] or any other commercially available dispersion compensation
technique [3].

PMD however, is a stochastic process [54]. The random configuration of
birefringence which causes PMD depends on the stress induced by spooling, cabling,

temperature changesand any other environmental factor that may causethe core of thefiber

°A highly coherent laser source [3] is said to be “chirped” if the carrier frequency
produced by it drifts over time.
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to deviate from being perfectly cylindrical. The statistical properties of PMD have been
experimentally and theoretically studied [54-57]. It was found, [58], that the evolution of

DGD at a particular frequency over time yields a Maxwellian probability density function

\/E At [ 341 ]
PRE( AL =3— exp| - : (217)

T At 2412

[54] given by

where Dt = <Dt%>"2,

Interestingly, as a result of the multiple factors which contribute to the randomly
varying birefringence along the fiber, the statistics of PMD at agiven frequency over time
arethe same as the statistics of PMD at agiven time over a broad enough frequency range
[54]. Even more interesting is the fact that the statistics of PMD over either time or
frequency for asinglefiber are the same asthe statistics of PMD over an ensemble of fibers
[58]. This makes PMD an ergodic process of course.

It isthis highly statistica nature of PMD which makes it difficult to compensate.
ThePM D dependenceon environmental factors[17,36,58,60,61] introducesatimevariation
in the frequency response of the fiber, which in turn implies the need for an adaptive
compensation technique. Not only does the frequency response of the fiber evolve with
timebut also with theinput and output [33,50,52] statesof polarization. A successful PMD
compensation scheme should therefore, be capable of tracking relatively fast variations

[19,62] in the frequency response of the fiber.
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3 PULSEWIDTH NARROWING

Thischapter will present, in detail, the mathematical derivation, first introduced by
Chen et al. [7], which establishesthe theoretical framework necessary in order to minimize
the rms-pulsewidth of a signal transmitted through an optica fiber with PMD. 1t is
noteworthy to mention that the theoretical work by Chen et al. does not make any
simplifying assumption about the orders of PMD inthefiber or the shape of the transmitted
signal. The system under consideration isalso presented and mathematically described. At
the end of this chapter a set of algorithmsisintroduced, the purpose of whichisto vary the
input and output states of polarization in order to minimize the rms-pul sewidth of asignal
beforeit reachesthedetector. Thelatter isequivalent to searchingfor an absolute minimum

in afour dimensional space.

3.1 THE SysTEM CONSIDERED

In order to clearly appreciate the dependence of the frequency response of the fiber
on the input and output states of polarization of the signal being transmitted, eq. 2.14 can
be rewritten as

E,u=To(wRE,(w) (31

where T, (w) = T(w+w,) = T(Dw) isthe complex lowpass equivalent of T(w) [8].

Signals can be launched into afiber on any state of polarization with the help of a
Polarization Controller, (PC)[63,64]. A PCisessentially aset of waveplateswith different
retardation values [65], each of which can be rotated in such away that the complex Jones

transfer matrix resultant, T ., mapsaninput state of polarization, e, into any desired output
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state of polarization on the surface of the Poincaré Sphere, g, according to
€, = TpeE,. 32
Receiving thesignal at the output of thefiber along aparticular state of polarization,
c, means proj ecting the signal polarized along e, (w) onto ¢ at every frequency, i.e., <c”,
e,(W)>for all w. Tothat end, aPolarization Analyser, (PA) isrequired. A PA canbebuilt
by cascading a PC and a Polarization Beam Splitter, (PBS).

SM™ . PA
LASER

PC1 X PC2 DETECTOR

) EXTERNAL VYQ’Ein @XD Eout E O’O’
*\}3‘* MODULATOR . N
TL (o) . .
¢ ! PBS !
INPUT
DATA

® Single Mode

Fig. 3.1 A system with a polarization analyzer at the end.

Infig. 3.1, e and e, represent two mutually orthogona states of polarization respectively.

Thepurposeof thelatter isto spatially separatetwo orthogonal states of polarization
incident on it. The PC will transform those frequency components of E_, polarized along
c into aparticular state of polarization (e, for example), which can be extracted by thePBS
and subsequently detected. Refer to fig. 3.1. The overall effect will be the extraction of
those frequency components polarized along ¢ in such away that the receiver only “sees’

that portion of E,,, This can be mathematically expressed as

E, (©)=1"Epq =1 TL(@)PEy(®) = H (0)Eyw) (33)



21

WhereE,(w) isthe signal seen by the detector and we made useof eq. 3.1. Ineq. 3.3, H, (w)

represents the complex lowpass frequency response of the fiber and is given by

Hpw)= 'I.+TL (0 )y . (3.4)

3.2 Basic DEFINITIONS
This section gives some of the fundamental definitionsrequired for the pulsewidth

analysis presented in the next sections. The Fourier transform definitions used here are

{ } gL oo (3.59)
E(n)= 3iE(t) ;= — | E(t)e " dt
0)- 5{E®} - - [EO
1 .
E(t)= $7{E(0)}= — |E(n)e™ dn (3.5b)
®)-57{Ew)} - 5 [E0)
The rms-pulsewidth of the signal seen by the detector i1s defined [7,32,33,66] as
0. =A<t?> <t >?] (36)
where the n-th moment of t, [32], is given by
[EXmt7E, (tydt
LN = T ; (37)
2
[E.®f at

=

and the asterisk ,”*”, denotes complex conjugate.
It is straightforward to prove' that the first two moments of t can be expressed in the

frequency domain [32] as

'Refer to appendix “A”
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{E> = Ii(“") i (389
af&»*
T@m
s L (3.8)
_HEx(m )| da

The complex lowpass time impulse respgnnse of the optical fiber can be obtained by taking
the inverse Fourier transform of eg. 3.4 as

he ()= §7 He(w)} = & {1 Tu (@ )e} (3.9)

Therefore, for agiven optical fiber exhibiting PMD, described by a complex Jones

transfer matrix T (w) in asystem like that from fig. 3.1, the time impul se response seen by

any signal propagating through itwill depend on the state of polarization at which thesignal

is launched and received [50].

3.3 PULSEWIDTH EQUATIONS
In this section, the mathematical expressionsfor the rms-pulsewidth as afunction
of theinput and output states of polarization are presented [ 7]. From equations 3.3 and 3.8,

the first and second moments of t can be expressed as

<Stnoo= =0 (3 108)
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'I.

e

E (3100)
.Il I Em:lEnutIdm

S =

The input, j , and output, ¢, states of polarization are degrees of freedom of the
system and they are assumed to be independent of frequency. Therefore, by using eg. 3.1,
we can rewrite eg. 3.10 as

+ ¢ . d +t #*
1 _[J 5y 0 )E(0) |99 Ty (2 )E; (8 )do ry
<t» = - (3.11a9)

f{fTL(m 190" T} (0)[E,, ()] do }1

“r d d .
1*{ [— L(0)E, (@ )}quJ*[—TE(m JE, (0 )}dm}l
I'n G do _ (311h)

:r.*{ [ T, 0)99" T (0)[E.0)[ do }1

2

<t*>» =

The expressions within the bracesin eq. 3.11 are not afunction of frequency, but a
function of theinput state of polarization, j . For that reason, the notation can be simplified

[7] by defining
d *
T, = I jlaTL(m JE (9 )}tpq:-*Tﬂ (@ )VE,(n )dn (3129
[i L(@)E; (0 )}mm*[%ﬂf (0 )E. ( )}dm (3120)

do

S"’:_Im
]

+ et 4
= [ TL(0)99" T (0) [y ()| do (3120
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where T, S and P, are complex 2 by 2 matrices. Equation 3.11 is now reexpressed as

+
T
A ]
<Py = 15,1
™ 1+Pq31 ; (3.13b)

For agiven value of the input state of polarization, | , eq. 3.6 can be expressed asa

function of the output state of polarization, ¢, by using eg. 3.13

c(y) =

2
'S, 1 (1'T,x
: (3.14)

1'P,x \1'P,x
Had we changed the order of the termswithin the integrals of eq. 3.10, we would

have obtaned the following result

J:!;E:ﬂ',[f[ dm"*Jdm
<t> = 5 (3159
| B! xt Eouds
t dE*mJ {dEmJ
(1] L1} dlj:]
; I[ o )M\
<ttt = E (3.15b)
| Ef a1t Eodo

Eq. 3.15 can aso be arranged in away similar to eq. 3.10 by using eg. 3.1, yielding the
following result
+ .“:' + ¥ + d
) J_[TL(UJ)Ein(m)II 3y w(®)E () do re
<t> = — (3.16)
+ + + 2
) {ITL(UJ)II T, (0)[E, ()] do }tp
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+ [ d + * + d
9 {j[dm L(W)Ealm)}ll [dm Ixm)E&mm)}dm}m
5 o= e . (3.16b)

m*{ [T 0)12" L @) En()f do }tp

< 1

In this case, similar to eq. 3.11, neither of the expressions within the bracesin eq.
3.16 is a function of frequency but a function of the output state of polarization, c.
Therefore the notation can be further smplified, [7], by defining
° d (3.179
L= L (@)Eas )n*[amm JIONC )}dm

il d ) [ d
Sy :_.JgTﬂ(m JE, (0 )}11 [E L (0)E, (0 )}dm (3170)

i}

: 2
P = [ T (o) T (0)[E.(0)] do (3170
where T, S and P, are 2 by 2 complex matrices. Thus, eq. 3.15 will now be given by
+
¢ T
< t> rei = ! (3188)
¢ Po
+
ooy iz o > %
% : .1
q)+PEq) (3 )

For agiven output state of polarization, c, eg. 3.6 can be expressed as afunction of

the input state of polarization, j , by using eg. 3.18, to give

(3.19)

g T o)’
5 [

¢'Po | 9'Po
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3.4 CONSTRAINED MINIMIZATION
Eq. 3.14 (or eq. 3.19) represents the case in which the objective function, s .2, is
expressed as a function of the output (input) state of polarization while the input (output)
state of polarization isheld fixed. A constrained minimization using Lagrange multipliers
will be carried out in eg. 3.14 and 3.19. In both cases the minimization constraint, will be
that the 2 by 1 complex vectorsj and c represent a Jones vector state of polarization, i.e.
] 7] =1,c ¢ =1, respectively. The primal equation [67] for the constrained minimization
of eq. 3.14 isgiven by
o(y)=1-¢"y . (3.20)

We can define a new function, h(c), needed for the minimization procedure,

h(g)=02(1)*+ ne(y) (3213
2
1'S,1 {I*TQJIJ ,
h = + = ¥ + ]-_ ) 3.21b
(1) vPy \1P 1 nl-171) (321b)

where egs. 3.14 and 3.20 were used and h is the Lagrange multiplier [85]. Differentiating

eg. 3.21 with respect to ¢ ', we will obtain the adjoint [67] equation,

dhiy) i (3229
oyt

hiy) (L'P1S,1- P 1(1'S,1)
P Z
oy’ (1P, 1)
, (1P, 0T, 1~ B, 2(x* T, 1) [I*T[p:r,
(r'P, 1)’ 1P,




27

The notation can be further ssmplified by defining

P I+P¢.'I (3.239

T=1 T (3.23b)
Substituting eg. 3.23 into eg. 3.22b will produce the following eigenvalue equation, (after
reordering terms)
1 1

+ 2 + ZT +
5 hILS, - mLIr L+ R T, 1=11 (249

or

[Ml(q:" ,1)]1 = N1- (3.24b)
It is possible to follow a similar procedure but starting fromc(j ) =1-j° andh(j ) =
s, (i ) +zc(j ), wheres,? isobtained from eq. 3.19 and z isthe Lagrange multiplier in this

case. The eigenvalue equations produced will be

1 1 2 2T
(553 -5z 908, - s Lo T + ?Pzw*ﬂzjm = Lo (3259
or

IM.Ge. D] = Co- (3.250)
The eigenvalue equations 3.24 and 3.25 are the fundamental results presented by
Chenetal.[7]. Thenext sectionswill discusshow to usethemin order to find theinput and

output states of polarization which produce the minimum rms-pulsewidth.
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3.5 METHOD OF SOLUTION

Both eigenvalue equations, 3.24b and 3.25b are derived independently. Each one,
however, triesto minimize s, by adjusting only one state of polarization while the other
isheld fixed. 1t must be pointed out that M ,(j ,c) ineq. 3.24band M,(j ,c) ineg. 3.25b are
functions of both the input and the output states of polarization. Therefore the solution to

eq. 3.24b and 3.25b will require a set of initial valuesforj andc.

3.6 OPTIMI1ZATION OF THE RECEPTION STATE OF POLARIZATION
If theinput sate of polarizationisheldfixed, eq. 3.24b can be solved recursively by
assuming an initial value for c, c,. If avalue close to the optimum value of ¢, ¢, isnot
known beforehand (which is usualy the case), an arbitrary initial value of c,, is chosen.
Every time that the eigenvalue equation 3.24b is solved, it will produce two eigenvectors,
c, andc,. Each of those values of ¢ can beused alongwithj ineq. 3.14to calculates,(c,)
and s,(c.). Theoutput state of polarization yielding the smallest value of s, will become
the new value of c,. The processisrepeated until afigure of merit (FOM) reaches certain
limit. At that point, it is assumed that the search for c,,, has converged and s,? has the
smallest possible valuefor the giveninput state of polarization, j . Thefigure of merit used
here is defined as
FOM, =1 uT e (3.26)
where C,, (C,q) represents the value of ¢ which minimized s, in the current (previous)

iteration. The convergence limits used here were empirically chosen and range from 10°
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to 10*. The search for c,, will thus stop when ¢, is aimost the same as ¢, . Fig. 3.2

shows aflowchart of the procedure described.

3.70PTIMIZATION OF THE TRANSMISSION STATE OF POLARIZATION
The procedurefor optimizing theinput state of polarization, j , and the convergence
limitsare similar to those described inthe previous section, but thistime assuming that the
output state of polarization isheld fixed. Figure 3.3 showsthe flowchart corresponding to
the search for j .. Thefigure of merit, FOMj , in this caseis given by
FOM, =1~ ;u® ey * (327)
wherej .., ( o) correspondstothevalueof j which minimizeds, inthecurrent (previous)

iteration.

3.8 OPTIMIZATION OF THE TRANSMISSION AND RECEPTION STATES OF
POLARIZATION

The procedure for optimizing the transmission and reception states of polarization,
j and c is, in essence, the same as that presented in the two previous section. Here,
however, we will combine the two individual searches. Initia arbitrary valuesof ] and c
are chosen, and anew figure of merit, FOM, .., will smply be defined as: FOM, .. = FOM,
+ FOM.. The convergence limit for the new figure of merit also fallsin the same range as
that from the previous cases.

Fig. 3.4 shows the flowchart for the search of | ,, and c,,.. In all the optimization
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procedures described, the search for j ,, and ¢, is repeated a number of times, each time
using different, randomly chosen values of j , and c,. This is done with the purpose of
avoiding convergence to possible local minimum points. The results of the searches are

presented in chapters five and six.
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Fig. 3.2 Flowchart for the optimization Fig. 3.3 Flowchart for the optimization of
of the output state of polarization, c. the input state of polarization, j .




aTART

CHOOZE: (o, Yo

v

(petd = 9o
Y

SOLVE:
[ME(po, Y] p=Cip

31

SOLVE:
(I o, Yo 1= %,

e =44

Yrew =Yo

,+

| CACLULATE: FOMy;g |

Aot = Yrew

(popt = (Prenw

END

Fig. 3.4 Flowchart for the optimization of theinput, j , and output, c, states of

polarization.
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4 FIBER SIMULATION
Due to its highly statistical nature, PMD research relies to an unusual extent on
computer simulations. The purpose of this chapter isto introduce the mathematical model
of an optical fiber exhibiting PMD. The model isused throughout therest of the thesisand
inthischapter isutilized to explore the statistical nature of the timeimpul seresponse owed

to PMD.

41 THE WAVEPLATE MODEL

A waveplate can be thought® as being a short section of highly birefringent fiber
which strongly guides light along two states of linear polarization, coincident with the
symmetry axes of the fiber. The waveplate introduces a phase shift between the
orthogonally polarized components of asignal propagating through it. Fig. 4.1 showsthe
simplest case of a pulse being transmitted through a single waveplate with fast and slow

axes corresponding to the lower

fast
and higher values of the refractive .
b
index respectively. |<: |\ 1
slow
Fig. 4.2 illustrates the “ { ll ]l ‘
principal states of
dephasing of the two orthogonally pojerzaton —| At |—
diﬁe:e;éilglygroup
polarized componentsat the output

. Fig4.1 Single waveplate [12].
of a waveplate at a particular g g eplate [ 12]

frequency.

