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nonlinear plant, and is presently applicable to single-input single-output, time-
invariant, deterministic, stable, and continuous-fime systems which gre represent-
able in standard state-variable differential equation form. Three software utilities to
implement the controller design procedure are also outlined This method and the
associated software is applied to a position control problem of the sort encountered
in robotics, and the results are compared with those previously obtained using both

linear and nonlinear PID control.

1 Introduction

Methods for the design of linear controllers for linear plants
are well established It is well known, however, that a conven-
tionally designed linear controller (e.g., a PID or lead/lag con-
troller designed on the basis of a small-signal or Taylor series
linear model via a standard approach such as root locus or
Ziegler-Nichols tuning) may not produce adequate perfor-
mance over a variety of operating regimes, especially if the
plant is highly nonlinear [1-9] In such cases, it is not clear
whether one needs a nonlinear controller, or if a different
linear controller design method might suffice.

In this research, we considered the latter possibility, and
developed a synthesis technique we call multi-range controller
design, The term *‘multi-range’” arises from the fact that the
controller design is based on several plant characterizations
that correspond to different operating regimes. These regimes
are characterized not by operating point, but rather by the ex-
pected amplitude or range of the input signals. Once these
models are obtained via the describing function approach, the
design method proceeds in a systematic fashion and yields
controller designs which are demonstrably better than those
produced using traditional linear system methods.

Control engineers may utilize linear control theory (classical
or modern), optimal control theory, or adaptive control
theory to obtain a controller that will cause a plant to have
satisfactory response. Systems with linear plants have received
considerable attention, and effective results are available. In
contrast, systematic controller design techniques for use with
nonlinear plants are still in the early stages of development
(for example, [1-9]). In the latter context, the use of existing
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linear control system design techniques based on smali-signal
linearization often leads to a design that must be “‘tuned” or
otherwise modified in a nonsystematic fashion in order to
make it work reliably. The use of controller design based on
either optimal control theory or adaptive control is usually
justified if the classical control theory is mot applicable.
However, such control laws are difficult or impossible to
design for nonlinear plants, and, when they can be obtained,
are usually very difficult to implement

Our primary objective is to present a new, systematic,
algebraic linear controller design procedure for use with highly
nonlinear plants. An algebraic procedure minimizes the degree
of subjective judgment that has to be employed by the
designer to arrive at a practical design; such a procedure can
easily be automated on a digital computer. The secondary ob-
jectives are: (1) to develop appropriate numerical algorithms
which can be used to implement the controller design pro-
cedure in a computer-aided engineering environment, and (2)
to demonstrate the design procedure by applying it to a mean-
ingful problem.

The controller synthesis procedure is composed of the
following six steps:

1 Define the desired closed-loop system performance
specifications, and identify the reference linear model whose
static and dynamic behavior matches the desn‘ed closed-loop
system performance specifications. -

2 Characterize the input/output behaVlOl‘ Of the nonlinear
plant via deseribing function models for several amplitudes of
input excitation (e g., small, mediirm, and large input Slgnals)

3 Choose two descrlbmg function models and identify vig 5
suitable fitting approach a correspoﬂdlng set Of Imear systems.
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4 Determine the set of all linear controflers that
simultaneously stabilize these linear systems.

5 Search this set for the minimum-sensitivity linear
contreller

6 Validate the design via digital simulation.

In some cases, the user may have to execute Step 1 after the
input/output characterization task of Step 2, since it may not
be possible to arrive at realistic performance requirements
without a basic knowledge of the input/output behavior.

This procedure identifies a minimum-sensitivity linear con-
troller through the use of simultancous stabilization theory
f10] and is based on sinusocidal-input describing function
models of the plant. A minimum-sensitivity linear controller is
defined hercin as a controller which achieves a closed-loop
system (i) whose dynamic behavior is relatively insensitive to
the amplitude of the command signal, and (ii) whose dynamic
behavior satisfies a set of user-defined performance measures
as closely as possible. A robust design is achieved since item (i)
above is an important consideration in robustness [1]. If the
procedure is unable to identify a linear controller which
achieves (i) and (ii} above, then a nonlinear controller design
procedure may have to be used

The remainder of our development assumes that two
operating regimes are sufficient to characterize the amplitude-
dependence of the nonlinear plant for the purpose of con-
troller design. These two regimes are usually selected based on
describing function models obtained for more than two input
amplitudes. If two regimes are not adequate, then one can in
principle consider as many regimes and models as required;
however, to the best of our knowledge, the characterization of
all compensators that simultaneously stabilize more than two
plants has not been computationally verified

2 Controller Synthesis Procedure

Controller the following a priori

information:

synthesis requires

(i} The mathematical model of the nonlinear plant in the
following state-variable differential equation form,

x(1) =i(x(2), u(1)) 1)
y(t)y=g(x(1), u(t)) @

(i) A number of operating regimes of the nonlinear plant.
These operating 1egimes are defined by: (1) the range of the
expected ampiitude level of the excitation command, and (2}

Technical details of the six-step controller synthesis procedure
are given below,

