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A FREQUENCY-DOMAIN APPROACH
TO FAILURE DETECTION AND
ISOLATION WITH APPLICA-
TION TO GE-21 TURBINE
ENGINE CONTROL
SYSTEMS'

M. Viswanandam,’ LH. TavLor® ann E.C. Lucg?

Abstract.  We present a new deshgn methodology for Gilure detection and
isolation (FDD) and demonstrate its potentizl for solving the FDI problem i jet
engine control systems by applying it to a GE-21 turbofan engine, We first discuss
the generalized parity spice (GPS) technique for FDL, which is developed in the
stale Metorization framewaork. This gives rise to a varety of porty vecler defin-
fiens that are useful for FDL One reselt of (ks approach s that the coelficents of
he parity relations necessarily involve stable, proper, rational transfer funcrions.
We alsa show the equivalence of the parity vector appreach with the concept of
Juilure detection filters.

We dizcuss voting schemes for FDI, and the use of Hermite forms and dmgona-
lization as additional asds to fnlure izokitton, By incorporating specific fatlure models
for actuators and sensors, we develop another method for FIM baged on the
direction of the parity vector with respect to certain reference directions defimed by
the dymamical model. In the same setting, we also develop a simpler method for
FDI based on the direction of the steady-siale parity vector. All of these resulis
represent an extension, simplification and unification of numerous approaches and
results for FION derived via other methodologses.

We demonstrate the potential of this theoey by designing an FII scheme for the
GE-21 enging and evaluating it using a nonlincar simulation madel of that engine.
This study shows that the FOH algorithm s effective and robust, in the sense that
mast failures can be detected and isolzted relinkly despite the highly nonlinear
witure of the engine dvnamics and even when the engine is operating al some
distance rom the nominal operating point.

Key Words—Fatlure  detection, failure  isolation, stable factorization. parity
methods, failore detection flters, aircrall enmnes.

1. Introduction

Our objective is to develop a generalized parity space (GPS) concept based
an the stable factorization approach for the detection and isclation of sensor and
actpator fatlures in contral svstems. This is a critical technology for fault-
tolerant control system design; our particular interest is driven by applications
to systems such as full-authority digital engine control (FADEC) systems.

Aircraft engines now under development will be built with digital electronic
controllers that will increase engine efficiency and performance. However, the
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use of these sophisticated control laws will make the engine vulnerable to
failures of the many sensors, actuators and electronic components used in the
control system. Becauze of this vulnerability, the control system should be
fault-tolerant, so that it can perform essential functions under failed conditions.
A turbing engine can be made fault-tolerant by installing duplicates of critical
components, by providing back-up modes of operation, or by incorporating in
the system a reliable means for detecting, isolating and accommodating various
malfunctions. We have focussed on the last alternative, by developing the GPS
approach and an analytical method for detecting and 1solating failures, These
results are applied to the FDI problem for the GE-21 jet engine.

1.1 FDMI-General background  Dwnamic failure detection schemes can be
thought of as consisting of two stages: residual generation and decision making
based on these residuals (Weiss, Willsky, Pattipati and Eterno, 1985). Outputs
from sensors are processed by an appropriate algorithm to generate residual
signals which are nominally near zero and which deviate from zero in character-
istic ways when particular failures occur. The technique used to generate
residuals differs markedly from method o method, In order to be usefol in FIDI,
the residuals must be imsensitive to modelling errors, highly sensitive to the
particular failures under consideration, quickly responsive when such a failure
accurs, and should respond to each failure in an easily-recognized and distinctive
manner, In the secend stage of decision making the rezidualz are examined to
detect and isolate failures.

Owver the past decade, numerous approaches have been developed to solve
the problem of fault detection and isolation (FDI in dynamical systems, The
methods include those based on digraphs (Kokawa and Shinga, 1982), fault
trees (Teague, 1978), observers (Clark, 1875), Kalman filters (Beattie et al.,
1981; Corley and Spang, 1977; Mehra and Peschon, 1971; Willsky and Jones,
1976), parameter identification methods (Isermann, 1984), detection filters
(Beard, 1971: Jones, 1973; Meserole, 1%81), parity space techniques (Chow and
Willsky, 1984; Lou, Willsky and Verghese, 1983; 1986; Potter and Suman,
1977; Weiss, Willsky, Pattipati and Eterno, 1985), etc. See, for example, recent
survey articles (Isermann, 1984; Mernll, Lebtinen and Zeller, 1934; Willsky,
1976; 1980) for further backeround on this topic,