YInreality awaveplae is abirefringent crystal with well defines opticd axes[12].
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Fig. 4.2 A Single frequency component delayed by a waveplate [14)].

The widely used approach [50,65,66,68-70,74] for modelling an opticd fiber with
somegiven mean DGD, <Dt > consists of cascading alarge number, N, of waveplates, each

oneintroducing arandom delay, Dt; , and with their fast and slow axisrandomly rotated as

showninfig. 4.3.
! f
i i
i f
M (o) M, (o) M, (o) My (®)

Fig. 4.3 PMD modelled by a series of cascaded waveplates [14].

Each of thewaveplatesinfig. 4.3 is characterized by acomplex 2 by 2 Jones matrix

given by

i (4.1

g
. L
cosf, smei} il 0

M, (v )= [

- #inb. cosb,
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where the first matrix introduces a rotation of the optical field into the frame of reference
of the local principal states of polarization and the second one accounts for the DGD on
each of the orthogondly polarized components. The rotation angles of every segment, g;,
are random with a uniform distribution from 0 to 2p radians; the values of Dt, (in
picoseconds, ps) are also drawn from a uniform distribution between 0 and a maximum
value of DGD, Dt . Under these conditions, U(w) in eg.2.12 can be obtained as the
successive multiplication [50,66,69] of the Jones matrices of each individual waveplate,

H-1
Uw)=]IM @) (42
1=0
The useof eq. 4.2 produces an optical fiber [65] with amean DGD?, <Dt > given by

<At> = SN Bl
= 31 1,5 . (4.3)

As we wish to focus on the nature of the changes introduced solely by PMD on a

singleoptical pulse, wewill neglect the effect introduced by thefiber chromatic dispersion
andfiber lossunlessitisindicated otherwise. Using numerical approximation methods, [ 71-
72], it is possible to calculate the DGD as shown in fig. 4.4a) for an optical fiber made up
of 700 different waveplates and with <Dt > = 20 ps. Fig 4.4b) depictsthe principa output
states of polarization on the Poincaré sphere for the same wavelength range as in 4.43a).
Second order PM D effects are present in this case, the differential group delay depends on

thefrequency, Dt = Dt (w), and so do the principal output statesof polarization, g, . =€, .(w).

2 Throughout this thesis the notations <Dt > and <DGD> are used interchangeably, as it
often appears in the literature, to represent the mean differential group delay over
wavelength or frequency.
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Principal Output States, sm(w) and sb_(m)

Dherda Croip DB SErfo =1Mm

12
1S5S 1MES 1M5T 1=ES 1M00 1960 19501 19902 19903 1990+ 19905
A eng bijnm;.

Fig. 4.4a Variation of DGD over 1 nm. Fig. 4.4b Variation of the output PSPs over
1 nm.

4.2 THE STATISTICAL NATURE OF THE TIME IMPULSE RESPONSE
The envelope of the complex lowpass timeimpulse response [8] of an optical fiber
with PMD given by eq. 3.9 can be expressed”® as
hy ()= yRe[h, ()] +Im’[h, (0] . (44)

Asindicated in chapter two, the multiple birefringence along the fiber will change

randomly over time. These changeswill in turn, make h, (t) a stochastic quantity. In order
to explore the statistical nature of h, (t), the probability distribution function of |n (t)| was
estimated through simulation.

The time varying characteristics of the fiber were accounted for by using an
ensembleof 10,000 statistically independent fibers, each one consisting of 500 waveplates
with amean DGD of 20 ps. Theinput (output) state of polarization, | (c), was randomly

chosen at the beginning of the simulation and held fixed theredfter.

% The notation Re[] and Im[+] represent the Real and Imaginary parts of the complex
number “«” respectively.
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For each fiber, |n (t,)| was numerically calculated from eq. 4.4 for some arbitrary

time instant, t,. U(w) was calculated from eq. 4.2. The histogram for the frequency of

occurrence of the different values of |h (t,)| is shown in fig. 4.5 along with Rayleigh and

Maxwellian fits.
From fig. 4.5 we can see that a
Rayleigh probability distributionis
a good approximation to the
distribution of the datarendered by
the simulation.

Thishitherto unnoticed fact
impliesthat at |east from the linear
time variant system point of view,

a system as that from fig. 3.1

Homalked Frguesdy

Progatililly Disingulton o7 i {131 oLer 3 Ereem ble of 1000 toers

Raylelgh 11
= Mazwellan 11

0zs 03
hLl:I1JI

Fig. 4.5 Probability distribution of | (t,)|.

subject to time varying PMD will be equivalent to a wireless communications channel

exhibiting multipath propagation on asignal transmitted through it [73]. The andogy with

awireless channel suggests the possibility of introducing a relationship between the DGD

and figures of merit such as the rms Delay Sporead [73] in order to study the system

limitations imposed by PMD. This however, is beyond of the scope of this thesis and

should be considered atopic for future research.
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5 SOLUTION TO THE NARROWING EIGENVALUE EQUATIONS

This chapter will make use of the waveplate model previously introduced in order
to analytically and numerically solve the eigenvalue equations presented in chapter three.
The analytically exact solution will be calculated for the case in which the optical fiber
consists of one, two and three segments of Highly-Birefringent fiber, each one having a
different DGD, t,, t; and t , and with different fusion anglesin between them. The solution
for the more general case of afiber made up of “n” segments of Hi-Bi fiber isnumerically
obtained. The existence is revealed, of two orthogonal input states of polarization, j .,
and two orthogonal output states of polarization, c,, ¢_, under which the rms-pul sewidth of

the output signal isthe smallest possible.

5.1 Basic DEFINITIONS
In order to ssimplify the cdculations and as a good gpproximation to areal system,
a Gaussian shape of the transmitted optical power!, P, (t), isassumed such that the input

lowpass electric field is given by
t

- BT L . 51
Vi@n)?

where“t” isthe rms-pulsewidth of P, (t). Unlessindicated otherwise, t = 25ps, whichis

appropriate for a 10 Gigabit per second, Gbps, system and the carrier frequency will be

Theelectrical signal at thereceiver isproportional to the optical power incident onit for an
IM/DD system [8] as the one considered here.
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w, = 1216.1 rad/ps which corresponds to a carrier wavelength, | . of 1.55mm. The input
electric field can be expressed in the frequency domain by using eg. 3.5 as

)= S{Ea0} = vi[ 2] e (529

2 Z
and .| = J;Le zey (5.20)

For the sake of simplifying the calculations in the following sections, we will define the

following set of functions (the proof can be found in gopendix “A™)

2 I A (5.39)
Fili=rt.— e—zw +erdﬂ] s e—I‘ fgt
©-y7]
F,(T) = thﬁjme'zﬁwh’j“rdm = %e'ri‘w (5.3b)

27 . By
Fj(]__‘) " 415 e -[I:I:I ze—212m2+_'|mr dl:l:l = E:—I'E_u'E'[.2 [12 i TJ (53C)
T -

In general, the normalized Jones vectors representing the input, j , and output, c,
states of polarization will be represented [12] as

e " cosa : :

1 - . A

Q=] i . 2 g = [e”’l cosa, e " sumtl] (5.49)
e sing,

e " cosa,
121 e gin g
withg,,0,,8, and a, beingreal. Fig. 5.1 showsaschematicsysem inwhich the optical fiber

}; 1t = [em cosc, e " sin 1:12] ,  (5.4b)

in fig 3.1 consists of three segments of Hi-Bi fiber with different DGDs, t,, t. and t. and

fusion angles, g, and g., between them. Here, g, is measured with respect to q,
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Fig. 5.1 Three segment system.

The one segment case can be obtained by aligning the three segments together, q,
=, = 0°. Then the total DGD introduced will simply be the sum of the individud DGDs,
t =ttt +1,, [25]. Thetwo segment case can also beretrieved by aligning thefirst two
or the last two segments, i.e. g, = 0° or g, = g,. Without loss of generality, the analysisfor
the three segment case will be presented in detail and the other two cases will then be
derived by setting the appropriate values of g, and g..

According to the waveplate model introduced in the previous chapter and eg.4.2,
the complex Jones transfer matrix of the 3-segment fiber in fig.5.1 is given by

ity

2 [cosei sinEii} eZ 0

-sinB; cosB; | e-”;i ’ (55)

T(w)="Uln)=

1=0

where we have neglected the chromatic dispersion and fiber losses. For the sake of
simplicity we choose g, = 0°. After multiplying out all the termsindicated in eg. 5.5 and
having simplified the notation, the complex lowpass Jones transfer matrix, T, (w) is

obtained from T (w) by asimple frequency shifting [25], T, (w) = T (w+w) and is given by



( ) = Jmk 1 Jml 2 e_Jmm 3 P " =
Cim)= . . . .
I i s

eJ"”’wj + ejmmwﬁ = JWIW? + € JmkWE

and its corresponding Hermitian is,

- + -1 +* -1 + -1 +
e w, + e Mw, e w4+ e "Mw,

T (n)=

e Mwo+ e,  ¢w+ e w,

The newly introduced set of variablesis defined as follows

o1,k 0,1

w,=¢e " cosb, cosl, ; W.=-¢ * sinf, cogb,
a1l . . : .

w, = -e™ ginf ¢nd, ;  w,=-e""cosb, sinb,
= _j"-'-.l-:-m H - o _jl'.v.'l.)]. = -
W, =€ cosb, sinf, ; W, =-¢  snf sinf,

_ oaTim : ik
W, = ¢ sint, cosd, ; W,=¢ cost, cosd, |
To+ Tyt 1 o T
0 1 2 0 1 2
k= ——= m =
2 2
To— T+ 1T —T,+ T+ T
0 1 2 0 1 2
l= —FF n=
2 2

The find results can be further simplified by introducing the following vectors,
Wiy, = | W, COS0,;, W,CO0S0; W;sing, w4sm|::r,1]
Weog = | W; COS0, W €080, W, 800, W, SIIICLI]

Wiag = | W) COS0L, W,C080, W,sino, wﬁsmw,z]

Wigg = |W5 €080, W,C080, W, sinag, wamnaz]'
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(5.68)

(5.6h)

(5.7)

(5.8)

In order to assess the difference between the signal rms-pulsewidths and power

levelsat the output of PC1 and PA infigures 3.1 and 5.1 we will make use of the effective

rms-pul sewidth defined here as

T g=0d, —7T

(5.99)
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where the rms-pulsewidth of the output signal, s,, isgiven by eg. 3.6.
The power of the input signal is normalized to one due to the Gaussian shape of the

transmitted signal and the power of the signal a the output of the PA will be

o

P, = |

=i

wherewe made use of eq. 3.3. P, and P, aregiven by equations 3.12cand 3.17crespectively.

E. (1 )|2dm = 1'P,1=¢'P,0 (5.9b)

Thefollowing sections, will outline the mathematical procedure required to derive
the analytically exact expressionsfor T, S , P, T, S and P, as functions of the variables

and functions defined in this section. The actual results are presented in Appendix B.

5.2 PowER CALCULATIONS, Pj

From eg. 5.2, 5.4 and 5.6 we can see that the term within the integrd of eq. 3.12c

iIsacomplex 2 by 2 matrix,
a,(n) ay(o)
: 10

T, (0 )@o* T (0)|E,, (o )|2 . Lj(m ) aun)

Thus, P, will in turn be acomplex 2 by 2 matrix given by

b T[al(m) a,(a )}dm _ [P[pl Pw] 5113

? a;(n) a,(m) Pis P

Py = _[ai(m Jdo ; i=1,...4 (5.11h)

-

—m

where

By making use of egs. 5.2-4, 5.6, 5.10 and 5.11 we obtain, after considerable mathematica

mani pulations the results presented in eg. B. 1.
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5.3 PowER CALCULATIONS, Pc

Asin the previous case, the term within the integra in eg. 3.17c will be a2 by 2

complex matrix given bv
a;(n) a;(n)
512

T ()3t T B, @) - L}-(m ) 2 ()

Therefore, P, in eq. 3.21c will also be acomplex 2 by 2 matrix,

) Slan)y ag(n) ) P, P, 5
P*‘I[a?(m) aa(m)}dm‘[a P} o

Ay
oo

P.= Iai+4(m Jdw i=1,....4 _ (5130)

-

-

where

Thecomponentsof P. in eq. 5.13 are obtained from equations 5.2-4, 5.6 and 5.13. Thefina

expressionsfor P.to P, aregivenineq. B.2.

5.4 FIRST MOMENT CALCULATIONS, Tj

Here, the procedureisessentially the same asthat for the power cal cul ations, except
for the intermediate algebraic steps (not shown) which become increasingly more
elaborated. Thetermswithintheintegral ineg. 3.12awill make up a2 by 2complex matrix.

ag(W)  ayp(w)

I d I % o
J[ L(m)Em(DJ)]q?q? T, (DJ)Em(UJ)—J[a”(m) 312(0.1)]_ (5.14)

do

Accordingly, eq. 3.12a can be reexpressed as a 2 by 2 complex matrix given by

T, - jj[ag(m) Ay, (0 )}dm _

a,,(m) a (@)

T'P1 L
T I (5.159)

s Py

-

where

T - j__[lami(m)dm , i=1..4 5150
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The set of analytical expressionsfor T..to T, can befoundineq. B.3. Equation B.3 was

obtained by using equations 5.2-4, 5.6 and 5.15.

5.5 FIRST MOMENT CALCULATIONS, Tc
Thecalculationsfor T_ are aselaborated asthosefor T, and only thefinal resultsare

shownin appendix B. Thetermswithintheintegral of eg. 3.17awill producethefollowing

matrix
aj;(0))  ay,lw)

* + d 1
I @)E, (w)yx [ETL (W )E, (@ )] - ‘I[alj(m ) A )] =

Substituting eq. 5.16 back into eg. 3.17a gives

T - .m[alz(m) a, (o )} : 5 T, T, (5.178)
Yooslasla) agn) T, T, .
where
T, = j_[alzﬂ(m Jdn ; i=l,..4. (5.17b)

Equation B.4 isfinally obtained by using egs. 5.2-4, 5.6 and eg. 5.17.

5.6 SECOND MOMENT CALCULATIONS, §

Although the mathematical procedure required to derive the anaytically exact
expressions for the second moment terms, S, and S, . is essentially the same as that from
preceding sections, the algebraic manipulationsarein general moreintricate. Here, all the
intermediate steps are skipped. Only theinitial stepsareillustrated and thefinal resultsare
included in appendix B. After multiplying out the terms within the integral of eq. 3.12b, a

2 by 2 complex matrix results.
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d dd . " [ar @) a(w)
[E L(W)Em(w)]w [gTL(DJ)Em(w)]—[ a0 ©) 2,y) ] (5.18)

Substituting eg. 5.18 back into eq. 3.12b yields

s, - T[al?(m) a,,(0 )}dm _ [Swl Snﬂz] (5.193)

s 2(0) ag(o) Sy, Sy,

Sp. = |tgu@)d 5 i=1..4 (5.19b)

where
The final result in eq. B.5 makes use of equations 5.2-4, 5.6 and 5.19.

5.7 SEcoND MOMENT CALCULATIONS, S
Finally, the expression for the second moment factor, S, is calculated by applying

the same procedure. We begin by multiplying all the termswithin theintegral of eq. 3.17b.

ay,(n) a,()

d _, ; | d _
{ETL (n)E. (0 )}11 {a Liw)E, (o )}— LEE(W) a,, (i )] (5.20)

Substituting back eg. 5.20 into eg. 3.17b will result in another 2 by 2 complex matrix,

Cfan@) an(e)] |8y S, (5219
B -'LL:B(“:') a,,(0 Jdm i [S : ]

X X
where

f==]

Sy, = _[azmi(m o ;o i=1,...4 (5.21b)

Theuseof equations5.2-4, 5.6 and 5.21 along with lengthy al gebrai c mani pul ationsrenders
theresult for S.to S, which can be found in eq. B.6.