2.1 Performance Specifications. The first step of the
design procedure is to define a set of performance specifica-
tions for the closed-loop system in either the time or frequency
domain. In either domain, the user is then required to identify
a linear system model whose dynamic behavior matches the
specified performance specifications for the closed-loop
system; this model we denote G, {s). Three possible strategies
for identification of the reference linear model has been sug-
gested [11] The simplest approach is to select a linear second-
order system model which has the desired natural frequency
and damping ratio; this strategy is used in the work presented
herein. The user is not limited to identifying second-order
models: Meyfarth [12] has presented step, impulse, and fre-
quency 1esponse characteristics of linear third-order models in
the form of dimensionless response plots for a number of dif-
ferent combinations of system parameters. These response
plots may be examined visually to select the reference linear
model

2.2 Input/Output Characterization. It is desirable to use
the powerful tools of linear systems theory in designing con-
trollers for nonlinear systems. Characterizing the input/out-
put behavior of the nonlinear plant in the frequency domain
followed by applying a fitting procedure that approximates
the frequency response by that of a linear system is an ap-
proach that permits the use of linear design methods.

There are two basic techniques for obtaining such
characterizations. The first and most common approach is to
linearize the equations of motion around an operating point of
interest. This practice is often referred to as small-signal
linearization (SSL). The input/output relation is obtained by
replacing each nonlinearity with a linear term whose gain is the
slope of the nonlinearity at the operating point The SSL
method has the following disadvantages: it is not applicable to
nonlinear plants which have discontinuous or multivalued
nonlinearities (e g., saturation, hysteresis, and backlash), it
eliminates the dependence of the input/output behavior of a
nonlinear plant on the amplitude of the input signal, and SSL
models of nonlinear plants are usually highly sensitive to the
assumed operating point. Perturbation of the nonlinear
system from its assumed operating point may result in un-
satisfactory system behavior.

The second approach for characterizing the input/output
behavior of a nonlinear plant does not have these disadvan-
tages Instead, one replaces each mnonlinearity with a

the range of the excitation frequency of interest.
Nomenclature
a = the amplitude of the excitation signal
ag, ay, , @, = the coefficients of the numerator
polynomial of transfer function G, (s)
(see equation (7))
by, by, , b, = the coefficients of the denominator
polynomial of transfer function G, (s)
(see equation (7))
C(s) = a stabilizing compensator (may be
subscripted for clarity}
d(s) = a transfer function (d(s) and n(s) are
coprime factors of G(s5);
G(s)=n(s}/d(s}) (may be subscripted
for clarity)
DFGEN = describing function GENerator (a soft-
ware utility)
DRLCD = dual-range linear controller design (a
: software utility)
e = error signal
e{w) = frequency-domain error function
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f = function representing the time rate of
change of state variables (nonlinear
dynamics of system to be controlled)

J. = Coulomb friction coefficient {f, =10
Nm)

f, = viscous friction coefficient (f,=0.1
Nm-s/1ad)

F = objective function for minimum-
sensitivity linear controfler design

g = function representing the system output

G{jw) = a frequency response function (may be

subscripted for clarity)
frequency response data representing a
SIDF model

It

Gy (s a, uy)

J = moment of inertia
m,, m, = torque-motor gain constants
n(s) = a transfer function (see d(s) above)
N(a) = an amplitude-dependent gain (describ-

ing function}
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quasilinear gain which does depend on the amplitude of the
excitation signal. The function corresponding to the
quasilinear gain is referred to as the describing function of
that nonlinearity; it is based on the form of the excitation
signal which is assumed in advance. There is an abundant
literature on this approach (cf., [2, 13, 14]}, so we will not
develop it in detail. In summary, sinusoidal-input describing
function models (SIDF models) have been shown to be mean-
ingful for controller design applications [5], especially with
regard to the issue of robustness. SIDF models of nonlinear
plants do not have the disadvantages of the small-signal
models, and they enjoy the following properties: They may be
used to interface with tools of linear control system analysis
and design, they approach the corresponding SSI. models (if
they exist) when the amplitude of the excitation signal is small
(so the control engineer should not obtain results that are in-
consistent with standard SSL methods), and SIDF models can
be obtained for any plant that can be represented in state-
variable form, Most significantly, SIDF models provide an ex-
cellent basis for a robust control system design because they
retain the amplitude sensitivity characteristics of the nonlinear
plant.

SIDE models of the nonlinear plant at a given operating
point are obtained by determining the gain and phase of the
nonlinear system response to a sinusoidal input at set of
discrete frequencies. There are two approaches for obtaining
SIDF models: The first approach is similar to that used in limit
cycle analysis [13-16]; it involves replacing each nonlinearity
with a gain of known form but unknown value and solving the
set of nonlinear algebraic equations that corresponds to har-
monic balance The second approach utilizes direct simulation
and evalnation of Fourier integrals. The first method assumes
the input to cach nonlinearity is nearly sinusoidal; this
assumption is not r1equired in the second approach.
Algorithms and software for the second approach have recent-
ly been developed [4, 11]; the routine DFMOD [4] was created
as part of the GE computer-aided control engineering environ-
ment, while DFGEN (See Appendix D of [11]) was developed
to automate the generation of SIDF models as a part of the
first author’s research effort. This method proceeds as
follows: The plant is excited by a sinusoid,

