Chemical Process Control III, Asilomar CA, 12-17 January 1986

EXPERT SYSTEMS FOR COMPUTER-AIDED CONTROL ENGINEERING

James H. Taylor
Control Technology Branch _
GE Corporate Research & Development
Schenectady, NY 12345

Abstract. The motivation, history, and process of creating an expert-system
environment for computer-aided control engineering are outlined. The resulting
expert system architecture is presented, and its generic aspects relative to engineering
"design are discussed. Developmental issues are also mentioned, including inference
and numerical requirements and interfacing with conventional analysis and design
software. "The status of our project is summarized, and certain lessons regarding the
difficulty of achieving certain ambitious goals are presented. Other projects in this

area are also referenced.
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INTRODUCTION

Artificial intelligence in general and knowledge-based expert systems (KBESs)
in particular have recently gained prominence in the general area of computer-éided
problem solving. The earliest successes were in the area of diagnosis or trouble-
shooting (e.g., Mycin, Prospector, Internist, etc.). The application of this technology
has been expanding with great rapidity in the last few years; refer, for example, to
Hayes-Roth et al (1983), Coombs (1984), Michie (1982), IEEE (1984), or Davis and
Lenat (1982) for a sampling of recent work. One of the more recent application
areas of this technology is engineering design. The latter topic, particularly as it
relates to control system analysis and design, is the focus of this presentation. The
primary goals are to demonstrate what we have done in this area, to discuss what

remains to be accomplished, to overview other related work, and to present a




balanced, realistic view of the promise and cost of the KBES technology in this field.

HISTORY OF GE WORK IN CACE

The Control Technology Branch of GE Corporate Research & Development
(GE CRD) has had a substantial interest and involvement in Computer-Aided Con-
trol Engineering (CACE) since about 1980. Some contributions are documented in
Taylor (1982), which outlines some functional requirements of a CACE environ-
ment, Spang (1982, 1984), which describes the development and capabilities of our
conventional environment called the GE Federated System, and Taylor and Freder-
ick (1984), which documents a high-level conceptual definition for a KBES for
CACE called CACE-III.

The General Electric experience and approach to CACE software development
has been motivated by the need for an integrated, high-level environment for control
engineering activities. When we started in 1980, there was nothing available that
met our requirements. There was software, both public-domain and commercial,
that could perform most of the functions that were required, but not in a single, con-
venient environment. Not having the resources to develop “the ideal environment”
from scratch, we adopted the strategy of selecting packages with the best possible
functional coverage, and ‘federating” the packages to create the desired capability and
unity. The term ‘federated” signifies that the packages are still available for stand-
alone use; generally, however, they are run under a supervisory program that

manages the environment.

We developed our software in two major phases: In the ﬁrst part of the effort,
we purchased and/or developed software that could carry out the essential pro-
cedures of CACE with numerically robust algorithms and reasonably convenient and
consistent user interfaces, and integrated them into a uniﬁéd conventional system.
This effort culminated in a software environment we call the Federated System, which
is completely developed, documented, and delivered to a user group made up of con-

trols engineers at-about ten GE locations.

In the second part of our development, started in 1983 in a low-level explora-
tory manner, we focussed on making this software more accessible to less-than-
ekpert users and relieving the user of much of the burden of using a sophisticated
and complicated environment. We used the expert systéms approach to accomplish

this (Taylor and Frederick, 1984). This work was motivated by our own experience
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with the Federated System and other CACE software, and by the comments and

suggestions of our user group.

The outcome of this research is an architecture, a detailed specification, and a
prototype system called CACE-IIT which is, in our opinion, a third-generation CACE
environment; hence its name. In contrast, first-generation tools are single-purpose
software products (root locus routines, transfer function plotting programs, etc.) and
often batch-oriented, and second-generation environments are functionally broader,
interactive, conventional software; according to this classification, the Federated Sys-
tem is a second-generation environment for CACE. This third-generation project is

still underway. -

The GE Federated System

The Federated System was developed by GE CRD for internal use and for the
GE Acerospace Business Group and Aircraft Engine Business Group. This sponsor-
ing user group played a partnership role with GE CRD in déﬁning the system. The
basic approach that guided the development of the Federated System was as follows:

o define the required functionality,

o survey available CACE packages and choose a set of them that meets the func-

tional requirements (to the extent possible), with numerically respectable algo-

rithms and convenient user interfaces,
o extend packages or develop additional packages to meet remaining unmet needs,

¢ develop interface routines that can convert models and data into forms that are

appropriate for each package,

o integrate the packages and routines into a unified, effective environment for

CACE, and
'« document and deliver the resulting software system to our user group.
The initial core package set (selected in 1981) included:

o CLADP, the Cambridge Linear Analysis and Design Program, which implements
recent ‘British School” multivariable frequency-domain design methodologies
(Edmunds, 1979),




o SIMNON, a nonlinear simulation package from Lund University (Sweden) that
supports both its own modeling language and FORTRAN system models and
allows the user to set up and execute simulations in a very flexible, command-

driven environment (Elmqvist, 1977),

e IDPAC, a time-series analysis package from Lund University that performs sta-
tistical analysis (correlation and spectral) and parametric model identification

(least squares and maximum likelihood) (Wieslander and Gustavsson, 1976), and

¢ SSDP, a modern state-space design package built at GE CRD using the I/O rou-

tines of CLADP and underlying numerical software from reputable sources.

More recently, MATLAB (Moler, 1982) was added to the Federated System. These
core packages met most of the required functionality with the exception of strong

nonlinear analysis and design capabilities and control system implementation.

This environment was integrated and extended to include appropriate model
data-base transformations and overall functional compatibility (Taylor, 1982; Spang,
1982, 1984). In some cases, the data-base transformations were simply re-formatting
linear system models obtained from mass storage, in other cases the interface was
considerably more challenging. The most complicated transformation was from SIM-
NON nonlinear models to CLADP lineéf models, which required the installation of a
new linearization routine. This capability also underscores the necessity of such
interfaces: One of the most time-consuming and error-prone procedures in CACE is

the manual generation and entry of linearized models.

Functional compatibility was achieved primarily through the use of ir‘xterface
routines. The most important feature in this sense is the provision for converting
the compensator designed in CLADP into the SIMNON modeling language, so that
the user can directly validate the design via simulation with the nonlinear plant
model. Another feature incorporated for compatibility is equilibrium-finding, which

is usually a necessary precondition for linearization.