To this point we have derived the necessary mathematical expressions for the

evaluation of the eigenva ue equations presented in chapter three. Inthefollowing sections,

wewill gradually incorporate those resultsinto the searching procedure depicted infig.3.4
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in order to explore the possibility of obtaining an output signa with an rms-pulsewidth

smaller than the rms-pulsewidth of the input signal.

5.8 THE ONE SEGMENT CASE

In this section, we investigate the effect of varying the input and output states of
polarization in asingle segment of Hi-Bi fiber. To that end we resort to our three segment
model and align all the segments, i.e. q, = g, = 0°. We also choose atypical value of 20ps
(t—=20ps) for the DGD introduced by thefiber. Asall the segmentsare aligned, the total
DGD is equal to the sum of the DGDs of each individual segment [25]. Without |oss of
generality we can selectt, =t, =t; = 20/3 ps.

The mathematical expressionsfor T, S , P, T_, S and P. contained in appendix B
were evaluated for the chosen values of q,, q,, to, t; and t, and used in the searching
procedureillustrated in fig. 3.4. In order to find the valuesj ,, and c,,, which minimize
s,’, the search was repeated 100 times, each time with differentinitial vauesj ;andc.. In
all cases a convergence limit of 10" was used. The reason for choosing such limit was
simply that neither an increase nor adecrease seemed to have any effectson thefinal results.
The Poincaré sphere is used in fig. 5.2 to represent the initial and final values of the input
state of polarization.

Figure 5.2a shows the randomly selected initial search pointsfor j and fig. 5.2b
showsthe final values of | rendered by the search after it reached the convergence limit.

The results for the output state of polarization, ¢, were similar and are omitted. It seems
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apparent that at least for the case of a single segment of Hi-Bi fiber, no unique solution

exists.

(‘PU ) LPnpt

Fig.5.2a Initial j values. Fig.5.2b Finaj values.

To show an example of one of the solutions reached, we randomly picked one set of final
input and output states of polarization and used it to transmit and receive our Gaussian
shaped signal of eq. 5.2. The time domain output signal, E,(t), can be obtained by taking
the inverse Fourier transform of eg. 3.3. Fgure 5.3 depicts that result.

Although we have been able to

a, =21.505, P, = 5EH

——  Irpul Puse
— — - Oupal Puse

achieve an effective rms-pulsewidth os

=]
15

o
o

reduction of 3.07 ps, (S = -3.07ps ), the

=]
m

narrower pulse obtained contains only

Homalked Opli=al Poaer
=] =]
* in

=]
L1

6.69% of the original power. This power

reductionwill,ingeneral, becometheprice

Time {p=)

to be paid for the improvement obtained of ,
Fig. 5.3 Input and output pulses for one

not only avoiding PMD induced distortion segment of Hi-Bi fiber.
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but producing anarrower output pulse. In this section, we have analytically shown, for the
first timeto our knowledge, that ispossibleto obtain an output pul sewhich isnarrower than
theinput pulse when only one segment of Hi-Bi fiber isused by appropriately adjusting the
input and output states of polarization. The narrowing effect observed here cannot be
credited to theinfluence of second or higher order PMD effects, [24,30,34,75], asthese are
absent for the case of a single segment of Hi-Bi fiber. From the linear systems point of
view, the dependence of the time impulse response on the input and output states of
polarization in eq. 3.9 is responsible for the narrowing effect. It al reducesto finding the
appropriatevaluesof ¢ andj which produce atimeimpulseresponse (frequency response)
capable of minimizing the figure of merit under study, in this case the rms-pulsewidth. A
microscopic analysis of the phenomenon [76] reveals that the narrowed pulse is obtained

as areault of the constructive interference of two pulses.

5.9 THE Two SEGMENT CASE

Here we allow one additional degree of freedom with respect to the previous case.
Our three segment model of fig.5.1 will reduce to the two segment case by setting g, = 0°
and by allowing g, to move freely. Although additional simulations revealed that the
amount of rms-pul sewidth narrowing achievabl e ultimatel y dependsonthe DGD introduced
by each segment of birefringent fiber and the rms-pul sewidth of the input signal, the exact
correlation between those parameters was not further investigated. We will therefore
confine ourselves to the use of relaively small values of DGD. For the two segment case

we somewhat arbitrarily choose, t, =t. =t. = 15ps.
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The analysis begins by setting g, = 45°. The search procedure of fig. 3.4 was
repeated 60 times with a convergence limit of 10 and 60 different, randomly selected,
initial valuesof ¢ andj . The convergence limit was chosen empirically by looking at the
quality of the obtained results. Figures5.4athrough 5.4d show theinitial and final values

of c and |

— 13 # — 4F0
(Po Fom = 10", (Popt Convergence Points, 92 =45
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Fig. 5.4a Initial j values. Fig. 5.4b Fina | values.

FOmM = 10'13, lopt Convergence Points, 62 =457

<t

s, 1

Fig. 5.4c Initia c values. Fig. 5.4d Fina c values.

Unlikethe previous single segment case, wecan seefromfig. 5.4 that all the original values

of c and ] have migrated to two diametrically opposite locations on the surface of the
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Poincaré sphere.

From here on, the diametrically opposite solutions for the input (output) state of
polarization will be referred asj , and j . (c, andc). Asj,andj (c,andc) lieon
opposite points on the Poincaré sphere, then it must betruethat j ,*j . =0 (c,'c.=0) [12].
Fig. 5.5 showsthe normalized input and output pulsesfor asignal transmitted alongj , and
received along c,. It can be seen tha a pulse reduction of 5.85 ps with respect to the input
pulse has been achieved. However the output pulse contains only avery small fraction of
the power of the input pulse.

The influence of the fusion 5, 153, 256%

PE— Ipul Pulse
o Qoupul Pulze | J

angle g, on the minimum rms- os
0.2

pul sewidth reachableand the power

o.v

0.5

level of the output signd was also

studied through simulation. Fig.

0.3

Hormalized Op lca Power

5.6 shows the dependence of s oz

and P, on g, when thefusion angle obocaeeTr L L L v Temaoo

Tme (ps)

Is rotated from 10° to 80° in 1° Fig5.5 Bests, wheng, =0°and g, = 45".

increments. For each value of q,, 60 different initial values of j , and c, were used along
with a convergence limit of 10",

A somewhat surprising result fromfig. 5.6 isthe small scale of the variationsof s
with changes on g,. This can be explained by looking at eq. 3.4. In order to maintain a

similar value of s, when g, changes, the frequency response of the two segments of Hi-Bi
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fiber must remain relatively unchanged. If T, (w) ischanged in eg. 3.4 by varying q,, then
it will be up to the input and output states of polarization to compensate that change so that
H, (w) remains nearly the same. Infact,j and c will act like a constrained equalizer [77]
in the optical domain.

oo+

om

ooz

ool -

v, {egrEes)

it

& [degrees)

Fig. 5.6 Dependence of s, and P, on the fusion angle, d,.
Fig. 5.7 shows the expected evolution® of j ,(q,) and c.(q,).

Luevolution from g, = 10 to 8, = 80° when g, = 07
Py evolution from 8,= 107 to 8= 80° when 8= n? TR,

et

.

Fig.5.7a | . Evolution with q,. Figure5.7b c, Evolution with g,.

2 The “+" notation, makes reference to both orthogonal states of polarization “+” and “-“.
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It must be pointed out here, that in fig. 5.5, every timethat g, isincremented, j , (c,) will

move over diametrically opposite trg ectories, thus maintaining its orthogonality.

We now know that s will have the smallest possible value when a signal is
transmittedonj , (j ) and received onc . (c.). Inorder to investigate the consequences of
recelving a signal aong ¢ . and transmitting it on any other state of polarization, j , we
varied a, and g, from O to p in eg. 5.4a and made use of equations. 3.19, 5.9a and the

equationsin appendix B to calculates ;. Theresultsfor our previously analysed case of g,
=0°%q,=45t,=t.=t.=15psare showninfig. 5.8 for the case of c . reception.
Fig. 5.8a presents the change in the effective pulsewidth when a, and g vary from
0to2pineg. 5.5aand fig. 5.8b showsitstop® view. Inredity however, itisonly necessary

tovary g fromOtop/2[16]. For that reason everyinput stateof polarization, j , will repeat

twice.

Effective Pulsewidth

Effective Pulsewidth (Top View)

(raid)

o, (rad) 0o

. @ 0 0& 1 1 5}11 - 2
Fig. 5.8a Effective pulsewidth withc . Fig. 5.8b Effective pulsewidth with c .
reception, g, = 0° and g, = 45°. reception, g, = 0° and q. = 45° (top view).

24 3 34

3Indl thetop views presented in this section, light regionsrepresent positive high numerical
values whilst dark regions represent small positive or negative numerical vaues.
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As can be seen from fig. 5.8a the vdue of | which produces the minimum s j ., IS

adjacent to an input state of polarization which producesavery large positive value of s ;.

The latter implies that the output signal will be broader than the input signal, which is not

desirable. The behaviour of P, for the same set of values of j was obtained from eg. 5.9b

by making ¢ = ¢ . and cal culating P, for multiple values of j , the results are shown in fig.

5.9.

f
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e
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% (rad)
Fig. 5.9a Power of the output signal with
C . reception, g, = 0° and q. = 45.

.. (Top View)

a 0.6 1 iz 2 25 ! 36
vy (rad)

Fig. 5.90 Power of the output signal with

C . reception, g, = 0° and q. = 45* (top
view).

If we overlay the two top views presented in figs. 5.8b and 5.9b we find that the

region of signd narrowing / broadening falls in a very low power section of P,. This

behaviour of s agrees well with previously empirically obtained results, [75]. The low

power levelsimply that significant amplification would be required before re-transmitting

or detecting the narrowed pulse. Fig. 5.10 shows the broadened output signal (obtained by

transmitting on the value of j which produces the maximum s ; and receiving the signal

on ¢ .) along with its power levd.
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Fig. 510 helps to
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signal with theworst value of s

is not a single Gaussan pulse

broadened, but two narrowed o

-i00 -2 -0 -4 -2 o 20 +0 a0 =0 e 1]
Time (p=)

time-delayed pulses. A detailed Fig. 5.10 Worst s, when g, = 0° and q. = 45-.

analysis[76] of the output signal whenj isvaried withinthe narrowing/ broadening region
revealsthat, whenj isvariedfrom the value withworst s ; to the value with best s, one
of the two narrowed pulses shown in fig. 5.8b will quickly die out leaving only a single
pulse with negative s .

The oppositeisalsotrue, whenj variesfrom the best s, to theworst s, asecond
narrowed pulse will appear delayed in time with respect to the first one, thus rendering a
high rms-pul sewidth of the output signal. The next section will explore theinfluence of |

and ¢ on the minimum rms-pul sewidth achievable for three segments of Hi-Bi fiber.

5.10 THE THREE SEGMENTS CASE
Wewill now makefull useof the analytical expressionscontained in appendix B for
the 3-segment system shownin fig. 5.1. We somewhat arbitrarily chose g, = g, = 45° and

t,=t,=t,=15ps. Thesearching algorithmillusrated infig 3.4 was used in order to find
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J opt @Nd C,y. Sixty initial random values of j , and ¢, where used to prevent faling into a
possible local minimum. The convergence limit used was 10,

After converging, dl theinitial values of ] and ¢ moved to opposite points on the
surface of the Poincaré sphere like in the two segment case. These two sets of orthogonal
solutions’, j , and c, produced the minimum possible value of s, To reach such a
minimum value of s it is necessary to transmit thesignal onj . (j ) and receive’ iton ¢ .
(c).

Fig. 5.11 illustrates the behaviour of s when the parametersof j in eq. 5.4aare
variedfrom - p to p and thesignal isreceivedinc,. The- p to p range was chosen only for

plotting purposes and as a result of

Effective Pulsewidth, (x, reception), 8, = 457, 6,= 457

that, each value of | repeats severd

times as shown in fig. 5.11. &

Infig.5.11 wecanseethesame ¢

Dt

coexistence of the best and worst

values of s next to each other. This 4

isarather unfortunate and undesirable ’

oy (rad)

¥, (ad)

coincidence, as any small change in Fig. 5.11a Effective pulsewidth with c .

the input state of polarization from its reception, g, =45°and g, = 45"

* The assignment of “+” and “-“ is completely arbitrary.

® This is true regardless of the number of segments which makes up the fiber as will be
shown in the next section.
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Effective Pulsewidth, (y, reception), 8 = 45°, 6, = 45°

E 0
8
ENs
2t
At i 4
0
¥y [rad) gy (rad) Yy (rad)
Fig. 5.11b Effective pulsewidth with c . Fig. 5.12a Power of the output signal
reception, g, =45° and g, = 45° (top with c . reception, q, = 45° & q. = 45
view).
optimum value, will quickly introduce the
Px‘ (Top View]
worst possible degradation in the
3 .
8 output signal.
1k
g,
3
|l If weoverlay figs. 5.11b and 5.12b we
) I
) can see that the region of signa narrowing
4 . ; i i i H ; i
o e 7 | Ibroadeningfallsagainin alow power section

Fig. 5.12b Power of the output signal o . .
with ¢ . reception, g, = 45° & q. = 45° of P,. Thisisin genera the price to be pad

t ' . .
(top view) for obtaining a narrower signd at the output®.
Finally, figs. 5.13 and 5.14 show the narrower and broader signals obtained for the
best and worst cases of s;. Asin the two segment case, a small variation of j (in the

wrong direction) from its optimum value will create two different, time delayed, pulses

which will increase s .
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Fig5.13 Bests, wheng,=q,=45". Fig5.14 Worsts, whenq, =q, = 45".

5.11 THE n SEGMENT CASE

Until this point we have been using the analytically exact formulas from appendix
B to study therms-pul sewidth narrowing effectsintroduced by properly adjusting the input
and output states of polarization in the system depictedinfig. 5.1. However, asmentioned
in chapter two, areal fiber would consist of the concatenation of alarge number of segments
of Hi-Bi fiber. Each of those segments introducing a different DGD and being rotated by
adifferent angle.

In this section we make use of the waveplate model to numerically ssimulate the
complex lowpass Jones transfer matrix, T, (w), of an optical fiber made up by 500, [66,78],
different sections. Theintegralsand derivatives necessaryto caculate T, S , P, T, S and
P. were obtained by using numerical methods[79]. Theoptical fiber smulated had amean

DGD of 20 ps. given by eq. 4.3.
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Thesearch procedureillustratedinfig. 3.4 wasrepeated 60 times, every timestarting
from randomly chosen vaues of j , and c,. The convergence limit used was empirically
fixed at 10, After reaching convergence, two sets of orthogonal input and output states
of polarization, j , and c, were obtained. The minimum value of s, attained was 16.73 ps.
with apower of P, = 0.66 %. That wasthe case when transmitting thesignal onj . (j )and
recelvingitonc. (c ).

Multiple searches were conducted with different simulated fibers and in each case,
the existence of two sets of orthogonal input and output states of polarization, j , and c,,
under which an output pulse narrower than the input pulse can be obtained, was revealed.
This hitherto unnoticed fact has been apparently overlooked by al the optical PMD
compensation techniques proposed so far [40-50,80-88].

Wenow proceed to examinethe T ——

changesin s ; when the output state of

polarizationisfixed atc . andtheinput 1.~ sl

state of polarization, j , isvaried. Figs.

5.15 and 5.16 show the changesins,; 7"

and P, withj . By comparing figs. 5.8,

g :

5.9, 511, 512, 515 and 516 we can oy (rad) 44

¥, (rad)

Fig. 5.15a Effective pulsewidth with c,

see that the nature of the changes reception for a 500 segment fiber.

inducedons . and P, by variationsof ] isalwaysthe same, i.e the point of maximum pulse

narrowing is always close to the point of sharp sgnal broadening and both fall in aregion
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Fig. 5.15b Effective pulsewidthwith c,

reception for a 500 segment fiber (top

view).
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_ _ _ ¥ [rad)
Fig. 5.16a Power of the output signal with
c . reception for a 500 segment fiber (top
view).
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of low power. Thisin fact, seems to be the
casefor optical fibersconsisting of two, three,
five hundred or any number of segments. The
existence of the orthogonal polarization states
j . and c, which alow us to obtain output
pulses which are narrower than the input
pulsesin optical fiberswith PMD isthe main

result of thischapter and indeed of thisthesis.