u{t) =uy+a cos(ws) 3)

where u; is the DC value of the input signal and « is the
amplitude of the excitation signal. Then, the dynamic equa-
tions of motion, equations (1, 2), are numerically integrated to

obtain the output y(¢) as a function of time. Fourier integrals
for period k are calculated simultanecusly, once y(f) has
reached steady-state. These integrals are given by

kT
— I3 -—jmwi‘dt" 4
L= ¥ De @
where k=1,2,. .. ,m=0,1,2, ,and T=2x/w The con-

stant or DC component of the response is given by I, ., and .
the SIDF transfer function at discrete frequencies, which is
represented by the complex number G 4 (jos; 14y, @), is given by

Gy Uw; 1y, @) =G =l /am 5)

In order to analyze the importance of higher harmonic ef-
fects, one may also evaluate

G  Umo; ug, @) =al, (/am, m=2,3, . . (6)

The above technique for generation of SIDF models is
restricted to stable plants; otherwise, evaluation of the Fourier
integrals would be meaningless. For a given excitation
amplitude a, equation (5) is evaluated at discrete frequencies
(over the frequency range of interest to the user) to obtain one
quasilinear model of the nonlinear plant. This procedure may
be repeated for various excitation amplitudes to obtain a
number of quasilinear models of the nonlinear plant. In our
procedure, the two quasilinear models whose gain
characteristics enclose those of all others in the class are
selected, and they are set aside for system identification of the
next step.

2.3 Linear System Identification. We must next identify
two linear system models whose dynamic behavior approx-
imates that of the two selected SIDF models from the previous
step. This must be done before the class of all stabilizing con-
trollers can be parameterized via the application of
simultaneous stabilization theory The user has to exercise
judgment in this step: it may be desirable to obtain a different
quality of fit at different frequency; e.g., to sacrifice the quali-
ty of fit at high frequency to obtain a better fit near the gain
and phase cross-over points. Another consideration is stabili-
ty: since these models must approximate the input/output
model of the nonlinear plant in the specified operating
regimes, they must be constrained to be stable. Other issues
relating to this process which will be discussed in Section 3.3
where an exampiec problem is treated.

A new method for identifying single-input single-cuput
linear systems that fit frequency response data was developed

Nomenclature (cont.)

pis) = atransfer function (p(s} and g(s) are
coprime, and, together with n(s) and
d(s), satisfy the Bezout identity; see
equation (10) (may be subscripted for
clarity)
g(s) = a transfer function (see p(s) above)
r(s) = a transfer function (the parameter in
parameterizing the class of all stabiliz-
ing controllers}
F(s} = atransfer function (the parameter in
parameterizing the class of all con-
trollers that stabilize r{s})
s = Laplace transform variable
SYSID = SYStem IDentifier (a software utility)
t = time
T = period of a periodic signal
T,, T, = torques (seec Fig. 1}
u{t) = system input ’
#, = DC component of the mput s;gnal
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V,, = torque-motor input excitation voltage
W({w) = a frequency-domain weighing function
WMSE = weighted mean-square error
x({) = a vector representing system states
%(#) = a vector representing the time rate of
change of vector x(#)
%, (#) = the controlled variable, position (see
Fig. 1}
# (1) = velocity (see Fig. 1)
v(#) == system output
o = a weighing coefficient
6 = the break- pomt (ga.m-change point) of
a limiter :
¢ = damping ratio
w = frequency (rad/s}

“matural frequency

a closed-loop unity-feedback system
- whose forward-path transfer function
s C(5)G(s); T=CG/(l + CG)

B(C(s), Gls))

Transactions of the ASME




tg meet these needs. The rational linear systems used for fit'—
ting may be represented via a transfer function of the follow-
ing form:

Grs)= M

The objective is to identify p, g, ;, and b, in such a manner
that the frequency response of the identified transfer function
G,(s) approximates the given SIDF frequency response data
with suitable fidelity To do this, we developed an algorithm
that produces minimum weighted mean-square error
(WMSE), defined by

WMSE= | W(w)e(w)dw ®)

where W{cw) is the weighting function and
e(w)= ¥Gf(,j"’)_Gdf(.jW; Hy, ayl?. 9

For a given p and g, we use Chandler’s [17] implementation
of the Hooke and Jeeves [18] pattern direct search algorithm
to minimize WMSE. A starting solution is obtained from the
application of the system identification technique of Lin and
Wu [19] which uses a generalized least-squares technique [20]
to identify linear systems of the general form given by equa-
tion (7) with by =1, This algorithm was reformulated to allow
identification of linear systems of the general form given by
equation (7) with either @g=1 or by=1 {4, 11]; this was
necessary to allow fitting type-one systems A command-
driven software utility SYSID was developed based on the
above system identification technique (see Appendixes A and
E of [11])

The primary advantages of the above system identification
technique with respect to the system identification technique
of Lin and Wu are: (1) the user is able to obtain a better quali-
ty of fit in specific frequency ranges, and (2) the user is able to
perform constrained minimization; in particular, it is
necessary for our approach to restrict the optimization routine
to obtain stable solutions (approximations that have no right-
half s-plane poles)