Two additional capabilities were incorporated to deal with the analysis and
design of nonlinear systems: a routine to generate describing function input/output
models of nonlinear plants, and design routines to synthesize nonlinear compensa-
tors based on these models using a methodology developed at GE CRD (Taylor and
Strobel, 1984). These enhancements to the Federated System are described in some




detail in Taylor (1985b).

This approach to the design of a state-of-the-art conventional CACE environ-
ment has been highly successful. By making the best possible use of existing
software, we have achieved broad and complete coverage of the CACE problem.
Throughout this work, we have strived to make this environment as broad, power-
ful, practical, and “real-problem-oriented” as possible. The two most striking attri-
butes of the Federated System are its breadth and its substantial capabilities to han-

dle nonlinear problems (simulation, analysis, and design).

In the course of this activity, we had to consider a number of issues. In addi-
tion to functionality, primary considerations were software package selection, integra-
tion (e.g., ‘federating”), and data-base management (DBM). The solutions to the
problems we encountered in these areas are detailed in Spang (1982, 1984). The fol-
lowing additional points should be considered:

o The trade-off between generic versus special-purpose environments may be an
important consideration. The Federated System is a general-purpose environ-
ment; a narrowly-focussed environment would be quite different. There are two
aspects to specificity: a special-purpose package might support just one approach
(e.g., linear systems and linear quadratic regulator design), or it might support
users from one discipline (e.g., chemical process control). The software selection
would be influenced by both factors, and even the content and style of the user
interaction could be “ailored” to suit the terminology and procedures generally

used in a particular domain of application.

e The need for DBM should be assessed carefully. Few of our applications are
multi-disciplinary, so the need for real DBM (e.g., keeping track of numerous
models and analysis data files for a single project including the relations among
the files) was not particularly stringent. We thus accepted the philosophy of the
Federated System’s core packages and limited DBM to file-naming conventions
for files created by the various procedures. In many situations, a system that

goes beyond simple file-naming conventions may be required.

o Finally, the CACE software scene has changed considerable in the last four years;

it is quite possible that our software selection today would be different.

The impacf of the first two issues has been discussed in Taylor (1985a), where some




specific concepts in the areas of “tailoring” and DBM for integrated flight and engine

control are outlined.

While much of the reaction to recently-developed CACE software (the
Federated System and other packages) has been very positive, there have been were
a substantial number of complaints related to “user friendliness”. In the context of
our work, these may be summarized as follows: It is difficult to remember all the
details (commands and syntaxes, etc.) involved in using a comprehensive set of
CACE packages, it is difficult to keep on top of the analysis and design process, data-
base management is too rudimentary, it is not always clear what approach or even
which package to use, it is difficult to deal with all the error conditions (error mes-
sages and corrective actions) and other aspects of using the software, etc. In short,
one must be an expert, every-day user to take full advantage of the existing
software, which can be a considerable frustration to less-than-expert or occasional

users. These considerations prompted us to consider the use of KBES methods to

improve the situation.

CACE-III

The basic thrust of our more recent research in CACE is the creation of a
unified expert-aided environment for the full spectrum of control engineering activi-
ties, from high-fidelity modeling through control system design and validation (Tay-
lor and Frederick, 1984). Two key issues are the complexity of control engineering
problem solution and the broad spectrum of the user capabilities we wish to serve.
The first point is clearly illustrated by listing the typical activities of a controls
engineer: nonlinear modeling, simulation, equilibrium-finding, linearization, analysis
of linear plant models, control system design (including trade-off analysis and tun-
ing), and design validation. The latter issue we have Summa;rized by saying that we
are striving to create an environment “that can be a teacher to the novice, a partner
to the more experienced controls engineer, and an assistant to the expert”. In every
éase, we want to eliminate or reduce as much as possible the amount of unnecessary
detail the user has to contend with, especially in the areas of software package usage
(choosing the most appropriate algorithm, package and command selection, interpret-
ing error messages and taking corrective action where possible, etc.) and keeping

track of models and data (data-base management).




A fundamental conclusion of our research is that this goal can best be achieved
by the use of the knowledge-based expert system (KBES) approach. This conclusion
was reached by specifying the functional requirements of such an environment and
showing how they can be met in a KBES, and contrasting such a system with existing
conventional software environments. This comparison was made on the basis of our
substantial experience in conventional CACE software development and integration
as outlined above; our approach and findings are discussed in more detail in Taylor
and Frederick (1984) and below.

In the discussion that follows, we present broad concepts and issues involved in
creating an expert-aided environment for CACE. We accomplish this by outlining
certain considerations regarding the use of the expert systems methodology, describ-
ing the development of CACE-III (a prototype KBES to demonstrate the capabilities
and benefits of an expert-aided environment), illustrating the basic elements of a
rule-based expert system, and discussing the lessons we have learned in the course
of this project. The lessons specifically relate to the cost of developing “real” expert
systems, the limitations of basing KBES development on “scenarios”, and the
difficulty of making software usage details invisible and supporting a variety of user

capabilities.
EXPERT SYSTEMS CONSIDERATI ONS

Expert or knowledge-based systems are software environments designed to aid
in solving problems that require high levels of expertise, some degree of inference
(“reasoning”), the use of heuristics (nonrigorous procedures or “rules of thumb”), and
the systematic processing of symbolic information. Such problems are generaliy com-
plicated and broad in scope, and are not amenable to clear-cut well-posed algorithmic
solutions. Control system engineering is certainly such a task: The types of expertise
that are required for CACE problem éolving are: development and diagnosis of plant
models, formulating a realistic controls design problem, selecting appropriate analysis
and design methods, performing design tradeoffs, validating and documenting
designs, and making effective use of conventional CACE software. Symbolic infor-
mation to be processed in CACE includes descriptions of methodologies for CACE,
the status of the current problem solution, the names and capabilities of CACE pack-

ages, their command sets, syntaxes, and error handling, data and model relations for

DBM, ete.




Heuristics play a major role in a human expert’s ability to formulate a well-
posed CACE design problem, and reasoning capability is advantageous for directing
and keeping track of the design process as it progresses. Also, the KBES approach
provides a high-level, flexible, and supportive environment that can relieve the user
of much of the low-level detail and drudgery involved in using a number of large
software packages and in DBM. Further motivation for the use of the expert sys-
tems approach may exist for users in multi-disciplinary fields such as integrated flight
and engine control: Few individuals can be expected to be expert in all aspects of a
multidisciplinary problem, so expert-aiding is often essential to the production of
meaningful analysis and designs. For more information on expert systems or for
additional background reading in the area, refer, for example, to Hayes-Roth et al
(1983), Coombs (1984), Michie (1982), IEEE (1984), or Davis and Lenat (1982).