P, (g, reception)

oy (rad)

¥y (rad)
Fig. 5.16b Power of the output signa
with c, reception for a500 segment fiber.

Figures5.17 and 5.18 show the time domain output signalsobtained for the best and

worst values of s . The pulse narrowing achieved inthiscase, comes at the expense of an

extremelossin power. Asin the previous sections, the point of maximum rms-pul sewidth

corresponds to the coexistence of two narrowed pul ses.
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in an optical fiber with PMD, a
small drift (in the wrong
direction) in the input state of polarization, j , from its optimum value, j ,, will abruptly
increase the rms-pulsewidth of the output signal to its worst case.

Our simulations also

a. = 9551|:|5.F>- O.11%
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olarization at thetimeand compare
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the rms-pul sewidth obtained in each case.
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6 OPTIMIZATION PERFORMANCE

In this chapter, the optimization procedures for the input and output states of
polarization introduced in figures 3.2 and 3.3 are used and their results compared with the
optimization procedure of fig. 3.4, which takes into account both, the input and the output
statesof polarization. The benefitsof properly adjusting the launching and reception states
of polarization are studied by comparing the pulse shapes at the output of an optical fiber
with high and low PMD when the principal input and output states of polarization, [6], are
used and when theinput and output states of polarization obtained through our optimization
algorithmsare used. Throughout this chapter, the optical fibers simulated consisted of 500

sections of Hi-Bi fiber and all the cal culations needed were carried out numerically, [79].

6.1 OPTIMI1ZATION CONVERGENCE

In this section, the results of optimizing either the input state of polarization or the
output state of polarization are compared with the casein which both input and output states
of polarization are optimized to reduce the rms-pul sewidth of the output signal. Although
definitive conclusions about the convergence speed of the algorithms presented in figures
3.2, 3.3 and 3.4 aredifficult to draw from the simulation of asmall number of opticd fibers,
it is hoped that the results presented in this section will shed some light into the evolution
of the optimization agorithms introduced in chapter three.

In order to reach afinal conclusion on the convergence speed and the quality of the
resultsrendered by the optimization algorithms, their dependence ontheinitial valuesof |

andc, (j ,andc,), and onthemean DGD of thefiber hasto be eiminated through statistical
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average. Thiscould be done by averagingtheresults produced by the use of multiplevalues
of j,and c, aong with a large enough population of fibers (~500). Such statistical
average, however, would require exhaustive computer simulation and it is beyond of the
scope of thisthesis.

We begin by using the waveplate model presented in chapter four to simulate an
optical fiber with amean DGD of 30 ps. Next, the optimi zation algorithm of fig. 3.4isused
and the values of j . and ¢, are found. As mentioned in the previous chapter, there are

actually, two solutionsfor j ,, and c,,,,, namelyj . andc_.. Knowing onesolution, j , per

say, alow usto find the other soltion, j _, due to their mutually orthogonal nature, j ,*j . =
0. Thewors case' for choosing the input (output) state of polarization would be to select
avaueofj (c)whichisasfarfromj , (c,) asitisfromj _(c). Wewill call such astate
of polarization, thewor st caseinput (output) stateof polarization, and it will be represented
aS] we (Cuo)-

Theworst caseinput (output) state of polarization can easily be found (when one of
the solutions isknown) fromj . j . = cos(45°) (c . C_ = cos(45°)). Oncej , and c,,
have been found, the worst case launching and reception states of polarization, j ,,.andc,,.
respectively, are calculated. The input (output) worst case state of polarization, j . (Cyc),
isthen used as the given input (output) state of polarization in the optimization procedure
of fig. 3.2 (fig. 3.3). Thisis done to ensure that the number of iterations required for the

convergence of the dgorithmsin figs. 3.2 and 3.3 can be compared on an equal basis.

! From the point of view of minimizing the rms-pulsewidth of the output signal.
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After reaching the convergence limit, the optimum output (input) state of
polarization, €, (j o) isfound for agivenworst case input (output) state of polarization,
J we (Cwe). 1t must be pointed out herethat in general, the values of c,,, andj ,,, obtained by
the optimization algorithmsin figures 3.2 and 3.3 will differ from those found by using the
algorithminfig. 3.4.

The process of using the agorithm in fig. 3.4 to find ¢, andj ,,, calculating the
worst case values of j and ¢ and applying those values to the optimization procedures of
figs. 3.2 and 3.3 was repeated 78 times. Each time, anew fiber with amean DGD of 30 ps
wasused. Theaverageevolutionof s, and P, isshowninfigures6.1aand 6.1b respectively

for the casesin which c,j and both c andj are optimized.

T (ps)

4 5 8 7 8 @& 1 11 12 ¥ 2 8 4 8 & T & & 40 1 12

Fig. 6.1a Output pulsewidth evolution for Fig. 6.1b Output power evolution for
different optimizations. different optimizations.

Fig. 6.2 showstheaverage output pul sesobtained by optimizingc,j andbothc and
j aong with the input pulse and table 6.1 gives the average final values of s, and P,.

During each simulation, an empirically chosen convergence limit of 10™ was used.
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Fig. 6.2 Average output pulsesfor different optimizations.

Optlmlzatlon J opt? Copt J opt? Cuwc J wc? Copt

S, (ps) 18.5 22.7 22.5

P, (%) 4.1 269 | 272

Table 6.1 Output pulsawidths and normalized powers for different optimizations.

Fromfigures6.1, 6.2 and table 6.1 we can confirm what could have beenintuitively
assumed, the output signal will havethe smallest rms-pulsewidth (and asaresult thelowest
power) when both degreesof freedom, j andc arejointly optimized. Our simulation results
summarized in table 6.1 also seem to indicate that, on average, there is not a significant
advantage in optimizing only the input state of polarization as opposed to optimizing only
the output state of polarization. In both cases the minimum pulsewidth and power level of
the output pulse are similar. However, such a conclusion should not be laid down without

considering alarger population of fibers.
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6.20PTIMUM INPUT STATE OF POLARIZATION

Several PM D compensation methods [45,51] are based ontheideaof polarizing the
signal at theinput of the fiber along one of the principal input states of polarization, PSPs,
[6]. This will produce an undistorted output signal when first order PMD dominates.
However, if higher order PMD effects are relevant [24] (i.e., when the mean DGD is high
or the fiber is highly mode coupled [29]) the signal at the output of the fiber will be
distorted. Thiscomesasaresult of the frequency dependence of the PSPs and the DGD.

In this section, we compare the average output pulses obtained by transmitting the
signal on oneof the input PSPsat the carrier frequency, e, (w,), and on one of the optimum
input states of polarization obtained from the algorithm in fig. 3.3. The output state of
polarization (e,,) used for both cases, is randomly chosen. To prevent any bias’ in the
election of e,,, itisinitially chosen and used as the output state of polarization throughout
the simulation of 100 optical fibers.

For each simulated fiber, the input principal state of polarization producing the
highest power of the output signal was used astheinput PSP. The algorithm of fig. 3.3 was
then used to find the input state of polarization, j ,, which would minimize the rms-
pulsewidth of the output signal given that e,,, was the output state of polarization.

The comparison is made for two different scenarios, one in which dl the fibers
simulated had amean DGD of 30 ps and the other where the mean DGD of the fiberswas

150 ps. The normalized average input and output pulses are shown in fig. 6.3.

Z1dedly, e, should be asfar to any of the output PSPsasit would be from any of the output
states of polarization ¢, which minimize the rms-pulsewidth of the output signal.
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Fig. 6.3a Average output pulses for 100
fibers, low PMD (input SOP variation).

Table 6.2 summarizes the results obtained,
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Fig. 6.3b Average output pulsesfor 100
fibers, high PMD (input SOP variation).

<DGD> 30 ps. 150 ps.
Input SOP e, (W) | j. |e.w)| j.

s,(ps) | 251 | 222 | 617 | 54.9

P (%) | 754 | 222 | 647 | 627

Table 6.2 Variation of the input state of polarization (SOP).

Figure 6.3 shows that the integrity of the pulseiswell preserved when fibers with

low mean DGD are used. Thisisdue to the predominance of first order PMD, i.e., e,,(W,)

remains amost the same within the spectral range of the pulse. However theuseof j , as

aninput state of polarization alowsthe output pulseto be* compressed” with respect to the

input pulse. This, despite of using afixed output state of polarization. Pulse compression

iIsadesirable effect when the signd isto be re-transmitted into a dispersive medium, such

as an optical fiber with high chromatic or polarization dispersion at the carrier frequency.
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Further simulation work isrequired in order to determinethe exact relation between
the minimum pul sewidth of the output signal, themean DGD of thefiber andthe pul sewidth
of the input signd.

Interestingly, when the mean DGD of thefiber ishigh (fig. 6.3b), adjusting only the
input state of polarization according to the algorithm of fig. 3.3 will produce a marginal
improvement over the casein which the signal istransmitted on one of theinput PSPsat the
carrier frequency. Inlong-haul optical communication systems however, it isnot practicd
to control the input state of polarization in order to improve the quality of the signal at the
other end. The next section presents the situation in which the input state of polarization

is fixed and the output state of polarization is varied.

6.30pPTIMUM OUTPUT STATE OF POLARIZATION

Similar to the idea of compensating PMD induced distortion by polarizing the
transmitted signal on one of the input PSPs, it is also possible to compensate PMD by
receiving the signd on one of the output PSPs, [31,45]. The effectiveness of that kind of
compensation will depend on the fact that the output PSPs remain the same over at least the
spectrd range of the signal, i.e. only first order PMD can be compensated. In this section
we comparethe results of compensating PMD by receiving the signal on one of the output
PSPs and on one of the output states of polarization which minimize the pul sewidth of the
output signal.

Throughout the calculations in this section, the input state of polarization (e,) is

assumed to be known and the samefor every fiber smulated. After randomly choosing e,,,
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the algorithm from fig. 3.2 is used to find the output state of polarization ¢, which
minimizes the rms-pulsewidth of the output signal. The output PSP which produces the
signal with the highest power isalso calculated by using a numerical approximation[5,6].

The process is repeated for 100 different

optical fibers o that any possible biasinthe \ =5
value of e, is averaged oui. ff "'\'\
£ o / \
As in the previous section, the /; \‘
calculations were carried out under two //__/'." \\\
different scenarios. First, 100 fiberswitha 7,:;’-"”' M \“
s i Fig. 6.4a Average output pulses for 100
_' x : "o s fibers, low PMD (output SOP variation).
5 , mean DGD of 30 pswere simulated and then
: ‘ '3'1 100 fibers with a mean DGD value of 150 ps
: . were simulated. Figure 6.4 shows the output
’ ' pul se obtained by averaging the output pulses

Fig. 6.4b Average output pulses for 100 from the simul ated fiberswith mean DGDs of

fibers, high PMD (output SOP variation). 30 and 150 ps

<DGD> 30 ps. 150 ps.

Output SOP | ,.(Ww;) | ¢, |e&.W) | c.

S, (ps) 252 | 222 | 636 | 54.9
P, (%) 733 | 209 | 649 | 604

Table 6.3 Variation of the output state of polarization.
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Table 6.3 summarizes the simulation results by presenting the average output rms-
pulsewidth and output pulse power for each case.

Theresultsfor the mean DGD of 30 ps presented in fig. 6.4aand table 6.3 indicate
that although the input state of polarization has been fixed to an arbitrary value, it is still
possible to obtain output pulses which are narrower than the input pulses when the
algorithm of fig. 3.2 is used to select the output state of polarization.

In agreement with theresults presentedin the previous chapter, the narrowed output
pulseis obtained at the expense of areduction in its power with respect to the input pulse.
Additional simulations reveded that, when the mean DGD of the fiber progressivdy
increases, it becomes more and more difficult (and eventually impossible) to obtain output
pulses which are narrower than the input pulses. Determining the exact relation between
the mean DGD of the fiber and the minimum pul sewidth of the output signal is beyond of
the scope of this thesis and should therefore be atopic of future research.

If the mean DGD of the fiber is high (fig. 6.4b and table 6.3), the use of the output
state of polarization rendered by the optimizing a gorithm of fig. 3.2 produces only a small
improvement over the case in which the signd is received on one of the output PSPs.

It can be concluded from this and previous section that, when the mean DGD of the
fiber is high, controlling only the input or only the output state of polarization is not
sufficient to avoid pulse degradation introduced by higher order PMD effects. In areal
system (whereit isnot practical to adjust the input state of polarization), additional optical
equalization [89] would be needed along with an appropriae selection of the output state

of polarization in order to obtain narrowed pulses at the output of the fiber.
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7 CONCLUSIONS

7.1 SUMM ARY

This thesis has presented, for the first time, the solution to a recently proposed
mathematical formulation [7] which allowed us to adjust the input and output states of
polarization of asignal propagating through an optical fiber with PM D in order to minimize
itsrms-pulsewidth at the output. Thisisequivalent to conducting a search for an absolute
minimum in afour dimensional space.

Through numerical simulation, we studied the model of arealistic opticd fiber with
PMD. Wehavefound, for thefirst timeto our knowledge, that the statistics of the envelope
of the complex lowpass time impul se response of an optical fiber with PMD are Rayleigh.

We have thus proved through simulation the previously unknown fact that for a
given signal, there exist two orthogona input and two orthogonal output states of
polarization which minimize its rms-pul sewidth when it is transmitted through an optical
fiber with PMD. The price to be paid for the improvement in the received signal is two
fold. A reduction on the power of the output signal isintroduced and a precise knowledge
of the shape of thetransmitted signal isrequired beforewe can cal cul ate the optimized input
and output states of polarization.

Moreover, asmall misadjustment (in the wrong direction) in the optimum value of
theinput state of polarization will cause the rms-pul sewidth of the output signal toincrease
abruptly to avalue considerably greater than the rms-pulsewidth of the input signal.

We also studied the benefits of using the mathematical treatment proposed by Chen
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et al. [7] for the casein which only theinput or the output state of polarizationisvariedin
order to minimize the rms-pulsewidth of the output signad. We found that although it is
possible to achieve pulsewidth reduction when the PMD is low, additional optica

equalization would be needed if the PMD is high.

7.2 FUTURE RESEARCH

Throughout this thesis we have neglected the influence of the chromatic dispersion
introduced by the fiber and assumed no polarization dependent losses. The influence of
these factors should be incorporated in a more thorough analysis.

We also confined ourselves to specific values in the mean DGD of the fibers
simulated and to a particul ar Gaussian-shapedinput signal. Theimpact of achangeinthese
factors over the minimum rms-pul sewidth attainabl e by using the formulation proposed by
Chen et al. [7] has yet to be fully assessed.

The selection of an adequate value for the convergence limit used is another point
that should be further investigated. We also chose to look at the evolution of the states of
polarization throughout the search and assumed that an optimum value had been reached
when there was nearly no change in their value with respect to the previous iteration.

Finally, although Chen et al. [ 7] chose the rms-pul sewidth of the output signal asa
figure of merit in hiscalculus of variations analysis, nothing would prevent us from trying
to minimize adifferent figure of merit (like the mean square error, the mean absol ute error
or the probability of error for example) when varying the input and output states of

polarization of thesignal.