2.4 Controller Parameterization. Next, we parameterize
ail controllers that simultaneously stabilize the closed-loop
systems corresponding to the two linear system modeis of the
nonlinear plant from the previous step This involves develop-
ing a mathematical expression for all stabilizing controllers in
terms of the linear system models from the previous step and
another as yet unknown stable nth-order transfer function
denoted r(s). The term parameterization arises from the fact
that the class of all stabilizing controllers are expressed in
terms of the parameter r(s). Such a parameterization provides
a logical means for obtaining the desired minimum-sensitivity
controller. The following single-input/single-output version
of the simultaneous stabilization theory of Vidyasagar and
Viswanadham [10] was adapted to fulfill the purpose of this
step of the design procedure.

Theorem 1: The class of all controllers that stabilize a
plant G(s) may be parameterized in terms of a stable linear
transfer function, 7(s), as follows:

p(s)+r(s)d(s)
g(s)—r(s)n(s)
is the stabilizing controller, where {n{s}, d(s)] are stable
coprime factors of G(s), and {p(s), g{s)} are stable,
coprime, and satisfy the Bezout idenmtity: p(s)u(s)
+g(s)d(s)=1.
The unknown parameter 7(s) may be selected to achieve

C(s)= (16)

Journal of Dynamic Systems, Measurement, and Control

certain performance criteria. Note that the original setfing of:
this theorem was more’ general:Instead: of specifying: that
r{s), {p(s), g(s)}, (P(5), g(s)} and the resulting: control’
system be stable, it is merely required that these transfer func- -

tions have poles in an arbitrary closed region of the s-plane. .- -
_[10].‘ This generality has not been used in this work, although .- ' -
it may be useful to do so in the future, since the specified - -

region in the s-plane may be selected in terms of performance
characteristics such as response speed and damping.

The parameterization of all controllers that stabilize two
stable linear system models is given next. Let the pairs {n,(s),
d;(s)} correspond to the stable coprime factors of G;(s),
i=0, 1, and designate the correspending factors that satisfy
the Bezout identify by the stable coprime pair {p;(s), ¢;(s) }.

Theorem 2: The set of all controllers that simultaneously
stabilize G, (s) and G, (s) is given by
Po(s)+7(s)dy(s)
qo(s) —r{s)ng(s)
where F(s) belongs to the set of all stable controllers that
stabilize G (s),

0y

Cils)=

—ny(s)d; (s) +dy{s)n, (5)

gy (5)d, (5} +po (s}, (5)
The set of all controllets that stabilize G (s} is given by

Theorem 1; the condition that F(s) must itself be stable (it is

said that the plant G, must be strongly stabilizable) must be
imposed in addition. See [10] for proofs

Gu(s)= (12}

2.5 Controller Synthesis. This step involves searching the
set of all stabilizing controllers which were parameterized in
the previous step to obtain the minimum-sensitivity linear con-
troller, i.e., the controller that produces a closed-loop system
whose dynamic behavior most closely appioximates that of
the identified linear system G, (s) of Step 1.

Denote the two linear models from Step 3 by G (s) and
G, (5} Since these linear plants are stable, the stable coprime
pairs (#;(s), d;(s)} and {p,;(s), ¢;(s) } may be defined by

1 (5) =G (), di(s)=1,p;(s) =0, and g;(s) =1 (14)

where #;{s) and d,{s) are the coprime factors of G;{s); i=0,
1, and g,;(s) and p;(s) clearly satisfy the Bezout identity.
Substitute (14) into (11); the class of all stabilizing controllers
is

F(s)

Cs (= 1 7516,

(15)
where F(s} belongs to the set of all stable controllers that
stabilize G (s) (equation (12)). From equations (12-14) we
obtain

Gss(s):Gl(s)_Go(g)‘ (16)

Since both G, (s) and G, (5} are proper and stable, their dif-
ference is also proper and stable. In this case, the stable
coprime pairs {7, (5), d(s)} and [P, (s), g (s)} may be
defined by

amn

where {n, (5), d, (s} } are the coprime factors of Gy, (s}, and
{5 (5), D (5} ]} satisfy the Bezout identity. Then, the set of
all 7(s) which corresponds to the class of all controllers that
stabilize G, (s} is given by Theorem 1:
' r(s)
1—-r(s)Gg(s) ‘
Finally, substitute (18) into (15) and use (16) to obtain the
class of all controllers that stabilize both Gy (s) and G, (s):

R, (5) =Gy {s), d (s} =1,p,(5) =0, and g (5)=1

(18)

F(s)=

JUNE 1988, Vol. 110/137
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; SATURATION STICTION ACTION
: ﬂ |
- ]
Fig. 1 Position serva open-loop model schematic

B r(s) given function either based on function evaluations (direct
Ci(5) = T-r5)G. (5). (19)  search methods [21]) and/or based on evaluation of the gra-
h dients of the function [21, 22] are not effective here due to the
where presence of the constraints. In fact, no technique with a
r{s) is stable and, (192) unique search direction may be applied: Once constraints are
G., (5) must be strongly stabilizable (195) violated, the objective function is set to a large value, and the

Therefore, all controllers that stabilize both Gy(s) and
G, (5) 1s given by (19) subject to constraints (192) and (195).