The application of expert systems technology is often based on the idea of pro-
viding support for “less-than-expert users”. This thought requires some caution,
especially in our context. First, there are several factors involved in this phrase: In
engineering design, such a user may not be aware of the latest theoretical develop-
ments in all fields involved in the problem to be solved, may not have had the
experience required to synthesize theory into an effective analysis and design
approach, and/or may not be a frequent practitioner of system design or user of the
required software. Considering the breadth of knowledge required for CACE, espe-
cially in multidisciplinary fields, it is probably not reasonable to expect that many
users of a major software environment for this activity will be experts in all aspects
of the problem being solved. Providing support for “less-than-expert users”_ in this
sense is desirable, reasonable, and feasible. On the other hand, it should be clearly
understood that it is not appropriate to speak of developing an expert-aided CACE
environment for use by personnel with little or no kno'wledge' of controls: Too much

understanding and common sense are required of the user for this to be practicable.

Another potential problem in the use of expert systems is the possibility of
unrealistic expectations. We believe that it 4s realistic to use this methodology to
raise the level of interaction for users that are basically competent and to support
them in the ways outlined above, but it is not reasonable to expect that such a sys-
tem will be fool-proof and able to provide the optimal solution to all problems. These
factors make it imperative that such a system be designed to keep the user in a posi-

tion of responsibility and authority. The latter issue - authority - requires that the




system be flexible enough that the user will be supported to the extent needed and
possible, without dominating the proceedings and forcing the user to accept
undesired or meaningless solutions. It should be appreciated that this may be a

major undertaking, and that there have to to be limits to the freedom of the user.

With these clarifications of the basic objective of an expert-aided system for
CACE, we proceed to develop the idea further. This concept is based on the motiva-
tional issues, general functional requirements, and basic expert system ideas
presented in Taylor and Frederick (1984).

CACE-III DEVELOPMENT

Our approach to conceiving and developing an expert-system CACE environ-
ment combines top-down and bottom-up CACE process modeling. By the first term,
we mean working with experts in the fields of CACE to determine the conceptual
and structural aspects of the problem and distilling that information into an expert
system architecture. Bottom-up modeling referred to developing “scenarios” that
show in detail how the expert system should serve and interact with the user (Tay-
lor, Frederick, and James, 1984; Taylor, 19852a). A combination of these activities,
in parallel with the development of corresponding real expert system architectures
and rule bases, has proven to be extremely effective. Only top-down modeling is
discussed in any detail in this presentation’", so that the CACE-III architecture can be
well explained and motivated. Certain generic aspects of this work are also pointed

out.
Architecture Development

We used top-down modeling of the CACE methodology of a human expert as a.
way to develop detailed requirements and architectural concepts for CACE-III. The
first outcome of this approach was the realization that a complete, meaningful problem
formulation‘is a central issue in capturing the control system design process. This
may be represented by a “list of facts” or, in artificial intelligence terminology,
“frame”. The information in this frame may be organized or partitioned into three

components with the following informational content:

o Plant model characterization - ordinary or partial differential equation models,
linear or nonlinear, stable or unstable, minimum or nonminimum phase,

(un)cohtrollable and/or (un)observable, et cetera.




o Constraints - architectural (e.g., centralized or distributed control), implementa-

tion (e.g., analog or digital), parametric (e.g., gains, data rate limits), et cetera.

o Specifications - time response, frequency response, performance indices, et cetera;

sensitivity, disturbance rejection, robustness, et cetera.
This is illustrated in Fig. 1; such a problem frame is a major focal point for CACE.

Given a meaningful control design problem, we saw the human expert working
in a parallel construct, which we call the solution frame. This is a list of facts that is
developed as a “scratch pad” where the expert system keeps track of both the data
base (models, analysis data) and the process (what has been done and what needs to
be done, information required for decisions about the selection of design procedures

and tradeoff analysis, and a log of the entire transaction). This is shown in Fig. 2.

PROBLEM FRAME
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OTHER:
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Figure 1. The CACE Problem Frame Figure 2. The CACE-III Solution Frame

These structured lists of facts gave us a basis for developing rule bases. The
process proceeds by asking: What are the functions that must be implemented in order

to producé and manipulate these facts to solve the problem? This line of thought -
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linking the activities of an expert with two key lists of facts (frames) and associated
rule bases - gave rise to a functional structure of CACE-III that is depicted in Fig. 3.
In particular, we have created a construct in which the rule base is partitioned into
six functional parts, as shown, and a seventh supervisory rule base (not portrayed)
which is discussed 'below. The functions of the rule bases in CACE-III may be sum-

marized as follows:

o RB1 governs interactions among the design engineer, plant models (nonlinear
and/or linear), and the model component of the problem frame. This rule base pro-
vides support in model development (including diagnostics relating to the physical
process and suitability of models for control system design and numerical
analysis), and sees to it that all required plant data are added to the knowledge
base. Examples of the activities of RBI are illustrated in scenarios in Taylor,
Frederick, and James, 1984, and Taylor, 1985a.

¢ RB2 governs interactions between the design engineer and the constraint and
specification components of the problem frame. Constraints are requested but are not
mandatory; if supplied, these are also written into the list of facts that makes up

~ the problem frame. These rules guide the user in entering design specifications
and checks specifications for consistency, completeness, and achievability (real-
ism). For example, consistency chebks include being sure that the damping ratio
dictated by percent overshoot and rise-time-to-settling-time ratio agree, etc., and
realism tests include determining the specifications that can be achieved by a sim-
ple design approach (e.g., use of 2 standard PID design algorithm) and checking

to see that the user’s specifications are not excessively more demanding.

o« RB3 and RB5 govern interactions between the problem frame and the solution
frame. RB3 deals with specifications, constra,ints,land plant characteristics, and
initializes the list of facts in the solution frame describing what needs to be done
to achieve design goals. If design iteration or tradeoff analysis is called for, then
RBS5 supports the user in selecting the specifications to vary (relax or tighten) and
modifies the broblem frame appropriately, RB3 resets the solution frame accord-
ingly, and the required set of designs is carried out by RB4. Fmally, RB5 will
present the results of the iteration or tradeoff analysis.

o RB4 governs interactions between the solution frame and the available design pro-

cedures. These rules decide what design approach(es) will best solve the problem
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(e.g., by matching approaches with specifications), executes the appropriate
procedure(s) and algorithm(s) using conventional design software, and updates
the solution frame to reflect the corresponding addition/change in the system.
RB4 also performs a preliminary validation by checking that all specifications are
met with the linear plant model and controller.

o RB6 governs the final control system wvalidation process (which generally involves
highly realistic simulation or emulation of the plant and controller), conversion
from idealized controller design to practical implementation, and documentation.
The last step involves archiving a record of the design process, including tradeoffs
and information supporting all design decisions, and a record of the data base

(model and data files, including information regarding assumptions and condi-
tions for validity).