[1]
[2]
[3]
[4]

[5]
[6]

[7]

[8]
[9]

[10]

[11]

[12]
[13]

[14]

[15]
[16]

[17]

71

REFERENCES

R. Castelli and T. Krause, “Market trends and evolution for optica transmission
systems,” Alcatel Telecommunications Review, pp. 165-175, 3" Quarter 1998
Nortel Networks Report, “Nortel’s technology perspectives,” pp. 1-6, Monday
October 19, 1998

G.P. Agrawal, Fiber-Optic Communication Systems, Second Edition, New Y ork,
NY, USA, John Wiley & SonsInc. 1997

K. Brown, X. Bao, J. Cameron, L. Chen, J. Stears, W. Hickey and R. Cormier,
“Testing of fibersin an existing network for high speed system (10 Gb/s or greater)
compatibility,” Proc. PhotonicsNorth, I nter national Conferenceonthe Application
of Photonic Technology, Quebec City, Canada, June 12 t016, 2000

M. O’ Sullivan, Nortel Networks, Internal Technical Report onthetolerance of OC-
192 and OC-48 equipment to PMD, Private Communication December 15, 1998
C.D. Poole and R.E. Wagner, “Phenomenological approach to polarisation mode
dispersion in long single mode fibers,” Electronics Letters, Vol. 22, No. 19, pp.
1029-1030, September 11, 1986

L. Chen, “Minimum pulse broadening by optimizing by launch and receiver
polarization in single mode fiber with polarization mode dispersion,” Internal
Technical Report, Department of Physics, The University of New Brunswick,
Unpublished, 1999

J.G. Proakis, Digital Communications, Third Edition, New York, NY, USA:
McGraw-Hill, 1995

C.D. Poole, R.W. Tkach, A.R. Chraplyvy and D.A. Fishman, “Fading in lightwave
sysemsdueto polarization mode dispersion,” |EEE Photonics Technology Letters,
Vol. 3, No.1, pp. 68-70, January 1991

R.E. Wagner and A.F. Elrefaie, “Polarization dispersion limitations in lightwave
systems,” Tech. Dig. Optical Fiber Communication Conference OFC’ 88, p. 37,
New Orleans, LA., January 25-28, 1988

E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scentists,
NewYork, NY, USA, John Wiley & SonsInc. 1991

E. Hecht Optics, Second Edition, Addison-Wesley, 1988

J.D. Kraus, Electromagnetics, Third Edition, McGraw-Hill, New York, NY, USA,
1984

G.W. Schinn, “ Polarized light in so-called "single-mode” fiber: not assimpleasyou
may think,” http://www.lark.ieee.callibrary/9801shinn/shinn.htm, last accessed on
May 1% of 2000

F. Kapron, A. Dori, J. Peters and H. Knehr, “Polarization mode disperion: should
you be concerned ?,” Proc. NFOEC' 96, pp. 1-12

J. Cameron, X. Bao and J. Stears, “Field measurements of polarization mode
dispersion,” Fiber and Integrated Optics, Vol.18, No.1, pp. 49-59

J. Cameron, L. Chen, X. Bao and J. Stears, “Time evolution of polarization mode
dispersioninoptical fibers,” IEEE Photonics Technology Letters, VVol. 10, No. 9, pp.




[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

72

1265-1267, September 1998

B.W. Hakki, “Polarization mode dispersion in asingle mode fiber,” IEEE Journal
of Lightwave Technology, Vol. 14, No. 10, pp. 2202-2208, October 1996
Hernday Paul, “Polarization mode dispersion measurement by the Jones matrix
eigenanalysis and wavelength scanning methods’, Hewlett Packard Lightwave
Operations Technical Report., Santa Rosa, CA, USA, January 1997

[.P. Kaminow and T.L. Koch, Optical Fiber Telecommunications, I11A, San Diego
CA, USA, Academic Press, 1997

B. Clesca, J.-P. Thiery, L. Pierre, V. Havard and F. Bruyére, “Bit rate degradation
related to differential group delay and input polarisation for 10-Gbit/s terrestrial
sysemsin the presence of chromatic dispersion and polarisation mode dispersion,”
Proc. 21 European Conference on optical Communications, ECOC’ 95, pp. 581-
584, Brussels, Belgium, Sept 1995

H. Taga, Msuzuki and Y. Namihira, “Polarisation mode dispersion tolerance of
10Ghit/s NRZ and RZ optical signals,” Electronics Letters, Vol. 34, No. 22 pp.
2098-2100, October 1998

F. Curti, B. Daino, Q. Mao and F. Matera, “ Concatenation of polarisation dispersion
in single-mode fibers,” Electronics Letters, Vol. 25, No. 4, pp. 290-292, February
1989

C.D. Poole and R.C. Giles, “Polarization-dependent pulse compression and
broadening due to polarization dispersion in dispersion-shifted fiber,” Optics
Letters, Val. 13, No. 2, pp. 155-157, February 1988

N. Gisin and J.P. Pellaux, “Polarization mode dispersion: time versus frequency
domains,” Optics Communications, Vol. 89, pp. 316-323, May 1992

C.D. Poole, JH. Winters and J.A. Nagel, “Dynamical equation for polarization
dispersion,” Optics Letters, Vol. 16, No. 6, pp. 372-374, March 1991

P. Ciprut, B. Gisin, and R. Passy, “Second-order polarization mode dispersion
impact on analog and digital transmissions,” IEEE Journal of Lightwave
Technology, Vol. 16, No. 5, pp. 757-771, May 1998

LM. Gleeson, ESR. Sikora and MJ. Mahoney, “Experimental and numerical
investigation into the penalties induced by second order polarisation mode
dispersion at 10 Gb/s,” IEE International Conference on Integrated Optics and
Optical Fiber Communications, pp.15-18, Stevenage, UK, September 22-25, 1997
D. Penninckx and F. Bruyére, “Impact of the statistics of second-order polarization
modedispersion on system performance,” Tech. Dig. Optical Fiber Communication
Conference OFC’ 98, pp.340-342, San Jose, CA, US, February 22-27, 1998

C. Vasdlo, “PMD pulse deformation,” Electronics Letters, Vol. 31, No. 18,
pp.1597-1598, August 1995

H. Sunnerud, M. Karlsson and P.A. Anderkson, “Analytic theory for PMD-
compensation,” |EEE Photonics Technology Letters, Vol. 12, No. 1, pp.50-52,
January 2000

M. Karlsson, “Polarization mode dispersion-induced pulse broadening in optical
fibers,” Optics Letters, Vol. 23, No. 9, pp. 688-690, May 1998



[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

73

F. Bruyére, “Impact of first and second order PMD in opticd digita transmission
systems,” Optical Fiber Technology, Vol. 2, No. 3, pp. 269-280, July 1996

C. Francia, F. Bruyére, D. Penninckx and M. Chbat, “PMD second order effectson
pulse propagation in single-mode optical fibers,” IEEE Photonics Technology
Letters, Vol. 10, No. 12, pp. 1739-1741, December 1992

S. Betti, F. Curti, B. Daino, G. De Marchis, E. lannoneand F. Matera, “Evolution
of the bandwidth of the principal states of polarization in single-mode fibers,”
Optics Letters, Vol. 16, No. 7, pp. 467-469, April 1991

M. Shtaif, A. Mecozzi and J. A. Nagel, “Mean-square magnitude of all orders of
polarization mode dispersion and the relation with the bandwidth of the principal
states,” |EEE Photonics Technology Letters, Vol. 12, No. 1, pp. 53-55, January 2000
H. Bllow, “ System outage probability due to first and second order PMD,” |EEE
Photonics Technology Letters, Vol. 10, No. 5, May 1998

F. Bruyere, L. Pierre, J.P. Thiery and B. Clesca, “ Penaltiesinduced by higher-order
PMD at 10 Gbit/s in nondispersion-shifted fibers,” Tech. Dig. Optical Fiber
Communication Conference OFC’ 97, pp.113-114, Dallas, TX, US, February 16-21,
1997

D. Mahgerefteh and C.R. Menyuk, “Effect of first order PMD compensation onthe
statistics of pulse broadening in afiber with randomly varying birefringence,” IEEE
Photonics Technology Letters, Vol. 11, No. 3, pp. 340-342, March 1999

D. Watley, K. Farley, B. Shaw, W. Lee, G. Bordogna, A. Hadjifotiou and R.
Epworth, “ Compensation of polarisation-mode dispersion exceeding one bit period
using singlehigh-birefringent fiber,” ElectronicsLetters, Vol. 35, No. 13, pp. 1094-
1095, June 1999

F. Roy, C. Francia, F. Bruyéreand D. Penninckx, “A simple dynamic polarization
mode dispersion compensator ,” Proc. Optical Fiber Communications Conference,
OFC' 99, pp. Tu$4-1/275 - TuHA4-4/278, SanDiego, CA, US, February 1999

T. Takahashi, T. Imai and M. Aiki, “Automatic compensation for timewise
fluctuating polarisation mode dispersion inin-line amplifier systems,” Electronics
Letters, Vol. 30, No. 4, pp. 348-349, February 1994

F. Heismann, D.A. Fishman and D.L. Wilson, “ Automatic compensation of first-
order polarization mode dispersion in a 10 Gb/s transmission system,” Proc.
European Conferenceon Optical Communications, ECOC’ 98, pp. 529-530, Madrid,
Spain, September 1998

B.W. Hakki, “Polarization mode dispersion compensation by phase diversity
detection,” |EEE Photonics Technology Letters, Vol. 9, No. 1, pp. 121-123, January
1997

Z. Haas, C.D. Poole, M. Santoro and J.H. Winters, “Fiber-optic polarization
dependent distortion compensation,” United Sates Patent, patent number: 5,311,346
May 10, 1994

R. Noé, D. Sandel, M. Yoshid-Dierolf, S. Hinz, V. Mirvoda, A. Schopflin and C.
Glingener, “ Polarization mode dispersion compensation at 10, 20 and 40 Gb/swith
various optical equalizers,” IEEE Journal of Lightwave Technology, Vol. 17, No.



[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

74

9, pp. 1602-1616, September 1999

H. Rosenfddt, R. Ulrich, U. Feiste, R. Ludwig, H.G. weber and A. Ehrhardt, “ First
order PMD-compensationin a 10 Ghit/sNRZ field experiment using apolarimetric
feedback-signal,” Proc. European Conference on Optical Communications,
ECOC’ 99, pp. 11-134 to I1-135, Nice, France, September 1999

M.W. Chbat, J-P. Soigné, T. Fuerst, J.T. Anthony and D. Penninckx, “Long term
field demonstration of optical PMD compensation on an installed OC-192 link,”
Post- Deadline Papers, Optical Fiber Communications Conference, OFC’ 99, pp.
PD12-1 to PD29-3, SanDiego, CA, US, February 1999

C. Francia, F. Bruyere, J. Thiéry and D. Penninckx, “Simple dynamic polarisation
mode dispersion compensator,” Electronics Letters, Vol. 35, No. 5 pp. 414-415,
March 1999

J. Winters, Z. Haas, M. Santoro and A. Ganuck, “Optical equalization of
polarizationdispersion,” in Proceedings, Multigigabit Fiber Communications, SPIE,
Vol. 1787, pp. 346-357, 1992

T. Ono, S. Yamazaki, H. Shimizu and K. Emura, “ Polarization control method for
suppressi ng polarization modedispersioninfluencein optical transmission systems,”
|EEE Journal of Lightwave Technology, Vol. 12, No. 5, pp. 891-898, May 1994
A.F. Elrefaie and R.E. Wagner, “Chromatic dispersion limitations in coherent
optical fiber transmission systems,” Electronics Letters, Vol. 23, No. 14, pp. 756-
758, July 1987

P. Nouchi, H.Laklalech, P. Sansonetti, J. Von Wirth, J. Ramos, F. Bruyéere, C.
Brehm, J.Y. Boniort and B. Perrin, “Low-PMD dispersion compensating fibers,”
Proc. 21* European Conference on optical Communications, ECOC’ 95, pp. 389-
392, Brussels, Belgium, Sept 1995

G.J. Foschini and C.D. Poole, “ Statistical theory of polarization dispersioninsingle
mode fibers,” IEEE Journal of Lightwave Technology, Voal. 9, No. 11, pp. 1439-
1456, November 1991

F. Curti, B. Daino, G. De Marchis and F. Matera, “Statistical treatment of the
evolution of theprincipal statesof polarizationinsingle-modefibers,” |EEE Journal
of Lightwave Technology, Vol. 8, No. 8, pp. 1162-1165, August 1990

C.D. Poole, “ Statistical treatment of polarization dispersion in single-mode fiber,”
Optics Letters, Vol. 13, No. 8, pp. 687-689, August 1988

N. Gisn, R. Passy, J.C. Bishoff, and B. Perny, “Experimental Investigation of the
Statistical Propertiesof Polarization ModeDispersionin SingleModeFibers,” IEEE
Photonics Technology Letters, Vol. 5, No. 7, pp. 819-821, July 1993

C. De Angdlis, A. Galtarossa, G. Gianello, F. Matera and M. Schiano, “Time
evolution of polarization mode dispersion in long terrestrial links,” IEEE Journal
of Lightwave Technology, Vol. 10, No. 5, pp. 552-555, May 1995

T. Takahashi, T. Imai and M. Aiki, “ Timeevolution of polarization modedispersion
in 120 km installed optical submarine cable,” Electronics Letters, Vol. 29, No. 18,
pp.1605-1606, September 1993

J.H. Winters, M.A. Santoro and Z. Haas, “On the experimental measurements of



[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]
[74]

75

PMD effects,” Proceedings of the SPIE - The International Society for Optical
Engineering, Vol. 1784, pp. 31-40

C.D. Poole, N.S. Bergano, R.E. Wagner and H.J. Schulte, “Polarization dispersion
and principd states in 147-km undersea lightwave cable,” IEEE Journal of
Lightwave Technology, Vol. 6, No. 7, pp. 1185-1190, July 1988

J. Bulow, W. Baumert, H. Scmuck, F. Mohr, T. Sculz, F. Kippers, W.
Welershausen, “ M easurements of maximum speed of PMD fluctuationininstalled
fieldfiber,” Proc. Optical Fiber Communications Conference, OFC’ 99, pp. WE4-
1/83 - WE4-3/85, San Diego, CA, US, February 1999

T. Okoshi, N. Fuyaka and K. Kikuchi, “New polarisation-state control device:
rotatablefibrecranks,” ElectronicsLetters, Vol. 21, No. 20, pp. 895-896, September
1985

H. Shimizu, S. Yamazaki, T. Ono and K. Emura, “Highly practical fiber squeezer
polarization controller,” |EEE Journal of Lightwave Technology, Vol. 9, No. 10, pp.
1217-1223, October 1991

C.D. Pooleand D.L. Favin, * Polarization-mode dispersion measurements based on
transmission spectrathrough a polarizer,” IEEE Journal of Lightwave Technology,
Vol. 12, No. 6, pp. 917-929, June 1994

J.P. Elbers, C. Glingener, M. Duser and E. V oges, “Modelling of polarisation mode
dispersion in single mode fibers,” Electronics Letters, Vol. 33, No. 22, pp. 1894-
1895, October 1997

U. Brechtken-Manderscheid, Introduction to the Cal culus of Variations, Chapman
& Hall Mathematics, 1991

J. Cameron, L. Chen and X. Bao, “Impact of chromatic dispersion on the system
limitation due to polarization mode dispersion,” |EEE Photonics Technology
Letters, Vol. 12, No. 1, pp. 47-49, January 2000

D.R.Desbrudaisand P.R. Morkel, “ Simulation of polarisation modedispersionand
itseffectsin long-haul optically amplified lightwave systems,” |EE Colloquiumon
‘International Transmission System', Digest N0.1994/039, pp. 67, 6/1-6, London,
UK; 15 February, 1994

P.A. Williams and C.M. Wang, “Corrections to fixed analyser measurements of
polarization modedispersion,” |EEE Journal of Lightwave Technology, Vol. 16, No.
4, pp. 534-541, June 1994

B.L. Heffner, “Accurate, automated measurement of differential group delay
dispersion and principal state variation using Jones matrix eigenanaysis,” |IEEE
Photonics Technology Letters, Vol. 5, No. 7, pp. 814-817, July 1993

B.L. Heffner, * Automated measurement of polarization modedispersion using Jones
matrix eigenanalysis,” | EEE Photonics Technology Letters, Vol. 4, No. 9, pp. 1066-
1069, September 1992

T.S. Rappaport, Wirdess Communications, New Jersey, USA, Prentice-Hall 1996
C.H. Prola, JA. Pereira, A.O. Dal Forno, R. Passy, J.P. vonder Weid and N. Gisin,
“PMD emulators and signal distortion in 2.48-Gb/s IM-DD lightwave systems,”
|EEE Photonics Technology Letters, Vol. 9, No. 6, pp. 842-844, June 1997



[75]

[76]

[77]
[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

76

J. Cameron, L. Chen and X. Bao, “Anomalous pulse-width narrowing with first-
order compensation of polarization mode dispersion,” to appear in Optics Letters
J. Cameron, Private Communication, March’ 2000.