This set must be searched for the minimum-sensitjvity linear -

controller using the following algorithm:
Algorithm 1:

1 Assume a stable transfer function C (s),

2 Compute 7 (s) using (19},

3 If constraints (19a) and (19b) are violated, provide a bar-
rier for the optimization routine and go to Step 6; otherwise go
to Step 4,

4 Compute objective function F:

F=oFy+(l-a)F;0sa<1.0, 20)
Where
Fy=1G,(5) —E(Ci(5), Gy(s)) 12, 2D
Fi=1G, () =L(Cy(s), G, (s)) 12, and (22)
. _ GGy
the notation Z(C(s), G{5)) = W is used.

5 If F is minjmized then stop; otherwise go to Step 6,
6 Iterate the coefficients of C,(s); then go to Step 2.

The user may use algorithm 1 1, given below, to arrive at a fair
starting solution for C(s):

Algorithm 1.1:
The function C, (s),
G, (s)
Go (s3(1-G,(5))

where G, (s) and Gy(s) are prespecified, may be used as a
starting solution,
Note that the function C; (s) satisfies
C
G,(s5) = —=(G0(s) @5)
14+ C,(5)Gy(5)

which establishes the relation of the starting solution to the
user-defined reference model and one of the SIDF-fitted
models. The command-driven Dual-Range Linear Centroller
Design (DRI.CD) software utility (see Appendix F of [11]) was

Cils)= (24

developed to automate the execution of Algorithms 1 and L.1.
Algorithm 1 performs constrained ‘minimization, which : -

presents the following difficulties: :

1 Unconstrained optimization algorithms that miinimize a:

1387 Vol 110, JUNE 1988

optimization algorithm stops after a few iterations.

2 The constraints are indirect, in the sense that there does
not exist a function that characterizes the constraints. The
constraints can only be imposed via tests; once they are failed
the objective function is set to a large value. Therefore, few
available constrained optimization algorithms can be applied

The simplex search method [23] was thus employed to over-
come these problems, as recommended by Wright [24]. This
method forms a regular simplex in the space of the indepen-
dent variables. The objective function is evaluated at each
vertex, and the vertex with the highest functional value is
located and reflected through the centroid to complete a new
simplex. As long as the performance index decreases
smoothly, the iterations move along crabwise. This feature of
the simplex algorithm avoids the forbidden zones of indepen-
dent variables

3 Demonstration Problem

The following example [1j typifies a simple position control
problem The block diagram of the open-loop system is shown
in Fig. 1, and the mathematical model of the open-loop system
(nonlinear plant) is given by equations (26}~(29):

X, =%, {26)

Xy =T, /T _ 27

where J=0.01 kg—m? Servomotor saturation effects are
modeled by

m Vi, if 1V, 1 <8
T —

€= . (28)
Sign(V;, ) s (myd+my(1V, | =8)) if 1V, 1> 5
where 6=0.5 volts, m; =5 Nm/V, and m, =1.0 Nm/V The
servomotor friction characteristic includes Coulomb and
viscous effects; . ..
T, ~f.% —f, Sign¥) if 1T,1>,
Tm= T’e““’“.f!_,xl “‘,fc Slgn(xl_) if x1¢0 (29)
0.0if 17,1 <f.and x; =0

where f,=0.1 Nms/rad and £, = 1.0 Nm,

;- The: objective is'to synthesize a linear controller for this
- nonlinear plant. The resulting feedback system is to satisfy a
set-of ‘user-defined: performance specifications with as lLittle
‘serisitivity to the'input amplitude as possible, We proceed as in
Section 2y fivn i

i -Transactions of the ASME
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ug -DG4  ug-102
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TIME. t(sec)

Fig 2 Normalized step responses of the nenlinear PID and plant

[Gjw.all, dB

=120

—140|

INPUT/
AMPLITUDES:
~180F ay - 025
ap = 0325
ag = 040
a4 =080
-180F &5 = 160 -
ag = 320

4Gliw,al, dag

az - 6.40
ag =12.80
: L
1.0 1.5 2.0

logip w

Fig. 3 SIDF models of the nonlinear plant

3.1 Performance Specifications. Taylor and Strobel [1]
synthesized a nonlinear controller for the nonlinear plant of
Fig. 1. The normalized step responses of the closed-loop
nonlinear feedback system for a range of step amplitudes is
shown in Fig. 2. The maximum percent overshoot is about 37,
and the two percent settling time is about 0 30 seconds; this
performance is roughly consistent with Ziegler-Nichols tun-
ing. For comparison purposes, these time-domain perfor-
mance specifications are utilized herein also. The third
strategy of Section 2 1 is thus applicable in this case: A linear
second-order model whose damping ratio and natural fre-
quency are 0.375 and 37.0 radians/seconds exhibits approx-
imately a 37 percent overshoot and a 2 percent settling time of
0.3 seconds when excited with a step input; therefore,

ar

G =" 30
+(5) §2 4+ 20w, + @F 30)

where @, =37 0 rad/s and {=0.375.
3.2 Inpui/Qutput Characterization. The input/output

behavior of-the nonlinear plant is to be characterized for
several operating regimes via SIDF models obtained using the
simulation technique discussed in Section 2 2. Taylor and
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Fig. 4 Approximation of the frequency response of the quasilinear
model number 4 with a linear model of an open-loop system
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Fig. 5 Approximation of the frequency response of the guasilinear
modei number 1 with a linear model of an open-loop system