1.2 FDI in the generalized parity space We develop below generalized
parity space (GPS) concepts and technigues wsing the stable factorization (SF)
framework. Fault detection and isolation (FDI) using time-domain parity space
technigues bas been studied extensively. Most work in this area has concen-
trated on directly redundant systems (Potter and Suman, 1977) where the
number of measurements is greater than the number of variables 1o be senszed,
Inconsistency in the measurement data 15 then a metrc that can be used for
mstrument failure detection. Chow and Willsky (1984) considered parity space
generalizations for discrete-time systems using temporal redundancy; they
presented an approach for FDI using dynamic parity checks. Lou et al. (1986}
consider a frequency domain version of the parity space which is generated as
the left null space of the observability matrix of the system. In this case, the
parity checks have polynomial coefficients; therefore, to verify the parity check
for continuous-time systems, one necds o generate a number of derivatives of
the system input and output from the sampled data signals v and w, by using
numerical differentiation techniques with the attendant noise problems. In the
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discrete-time case, the approach in Lou, Willsky and Verghese (1986) leads 1o
infinite impulse response (FIR) parity checks.

The major contribution below is the development of the GPS based on stable
factorizations of the plant model. This ensures that the parity checks have
stable, proper, rational transfer functions as coefficients for the input and output
measurements: therefore, they can be implemented using stable numerical
algorithms in the case of continuous-time systems, and in the discrete-time
case, we are not restricted to FIR parity checks with infinite impulse response.
The GPS is a more general ramework for FII than the state-space setling
{Beard, 1971; Jones, 1973: Meserale, 1981), and unifies 1the detection filter and
parity space approaches that have appeared earlier in the literature cited above,
Another advantage is the simplicity of derivation of FDI algorithms using this
approach.

1.3 FDI in turbine engines  Detection, isolation and accommodation (DIA)
of sensor failures in turbine engine control systems has been the subject of
several studies in the area, with particular reference to the F-100 engine model.
Beattie et al. (1981) formulated five concepts based upon such techniques as
Kalman filters: the best one was chosen by conducting tests on digital F-1(0
engine simulations. A failure-sensitive filter approach was applied by Meserole
(1981) to the DIA problem for the F-100 engine; FDI was accomplished by
refating the directions of measured residual vectors with a set of known
direction vectors associated with various system components, Recently, Weiss,
et al. (1985) defined certain FDI metrics and applied them for detection and
isolation of sensor fallures in turbine engines.

A number of researchers applied DIA techniques to the NASA Quiet, Clean,
Short-haul, Efficient Engine (QCSEE). Corley and Spang (1977) studied DIA on
the QCSEE under a NASA-sponsored program; this work is referred to as FICA
(failure indication and corrective action). The FICA Jogic detected and isolated
failures by simple range checks on the Kalman filter residuals. Merrill, Lehtinen
and Zeller (1984) review the various contributions in the area of aircraft turbine
engines over the last 10 years.

1.4 Overview In Sec. 2, we survey basic concepts and results from the
stable factorization approach that are needed for the development of the FDI
methodology, We briefly describe the GE-2Z1 jet engine and present the
state-space and stable factorization descriptions of a linearized jet engine model
in Sec. 3. Failure models for actuators and sensors are discussed in Sec. 4, and
we develop the frequency-domain parity space technique for FDI (the main
theoretical result) in Sec. 5. The FDI problem for the GE-21 jet engine is
studied in Sec. 6. Simulation results are also presented in this section.