S. Haykin, Adaptive Filter Theory, Third Edition, USA, Prentice-Hall 1996

L. Chen, M. Yafez, X. Bao and B.R. Petersen, “Pulse narrowing in optical
components with polarization mode dispersion using polarization controls,” Proc.
Photonics North, International Conference on the Application of Photonic
Technology, Quebec City, Canada, June 12 to16, 2000

MATLAB, The Language of Technical Computing, Using MATLAB, TheMathworks
Inc. December 1996

J. Patscher and R. Eckhardt, “Component for second-order compensation of
polarisation-modedispersion,” ElectronicsLetters, Vol. 33, No. 13, pp. 1157-1159,
June 1997

T. Ozeki and T. Kudo, “Adaptive equalization of polarization mode-dispersion,”
Proc. Optical Fiber Communications Conference, OFC'93, pp.143 -
144 Washington D.C., US, February 1993

JH. Winters and M.A. Santoro, “Experimental equalization of polarization
dispersion,” |EEE Photonics Technology Letters, vol. 2, No. 8, pp. 591-593, August
1990

D. Schlump, B. Wedding and H. Bulow, “Electronic equalisation of PMD and
chromatic dispersion induced distortion after 100 km standard fibre at 10 Gbit/s,”
Proc. European Conference on Optical Communications, ECOC’ 98, pp. 535-535,
Madrid, Spain, September 1998

H. Bllow, D. Schlump, J. Weber, B. Wedding and R.Heidemann, “Electronic
equalization of fiber PMD-induced distortion at 10 Ghit/s,” Proc. Optical Fiber
Communications Conference, OFC’ 98, pp.151 -152, San Jose, CA, US, February
22-27,1998

T. Ozeki, M. Yoshimura, T. Kudo and H. Ibe “Polarization-mode-dispersion
equalization experiment using a variable equalizing optical circuit controlled by a
pulse-waveform-comparison agorithm,” Proc. Optical Fiber Communications
Conference, OFC’ 94, pp.68 -64, February 1994

S. Lee, R. Khosravani, J. Peng, V. Grubsky, D.S. Stardubov, A.E. Willner and J.
Feinberg, “ Adjustable compensation of polarization mode dispersion using ahigh-
birefringent nonlinearly chirped fiber bragg grating,” |EEE Photonics Technology
Letters, Vol. 11, No. 10, pp. 1277-1279, October 1999

R. Noé, D. Sandel, M. Yoshida-Dierolf, D. Hinz, C. Glingener, C. Scheerer, A.
Schopflinand G. Fischer, * Polarisation mode dispersion compensation at 20Gbit/s
with fiber-based distributed equaliser,” Electronics Letters, Vol. 34, No. 25, pp.
2421-2422, December 1998

M. Y oshimura, T. Kudoand T. Ozeki, “ Pol arization mode dispersion equalization,”
Tech. Dig. FifthOptoel ectroni cs Conference (OEC’ 94), pp. 258-259, Tokyo, Japan,
July 12-15 1994

T. Ozeki, “Optical equalizers,” Optics Letters, Vol. 17, No. 5, pp. 375-377, March



[90]
[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

77

1992

L.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Second
Edition, United Kingdom Academic Press, 1994

W. Shieh, “Principal states of polarization for an optical pulse,” |EEE Photonics
Technology Letters, Vol. 11, No. 6, pp. 677-679, June 1999

J. Cameron, L. Chen and X. Bao, “Limitations of first order PMD compensation
techniquesin the presence of chromatic dispersion,” Optics Communications, Vol.
171, pp. 15-21, November 1999

J. Zhou and M.J. O’ Mahony, “Optical transmission system penalties due to fiber
polarization mode dispersion,” | EEE Photonics Technology Letters, Vol. 6, No. 10,
pp. 1265-1267, October 1994

Y. Namihira, T.Kawazawa and H.Taga, “ Polarization effects on BER degradation
at 10 Ghit/sin an IM-DD 1520km optical amplifier system,” Electronics Letters,
Vol.29, No. 18, pp. 1654-1655, September 1993

E. lannone, F. Matera, A. Galtarossa, G. Gianello and M. Schiano, “Effect of
polarization dispersion on the performance of IM-DD communication system,”
Electronics Letters, Vol. 5, No. 10, pp.1247-1249, October 1993

P.R.Morkel, V. Syngal, D.J. Butler and R. Newman, “PMD-induced BER penalties
inoptically-amplifiedIM/DD lightwave systems,” ElectronicsLetters, Vol. 30, No.
10, pp. 806-807, May 1994

L. Pierre and J.-P. Thiery, “Comparison of resistance to polarisation mode
dispersion of NRZ and phase-shaped binary transmission formats at 10 Ghit/s,”
Electronics Letters, Vol. 33, No. 5, pp. 402-403, February 1997

D.Sandel, M. Yoshida-Dierolf, R. Noé, A.Schopflin, E.Gottwald and G.Fischer,
“Automatic polarisation mode dispersion compensation in 40Gbit/s optical
transmisson system,” Electronics Letters, Vol. 34, No. 23, pp. 2258-2259,
November 1998

I. Riant, J. Gourhant and P. Sansonetti, “Polarization mode dispersion analysisin
fiber chromatic dispersion compensators,” Proc. Optical Fiber Communications
Conference, OFC’ 99, pp. TuS2-1/269 - TuS2-3/271, SanDiego, CA, US, February
1999

S. Lee, R. Khosravani, J. Peng, A.E. Willner, V.Grubsky, D.S. Starodubov and
J.Feinberg, “High-birefringence nonlinearly-chirped fiber bragg gratingfor tunable
compensation of polarization mode dispersion,” Proc. Optical Fiber
Communications Conference, OFC’ 99, pp. TuS3-1/272 - TuS3-3/274, SanDiego,
CA, US, February 1999

H. Oai, Y. Akiyama and G. Ishikawa, “Automatic polarization-mode dispersion
compensation in 40-Ghit/s transmission,” Proc. Optical Fiber Communications
Conference, OFC’ 99, pp. WE5-1/86 - WE5-3/88, San Diego, CA, US, February
1999

S. Hinz, D. Sandel, M. Y oshida-Dierolf, S. Hinz, V. Mirvoda, A. Schopflin and C.
Glingener, “Polarisation mode dispersion compensation for 6 ps, 40 Ghit/s pulses
using distributed equaliser in LiNbQ,,” Electronics Letters, Vol. 35, No. 14, July



[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

78

1999

H. Bulow, “Operation of digital optical transmission system with minimal
degradation due to polarisation mode dispersion,” Electronics Letters, Vol. 3, No.
3, pp. 214-215, February 1995

D.A. Watley, K.S. Farley, W.S. Lee and A.J. Hadjifotiou, “Impact of higher order
polarisation mode dispersion on a 10Gb/s system over installed non-dispersive
shiftedfibre,” Proc. Optical Fiber Communications Conference, OFC’ 99, pp.TuS1-
1/266 - TuS1-3/268, SanDiego, CA, US, February 1999

H. Bulow, “Limitation of optical first order PMD compensation,” Proc. Optical
Fiber Communications Conference, OFC’ 99, pp.WE1-1/74-WE1-3/76, San Diego,
CA, US, February 1999

W. Welershausen, R. Leppla, F. Kuppers and H. Schdll, “Polarization mode
dispersion in fibre transmission : theoretical approach, impact on sytems, and
suppression of signal-degradation effects,” Proc. European Conference on Optical
Communications, ECOC’ 99, pp. 11-130 to 11-133, Nice, France, September 1999
J.H. Winters, R.D. Gitlin and S. Kasturia, “Reducing the effects of transmission
impairmentsin digital fiber optic systems,” IEEE Communications Magazne, pp.
68-76, June 1993

J.H. Wintersand R.D. Gitlin, “Electrical signal processing techniquesin long haul
fiber-optic systems,” IEEE Transactions on Communications, Vol. 38, No. 9, pp.
1439-1453, September 1990

D.A.Watley, K.S. Farley, W.S. Lee, G. Bordogna, B.J. Shaw and A.P. Hadjifotiou,
“Fieldevaluation of an opticd PMD compensator usinginstalled 10 Ghit/ssystem,”
Proc. Optical Fiber Communications Conference, OFC’' 2000, Paper: ThB6,
Maryland, BA, US, February 2000

H.Bulow, R. Ballentin, W. Baumert, G. Maisonneuve, G. Thieleckeand T. Wehren,
“Adaptive PMD mitigation at 10 Gbit/s using and electronic SiGe Equaliser IC,”
Proc. European Conference on Optical Communications, ECOC’ 99, pp. 11-138 to
[1-139, Nice, France, September 1999

G. Strang, Linear Algebra and its Applications, Third Edition, San Diego, Harcourt
Brace Jovanovich, Publishers 1988



79

APPENDIX A
MATHEMATICAL PROOFS
Appendix A presents the proof of some of the mathematical identities and
definitions used throughout the thesis. First, the proof is given for the frequency
representation of the first and second moments of t [32] and then the functions defined in

eg. 5.3 are derived.

A.1 FREQUENCY REPRESENTATION OF THE FIRST AND SECOND MOMENTSOF t

The denominator of eg. 3.7 is equal to the denominator of eq. 3.8 as a result of
Parseval’ stheorem and thereforerequiresno proof. Webegin by proving that the numerator
in the frequency representation of the first moment of t given in eg. 3.8a equals the
numerator of the first moment of t given by eq. 3.7. To that end, we will have to make use
of the following property of the Fourier transform,

5{(- i} - T

dn ™
where“n” isapositiveinteger. With the use of eg. A.1, the numerator of eq. 3.8acan be

: (A.1)

expressed as

( )

JIE( n)———dn = IE( )IE, ()] do (A2)

Using definition of Fourier transform given in eg. 3.5a, we can expresseq. A.2 as

dE_ (i)
— = da
da

_[tEx(t)e'j“dt}dm (A3

i[E@) - = [E®
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Changing the order of integration in eq. A.3 we get,

J_[E (w) ( — X T dp = _[ FIE () eJ“tdm}tE (tHdt . (A4

We make use again of our Fourier transform definitions and express E, (t) as

E,(H)= 3E, (0)} - ﬁ | E,(0)e"do (A.5)

Taking the complex conjugate of eg. A.5 gives

#* ]- ¥ #* ;
E ()= — | E_(n)e™'dn . (A.6)
(0= 7 [ E®)
Finally, substituting eg. A.6 into the expression within the bracketsin eq. A.4 yields
e JAE@Y, %o
J[EL0) =5 "o = [ELOIE, (et - (A7)
-0 0 -
The right hand side of eg. A.7 corresponds to the numerator for the first moment of t
according to eg. 3.7. Now we proceed to prove the frequency domain expression for the
second moment of t.

Let us define the intermediate variable E,(t) as

15 :
E(0)=3tE (D)} = —— |{E, (D)e"'dt . A.
1(0)= SHE (0] = = . (A9
The term within the integral in the numerator of eg. 3.8b can be expanded with the use of

eg. A.land eq. 3.5aas
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2

dE_ ()
di

- Is{ e mif

_ _ﬁ_];ﬂzx(t)e‘j‘“dt]{ﬁ_[jt’ﬂ:(t)ejmdt] (A9)

Taking the complex conjugate of eg. A.8 gives

* 1 3 * 1
E (n)= E thx(t)EJmtdt : (A.10)
Substituting eg. A.10 into eq. A.9 yields
dE_)[" 1 . .
- = tE_(t)e ""'dt-E, (u
| 7 m__[ < (1) (o) (A.11)
From eg. A.8 and eg. 3.5b we have
e 1 ; Jint
tE, (= S {E (0)} = EjEl(m)e dt. (A.12)

Taking the complex conjugate of eg. A.12 gives

* 1 4 * _'mt
B ()= 7 JET(w)e™dt. (A.13)

With the use of eg. A.11, the term in the numerator of eg. 3.8b can be written as

2

o

.[ dE, (0 )
= do
Changing the order of integration in eq. A.14 gives

1 o o - .
dn = EIItEx(t)e dE(0)dn . (A14)

=0 -

T dE, (o)
%l do
Theexpression within the bracketsin eg. A.15 can be substituted by eg. A.13, doing thiswe

2 o 1 o " i
do = I{EJENW)E g dm]tEx(t)dt . (A15)

—i
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obtain

L]

.[ dE, (0)
CARN: "
The right hand side term in eg. A.16 accounts for the numerator of the second moment of

2 ©
do = [ELOEE, (t)dt. (A.16)

t according to eg. 3.7.

A.2 DERIVATION OF THE EQUATION 5.3
In this section we derive each of the functions defined in eg. 5.3. Throughout the

derivations the following identity [90] is used

}e'“z dx = JE
J . (A.17)

We begin by completing the square in the exponential term of eq. 5.3a,

2 @ | 5 g iy ?ofr oyt
Fjewora AT @@,
e Y

2 e
2 T sty 2 o SR
T-\/;Ie 2tn +Jwrdm L T-\/;e gt Ie gt dI:l:l ) (A18b)

The following change of variables will now be introduced in eq. A.18b

or

X=4’T2£&5{—jr (A19%)

iy o7 (A1D)
1

= — . A1SC

a gt” ( )

Substituting eg. A.19 into eg. A.18 we obtain
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2c.:- 1"2 o

|| LR

T _.[E:E'Lm +_'|0.'|I'dm= _e E'L Ie e
T
—m

T,
o [e=ax - (A.20)

=i

Finally, making use of eq. A.17 and eqg. A.19c, eg. A.20 can bewritten as

o 1
2 ~2tln T 4gal _gr?
)= t1||;__[:e do = e _ (A.21)

Completing the square in the exponentia of eg. 5.3b yields

e 7 r’ o (a4t - 0yt
Caddale e g
? —_[me rettnl gy = 2¢3 [ Ze B _[me ' dn
T T
—@ —in

v 2 B , vyt
=E\/%e 7 [(@kn - T+ e & do a2

Introducing the change of variable from eg. A.19 into eg. A.22 gives

I
2 K 2.2, T |2 o : dx
o =4t el bR e : - ax
T 1||“_'[me "da = 21{11:& ' __[(X+ ile iz (A.23)

Equation A.23 can be easily expanded as

1
2 n] . 1 2 _I'_ in] Lia]
13“'—_[03 g 2R HT gy —1|'—e au! Ixe'“Idx+ iT _[e'“zdx
T atin el s (A.24)

Thefirstintegral intheright hand sideof eq. A.24isequd tozeroand egs. A. 17 and A.19c

can be used to solve the second integral. Thefind result is thus given by

ip o
F,([)=21 (Ime'zw Ty = J?E B (A.25)
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The procedurefor deriving eg. 5.3c issimilar and begins by completing the square

in the exponential term,

) rtoe _gdtta -jry?
2 —21,:-: +jal = el 2 ard
1{ __[m do = 41 ‘ll'me __Em € do  (a.26)

From eq. 4.19awe have

5 (x+]jl ?
L (A.27)

Substituting eg. A.19 and A.27 into eq. A.26 yields

gt -0 er r‘ o iy 2
12 2 -— [X+_]FJ L
gt el i R &
= e e dx. :
_'.[m ¢ T _-E 41° (A.28)

Expanding eq. A.28 gives

r? o o
o forerrian - | gl oo ferad |

(A.29)

The second integrd in the right hand side of eg. A.29 can be solved by using eg. A.17 and
the following identity [90] is used to solve thefirst integral,
1 =z

[in]
2_2
Ixe“dx:—
—i0

5 (A.30)

Thefinal result is expressed as

o T 2
FAT)= 47 EJ’ 2 —2ﬁmf+jmrd e g - F_
(D) =4y Jo%e n=e 1) (A.31)

=i
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APPENDIX B
ANALYTIC EQUATIONS
This appendix presents the analyticd expressions derived from each one of the
procedures outlined in chapter five. Notice that, although al the egs. presented are
expressed as products of matrices, each eg. represents a scalar complex number in general.
The functions encountered as part of each eq. i.e.,, F, F, and F; are derived in
appendix A and defined in eg. 5.3. Likewisetherest of the variables used are given by egs.
5.7 and 5.8. It must be pointed out here, tha no approximations were made during the
derivation of any of theeqgs. contained in this appendix, the results obtained from their use

should therefore be exact.
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APPENDIX C

ZErRO PMD

Appendix C presentsthetrivial caseinwhichthe optical fiber under study does not
haveany PMD. Therms-pulsewidth of asignal at the output of such afiber isshownto be
the same astherms-pul sewidth at theinput irrespective of the choice of theinput and output
states of polarization. Inorder to provethat, the anaytic three segment model fromfig. 5.1

is used.
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C.1 THE ZErRO PMD Cast
To begin the rms-pulsewidth anaysis we assign the following valuesto the fusion
angles of our three segment model infig. 5.1, g, = p/2, g, = 0°. The DGDs introduced by
each section will be, t,=t,=Dand t; = 0. Under these conditions the DGD of the first
segment will be cancelled by the second segment and T, (w) in eg. 5.6b will become

frequency independent. Substituting these values into eq. 5.6b yields

0 -1
s : (C.1)
; n} R(% /2)

where R(p/2) represents a 90° rotation matrix [111]. Substituting T, into eg. 3.3 and using

T, =

eg. 5.2, the electric field and its derivative at the output of PA infig. 5.1 will be given by

E, ()= 1 TeE,(w)=1"R(n/2)pE(v) (C.29)
dE 2 174 )
%: —1+R(Tﬂ .-"IZ)CPZT.E ‘E(;J e‘(“ﬂ) . (CZb)

Thus, the power of the output signal will be

o

P, - |

]

E, (o) da =|y" Rz /2)9f (C3)

From equations 3.8, 5.3 and C.2, the first two moments of t can be expressed as

it R (1 /2)0[ 4
s o ol (P )| B0 ) =10 (C.4a)
|1+R(11: fZ)q:n|2
<ti> = E(0)t° = 1 (C.4b)
P

x

Therefore, eg. 3.6 gives an output rms-pulsewidth, s, =t, forallc andj . Asa
result, we can conclude that, when the PMD of an opticd fiber has been completely
cancelled out, the rms-pulsewidth of the output signal will always equal that of the input

signal, regardless of the choice of the transmission and reception states of polarization.
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APPENDIX D

WAVELENGTH DIVISION MULTIPLEXING (WDM)

Here we consider a Wavelength Division Multiplexing (WDM) system consisting
of five channels, the central channel having a carrier wavelength, A,, of 1.55 um and with
100 Ghz of spacing between each channel. For every channel the pulse-shape used for a bit
“17"is given by eq. 5.1 with t = 25ps. The system under study is similar to that from fig. 3.1

and is depicted in fig. D.1. The carrier angular frequencies and wavelengths of every

channel are summarized in table D.1.