\_/‘ ANALYSIS DESIGN -
MODEL PROCEDURES PROCEDURES DESIGN

DATA

DATA
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/ RULES: RULES RULES
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RB4
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] s
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DESIGN ° R u R _ FINAL
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SPECS M OTHER N
\ RULES: RULES:
EXPERT SYSTEM
RB2 RB3 CACE - ill
\\ s
ANALYSIS
PROCEDURES

Figure 3. The Architecture of CACE-III

The goal of the first two rule bases is to have a well-formulated problem, thus

ensuring a reasonable probability of success in the design phase. They were
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conceived as outlined above simply by considering the informational content of the
problem frame and determining what functionality must be implemented in order to
arrive at a meaningful problem. Observe that RB3, RB4 and RB5 may represent an
iterative or dynamic “loop”: In some cases the KBES must invoke these rule bases
repeatedly until all specifications -are satisfied, if possible. Again, these rule bases
were established based on our model for how an expert controls engineer sets up
and solves design problems. Finally, RB6 provides a more rigorous assurance that
the user has a control system that will perform as required, with as little need as pos-
sible for additional engineering for implementation, and with the required engineer-

ing documentation.

We have found that the rule base partitioning depicted in Fig. 3 serves two
important functions: First, it clarifies many conceptual aspects of the CACE process,
and thus provides a basis for rule base development. In addition, this structure has
proven to be useful for developing “meta-rules” (Al terminology for “rules about
rules”) that increase the efficiency of the expert system by partitioning the rule base
and restricting the scope of the expert system to the rules needed for the task
presently at hand. These meta-rules are contained in a seventh supervisory set of
rules (James, Taylor, and Frederick, 1985) which monitors the status of the problem
solution (as established by RB1-RB6) and determines when a rule base has com-

pleted its work and what rule base to invoke next.

The above rule bases cause the KBES to invoke conventional CACE software
in performing all analysis and design functions. Expertise regarding the use of this
software is “built-in”, s0 that the user need not know command sets, syntaxes, and
error messages. To the extent possible, the expert system knows how to interpret
error messages and take corrective action. A protocol for coordinating the operation
of the expert system and the CACE software is completely designed and imple-
mented (James, Taylor, and Frederick, 1985). Finally, this expert system architec-
ture can also support DBM, in the sense that the expert system has access to the
relational information necessary for this function and can either perform the activity
itself or supply the information to separate DBM software, as discussed in more
detail below.
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A Paradigm for CAE

The primary goal of our research was to provide a clear vision of an expert sys-
tem for CACE that goes beyond the generality that “artificial intelligence promises to
revolutionize engineering design”. In retrospect, we believe that the CACE-III
expert system architecture speaks to some generic aspects of engineering design, thus
adding substance to this statement.

Several aspects of the development of CACE-III would seem to pertain to
engineering design in general. First, the motivation for considering the creation of

expert systems for engineering analysis and design in other fields is similar to that

for CACE:

e The elements of engineering design are generally closely patterned on the tasks
defined above for CACE: model, constrain, and specify to arrive at a well-posed
problem; select and execute design approaches; perform trade-off studies if neces-

sary; validate; document; implement.

e As a corollary to item 1, most engineering fields are inherently broad in scope,
ie., encompasses a wide variety of activities, and requires inference, judgement,

and heuristics.

e We conjecture that in many areas engineering analysis and design software suffers
from the same general deficiencies as we discussed previously - in particular, from
being rather low-level, unsupportive, or otherwise not “user-friendly” to the less-

than-expert or occasional user.

o Most areas of engineering are “dynamic”, in the sense that new methods are con-
tinually being created and software is continually being developed to deal with the
problem on a broader basis or higher level; the KBES methodology can accom-

modate evolution and transition new approaches to the user very effectively.

'« There is substantial pressure to reduce the engineering time spent in analysis and
design, to improve the quality of design, to aid the less-than-expert user, and to
better document the design process.

Having summarized our reasons for believing that KBESs for engineering design will
prove to be of substantial value in many disciplines, we will conclude by considering

the architecture of such expert systems:
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The structure portrayed in Fig. 3 was developed by a process that might be
thought of as “modeling” the procedures of a human expert. For this reason, the
similarities in terms of the activities required in engineering analysis and design (the
first point above) and in the underlying thought processes of human experts gives us
reason to believe that the expert system architecture depicted in' Fig. 3 is strongly
generic. In other words, it is our belief that the rule base structure of CACE-III can
be used by expert system developers from other fields quite directly, merely by sub-
stituting the appropriate functions into RB1 through RBS6.

AN EXPERT SYSTEM ENVIRONMENT

CACE-IIl was first developed using a GE CRD expert system environment
called DELTA, a rule interpreter or “inference engine” created at GE CRD for diesel-
electric locomotive trouble-shooting (Bonissone, 1983). This shell did not ade-
quately support our needs, which included running and communicating with conven-
tional software and performing numerical procedures. We then migrated to a more

recently-developed and more powerful GE CRD expert system environment called
Delphi.

While space does not permit a detailed discussion, we will outline some aspects
of the operation of DELTA to the extent required to convey a basic understanding
of rule-based expert systems. The goal is to illustrate the spirit of the expert system
approach, not a working knowledge of DELTA or Delphi. This overview deals with
considerations that are primarily generic to the use of rule-based expert systems,

although the details differ from system to system.
Rules

The DELTA inference engine basically works with rules having the form:
IF | Premuse; Premase, ... |
THEN [ Conclusion, Conclusion, ... ]

Premises may be thought of as defining a condition, situation, or state of a process;
conclusions are actions to be taken if the premises of the rule are satisfied. Actions
include adding facts to the knowledge base (list of facts), clearing facts from the
knowledge base, or asking the user to determine what specific fact(s) to add to the

15




knowledge base.

