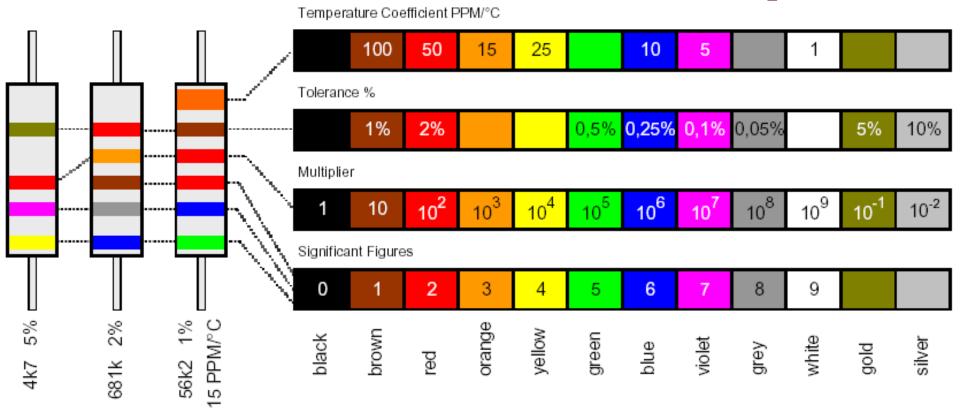

Introduction to Passive Electronic Components

Resistors (R), Capacitors (C), Inductors (L)

	Resistor	Capacitor	Inductor
Units	Ohm (Ω)	Farad (F)	Henry (H)
Typical Values	Fraction of ohms	Few pico-Farad	Few nano-Henry
	to	To thousands of	to
	tens of Mega-ohm	micro-Farad	tens of milli-Henry
Other	Power (Watt)	Voltage (Volt)	Current (A)
Specifications	Tolerance (%)	Tolerance (%)	Tolerance (%)
	Package	Package	Package
	Voltage	Temperature	Material/Type
	Material/Type	Material/Type	


Resistors

- Through-hole, surface-mount
- Film, wire-wound; fixed or variable

ECE3031

Resistor Value Code (usually for resistors of 2W or less)

The 4 band code is most common with 5% and 10% tolerance, and the 5 band code is used with 2% and better.

Standard Resistor Values

Electronic Industries Association (EIA) Standard E12, or E24, and more:

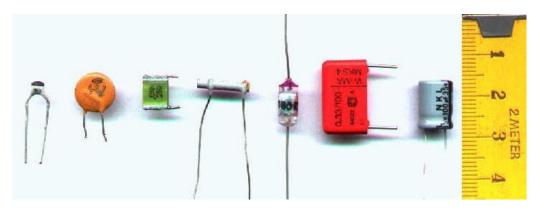
Normally Standard E24 specifies resistors based on 5% tolerance, and Standard E12 specifies resistors based on 10% tolerance

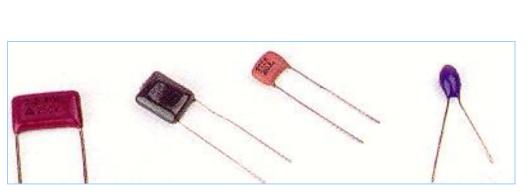
E12	1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7	5.6	6.8	8.2	
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	--

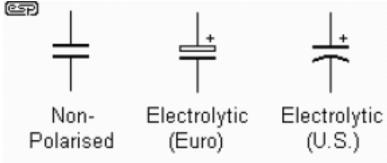
12 Values per Decade

											3.0
3.3	3.6	3.9	4.3	4.7	5.1	5.6	6.2	6.8	7.5	8.2	9.1

24 Values per Decade

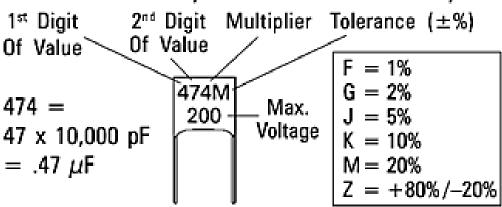

 Need to use parallel or series resistors for non-standard values


Resistor Materials


- Carbon Composition: Low to medium power. Comparatively poor tolerance and stability. Inexpensive.
- Carbon Film: Low power. Reasonable tolerance and stability. Inexpensive.
- Metal Film: Low to medium power. Very good tolerance and stability. – Normally higher quality than carbon resistors.
- Wire-wound: High to very high power. Acceptable to very good tolerance, good stability. Expensive. May be inductive → for low freq appl.