-';‘,?."?l. DETECTOR
% ;Z‘> EXTERNAL L« =
> %

SM .- Single Mode

Fig. D.1 Five channel WDM system.

All the channels in the WDM array are transmitted in the same state of polarization

(determined by PC1) and received in the same state of polarization (determined by PC2).
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Table D.1 Carrier frequencies and wavel engths.

Thefiber ssimulated had amean DGD of 30 psand consisted of 500 segments of Hi-
Bi fiber. The input and output states of polarization used were selected through the
searching procedure depicted in fig. 3.4. Thefigure of merit used was empirically fixed at
10", The carrier frequency used for the optimization of the input and output states of
polarization was that of the central channel, i.e., w, =w, = 1215.3 rad/ps (I ; = 1.55 nm).

Finally, the same bit sequence was used as the transmitted data for every channd,
namely“0001101100100111", which containsall the possiblethreebit sequences. Fig.D.2
shows the input data sequence for every channel. Fig. D.3 shows the normalized received

bit sequence in every channd and table D.2 summarizes the results.

1.5

M)

'l’ Tire (ns) A8

Fig. D.2 Transmitted bit sequence for every channel.
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A1 =1.5516 um
4l
2 “Tiie i 1.8
Fig. D.3a Output bit sequence for thefirst channel.
Az=15508 pm
14
T Time (ns) 1.0
Fig. D.3b Output bit sequence for the second channel.
A3=155um
1 e
a ; i A/\ A/\ t t t t
9 Time (as) Hixt

Fig. D.3c Output bit sequence for the third channel.



99

Mhg=1.5492 i
1_.
9 Time (ns) 1.6

Fig. D.3d Output bit sequence for thefourth channel.

As=15484pum
1__
" Hineiind) 1.6

Fig. D.3e Output bit sequence for thefifth channel.

Table D.2 Fractional power and rms-pulsewidths for the five channel system of fig. D.1
Although a pulsewidth reduction has been achieved in the central channel, the
neighbouring channelsshow diversified results. Whilst thefourth channel benefitsfromthe

optimization of the central channel by exhibiting pulsewidth compression and high power
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levels, the first channd undergoes pul sewidth broadening and exhibits low power levels.
Thus, in this case, the optimization of the input and output states of polarization would
haveto be doneindividually for each channel in order to avoid anirregular performance of
the system.

The bandwidth of theinput and output states of polarization® calcul ated by mean of
the algorithm in fig, 3.4 depends in general, on the DGD of the fiber under study and the
rms-pul sewidth of theinput signd. The cd culationof such abandwidth through simulation
IS necessary before definitive conclusions can be drawn regarding the feasibility of
optimizing theinput and output states of polarization only for the central channel of aWDM
sysgem. The calculation of such a bandwidth is however, not a simple one due to the
statistical nature of PM D and the high dimensionality of the searching procedure. A large
population of fibers would have to be simulated and for each fiber alarge number of initial
search points would need to be used to ensure the convergence to an absolute minimum

value of the rms-pulsewidth. This should be atopic of further research.

! The bandwidth over which the optimized states of polarization remain nearly constant.
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APPENDIX E
Source CoDE

Appendix E presents the Matlab source code used for the implementation of the
searching procedure depicted infig. 3.4, which deal swith the simultaneous optimization of
both, input and output states of polarization, in order to minimizethe rms-pul sewidth of the
output signal. The more general caseof an optical fiber made up by an arbitrary number of
segments of Hi-Bi fiber is solved by the program Nsegm.m which also calculates the
broadband frequency responsefor aWDM system with an arbitrary number of channds.
The frequency responseis saved in ascii format in two files, one named “NumMO_500S. t xt ”
which contains the normalized magnitude of the frequency response and the other,
“NUMQ_500s. t xt " which containsphaseresponse. Theinput signal isgivenby eg.5.1. The
rms-pulsewidth of the input signal and the value for the figure of merit used during the
optimization procedure can be changed by changing the values of the variables “tau” and
“fom” respectively.

The search initsdf is carried out by asubroutine called “ OptimizeN.m”, which in
turns makes use of additional subroutines called “phifuncN.m” and “chifuncN.m”. The
purpose of these two subroutinesisthe calculationof S, T, P, and S, T, P. respectively
through numerical approximation. An additional functions such as, “Fw.m” and
“canonize.m” required for numerical interpolation and state of polarization representation
arealsoincluded. Finally the“TimeDomain.m” program permitsthe visualization intime

domain of the signal at the output of the fiber.
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NSegm (avgdgd, k, cw, BW del t aw, Nch)

% NSegm Numerically searches for the narrow ng polarization states of

% an optical fiber made up by "k" sections of Hi-Bi fiber.

% 1t also calculates the broadband frequency response of the fiber

% for a WDM system in which the input and output states of polarization
% used were optim zed for the central channel.

% avgdgd -> The Average Differential group delay, DGD, of the fiber in

% pi coseconds, ps.

% k -> The nunmber of fiber segnents (wave plates) that make up the
% fiber.

% cw -> The carrier wavel ength of the signal in mcrometers.

% BW -> The Bandwi dth of the channel centered @cw and signal %

centered @0 Hz, (it must be given in GHz).
% deltaw -> The Frequency resolution, in GHz.
% Nch -> Number of WDM channels on one side of wc, the WDM array is
% assumed to be symmetric.
%
% Mauricio Yafez, last revision : May’ 20th of 2000

close all;

war ni ng of f;

echo off;

avgdgd = avgdgd*le-12;cw = cw*le-6;
wc = 2*pi *3e8/cw,

BW = BW 1e9;

del taw = deltaw*1e9;

n = ceil (BWdeltaw); % "n" is the number of sanples in frequency.
deltaw = 2*pi *(BWn); % deltaw takes its final val ue.

W= -2*pi *BW 2 : deltaw : 2*pi *BW 2-del t aw;
tau = 25*1e-12;
Ein = sqrt(tau)*(2/pi)~"0.25%exp(-(tau*W."2);
MaxDel ay = avgdgd*sqrt(3)/sqrt(8*k/ (3*pi));
del ay = MaxDel ay*rand(1, k);
theta = 2*pi*rand(1, k);
TL = zeros (2,2,n);TL1 = zeros (2,2,n);TL2 = zeros (2,2,n);
BY8Y8Y8Y 8/ 8/ 888888/ /%8 Bui | di ng the Fiber within BW Y%88880ssssss/s/8/80
f =1;
for w= wc-(2*pi *BW 2) : deltaw : wc+(2*pi *BW 2) -del t aw,
T = eye (2);T1 = eye (2);
for i=1:k,
T = T*[cos(theta(i)) sin(theta(i)); -sin(theta(i))
cos(theta(i))]*[exp(j*wdelay(i)/2) 0; 0 exp(-j*wdelay(i)/2)];
Tl = T1*[cos(theta(i)) sin(theta(i)); -sin(theta(i))
cos(theta(i))]*[exp(j*(w+deltaw/ 2)*delay(i)/2) 0; O
exp(-j*(w+deltaw/ 2)*del ay(i)/2)];

end
TL (:,:,f) = T1; % TL will now fall in the m ddle point of
TLY (:,:,f) = T*Ein(f); % the differential.
TL2 (:,:,f) = T *Ein(f);
f =1f + 1
end
W= W+ deltaw 2;
Ein = sqrt(tau)*(2/pi)"0.25%exp(-(tau*W.”2); % Ein will now fall in
[ FX, FY, TL1] = gradient (TL1, deltaw); % the m ddl e point
[ FX, FY, TL2] = gradient (TL2,deltaw); % of the differential.

VE/S/SYS/ S/ SS90 The Search begi ns now Y8/Q8/8/8/8/8/8/8/8/8/8/8/8/8s8/8/8s8/8/8/8%
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nn = 60; fom = 1le-14;
Ptmp = zeros (1,nn); Sigmnmp = zeros (1,nn);
rnd_al phal = 2*pi *rand(1,nn); rnd_gamml = 2*pi*rand(1, nn);
rnd_al pha2 2*pi *rand(1,nn); rnd_ganma?2 2*pi *rand(1, nn);
Phi _guess(:,1:nn) = [exp(-
j *rnd_gamml).*cos(rnd_al phal); exp(j*rnd_ganmal). *sin(rnd_al phal)];
Chi _guess(:,1:nn) = [exp(-
j *rnd_gamm?2).*cos(rnd_al pha2); exp(j*rnd_ganma2).*sin(rnd_al pha2)];
h = waitbar (0,' Searching,...");
for i=1:nn,
[ Phi _guess(:,i),Chi_guess(:,i),Sigmnmp(i),Ptnp(i)] = optim zeN ...
(TL, TL1, TL2, Ei n, W Phi _guess(:,i), Chi _guess(:,i),tau,fom;
wai tbar (i/nn);

end

close (h);

m nSgm = mn (Signmnm);

i Xx = pdesubix (Sigmnmp, mnSgm) ;

P = Ptnp (ix);

Phi 1 = Phi _guess (:,ix); Chil = Chi_guess (:,iXx);

[ dumy, dunmy, gamma, A] = canoni ze (Chil);

Chi 2 = [exp(-j*gamma)*A(2);-exp(j*gamm)*A(1)];

[ dumy, dunmy, gamma, A] = canoni ze (Phil);

Phi 2 = [exp(-]j*gamm)*A(2);-exp(j*gamm)*A(1)];

Ti meDomai n (TL, Ei n, del taw, Phi 1, Chi 1, 2e-12, 25+m nSgm P) ;
VS8 /889886 Recreating HF for m nSgm & Savi ng Data Y88008888/8/68/8/6

nl = 64; %1 is the number of sanples taken from H(w)
%wi t hin channel spacing.

n2 = 2*(Nch+1)*nl; %2 is the total nunber of sanples taken from
YH( w) .

BW = 100e9; %BW is the channel interspacing now !

BW = (Nch+1)*BW deltaw = 2*pi *(2*BW/n2;
TL = zeros (2,2,n2);HL = zeros (1,n2);

f =1; %Re-bui |l ding the Fiber for the WDM System
h = waitbar (0,' Re-building the fiber for the WDM Systeni);
for w= wc-(2*pi *BW : deltaw : wc+(2*pi *BW -del t aw,

T = eye (2);

for i=1:k,

T = T*[cos(theta(i)) sin(theta(i)); -sin(theta(i))
cos(theta(i))]*[exp(j*wdelay(i)/2) 0; 0 exp(-j*wdelay(i)/2)];

end
TL (:,:,f) = T;
f =f + 1;

wai tbar ((f-1)/1length(wc-(2*pi *BW : deltaw : wc+(2*pi *BW -del taw));
end
close (h);
Chia = Chi1(1);Chib = Chi1(2);Phia = Phil(1);Phib = Phil(2);

HL (:) = (TL(21,1,:)*conj(Chia)+TL(2,1,:)*conj(Chib))*Phia + ...
(TL(21,2,:)*conj (Chia)+TL(2,2,:)*conj (Chib))*Phib;

Lambda = 2*pi *3e8./(wc-(2*pi *BW : deltaw : wc+(2*pi *BW -del taw);

Lambda = Lanbda*le9; % Lanmbda is now in nm

Phase = 180*unwrap(angl e(HL))/pi;
HF = abs(HL); HF = HF/ max(HF);
NUMO = [Lambda', HF' ] ;

NUMQ = [Lanbda', Phase'];

save NUMO 500S.txt NUMO -ascii
save NUMQ 500S.txt NUMQ -ascii
save Nsegm
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function [PhiFinal, Chi Final, Sigmeff, PFinal] = Optim zeN

(TL, TL1, TL2, Ei n, W Phi, Chi , tau, fom)

% NEWoptim zeN Finds the Input & Output States of Polarization for
% pul se narrowing on a fiber made up by multiple segnments.

% This function nunerically optim zes the |aunching and reception
% angles for a fiber optic with PMD. Optim zation criteria is the
% maxi mum pul se narrowi ng.

deltaw = W2) - W1);
Phi Final = Phi; ChiFinal = Chi; Signout_mn = tau*lel?2;
Sphi = zeros (2,2);Pphi = zeros (2,2); Tphi zeros (2,2);
Schi = zeros (2,2);Pchi = zeros (2,2); Tchi zeros (2,2);
[ Tphi, Sphi, Pphi] = phifuncN (TL, TL1, TL2, Ei n, W Phi);
P = abs(Chi'*Pphi*Chi); PFinal = P;
= Chi ' *Tphi * Chi ;
T2 = Chi' *Sphi *Chi ;
i = Sphi/P - Pphi*Chi*Chi'*Sphi/Pr2 - 2*Tphi*Chi *Chi' *Tphi/P*2 +...
2* TT* Pphi * Chi *Chi ' *Tphi / P*3;
[CHI , etha] = eig(MPhi);
Sigmoutl = lel2*sqrt(abs((CHI(:,21)" *Sphi*CHI (:,1))/...
(CHI (:, 1) " *Pphi *CHI (:,21))-((CHI(:,1)" *Tphi *CHI (:,21))/...
(CHI (:,1)" *Pphi*CHI (:,1)))"2));
Sigmout2 = lel2*sqrt(abs((CHI(:,2)"' *Sphi*CHI (:,2))/...
(CHI (:,2)"*Pphi *CHI (:,2)) -((CHI(:,2)"' *Tphi*CHI (:,2))/...
(CHI (:,2)"*Pphi*CHI (:,2)))"2));
[ Kchi, Chi, ganma2, A2, Si gnout] = decide (Sigmoutl, Signmout2, CHI);
FOM = 1 ; iter = 1; SigmOut = zeros (1,500); PP = zeros (1,500);
while FOM > fom
[ Tchi, Schi, Pchi] = chifuncN (TL, TL1, TL2, Ei n, W Chi);
P = abs(Phi'*Pchi*Phi);
if Signout < Sigmout_mn

Si gmout _m n = Signout; PFinal = P;
Phi Final = Phi; ChiFinal = Chi;
end
TT = Phi' *Tchi *Phi ;
T2 = Phi' *Schi *Phi ;
MChi = Schi/P - Pchi*Phi*Phi"'*Schi/P*2 -

2*Tchi *Phi *Phi ' *Tchi /P2 + 2*TT*Pchi *Phi *Phi ' *Tchi / P*3

[ PHI , I anbda] = ei g( MChi);

Phi ol d = Phi;

Sigmoutl = lel2*sqrt(abs((PHI(:,21)"'*Schi*PHI (:,1))/...