Each premise and conclusion in CACE-III has the form of a three-tuple which
is true, false, or neutral (of unknown truth), i.e., each three-tuple may take on cer-
tainty values of +1, -1, and 0. A three-tuple has the form | OBJECT ATTRIBUTE
VALUE |; for example, the fact [ SPEC-CL-POLE MAX-REAL-PART UNAS- ‘
SIGNED ] +1 denotes that no value has been specified for the maximum real part
of the poles of the closed-loop control system being designed.

A premise may be that a three-tuple is true,
EQ | OBJECT ATTRIBUTE VALUE],
or false,

NE [ OBJ ATTR VAL |.
The conclusions of a rule may include any of the following actions:

1. DISPLAY, which indicates that the user should be notified about something.
This conclusion must be followed by the message to be conveyed (in

parentheses);

2. UDO, which indicates that the user should take some action. This conclusion
must be followed by a statement of the. action to be taken that will be displayed
to the user (in parentheses);

3. WRITE [ OBJ ATTR VAL |, which indicates that a three-tuple should be writ-
ten into the knowledge base;

4. CLR { OBJ ATTR VAL |, which indicates that a three-tuple should be cleared
from the knowledge base (certainty value set to 0);

5. ASK [ OBJ] ATTR VAL ], which indicates that the user should be asked to

determine the status of the three-tuple (true or false); or
6. MENU, which allows the user to make a selection from a list of options.

Observe that in the case of DISPLAY, UDU, ASK, and MENU each parenthetical

expression is a message to the user; in other cases and in the premise portion of the
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rule, the phrases in parentheses are simply comments explaining the thinking of the
rule base creator. These “comment lines” may serve as the hasis for a“why” or “help”
facility. Most of these ideas are illustrated in the two sample. rules provided in Table
1, which are taken from the CACE-III rule base that governs the specification entry

process.

Table 1. TWO RULES FROM CACE-III

RULE 106 ( Want to enter max Re part spec; already assigned )

IF:
EQ [ SPEC-C-L-POLE MAX-REAL-PART REQUESTED |
( User has asked to enter max-real-part )
EQ [ MAX-REAL-PART VALUE + |
( A value is currently assigned )
THEN:
CLR [ SPEC-C-L-POLE MAX-REAL-PART REQUESTED |
( Reset - clear the fact that triggered this rule )
DISPLAY
( You want to enter a value for the maximum )
( real part of the poles, but a value has been )
( assigned previously. )
ASK [ MAX-REAL-PART MODIFY VALUE]
( Do you wish to replace the current value? {Y or N} ... ENTER: )

RULE 108 ( Current value of ma.x Re part is to be replaced )

IF:
EQ [ MAX-REAL-PART MODIFY VALUE |
( User wants to modify the current value )
THEN:
CLR [ MAX-REAL-PART MODIFY VALUE |
( Reset - clear the fact that triggered this rule )
CLR [ MAX-REAL-PART VALUE + |
( Delete the old value )
WRITE | SPEC-CL-POLE MAX-REAL-PART UNASSIGNED |
( Reset - pave the way for a new assignment )
WRITE | SPEC-CL-POLE MAX-REAL-PART REQUESTED ]
( Trigger the rule to request entry of new value )

Observe that a ‘yes’ response to the query in the conclusion of RULE 106 results in
the three-tuple | MAX-REAL-PART MODIFY VALUE | being written to the list
of facts as ‘true’. This action satisfies the premise of RULE 108, thus triggering it.
RULE 108, in turn, will activate the rule that asks the user for a value of SPEC-CL-
POLE MAX-REAL-PART. Note that the ‘4’ sign is a “wild card”, denoting “any
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value”,
Inference Mechanisms

DELTA and Delphi support inference in two modes: fact driven and goal driven.
In the former case, the system systematically checks some or all the rules for prem-
ises that are known to be true so that the corresponding fact{s) can be written into
the list of facts (knowledge base). In the goal driven mode, the system attempts to
reach a specific conclusion (write a specific fact) by identifying a rule or rules that
contain the desired goal in the conclusion and using its inference capabilities to prove
that the premise(s) of the desired rule(s) are satisfied. The AI terminology for these
two modes of operation are forward and backward chaining, respectively. An example
of the first inference mode is filling in the plant characteristics in the problem frame,

while attempting to achieve the goal “design specifications satisfied” exemplifies back-

ward chaining.

The forward chaining inference mode operates by examining each rule and ask-
ing: Is Premuse; known to be true? If the answer to this question is “yes” for every
premise of the rule, then its conclusion is carried out, and the inference engine
proceeds to consider the next rule. This process may be carried out exhaustively, or
it may be limited either by features of the inference engine or by structuring the

rules.

Backward chaining starts with a goal: write Fact;, to the list of facts. First, the
inference engine seeks a rule that can cause Fact, to be written, ie., that has
WRITE | Fact;, | among its conclusions. Then, a four-stage attempt to satisfy the
premises Premise; of this rule is initiated, by asking:

1. Is Premise; known to be true (in light of the existing list of facts)?

2. Can Premuse; be inferred from the current list of facts (using another rule or

several rules)?

3. Can conventional analysis and design procedures be used to determine if
Prenuse; is true?

4. Can the user determine if Premise; is true?

If the answer to any of the above questions is “yes”, for each premise Premise; of the
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rule, then the goal has been achieved and Fact; is written into the knowledge base.
In the case of an “if-and-only-if” rule, showing that a premise is false will terminate
the backward chaining process. Otherwise, the backward chainer will continue to
seek rules that can be satisfied so that Facl, can be written. The questions are

always asked in the above order, so that running external procedures and asking the

user are only done as last resorts.

Lists of Facts

The status of a session at any given time, or the outcome of a session when
completed, is characterized by the list of facts that has been written in the course of
the transaction. Such a list is illustrated in Table 2, which contains the list of facts
that might exist in the CACE-IIl knowledge base at the end of a DIAGNOSE and
SPECIFY session. In order to interpret Table 2, we provide the following brief guide
to the shorthand notation in our list of facts: NL. — nonlinear, FNAME — file name,
DIAGN — diagnosis, L — linear, DIAG-DOMINANT — diagonally dominant, SS —
steady-state, CHi — channel; of a multi-input multi-output plant. Observe that the
underlying data, e.g., the numerical results of the nonlinear system diagnosis and the
linearized' model and its diagnosis, may be contained in ancillary files. The expert
system often does not use this kind of data directly, but it must know where such
information can be found so that it can be provided to external analysis and design

procedures as required. The basis designation RBi refers to the rule base partitioning

outlined above.