Capacitors

- Through-hole, surface-mount
- Film, ceramic; electrolytic, tantalum (polarized)
- Fixed or variable



Capacitor Value Code

CAPACITOR GUIDE

The Result of Capacitor Code is Given in pF

On some capacitors the value is shown as a straight number (4.7pF). On others the decimal point is replaced with the first letter of the prefix (4p7 = 4.7pF).

Prefix	Abbr.	Multiplier	
pico	р	10 ⁻¹²	
nano	n	10 ⁻⁹	
micro	μ (R)	10 ⁻⁶	

1000 pico = 1 nano 1 nano = .001 micro 1000 nano = 1 micro

EXAMPLES:

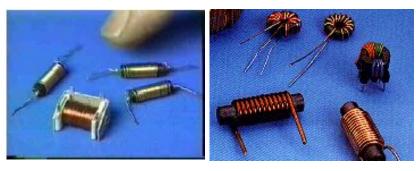
223J = 22 x
$$10^{3}$$
pF = 22 nF = 0.022μ F 5%
151K = 15 x 10^{1} pF = 150 pF 10%
4R7 = 4.7μ F 4N7 = $4.7 n$ F 4P7 = $4.7 p$ F

Standard Capacitor Values (Examples)

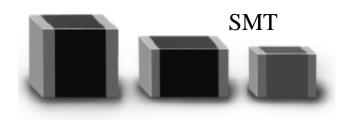
Standard Capacitor Values (±10%)								
10pF	100pF	1000pF	.010µF	.10µF	1.0µF	10μF		
12pF	120pF	1200pF	.012µF	.12µF	1.2µF	•		
15pF	150pF	1500pF	.015µF	.15µF	1.5µF			
18pF	180pF	1800pF	.018μF	.18µF	1.8µF			
22pF	220pF	2200pF	.022μF	.22μF	2.2μF	22μF		
27pF	270pF	2700pF	.027μF	.27μF	2.7μF			
33pF	330pF	3300pF	.033μF	.33µF	3.3µF	33μF		
39pF	390pF	3900pF	.039µF	.39µF	3.9µF			
47pF	470pF	4700pF	.047μF	.47μF	4.7μF	47uF		
56pF	560pF	5600pF	.056µF	.56µF	5.6µF			
68pF	680pF	6800pF	.068µF	.68µF	6.8µF			
82pF	820pF	8200pF	.082μF	.82µF	8.2µF			

Capacitor Materials

- Silvered Mica: Probably the most linear low value capacitor, commonly used in RF applications
- Polystyrene: Very good electrical properties. Very linear and stable, but physically large.
- **Ceramic:** Excellent high frequency performance, but not stable with temperature.
- Monolithic Ceramic: Designed as bypass capacitors, these are physically small.
- Polyester: One of the most popular types. Stable and reliable, generally low voltage (up to 100V).
- Mylar: Another popular cap, suitable for high frequency applications, as well as bypass for power amps and op-amps.
- **Polypropylene:** Available in relatively large values.
- PET: (Polyethylene Terephthalate) Used in many different types of plastic film caps, often replacing polyester or mylar
- **Electrolytic:** Using plates of aluminium and an electrolyte to provide conductivity, these caps use an extremely thin layer of aluminium oxide (created by anodising) as the dielectric. This gives very high capacitance per unit volume, and are used as coupling capacitors, power filters etc. low frequency applications.
- **Tantalum:** Very high capacitance per unit volume, better quality than electrolytic. More expensive than electrolytic caps.
- **Oil/ Paper:** These are mainly for power applications as motor start and power factor correction capacitors. They are extremely rugged, and are self-healing. They do not fail as a short circuit any arc is extinguished by the oil, and the cap can continue to function normally after the excess voltage is removed.