2, Stable factorizations

Before we develop the GPS approach to FD, it is necessary to outline some
of the underlying mathematical framework that provides the basis for the direct
formulation of parity vectors and failure detection filter transfer functions (Sec,
5) with the desired properties that they are stable proper rational functions of
the Laplace variable s. This framework is central to the stable factorization
approach to systems theory (Kailath, 1980; Vidyasagar, 1985).
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2.1 The scalar case  Consider a scalar transfer function p(s) that is proper
and rational. The term groper signifies that the numerator degree of fis) is less
than or equal to its denominator degree; rafional means that p(s) can be
expressed in the form of a ratio of pelynomials in 5. Such a transfer function can
alwayvs be represented as a ratio of two proper, rational, sfable Tunctions of s,
ie.,

_ nis)
.lb:-'ﬁ:l s F ﬂl[s:ll

(2.1}

where by slability we mean that poles lie in the open left half of the complex
plane. IF we define . to be the set of all stable proper rational functions, then
wis), dis) € For example, if pis)={(s+1)/(s—1), then nisl={s+1)/(s+2)
and disl={s—11{5+2) 15 one possible pair of stable factors. A rational function
f5) €15 said to be a wnil in £ and only if it has no zeros in the extended right
half plane, i.e., {s:Res=0) including the point at nfinity. In other words, f(5)is
a unit if and only if both f{s) and £~ Y(s) arein .F; e g, fis)={(s+1)/(s+2)isa
unit whereas fis)=1/(s+1} is nol.

It iz essential to recognize that we are developing factorizations in terms of
stable proper transfer functians and not polynomials. The importance of this point
is primarily in the underlying mathematical theory of this approach; the major
practical benefit is that control systems and failure detection algorithms
ohtained using this machinery automatically have the desirable properties of
belonging to .~

Finally, we say that the fractional represemtation psl=u(s)/dis) is cofrime
if there exist stable proper rational functions x(s) and y(x) such that

x(sinls) + vishdis) = 1. (2.2}

If m and o are polynomials, then (2. 2) is equivalent to the requirement that » and
4 have no common zeros. In our case, where we are dealing with stabhle proper
transfer functions, {2.2) implies that the rational functions » and & have no
common zeros in the extended right half plane.

2.2 The mairix case Let . () denote the sel of stable transfer function
matrices, i.e., matrices whose clements are in F, of whatever order, If the
order of the matrix is important, then we will mention this fact explicitly, Also, a
matrix I is wnimodular if det U7 is a unit, i.e., UE & () and U E.# (7).

(Given any w > s proper rational transfer function matrix Pis), we can define
the stable right factorization as

Pis)=Nis)D(s)™"; NisyE & (F); Disye #(r). (2.3)

The matrices N(s) and D(s) can always be found (cf. Sec. 2.3), and are right

coprime. This implies that the Bezout dentity (the matrix extension of (2.2))
holds:

Xis)N(s) + Y(s1D(s) = I, (2.4)

where both X(2) and ¥(z) are in .4 0.7). In a similar way, we can define the
stable left coprime factorization as
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P(s)y=D"1(s)N(s); De.#(F), Ne.#(# (2.5)
with N and D left coprime. Also, ane can find X (s} and ¥ (s) such that
X ()N () + Y(s)Dis) =1, (2.6)

where hoth X () and ¥ (s) are in.# (.#). Equating the left and right descriptions
{2.3) and (2.5) of #(s), we have the [ollowing identity:

DN — ND=0. (2.7

In fact, all the identities (2,4), {2.6), (2.7) can be combined to characterize the
doubly coprime factorization of F(s) as

Yis) X |[ Do —X J_[ 1 0 08
—Nis) Dis) Nisy Y@ | |01 ;

The two block matrices in the left-hand side of (2.8) are unimodular, and each
ane is the inverse of the other. Equation (2.8} is called the generalized Bezout
identity.

2.3 Stable factors from state-space descriptions It is possible to obtain
the left and right stable factors (¥, D) and (£, V) irom state-space descriptions
of Pis). Suppose we are given a stabilizable, detectable system,

i¥=Axr + Bu

Z 2.9
y=£Cx+ En ZiE

where 4, B, C, E are constant matrices of compatible dimensions. The transfer
function matrix of the system is

P(s)=C(sI-A) 'B+E. (2.10)
Stabilizability and detectability ensure that K and F can be found such that
(A—FHK)and (4—=FC) are stable matrices. Then, we have {(Nett, Jacobson and
Balas, 1984)

¥ X I o g i Mg .
[ x H] [_E ;]*[—c]”*’ A+FC)'[(B-FE) F1 (2.11)
and

b -Xx I0 K - o
[ =N 1"] [: r] [—[C—Em]{”—ﬂvﬂm ‘B Fl. (2.12)