(PHI (:, 1) *Pchi*PHI (:,1)) - ((PHI (:,1)" *Tchi*PHI (:,21))/...
(PHI(:, 1) *Pchi*PHI(:,1)))"2));

Sigmout2 = lel2*sqrt(abs((PHI(:,2)"*Schi*PHI (:,2))/...
(PHI(:,2)"*Pchi*PHI (:,2)) - ((PHI (:,2)"*Tchi*PHI (:,2))/...
(PHI(:,2)"*Pchi*PHI (:,2)))"2));

[ Kphi, Phi, ganmal, Al, Si gnout] = decide (Sigmoutl, Signout?2, PHI);

FOML = abs(Phiold' *Phi);

[ Tphi, Sphi, Pphi] = phifuncN (TL, TL1, TL2, Ei n, W Phi);

P = abs(Chi'*Pphi*Chi);

if Signout < Sigmout_mn

Si gmout _m n = Signout; PFinal = P;
Phi Final = Phi; ChiFinal = Chi;
end
TT Chi ' *Tphi *Chi ;

T2 = Chi' *Sphi *Chi;
MPhi = Sphi/P - Pphi*Chi*Chi' *Sphi/P*2 - ...
2*Tphi *Chi *Chi ' *Tphi / PA2 + 2*TT*Pphi * Chi *Chi ' * Tphi / PA3;



end
P =
i f

end
Sig
Sig
PP
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[CHI , etha] = eig(MPhi);

Chiold = Chi;

Sigmoutl = lel2*sqrt(abs((CHI(:,21)" *Sphi*CHI (:,1))/...
(CHI (:,2)" " *Pphi*CHI (:,1)) - ((CHI(:,1)" *Tphi*CHI(:,21))/...
(CHI (:,1)" *Pphi*CHI (:,1)))"2));

Sigmout2 = lel2*sqrt(abs((CHI(:,2)" *Sphi*CHI (:,2))/...
(CHI (:,2)"*Pphi *CHI (:,2)) -((CHI(:,2)"' *Tphi*CHI (:,2))/...
(CHI (:,2)"*Pphi*CHI (:,2)))"2));

[ Kchi, Chi, ganma2, A2, Si gnout] = decide (Sigmoutl, Signmout2, CHI);

SigmOut (iter) = Signout; PP(iter) = P;

iter iter+1;

Fowme abs(Chi ol d' *Chi);

FOM = abs(1- FOML) + abs (1-FOWR);

Ti meDomai n (TL, Ei n, del t aw, Phi, Chi, 2e-12, Si gmout, P);

abs(Chi ' *Pphi *Chi);
Sigmout < Sigmout_mn
Si gmout _m n = Signout; PFinal = P;
Phi Final = Phi; ChiFinal = Chi;

meff = Signout_mn - tau*lel?2;
mOut = Sigmout (l:iter-1);
= PP (1l:iter-1);
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function [Tphi, Sphi, Pphi] = phifuncN (TL, TL1, TL2, Ei n, W Phi ) ;
% This function cal cul ates Tphi, Sphi, Pphi by using numerica
% approxi mati ons

N = length (W; Ktnp = zeros (1,N);

Phil = Phi (1); Phi2 Phi (2);

VS8 S8/ S/ Cal cul ati ng Pphi  Y98888/8/8/8/8/88/8/8/8/8/8/8/8/ /%

Ktnmp (:) = (TL(Z1,1,:)*Phi1+TL(1,2,:)*Phi2).*...
(conj (TL(1,1,:))*conj (Phil)+conj(TL(1,2,:))*conj (Phi2));
Ktnmp = Ktnp.*(Ein."2);

X11 = quad8 ('Fw ,W1), WN),[].[], Ktmp, W;

Ktnmp (:) = (TL(Z1,1,:)*Phi1+TL(1,2,:)*Phi2).*...
(conj (TL(2,1,:))*conj (Phil)+conj(TL(2,2,:))*conj (Phi2));
Ktnmp = Ktnp.*(Ein."2);

X12 = quad8 ('Fw ,W1), WN),[].[], Ktmp, W;

Ktnmp (:) = (TL(2,1,:)*Phi1+TL(2,2,:)*Phi2).*...
(conj (TL(1,1,:))*conj (Phil)+conj(TL(1,2,:))*conj(Phi2));
Ktnmp = Ktnp.*(Ein."2);

X21 = quad8 ('Fw ,W1), WN),[].[], Ktmp, W;

Ktnmp (:) = (TL(2,1,:)*Phi1+TL(2,2,:)*Phi2).*...
(conj (TL(2,1,:))*conj (Phil)+conj(TL(2,2,:))*conj (Phi2));
Ktnmp = Ktnp.*(Ein."2);

X22 = quad8 ('Fw ,W1),WN),[],[], Ktmp, W;

Pphi = [X11 X12; X21 X22]:
S SIS SISV Cal cul ating Tphi YOS
Kimp (:) = j*(TL1(1,1,:)*Phi1+TL1(1,2,:)*Phi2).*...

(conj (TL(1,1,:))*conj (Phil)+conj(TL(1,2,:))*conj(Phi2));
Ktnmp = Ktnp. *Ein;
X11 = quad8 ('Fw ,W1), WN),[].[], Ktmp, W;
Ktnmp (:) = j*(TL1(21,1,:)*Phi1+TL1(1,2,:)*Phi2).*...
(conj (TL(2,1,:))*conj (Phil)+conj(TL(2,2,:))*conj (Phi2));
Ktnp = Ktnp. *Ein;
X12 = quad8 ('Fw ,W1), WN),[],[], Ktmp, W;
Ktnp (:) = j*(TL1(2,1,:)*Phi1+TL1(2,2,:)*Phi2).*...
(conj (TL(1,1,:))*conj (Phil)+conj(TL(1,2,:))*conj (Phi2));
Ktnmp = Ktnp. *Ein;
X21 = quad8 ('Fw ,W1), WN),[],[], Ktmp, W;
Ktnp (:) = j*(TL1(2,1,:)*Phi1+TL1(2,2,:)*Phi2).*...
(conj (TL(2,1,:))*conj (Phil)+conj(TL(2,2,:))*conj (Phi2));
Ktnmp = Ktnp. *Ein;
X22 = quad8 ('Fw ,W1), WN),[],[], Ktmp, W;
Tphi = [X11 X12; X21 X22];
VS S8/ S S8/ Cal cul ating Sphi  Y988S/8/8/8/88/8/8/8/8/8/8/8/8/%
Ktmp (:) = (TL1(1,1,:)*Phi1+TL1(1,2,:)*Phi2).*...
(TL2(1,1,:)*conj (Phil)+TL2(2,1,:)*conj (Phi2));
X11 = quad8 ('Fw ,W1), WN),[].[], Ktmp, W;
Ktmp (:) = (TL1(1,1,:)*Phi1+TL1(1,2,:)*Phi2).*...
(TL2(1,2,:)*conj (Phi1l)+TL2(2,2,:)*conj (Phi2));
X12 = quad8 ('Fw ,W1), WN),[].[], Ktmp, W;
Ktnmp (:) = (TL1(2,1,:)*Phi1+TL1(2,2,:)*Phi2).*...
(TL2(1,1,:)*conj (Phil)+TL2(2,1,:)*conj (Phi2));
X21 = quad8 ('Fw ,W1), WN),[].[], Ktmp, W;
Ktnmp (:) = (TL1(2,1,:)*Phi1+TL1(2,2,:)*Phi2).*...
(TL2(1,2,:)*conj (Phi1l)+TL2(2,2,:)*conj (Phi2));
X22 = quad8 ('Fw ,W1), WN),[],[], Ktmp, W;
Sphi = [X11 X12; X21 X22];
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function [Tchi, Schi, Pchi] = chifuncN (TL, TL1, TL2, Ei n, W Chi ) ;
% This function cal culates Tchi, Schi, Pchi by using numerical
% approxi mati ons

N = length (W; Ktnp = zeros (1,N);

Chil = Chi (1); ¢Chi2 Chi (2);

VS8 S8/ Cal cul ati ng Pchi  Y88888/8/8/8/8/8/8/8/8/8/8/8/8/8/8/%

Ktnmp (:) = (conj (TL(1,1,:))*Chil+conj (TL(2,1,:))*Chi2).*...
(TL(21,1,:)*conj (Chil)+TL(2,1,:)*conj (Chi2));
Ktnmp = Ktnp.*(Ein."2);

X11 = quad8 ('Fw ,W1), WN),[],[],Ktnmp, W;

Ktnmp (:) = (conj (TL(1,1,:))*Chil+conj(TL(2,1,:))*Chi2).*...
(TL(21,2,:)*conj (Chil)+TL(2,2,:)*conj (Chi2));
Ktnmp = Ktnp.*(Ein."2);

X12 = quad8 ('Fw ,W1), WN),[],[],Ktnmp, W;

Ktnmp (:) = (conj(TL(1,2,:))*Chil+conj(TL(2,2,:))*Chi2).*...
(TL(21,1,:)*conj (Chil)+TL(2,1,:)*conj (Chi2));
Ktnmp = Ktnp.*(Ein."2);

X21 = quad8 ('Fw ,W1), WN),[],[],Ktnmp, W;

Ktnmp (:) = (conj (TL(1,2,:))*Chil+conj(TL(2,2,:))*Chi2).*...
(TL(21,2,:)*conj (Chil)+TL(2,2,:)*conj (Chi2));
Ktnmp = Ktnp.*(Ein."2);

X22 = quad8 ('Fw ,W1), WN),[],[],Ktnmp, W;

Pchi = [X11 X12; X21 X22]:
S SIS SISV Cal cul ating Tchi YOS SIS Yo
Kimp (:) = j*(TL1(1,1,:)*conj(Chi1)+TL1(2,1,:)*conj(Chi2)).*...

(conj (TL(1,1,:))*Chil+conj(TL(2,1,:))*Chi2);
Ktnmp = Ktnp. *Ein;

X11 = quad8 ('Fw ,W1), WN),[].[], Ktmp, W;

Ktnmp (:) = j*(TL1(1,2,:)*conj(Chil)+TL1(2,2,:)*conj(Chi2)).*...
(conj (TL(1,1,:))*Chil+conj(TL(2,1,:))*Chi2);
Ktnp = Ktnp. *Ein;

X12 = quad8 ('Fw ,W1), WN),[].[], Ktmp, W;

Ktnmp (:) = j*(TL1(1,1,:)*conj(Chil)+TL1(2,1,:)*conj(Chi2)).*...
(conj (TL(1,2,:))*Chil+conj (TL(2,2,:))*Chi2);
Ktnmp = Ktnp. *Ein;

X21 = quad8 ('Fw ,W1), WN),[].[], Ktmp, W;

Ktnmp (:) = j*(TL1(1,2,:)*conj(Chil)+TL1(2,2,:)*conj(Chi2)).*...
(conj (TL(1,2,:))*Chil+conj(TL(2,2,:))*Chi2);
Ktnmp = Ktnp. *Ein;

X22 = quad8 ('Fw ,W1), WN),[],[], Ktmp, W;

Tchi = [X11 X12; X21 X22];

VS8 S8/ S/ Cal cul ating Schi  Y988/S/S/8/8/88/8/8/8/8/8/8/8/ 8/

Ktnmp (:) = (TL1(1,1,:)*conj(Chil)+TL1(2,1,:)*conj(Chi2)).*...
(TL2(1,1,:)*Chi 1+TL2(1,2,:)*Chi2);

X11 = quad8 ('Fw ,W1), WN),[].[], Ktmp, W;

Ktnmp (:) = (TL1(1,2,:)*conj(Chil)+TL1(2,2,:)*conj(Chi2)).*...
(TL2(1,1,:)*Chi 1+TL2(1,2,:)*Chi2);

X12 = quad8 ('Fw ,W1), WN),[].[], Ktmp, W;

Ktnmp (:) = (TL1(1,1,:)*conj(Chil)+TL1(2,1,:)*conj(Chi2)).*...
(TL2(2,1,:)*Chi 1+TL2(2,2,:)*Chi 2);

X21 = quad8 ('Fw ,W1), WN),[].[] Ktmp, W;

Ktnmp (:) = (TL1(1,2,:)*conj(Chil)+TL1(2,2,:)*conj(Chi2)).*...
(TL2(2,1,:)*Chi 1+TL2(2,2,:)*Chi 2);

X22 = quad8 ('Fw ,W1), WN),[],[], Ktmp, W;

Schi = [X11 X12; X21 X22];
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function abc = Fw (w, Ktnmp, W
% This function is required for numerical integration

abc = interpl (WKtnp,w, "' *cubic');

function [K, x, gamma, A] = canoni ze (V)
%CANONI ZE Returns a conplex vector on its canonical form

A = zeros(1,2);

nl = v(1l); n2 = v(2);

A(1l) = abs(nl); A(2) = abs(n2);

thetal = angle (nl); theta2 = angle (n2);
gamma = (theta2-thetal)/2;

K = exp(j*(theta2+thetal)/?2);

x = [A(1l)*exp(-j*gamma) ; A(2)*exp(j*gamm)];
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function dummyl = Ti meDomai n (TL, Ei n, del taw, Phi, Chi, deltaT, sigmeff,p)

% Ti meDomai n Shows the Time Domain for of a signal, Ein, being
% transm tted through an Optical fiber with a transfer Matrix TL
% | aunched and received at states of polarization Phi & Chi

% Ein and TL are in the frequency Domain !

% del taT and deltaw are the time and frequency resolutions

n = length(Ein);p = p*100;

Phi 1 = Phi(1);Phi2 = Phi(2);

Chil = Chi(1);Chi2 = Chi(2);

Eout = zeros (1,n);

Eout (:) = ((TL(21,1,:)*conj(Chil)+TL(2,1,:)*conj(Chi2))*Phil + ..

(TL(1,2,:)*conj (Chi1)+TL(2, 2, :)*conj (Chi 2))*Phi 2); Eout =

Eout . *Ei n;

ts = 2*pi/deltaw; %Be aware that Ein is in the frequency domain !

nl = ts/deltaT; %1 is the required number of sanples for a
% esol ution of deltarT.

n2 = |l engt h(Eout); %2 is the actual nunbre of sanples taken from
Y%Eout (w)

if nl>=n2 %The | FFT will use "n" points to meet deltarT.

n = 22(max(next pow2(nl), nextpow2(n2)));

end

deltaT = ts/n; %deltaT is now the real IFFT time resolution

nn = floor (100e-12/deltaT); %Readjusting the time vector to 200 ps

t = -deltaT*(nn):deltaT:deltaT*(nn-1); t = t*1lel2;

if mod (n2,2) == 0, i = n2/2;

else i = (n2+1)/2-1; end

Ein = fftshift(Ein);

ein (1:i) = Ein(l:i);

ein (i+1l:i+n-n2) = zeros (1,n-n2);

ein (i+n-n2+1:n) = Ein(i+1:n2);

ein = ifftshift(ifft (ein)); %ein is nowin the tinme domain
Pin = abs(ein.*conj(ein));

K = max(Pin);

Pin = Pin/K;

i x = pdesubix (Pin,1); %Rel ocating Pin around its center

Pin = Pin (ix-nn:ix+nn-1);

Eout = fftshift(Eout);

eout (1:i) = Eout(1l:i);

eout (i+1l:i+n-n2) = zeros (1,n-n2);

eout (i+n-n2+1:n) = Eout(i+1:n2);

eout ifftshift(ifft (eout)); %eout is now in the time domain
Pout abs(eout.*conj (eout));

Pout Pout / max( Pout) ;
i X = pdesubi x (Pout, max(Pout)); %Relocating Pout around its center
Pout = Pout (ix-nn:ix+nn-1);

figure (100)
plot (t,Pin,"w); xlabel ('"Time (ps)'); ylabel ('Normalized Optica

Power ') ;

hol d;

plot (t,Pout,"w ',"'Erasemode',"' xor");

if sigmeff ~= 0
title (strcat('\sigma_{x} = ', nun2str(sigmeff,4),' ps, P {x} =",
num2str(p,4), ' %));

el se
title (strcat('P_{x} = ",num2str(p,4), %));

end
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|l egend (' I nput Pulse','OQutput Pulse');
drawnow
hol d;