Inductor Examples

- Through-hole, surface-mount
- Air-core, iron-core
- Fixed, variable



http://www.epcos.com/inf/30/db/emc_00/01810183.pdf

Wire-wound Inductors

http://www.wordiq.com/definition/Inductor

For More:

http://www.cambion.co.uk/Main/cat alogue_inductive.htm

Inductor Value Code

INDUCTOR COLOR GUIDE Result Is In µH

4-BAND-CODE 270μH ± 5%

COLOR	1st BAND	2nd BAND	MULTIPLIER	TOLERANCE
BLACK	0	0	1	± 20%
BROWN	1	1	10	Military ± 1%
RED	2	2	100	Military ± 2%
ORANGE	3	3	1,000	Military ± 3%
YELLOW	4	4	10,000	Military ± 4%
GREEN	5	5		
BLUE	6	6		
VIOLET	7	7		
GREY	8	8		
WHITE	9	9		
NONE				Military ± 20%
GOLD			0.1 / Mil. Dec. Pt.	Both ± 5%
SILVER			0.01	Both ±10%
Military			/	

Electronix Express/RSR http://www.elexp.com

1-800-972-2225 In NJ 732-381-8020

 $6.8 \mu H \pm 10\%$

MILITARY CODE

Identifier

PCB Design Software

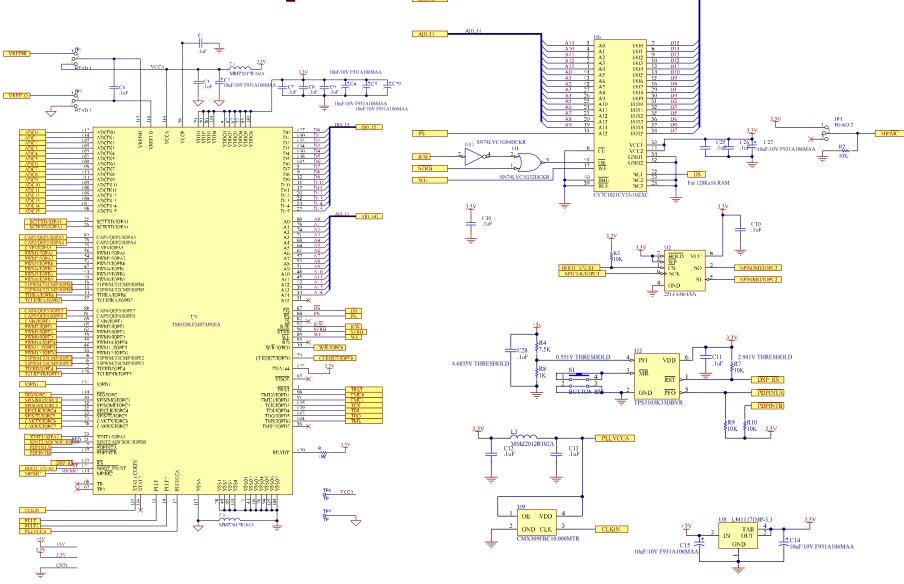
Electronic Design Automation (EDA)

Features:

- Schematic editing
- Circuit simulation, FPGA simulation/synthesis
- Design rule check
- PCB layout editing
- Auto-placement
- Auto-router
- PCB design rule check
- Documentation generation
- Gerber file export
- **...**

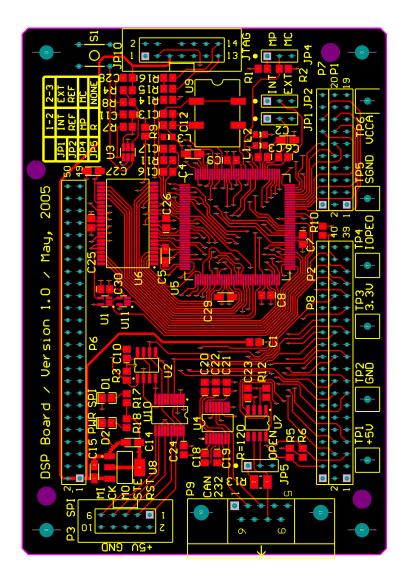
PCB Design Software

- OrCAD (Capture, PSpice, PCB, SPECCTRA) from Cadence.
 Lite version is free.
- Allegro by Cadence
- Altium Designer
- CircuitMaker from Altium, free version
- Protel, PCAD, PADS, etc. in the old days
- Freeware / Open source / Web based


PCB Design Workflow

- Circuit schematic design
- Design check / Simulation / Review
- Netlist
- Part footprint design
- PCB outline / Mechanical design
- Place components (auto, manual)
- Route traces (auto, manual, priority)
- Design rule check (track width, clearance)
- Gerber output

PCB Test


- Soldering (proper iron tip, lead-free solder, temperature, no overheat
- Shiny, volcano shape joint
- Electrical safety and isolation (trace spacing)
- Multimeter
- Oscilloscope


PCB Example

PCB Example

(Inverter Control Board (4-layer)