We use the above results in our analysis. We refer the reader to [ailath (1930)
or Vidyasagar (1985} for further details on the stable factorization approach.
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3. Dynamic model of GE-21 jet engine

4.1 Deseription of the engine The GE-Z21 engine {see Fig. 3.1) 15 a
double-byvpass jet engine with two fans and a two-stage turhine. In a bypass
engine, air enters through the inlet which decelerates its flow and increases its
temperature and pressure. Then, the main portion of the air bypasses the first
fan and a smaller portion goes through the second fan to the compressor. The
function of the compressor is to raise the pressure and to reduce the volume of
the afr as it pumps it through the engine. From the compressor, the air Mows to
the combustor into which fuel 15 injected in spray form, mixed with the airstream
and ignited. The resultant combustion causes an increase in gas temperature,
proportional to the amount of fwel being imjected, a moderate increase in
velocity, and a small increase in pressure, The high- and low-pressure (HP and
LE) turbines provide the shaft power necessary to drive the compressor and
rotors by extracting kinetic energy from expanding gases releazed from the
combustor, The extracted energy reduces the temperature and pressure of the
gases, The gases from the turbines go through the inner and outer nozzles to

Tap: Turbojet mode
Supersome cruise/Climb/Acce]

Variable- g bl enometry Ei}tj-'r_\ STP 48: HPT A#: Outer
geometry  pp COMPressor Ao Slator-vane nozzle
fan closed —

Shroud extended

Fixed nozzle
throat

Plug extended
'

Augmentor lit

Plug retracted
at takenif,

ETL extended for
Outer bypass \hhmud cruise

PS3:
Slatic
presaure

open retracted

Augmentar not bt

WF36:
bz -hurner
fuel flow

O : Sensor outputs Battom: High-bypass mode
, takeoff and subsonic cruise
@ : Actuator mputs

Fig. 3.1. Input and outpul variables in the GE-21 engine.
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the atmosphere. The purpose of full-authority electronic multivariable control-
lers is to adjust all the control variables of the engine to meet the desired thrust
demand without exceeding the physical and thermodynamic limits af the
individual components. Mare information about the GE-21 jet engine 1s given in
Kapasouris (1984) and references therein.

a9 Nonlinear and linear models  The test bed chosen for this study is the
nonlinear dynamic simulation model of the GE-21 jet engine (Kapa souris, 1984),
This model is capable of simulating the entire operating envelope of the engine.
The nonlinear model has two state variables, seven actuators (inputs], and
seven sensed or output variables. Three of these input and output varables are
primarily used for dynamic feedback control; Table 3.1 presents a list of these
variahles and the model states. The nonlinear mode] does not include actisator
and senszor dynamics. The actuator servo loops are fast and have oulput
sensors, so we model the actuator dynamics as being instantaneous. These
servo loops are isolated, so faults in these mechanisms can be detected and
isolated trivially. The sensors used to monitor the engine outputs are also fast
enough so that they can be modeled as instantanecus measurements
{Kapasouris, 1984).

The nonlinear engine model is approximated by linear models at nine
aperating points that span the entire engine operating envelope (cruise, takeofi,
etc.). Operating point 9, representing takeoff, is selected for the studies
presented here. Kapasouris (1984) provides details regarding the values of the
variables of interest at each operating point.

To conduct our analysis, we selected the 3-input/3-output linearized model of
order 2 corresponding to the variables in Table 3.1. This second-order state-
space model at operating point 8 is given by

¥=Ax + Bu 513
s L3,
y=Cx + En

Table 3.1, Three-input/three-oulput GE-21 model variables

Engine State Varinbles (x)
N2 LP {Low Pressure) rotor speed [rpm]
N25 HP {High Pressure) rotor speed [epm]

Control Inputs (xh
WF16 Main burner fuel Now [Ihih]
STF48 Compressor stator vane [sq in]

AB Outer nozzle effective area [sq in]
Chatputs (y)

M2 LP rotor speed [rpm]

MN25 HP rotor speed [rpm]

Ps3 Static pressure at output of the combustor [psi]
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where x is a 2% 1 state vector, x is a 3x1 input vector, and y is a 3= 1 output
vector. The numerical values for A, B, C and £ are given in Table 3.2.