The preceding overview outlines the three major elements of a production rule-
based expert system: rules, facts, and inference engine. Each component is in fact
disarmingly simple. The power of this programming approach arises from this parti-
tioning, which separates the knowledge into rules and facts, and deals with them in a
dynamic fashion using a processor (inference engine) which may be simple or quite
sophisticated. The capability of the processor is generally driven by the complexity
of the problems to be solved; it is clearly beneficial to have the correct “match” to
avoid the extremes of “overkill” (using a powerful inference engine to solve simple
problems, usually at a high cost in terms of computational and response time) and
“brute force” (having to develop an unnecessarily large rule base of simple-minded
rules that may also take a long time to process). This division achieves a high degree

of transparency, so that the rules can be kept lucid (assuming the expert system

19




Table 2. THE PROBLEM FRAME AFTER A DIAGNOSE AND SPECIFY SESSION

FACT BASIS
OBJECT | ATTRIBUTE VALUE

PLANT MODEL NONLINEAR User: RB1
PLANT-NL-MODEL FNAME EXOREACT User: RB1
PLANT-NL-MODEL TIME-TYPE CONTINUOUS Inferred: RB1
PLANT-NL-MODEL STATE-TYPE CONTINUOQUS Inferred: RB1
PLANT-NL-MODEL ORDER 2 Inferred: RB1
PLANT-NL-MODEL INPUTS 2 Inferred: RB1
PLANT-NL-MODEL OUTPUTS 2 Inferred: RB1
PLANT-NL-MODEL DIAGN-DATA-FNAME EXORNDATA Inferred: RB1
PLANT-NL-MODEL NL-BEHAVIOR MILD Inferred: RB1
PLANT-L-MODEL FNAME EXOREACTL Inferred: RB1
PLANT-L-MODEL STABLE NO Inferred: RB1
PLANT-L-MODEL CONTROLLABLE YES Inferred: RB1
PLANT-L-MODEL OBSERVABLE YES Inferred: RB1
PLANT-L-MODEL MINIMUM-PHASE YES Inferred: RB1
MODEL DIAGNOSIS DONE Inferred: RB1
SENSOR TIME-TYPE CONTINUOUS User: RB2
CONTROLLER TIME-TYPE CONTINUOUS User: RB2
CONTROLLER STRUCTURE DIAG-DOMINANT User: RB2
CONTROLLER CHANNEL1-IN U1 User: RB2
CONTROLLER CHANNEL1-OUT Y1 User: RB2
CONTROLLER CHANNEL2-IN U2 Inferred: RB2
CONTROLLER CHANNEL2-OUT Y2 Inferred: RB2
MAX-STEP-SS-ERR CH1-VALUE B 0.25 User: RB2
MAX-REAL-PART CH1-VALUE -14 User: RB2
MIN-DAMPING-RATIO CH1-VALUE 1.0 User: RB2
MAX-STEP-SS-ERR CH2-VALUE 05 User: RB2
MAX-REAL-PART CH2-VALUE -14 User: RB2
MIN-DAMPING-RATIO CH2-VALUE 1.0 User: RB2
CONTINUQUS-SPEC ENTRY DONE Inferred: RB2
CONTINUOQOUS-SPEC ENTRY REALISTIC Inferred: RB2
CONTINUOUS-SPEC ENTRY COMPLETE Inferred: RB2
CONTINUOQUS-SPEC ENTRY CONSISTENT Inferred: RB2
SPEC-SESSION TERMINATION NORMAL Inferred: RB2

developer has a clearly—enunéiabed problem and solution formulation) and the infer-

ence mechanisms can be developed and validated separately.
Other Inference Engine Requirements

The above discussion provides a basic overview of selected expert system con-
cepts, in particular, of rules, lists of facts (knowledge bases), and two modes of

inference. There are other requirements for engineering design that go substantially
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beyond the needs for many other well-known expert system applications found in the
general literature cited previously. Important additional capabilities are: the ability to
run and communicate with external processes, the ability to perform numerical com-
putations and tests, support for a partitioned rule base, non-monotonic reasoning,
and the ability to be coqtrolled or “steered” by the user.

In order for CACE-III to execute the analyses required for diagnosis and
design, it is necessary for the inference engine to run external processes (conven-
tional CACE software, e.g., the Federated System) that carry out tasks such as calcu-
lating the frequency response of the plant, determining gain margin and bandwidth,
simulation, etc. CACE-III must initiate the process with the appropriate input
parameters, and must be able to access the results of the analysis in order to update
the list of facts. The DELTA inference engine we initially used in our research did
not have this capability; converting to Delphi allowed us to perform this function.

The DELTA inference engine could not deal directly with numbers either, hav-
ing only the ability to interpret and use literal strings, such as FOUR, POSITIVE,
and BETWEEN-THREE-AND-FIVE. This restriction was not important in the origi-
nal application (the diagnosis of diesel-electric locomotives; Bonissone, 1983), but in
our case it required the use of numerous additional rules and menus for the entry of

data in literal form. This limitation also ;i'o,es not exist in Delphi.

We found that CACE calls for a partitioning of the rule base into six parts plus
a seventh supervisory rule base (“meta-rule .base”). This was not supported by Del-
phi, so we extended the shell to accommodate this functionality (James, Taylor, and
Frederick, 1985). |

Non-monotonic reasoning is often required in engineering problem solving.
This phrase designates a process in which the problem solution develops for a
number of steps (procedures are carried out and facts accumulate), then it is neces-
sary to backtrack and try again taking a different path. This happens whenever
specifications cannot be met or a trade-off study is réquired, for example. In such
instances, it is necessary to reset the facts by defining a previous point in the prob-
lem solution to be the new “current state” of the KBES and elimiﬁat;ing the facts
developed after that point (“retracting belief”). It may be necessary to save the KBES
state (in the case of design trade-off study), or the information might be partially or

completely discarded (in the case of a dead-end). In any event, the retraction of
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belief may be difficult to manage in full generality, but can be implemented if it is
permitted only in carefully-defined situations (e.g., design trade-off studies); refer to
James, Bonissone, Frederick, and Taylor (1985).

The last requirement -- steerability -- will probably be crucial for the acceptance
of any expert systém for engineering design such as CACE-III by the engineering
community. If a KBES is always in complete control, the engineer will become frus-
trated and/or bored. Frustration would be caused by having to accept the dictates of
the software even when the user’s experience contradicts them, while boredom
would result from the tedium of being led by the hand through familiar parts of the
task (e.g., specification entry).