Strobel [1] obtained SIDF models for eight input amplitude
values; the resulting frequency response plots are depicted in
Fig 3. Inthis example, the upper and lower bounds on the fre-
quencies of interest were 5.0 and 150.0 radians/seconds; the
input amplitudes considered were (.25, 0 325, 0.40, 0.80,
160, 3.20, 6.40, and 12.8 volts. The two quasilinear models
whose gain variation enclose those of the others are selected
for system identification purposes, that is, the curves which

~are labeled by the numerals 1 and 4.

3.3 Linear System Identification. Linear systems must be
identified approximating the input/output SIDF models
designated in the previous step. These linear models are
denoted by G,(s) and G, (s), respectively; they were iden-
tified via the computer-aided system identification software
utility SYSID outlined in Section 2 3. The inputs to SYSID are
the real and imaginary parts of the frequency response infor-
mation for the quasilinear models, and the resulting linear ap-
proximations are

1.231+0.003989 s
$(0.05475+ 0 003761 sy ’

1.000 4+ 0.04031 s
5(0.225214-0.23641 s} ~

Comparisons of the two quasilinear models (from Step 2) with
these linear models arec shown in Figs. 4 and 5.

This example demonstrates several important considera-
tions in the context of fitting SIDF models with linear system
tranfer functions:

Go(s)=

GD

G (s)= (32)

1 Overfitting: The most obvicus concerr in the fitting pro-
cess is determining the most appropriate order of the transfer
function being identified. In fitting data points with
polynomials, it is well known that as the order of the
polynomial is increased, the magnitude of the error at the
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" Table { * Frequéncy fésponse comparison for the SIDF miodel number 4
-, and the approximating open-loop system, Gy(s): -

IMAGINARY PART

*REAL PART., o,

. 'QUASILINEAR -~ Gf{s}  SERROR QUASILIREAR  Gafs)  SERROR

) HODEL .. : MODEL
-1,51700 -1.31700 13.23 ~4.02500 -4 0450 ¢.501
-1.27000 -1.20800 4.95 «2.68300 -2.7360 1.593
-1,01200 -1.04700 3.48 ~1.71800 ~1.756C 2.190
-0.76310 -0.83910 9.96 -1.03900 -1.050¢ 1.091
-0.53320 -0.61330 15,02 -6.59120 -0.5800 1.991
-0.34820 -0.40910 17,50 -0.32070 -3.2990 6.772
-0.21590 -0.25280 17.12 -(.16540 -0.1483 12,430
-0.12820 -0,147%0 15.3% ~0.08635 -0.0738 14,520
-0.0716] -0.08359 16.73 -0.04423 -0.0384 13.210
-0.04051 -0.04625 14.17 -0,02152 -0.0215 0.324
-0.02272 -0.0252% 11.28 -0.01114 -0.0130 6.430
-0.0114] -0 01373 20.31 -0 00504 ~0. 0084 66 720

Table 2 Frequency response comparison of the SIDF model number 1
and the approximating open-loop system, Gy(s)

REAL PART IMAGINARY PRRT
QUASILINEAR &y (s) SERROR QUASILINEAR  Gy[s) TERROR
MODEL MODEL
-0.21960 -0.19920 9.30 -0 80670 -0.79310 1.6%
-0.165630 -0.18070 9.28 -0.52950 -0.52910 0.87
-0.11840 -0.14470 22.23 -0.33930 -0.34130 0.59
-0.08062 -0.10348 28.30 -0.21290 -0.21580 1.40
-0.05169 -0.06721 30.01 -0.13150 -0,13720 4,400
-0,03191 -0.04065 27.39 -0.07176 -0.89550 24.79
-0.01820 -0.02343 28.78 -0.04177 -0.06047 44,75
-0.01115 -0.01312 17.62 -0.02342 -0.04208 72.31
-£.00578 -0.00722 24.81 -0.01818 -0.02992 64.62
~0.00318 -0.00394 23.39 -0.00812 -0.02157  165.70
-0.00211 -0.00213 1.197 -0.,00486 -0.01567  222.70
-0. 00543 -0.00115 7875 -0.00229 -0 O1lad 400 90

discrete data points will decrease but the behavior between
points will not be smooth. In other words, the user must at-
tend to the tradeoff between the overall quality of the fit and
the error at discrete data points.