3.3 Stable faclorization description of the engine The state-space
model {3.1) af the GE-21 jet engine iz given in Table 3.2, We will later make
specific use of the Tollowing structure for the C and £ matrices:

1 ] ] ] ]
G= 0 1 : E = ] ] 4 ] b (3.2)
f31 gz Exy €32 £33

Mext, we use (2,11) to caleulate D, N. Choose
F=[F, 0]; Fi=A+ol, o> 0arbitrary (3.3)

With this choice, we note that

i) .
Jl'ir—m[,.ﬂ-i-E. (3.4)
o 1 -
= I- [m CiA+af) 0]. {3.5]

Denoting the transfer function matrix of the engine by P(s), we have
P(s)=D"1N.

Tahle 3.2. GE-21 State-space model at operating point 9

4w [ =3:370, ; 1636

“7 | -0.325 -1.806

i [ 0.386 -1.419 1.252
T ond410 1118 0139

0 L
E= 0 0
267 —0025 —0.146

==

State variables: " N2, N25
Conteal inputs: WF36, STP48, AB
Dutpues: M2, N25, P53

4. Failure models

It the event of failure, the A, B, C, E matrices in {(3.1) or Dand N in (3.4)
and (3.5) do not represent the jet engine faithfully. Here we specifically consider
two general classes of faults: actuator and sensor failures. It is possible to
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model the failure of actuators and sensors as additive zignals appearing at
appropriate places in the model.

4.1 Actuator failures  Let u, be the correct output of the actuators when
no failures are present. Let & represent the actual output of the actuator. Then
we have

wll) = wyll) + all), (4.1}

where a{f) is a time-varving vector with elements &,{f). By appropriate choice
of a,(1) we can capture various failure modes of the ith actuator: For example, if
the ith actuator freezes at its zero position, producing no output at all, then
ay(#y=—1ey (t); if there is a bias b; ﬂpp&drmg an the actuator for some reason,
then a,(f)=h; if the ith actuator is stuck at a constant value &y, then
ai(ty=k,—uy (). Multiple failures can be captured in the above setting by
specifying several elements of a{f) to be non-zero.

1.2 Sensor failures  We model sensor failures in the same way. Let y and v
represent the sensor desired or true output and the actual output, respectively.
Then

yit) =y (8 + s({t], {4.2)

where £(8) is a time-varying vector with elements s;{!) representing sensor
failures. Complete failure of the ith sensor can be modeled by setting
si(ty=—y, (D), bias failures b; by setting 5,(t)=b,, and failures where the senzor
is stuck at'a constant value k; by setting s,(f)=Fk;—y, (£). Again, both single and
multiple sensor failures can be modeled using this fnrmulatmn

5. The generalized parily space technigue

5.1 Derivation of the parity vector relation Consider the linear time-
invariant plant depicted in Fig. 5.1, which is described by the pxm transfer
function matrix P(s). Let w, be the desired or correct control input and « be the
actual plant input (output of the actuator); the relation between w and u, is given
in (4.1). Similarly, let y, be the actual output of the plant {(desired or correct
sensor output) and ¥ to be the actual output of the sensor; (4.2) expresses the
relation between these varables. The variables wu,; and v are “external” or
available for FDN: m and ¥, are “internal” or unaccessible. The relationship
among these signals is depicted in Fig, 5.1,

Actuator Sensor
ETrOr Crror

ali)
+

L
Hy + ]

Fig, 5.1, System with sensor and actuator failure models.
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In normal operating conditions (no failures), we this have
yis) = FPlshugyls), (5.1)
where y and n,are p> 1 output and w1 input vectors respectively. Pz} i5 the
transfer function matrix with right coprime factorization (r.c.f.) (5, N1 and left

coprime factorization (Lc.f.) {ﬁ, N). Also, let 2 be the partial state of the plant
i terms of the r.oo b, in the sense that

y=Nz;: wy=Dz (5.2)

We assume that both ¥ and w; are measured and uzed in FDL We thus have
access to the extended measurement vector

L'=|:5f]=|:?;]z. (5.3)

Therefore, by design the range of [ﬂ

From (2.8) it follows that the matrix [D N | forms the orthogonal complement of

J describes the observation space for FDIL

"'.I- . = (7e Y - W
|;,£|. thus, we have
Dy — Nuy=0. (5.4)