We have identified the following mechanisms for allowing the designer to
interact effectively with CACE-III in the design process:

1. The support provided by CACE-IIl is in the form of suggestions rather than
constraints. If the user wants to ignore or not fully comply with the expert

system’s recommendations, then the software will not force compliance.

2. A ‘why’ facility can be invoked to determine the basis for a recommendation, so

that the user can judge the advice before deciding whether or not to accept it.

3. A manual fact-entry capability can be"added to allow the engineer to write facts
directly into the knowledge base. For example, the goal of the specification

entry portion of a transaction may be to write the following facts:

MAX-STEP-SS-ERR VALUE 0.005
MAX-REAL-PART  VALUE -14
MIN-DAMPING-RATIO VALUE 1.0

Allowing a designer who does not require help to enter these facts directly will
streamiine the session considerably; the alternatives (e.g., by being led through a
series of menus, Taylor, Frederick, and James, 1984) may be much less desir-
able to the experienced user. The use of a natural language interface would

facilitate this type of user interaction greatly; we have not developed this idea at

this point in our work.

4. The user can be permitted to invoke any underlying conventional CACE pack-
age and do whatever is desired.
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These capabilities should help the user to maintain control of the design process in -
an effective way. The use of a ‘why’ facility is well known and exists in DELTA and
Delphi; the other ideas (especially items 3 and 4) are specifically targeted for
engineering users and may not be in commonplace usage. The last two features may
also be difficult to imple{ment; see LESSONS below.

The above comparisons of DELTA and Delphi were made primarily to contrast
the requirements of an inference engine that is designed for pure symbolic manipula-
tion tasks, such as diagnosis and maintenance, with those of an environment for
CAD, where numerical processing and interactions with conventional analysis and
design software are essential. The additional capabilities of Delphi are based on the
original specification or definition of Delphi and were implemented using standard
LISP functionalities.

CACE-II1 PROJECT STATUS

So far, we have developed a number of the necessary expert-system concepts,
architectures, and real software implementations needed for an expert-aided environ-
ment for CACE:

a definition for CACE-III, including ‘a;_.speciﬁc, detailed outline of the functional

characteristics of the expert system and of the rule base,

e an architecture for CACE-Ill, including a partitioned rule-base structure that

effectively implements all of the required activities (see Fig. 3) and an inference

engine that supports it,

e working rule bases for several functions, including equilibrium finding and lineari-
zation, linear and nonlinear system model diagnosis, specification development,
an automatic control system design procedure (lead-lag compensator design for a
single-input/single-output plant, James, Frederick, and Taylor, 1985), and some

aspects of validation (simulation with linear and nonlinear plant models).

e a proven means of interfacing the KBES with the required conventional model-
ing, simulation, analysis, and design software, and handling the interfaces among

the various software packages (data and model transformations), and
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o mechanisms providing the user with a high-level interface that provides support

flexibly and without over-domination.

The CACE-IIl project we have described above is still in the exploratory or
concept development phase. We have a working expert system that can perform
major parts of the problem creditably, e.g., designing a coxitroller using a conven-
tional frequency-domain design package; this activity alone requires 70 rules which
cause about 100 commands to be issued to the design package CLADP in the course
of one design. To illustrate the capabilities of this system, CACE-III designed a
high-order lead/lag compensator for a fifth-order plant G(s) with a pair of lightly
damped poles; both the plant and compensator are portrayed in Fig. 4. The perfor-
mance of the resulting closed-loop system is contrasted with that of a constant-gain
compensated system in Fig. 5. This d‘esign exercise took about 15 minutes on a
VAX 11/785, including specification development, design, and validation by simula-
tion (James, Frederick, and Taylor, 1985).

GAIN LAG 2 LAG 1 LEAD 2 LEAD 1 PLANT
s + 0.58 s + 0.58 24s + 14 20s + 40
—"() 1.53 s +0.072 s+ 0.072. s + 14 s+ 40 Gls)
1 -
& = 8.1 & = 8.1 X =2.4 & = 20.0

wzro= 0.58 wzro= 0.58 Wc"= 9.0 wctr= 9.0

G(s) = 500(s+10)/s° + 33s* + 337s3 + 177552 + 4950s + 5000
POLES: s=-2, -3+j4, -5, -20

Figure 4. Block Diagram of the Compensated System

In this effort, we have shown how expert systems may be used to provide
meaningful solutions to the problems identified above. However, there is unques-
tionably considerable detail that needs to be filled in and implemented before we

have a complete “real system”.
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Figure 5. Closed Loop Time Responses
LESSONS AND UNFINISHED BUSINESS

There are many ways in which CACE-III is incomplete. We have come to real-
ize that, in some senses, our present KBES represents only the tip of the iceberg.

The following are several areas in which our present treatment is incomplete or
totally lacking.

Support for Different User Capabilities

We have discussed our desire to support both the novice (“leading the user by
the hand”, if necessary) and the expert (without domination and boredom). To date,
our primary focus has been on the support of the novice. Some ideas for providing
an environment that would be more acceptable to the expert have been generated,
including allowing the direct entry of facts (e.g., performance specifications) and
allowing the user to invoke software to carry out other more arcane procedures.

Neither of these ideas are easy to implement in a satisfactory way.

The direct entry of facts is simple, in the sense that providing the user the abil-
ity to input [ MIN-DAMPING-RATIO VALUE 1.0 ] +1 is clearly feasible. The
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problem is that this, in effect, creates a new, very narrow command language that
again requires careful attention to syntactic details. For example, [ MINIMUM-
DAMPING-RATIO VALUE 1.0 | +1 would not be a useful input unless the
KBES can perform the pattern matching with enough intelligence to recognize that
MIN and MINIMUM are synonymous. At worst, the KBES would accept the
erroneous fact (which would be ignored, because of the pattern mis-match vis-a-vis
the rule base); at best the KBES would issue an error message and the user would
have to find the correct formulation and enter it again. Neither course of events

would be satisfactory.

The only worthwhile solution is to incorporate a natural language interface, so
that the user could enter a statement such as the minimum acceptable damping
ratio value is 1.0 and have the input interpreted by the KBES appropriately. The
size of this task is directly proportional to the generality of the interface. It is cer-
tainly feasible to implement this capability for a well-defined task such as specification
entry using a rudimentary grammar, for example; to permit the user to command the

KBES in greater generality would be a major undertaking.