2 Nonlinear behavior: SIDF models do not represent ra-
tional linear system models, so the standard relation between
the real and imaginary parts of the frequency response does
not hold. Thus a perfect fit is not possible, and the quality of
fit is highly dependent on the dominance of nonlinear effects.
For example, motor stiction effects are more dominant for
small signals than for larger signals, so a better quality fit is
expected for high-amplitude excitation signals than at lower
amplitude, as is clearly apparent from examination of the
% ERROR columns of Tables 1 and 2

3 Instability; We have found that the first two issues above
often result in the identification of high-order transfer func-
tions that are unstable, while the quasilinear models are
representations of stable nonlinear systems. This must be
avoided.

4 High-frequency effects: If the user supplies weighting fac-
tors that specify a low percent error at high frequency, then an
overall low-quality fit will be obtained. It should be kept in
mind that the quasilinear models are only an approximation to
& nonlinear model which itself is an approximate
mathematical description of a physcial process; over-emphasis
on fitting accuracy where substantial roll-off has taken place is
usually not warranted.

Therefore, linear model identification is probably the most
demanding part of this controller synthesis procedure The
results of Step 6 (design validation) will reveal whether or not
the final synthesized controller is acceptable; if the results are
not acceptable, then either one must iferate on Step 3, or this
method has failed and an n-remge linear or nonlinear con-
troller must be be synthesized.

3.4 Controller Parameterization. AIl controllers that
stabilize the identified linear systems of the previous step must
be parameterized. This parameterization was developed in
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Fig. 6 Normalized step response plots of the synthesized linear con-
troller and the nonlinear plant

Section 2.4, and it is given by (19) subject to constraint (19a)
and (155).

3.5 Controller Synthesis. The class of all stabilizing con-
trollers must be searched for the minimurn-sensitivity con-
troller, ie., the controller C, that causes the frequency-
domain behavior of £(C,, Gy} and £(C,, G,) to be as close to
G, (s) as possible Algorithm 1.1 is used to get a starting solu-
tion (corresponding to « =1}, then Algorithm 1 is applied with
various values of o ranging from 0 to 1 to obtain candidate
linear controllers for the nonlinear plant, The performance of
each candidate controller is evaluated by simulation (linear
controller and nonlinear plant) to see if the dynamic behavior
of the resulting closed-loop system is satisfactory If adequate
performance cannot be achieved, then the user should con-
sider nonlinear compensator synthesis (e g., [1, 5]). :

Algorithm 1.1 yielded the following controller:
74.954+5.149
34 166+ 1.342 s+0.004 ?

This ‘‘starting controller’” is in fact ‘“‘simultaneously
stabilizing™’; also, it has a high-frequency pole that may be
removed to obtain

C.{s)= (33)

59.970+4.119 s
277504+1.000 5

Normalized step responses (actual step response divided by
the reference inpul command) of the resulting closed-loop
system are shown in Fig. 6 This figure shows that the closed-

Ci(s)= (34)

-loop system satisfies the specified performance measures; i.e.,

percent overshoot is less than 37 and the 2 percent settling time
is 0.3 seconds. In this case, no optimization was required

In order to exercise the optimization algorithm, a different
starting solution was selected by a major change in the
denominator of C,,:

59.970 +4.119 5
1.000+1.0005 -

From the application of Algorithm I with a=0.5, the syn-
thesized controller is_ .

Ci(s)= (33)

0.789+17.626 5
. 8495+4.133 5
Figure 7 de'picts__t}'lé__ p_t"._rf_o"l_'ma_nce_of' the nonlinear control
system with the starting controller and with the optimized con-
troller. The transient behavior with the optimized controller
shows' subst_ar;_tla]ﬁ_ improvement over that with the start-
ing controller; hgw.?y_er,‘_'the.optimized system yields an in-
finite 2 percent s_e_ttI_l.n.g_-_tl_me; Since this is caused by stiction,

Ca(8)= (36)
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Starting Controller and the Nonlinear Plant

Synthesized Controller and the Monlinear Plant
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Fig. 8 Normailized step response plots of the linear controller and the nonlinear plant (o =0.1)

which is more pronounced for low amplitnde excitation
signals, Algorithm 1 is applied again with «=01. The
resulting synthesized controller is

11.805+47.563 s
1.527+0.655 5

Figure 8 may be used to compare the performance of the
starting controller in controlling the nonlinear plant output
with that of the optimized controller. Again, in this case, the
transient behavior with the optimized controller shows
substantial improvement over that with the starting controller;
however, the optimized system with high amplitude excitation
signals yields a 59 percent overshoot which is 22 percent higher
than that desired. This is due to the fact that «=0.1, and the
response due to the low amplitude excitation signals is
weighted nine times heavier than the response due to high
amplitude excitation signals; for step magnitudes with very
large magnitude integral windup causes excessive overshoot
Hence, o shouid be regarded as a tuning parameter which is to
be set by the designer. If a satisfactory value of o is not obtain-
ed, then the user may have to design a nonlinear controller

Ci(s)= (37)

3.6 Controller Performance Comparisons

3.6.1 Dual-Range Linear Versus Single-Range Linear Con-
frollers. A linear controller may be synthesized based on on-
ly one SIDF model of the nonlinear plant; this approach can
be called Single-Range Linear Controller Design, SRLCD
SIDF model number 4 (See Fig. 3), which has the highest gain,
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Fig. 9 Normalized step response plots of the system with finear PID
control of the normalized plant

was selected by Taylor and Strobel [1] to design a lincar PID
for the example problem The normalized step responses for a
range of input amplitudes is shown in Fig. 9. From a com-
parison of Figs. 9 and 6, the following conclusions may be
drawn: )