Equation (5.4) can be derived even more directly from (5.1) by noting that
P=0"'N. We now define

pis) = Dy — Nuy; (5.5)

pis) iz called the geseralized pearity vector, which is defined in the peneralized
parity space (GPS), We note that pis) iz a p-dimensional vector of rational
functions (where p is the number of sensors) and is zero under ideal conditions,
i.e., when the plant is linear, noise-free, and there are no failures, Under normal
operating conditions, p(s) is a time-varying function of small magnitude due to
the presence of noise and modeling errors arising from linearization and order
reduction. However, when failures occur, p{s) has a relatively large magnitude
representing inconsistencies among the actuator inputs and sensor outputs with
respect to the unfalled model, Different failures praduce parity vectors with
decidedly different characteristics, Thus, the generalized parity vector p may be
used as a sigrature-carmving residual for FDIL

5.2 FDI using parity vectors  We note that the generalized parity vector
wie have just defined 15 a generalization of the parity vectors defined by Potter
and Suman (1977) for directly redundant sensors, by Chow and Willsky {15954)
for temporally redundant sensors, and Lou et al, (1983; 1986) for polynomial
parity checks. Therefore, a frequency-domain description of all parity checks
can be very simply and directly based on the Le.f. of the dynamic plant F{s), as
in {5.5), Many of the recently developed approaches to failure detection make
implicit or explicit use of the dynamic model as a basis; the above derivation
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mode]l the failure of actuators and senszors as additive zignals appearing at
appropriate places in the madel.

4.1 Actuator failures  Let wy be the correct output of the actuators when
no failures are present. Let ¢ represent the actual ocutput of the actuator. Then
we have

wll) = uglt) + aith, {4.1)

where a(f)is a time-varving vector with elements a;(#). By appropriate choice
of @ (1) we can capture various failure modes of the ith actuator: For example, if
the fth actuator [reezes at its gero position, producing no output at all, then
il ty=—mn, (1) if there is a bias b; appearing on the actuator for some reason,
then a,-{.r]'=b,-; if the ith actuator is stuck at a constant value k&, then
a(ty=hk;—ug(t). Multiple failures can be captured in the above setting by
specifying several elements of a(f) to be non-zero.

1.2 Sensor failures  We model sensor failures in the same way. Let y, and y
represent the sensor desired or true output and the actual outpul, respectively.
Then

¥() =y (i) + s(h), (4.2)

where s{f) is a lime-varving vector with elements 5,01} representing zensor
failures. Complete failure of the ith sensor can be modeled by setting
5= —vr{r] bias failures & by setting £,(00 =8, and failures where the sensor
is stuck at a constant value &; by setting s,() =4k, Y ). Again, both single and
multiple sensor failures can be modeled vsing tin:- formulation.

8. The generalized parity space technigue

5.1 Derivation of the parity vector relalion  Consider the linear time-
invariant plant depicted in Fig. 5.1, which is described by the px<m transfer
function matrix Fis). Let w, be the desired or correct control input and & be the
actual plant input (outpul of the actuator); the relation between « and ;i given
in (4.1). Similarly, let y, be the actual output of the plant (desired or correct
sensor output) and ¥ to be the actual ouiput of the sensor; (4.2) expresses the
relation between these variables. The variables w, and y are “external” or
available for FDI; « and y, are “mternal” or unaccessible. The relationship
among these signals is depicted in Fig, 5.1,

Actuator
error

all)
+

Lt
Hy + i

Fig. 5.1, Svatem with sensor and actuator fafure models.
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unifies all of these disparate results. Finally, the parity vector is essentially
equivalent to the ocutput of various failure detection filters described in the
literature, as demonstrated in Sec. 5.3

To illustrate the use of the generalized parity vector, we consider some
special cases:

a. Direct redundancy; Suppoese there are more medsurmg mstruments
than the number of independent variables. Then we can find a constant vector w'
such that w'v=10, which implies that

b ls)="[u" :1][ i ] = [’ u][ﬁ] =10 (5.6)

is zern under nominal conditions, This algebraic pavity relation 15 similar to the
one in Potter and Suman {1977).

b, Testing a single sensor: Suppose we assume that all actuators are good,
e, w=u, and we wish to test the jth sensor., Then, for that sensor, we have