Allowing the expert to carry out his own procedures in the middle of a design
session and then let the KBES take over is also very difficult to accomplish in gen-
eral. The expert system must be able té'n”lonitor the activity, interpret it, and update
the list of facts accordingly as the user works; if this is not done, then the user can-
not return to utilize the KBES capabilities based on the work doné manually. There-
fore, incorporating this capability is limited by our ability to foresee what actions a
user might take so that these mechanisms could be built into fhe KBES, and by the

amount of work required for implementation.

To be feasible, this option can be permitted only at well-defined points in the
process, and only for well-defined activity. One way to imblement this functionality
is to incorporate some of the KBES procedural knowledge in the form of “macros”
that the expert user can modify and execute from within the KBES; this will ensure
that the KBES can understand the expert’s activity so that the knowledge base is
updated appropriately and the KBES can build on the results.

The above paragraphs outline our ideas for supporting the expert user. Based
on the difficulty we see in implementing them with any generality, it seems clear that

KBES environments are in fact easier to develop for the novice than for the expert
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user.
The Limitations of Scenarios

As mentioned above, the generation of scenarios (e.g., Taylor, Frederick, and
James, 1984; Taylor, 1985a) played a large part in the development of CACE-IIL
The best way to acquire the knowledge that will be captured by any KBES is to carry
out the given activity in full detail, with a realistic problem, using exactly the
required tools. In our context, we selected a nonlinear plant model and first went
through a“dry run” on paper, then developed rule bases to capture the process using
software from the Federated System. At this point, we can carry out several of our

initial scenarios in full.

There is one limitation or drawback to the use of scenarios: There is a tendency
to think that a KBES that can carry out a scenario is a‘“real system”. Often this is not
true. In our case, there is often too much “branching”, “groping”, and “exploration of
alternatives” involved in CACE to make a one-scenario KBES of general utility. In
other words, an implementation that can only execute a single prescribed sequence
of procedures would generally miss much of the judgment and selection of alterna-
tives that has to be performed in the solution of real-life engineering design prob-

lems.
Making Software Usage Details Invisible

Eliminating much of the overhead in the use of convention’al CACE software is
clearly feasible, especially for the non-expert user who carries out procedures that
have been anticipated and built into the system. The functions to be assumed by the

KBES are invoking packages, executing algorithms, and error handhng

The knowledge of package capabilities and command sets and syntax can be
incorporated readily into the KBES. Less-than-expert users would probably never
have to issue a command in its native form; instead, the KBES would invoke pack-
ages and issue all commands based on the state of the problem solution and/or the
wishes of the user. Implementing this capability may require a substantial amount of
work, especially for a broad CACE environment such as the Federated System, but
the effort is not conceptually demanding.

Exception handling is more difficult but still not a major problem, as long as

the use of the software is limited to the activity foreseen by the KBES developers.
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Again, there is a lot of attention to detail (starting with a catalog of possible error
messages and recommended corrective action), but not much high-level reasoning

involved.

There is an additional payoff to incorporating the knowledge of command sets,
syntax, and exception handling into the KBES. If this knowledge is well organized,
then the conventional software can be regarded as “interchangeable parts” in the
sense that the architecture can be made highly modular, allowing the introduction of
new packages that may extend the expert system’s capabilities or improve its perfor-

mance (through the use of numerically superior algorithms, for example).
Data-Base Management

The CACE data base has yet to be defined in complete detail; this step is a
prerequisite to the rigorous implementation of DBM into a KBES such as CACE-III.
The need for such a definition and preliminary ideas regarding its structure and con-
tents have been presented by Maciejowski (1984) and LeVan (1984). Despite the
incomplete definition of the data base, it is possible to consider the issue in general

terms.

The fact that the CACE-III architecture is based on a conceptual model of
CACE processes would seem to make s'éme form of DBM a very natural and direct
addition. We consider DBM functions in this context to include keeping track of all
the files containing models (nonlinear and linear), the operating points and other
conditions of validity of linearized models, analysis results, diagnostics, performance

results, et cetera, along with the necessary relational information.

The CACE-III solution frame contains the list of facts in which the expert sys-
tem keeps track of what has been done and what needs to be done, information
required for decisions about the selection of analysis and design procedures and tra-
deoff analysis, and a log of the entire transa,étion; at this point in our work, we do
not see a need for any DBM information that is not available in this knowledge base.
The procedural and relational knowledge of the operation of the software is thus
readily available so that the KBES can perform DBM activities itself (keeping track of
the data base and writing DBM information into a master file) or invoke a conven-
tional DBM system to carry it out. One use of such a master data-base management
file is illustrated in Taylor (1985a). As mentioned px;eviously in the context of

software usage, DBM along these lines entails straightforward work that is not
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conceptually taxing. A rule base must be developed which “monitors” the activity of
the KBES, and, whenever a procedure is performed which creates new information,
ensures that the data are written to the appropriate file and/or the file is appropriately

named and cataloged with the required relational information.

RELATED WORK

To the best of our knowledge, the first in-depth consideration of the application
of KBES technology to CACE was by Taylor, Frederick, and MacFarlane (1983).
That presentation was the genesis of our CACE-III project. Since that time, there

have been a number of projects related to this concept:

e Gomez et al (1984) describes a prototype expert system for the treatment of sto-
chastic control and nonlinear filtering problems. The program is written
MACSYMA, LISP, and PROLOG, and accepts user inpuﬁ in natural language and
symbolic form. It carries out the basic analysis of the user’s problem in symbolic
form and produces FORTRAN code implementing the controller or filter algo-
rithm. PROLOG is used to check the well-posedness of the user’s problem.

o LeVan (1984) considers the data representation requirements for CACE using
frames and slots. The concept of frame is extended to provide slots for
default/required information, procediu;es, nested frames, and ports for the input
and output of CACE process “lows”. The system modeling approach incorporated
in this' concept is the bond-graph methodology.

o Birdwell et al (1985) describes the overall concept of a KBES for CACE and a
prototype system that implements these ideas for modern control and estimation

problems (linear quadratic regulator design, Kalman-Bucy filters).

CONCLUSIONS

We believe that the research outlined in this paper has réached the point where
the promise of KBES technology to solve many of the problems identified in existing
conventional software can be seen to be real. However, the amount of effort
involved in realizing such a higher-level environment in a useful form should not be
underestimated, and the developer must be careful not to raise unrealistic expecta-

tions.
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Research in this area is still in its infancy. The next few years should bring
about a number of useful systems based on the ideas and work presented here and

in the references.
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