1 The SRLCD linear PID controller produced a closed-loop
system which is appreciably more sensitive to the amplitude
level of the command signal than that produced by DRICD,
even though both techniques were attempting to meet the same
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| tain a suitable linear model fit. . .

rh:e ts. From. this, we -ihfé_f_ ‘that" the

hould precede the: application- of the
;g6 the  user can-determine if its use is

U5 T he dlose “loop system with the single-range linear PID
eontroller is: more sluggish than the closed-loop system with
o the dual-range linear controller. Also, the apparent degree of
the closed-loop system stability with the single-range linear
PID controller decreases as the amplitude-level of the com-
mand signal increases. (This effect is caused by integral wind-
up, which could be corrected.} This is not the case with the
closed-loop system with the dual-range linear controller.

3 The 2 percent settling time of the closed-loop system with
the single-range linear PID ranges from 0.3 to 0.6 seconds
over the range of amplitude of the excitation signal The 2 per-
cent settling time of the closed-loop system with the dual-
range linear controller ranges from 0.08 to 0.3 seconds over
the same range of amplitude-level of the excitation signal:
again, this is a substantial improvement

3.6.2 Dual-Range Linear Versus Multi-Range Nonlinear
Controller Design. A nonlinear PID controller was designed
by Taylor and Strobel [1] based on eight quasilinear models of
the nonkinear plant. The normalized step responses for a range
of input amplitudes is shown in Fig. 2. From the the com-
parisons of Figs. & and 2 we conclude that the closed-loop
system with the nonlinear controller and the closed-loop
system with the optimized dual-range linear controller are ap-
proximately equally insensitive to the amplitude of the com-
mand signal with respect to the basic performance measures;
however, the transient response waveform characteristics are
more uniform for the nonlinear controller case

4 Summary and Conclusions

The goal of this study [11] was to develop a systematic con-
troller synthesis procedure for the design of feedback control
systems with highly nonlinear, single-input single-output, time
invariant, continuous-time plants. The premise of this
research was that linear approximations to SIDF models of a
nonlinear plant can be used in corjunction with simultaneous
stabilization theory to design effective control systems for
highly nonlinear plants [2]. The work presented herein sup-
ports the conclusion that such a controller design procedure
does indeed produce closed-loop systems that are *‘robust’’ in
the sense of reduced amplitude sensitivity. Therefore, this goal
has been met.

Two types of information are required for this controller
synthesis procedure: (1) the mathematical model of the
nonlinear plant is standard state-variable differential equation
form, and (2) a set of performance measuzes in either the time
or frequency domain. The mathematical model of the plant is
used to generate the SIDF models of the plant at the specified
operating regimes of interest. If such differential equation
models are not readily available, the user can obtain the SIDF
models via laboratory experiments, exciting the plant with
sinusoidal inputs of various amplitudes over a number of fre-
quencies and measuring the first-harmonic component of the
response. The performance measures are used to generate a
desired open-loop transfer function G, (s) that forms the basis
for controller optimization. Tt e

A minimum-sensitivity linear confrollér is identified using

the controller synthesis procedure given in Section 2 This pro- -
cedure is both systematic and algebraic, s0 it may be employed.

without a high level of subjectivity. The only-area: calling for.
.. judgment is Step 3; where the user may have to iterate to ob-
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esign techinique is preferable. In any case,.

" 'The method and the associated software were applied to a
" position control problem of the sort encountered in robotics.

The performance of the closed-loop system with the linear
controller synthesized using the DRL.CD procedure was found
to be superior to that of the system with a linear PID con-
troller based on one SIDF model, and it was comparable, in
terms of the given performance specifications, to the perfor-
mance of the system with a nonlinear controller.

There are several areas for future work that may prove to be
fruitful:

1 Extension of the controller system design procedure from
a two-model approach to an n-model approach; i.e , base the
controller synthesis on r (7 > 2) linear approximations to SIDF
models of the nonlinear plant. This would handle cases in
which the amplitude sensitivity of the nonlinear plant requires
the use of more than two SIDF models.

2 Extension of the method and software utilities for use
with multiple-input multiple-output nonlinear systems.

3 Extension of the method to permit the solution of the
disturbance rejection probiem.

4 Extension of Steps 4 and 5 of the design procedure to per-
mit coprime factorization and optimization over a user-
defined region of the s-plane rather than the open left half
plane. i

5 Refinement of the optimization algorithm, either by
adapting o1 developing an optimization routine based on ran-
dom search, or by adapting a multivariable constrained op-
timization algorithm (e.g. SUMT [25]). In the latter case, the
user may define a constraint in relation to the “‘degree” by
which the constraint (198} is violated. This ““degree’’ may be
quantified by the length of the vector erected from the poles of
r(s) and F(s) to the boundary of the user-defined region of
the s-plane,
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