_1.-}=N,-.a: ny=10z, (5.7)

where N; denotes the jth row of N. Let [4; 1"] denote the left null space of [1’;’}

where 4; is a scalar, I" iz a row vector, and both are members of & (#), Then,
under normal conditions,

B=2y + Mug=0. (5.8)

When a faillure occurs in the jth sensor, the parity variable f_}j exceeds the
threshold and the jth sensor is declared to be faunlty,

¢, Testing a single actuator: Suppose we assume that all sensors are good
and that we want to test the jth actvator, Let [); denote the jth row of £, Then,
under normal conditions, we have

y=Nz; w=0D2=u,; {5.9)

Let [£7 %;] denote the left null space of [3
]

vectar, and both are members of (20 Then, under normal conditions,

] where x, is a scalar, & is a row

§J=kr}l + 2y ;= 0. (5, 1)

When the jth actuator fails, f; exceeds a threshold, thus isolating the faulty
actuator,

d.  Functional redundancy between two sensors: Let N and N be the ith
and jth rows of N. Then, as in (5.8), we can find ', 4; and 4; all in . {.#) to
obtain

pir=r;:d+.ﬁ.1fl + .-:I.J-J.II. (5.11)

We can treat the parity relation (5.11) as a reduced-order model and use it for
testing either the ith or jth sensor.

Using similar lines of reasoning, one ecan derive other parity relations



56 M. Viswamapiam, I H. Taveor asp E. C. LUce

involving other combinations of sensors and actuators.

5.3 Relations with detection filter methods  Failure detection and isola-
tion using detection filters can be interpreted in terms of FDI using the GPV
(5.5). Figure 5.2 shows the detection filter configuration in Beard (1971) and
Jones (1973). Both Beard (1971) and Jones (1973) choose F such that the error
#(t) propagates along predetermined constant directions for actuator failures
and lies in specific planes for sensor failures. Meserole (1981) applied detection
filter methods to be F-100 turbofan engine,

Ta show the relation of our GPV-based method with the detection filter
approach, we first prove that #(s) in Fig. 5.2 satisfies the following:

El.‘s]=f}'., — Nuy, (5, 12)

where (B, N)is the Le.f of P(s). To do o, we use (2.11) with £ = 0: From
Fig. 5.2 we have

fp=Ax, + Bu, + I'¢

e =y ! (5.13)

F:I_le

Laplace transforming (3.13) and eliminating x,,, vields
2(s)=[I-Cls/—A+FC) 1y = [C(s]-A+FC) 'Blu,. (5.14)

Substituting the corresponding relations for & and D ((2.11) with E=0) proves
that (5.14) is equivalent in form to (5.12), [ the matrix F is chosen to stahilize
(2,11}, then we have shown that the detection filter outpul ¢ 15 identical with the
GPV poin (5.5)

! il Dynamics LA ¥ty
e [ erators[ i) = Ax(r) + Buo*—+[Sensors |
yifymCxlf)

'_ _____ S s e e i, o o B e e o -
| " |
gt (0 S 1o & iy

i, L

i it L,,/’r i

|

| 1 1

| E |

A—— W WO J

Plant model

Fig. 5.2, Detection filter configuration,
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One advantage of (5.14) is that it provides a state-space realization of (5.35),
which may be more readily used for FDM in a digital implementation. Another
benefit is that we can directly utilize the methods of Beard (1971), Jones (197.3)
and Meserole (1981 in the GPS setting—this will be pursued in Sec. 5.4, 2.

5.4 Fault isolation in the GPPS  We consider two ways of using parity
relations for fault diagnosis;

a. voling schemes;

and

b. methods using failure directions,

Voting schemes are more general, in the sense that no failure model is assumed
for components involved, whereas in the method using failure directions we use
the sensor and actuator failure models discussed in Sec, 4. The benefit of the
latter approach is that isolation can usually be performed unambiguously with a
smaller wumber of parily variables than that reguired using voting. We now
proceed to describe the two methods in detail.

5.4.1 General voting schemes  To implement a voting scheme with com-
plete isolation for single failures, we need a set of parity relations such that each
companent, i.e., each actuator and sensor, 15 mvolved in at least one parity
relation and each component is excluded from at least one parity relation. When
a component fzils, all the parity relations involving it will be violated, while those
excluding it still hold. All the components involved in parity relations that hold
are declared to be unfailed, while the component common to all violated parity
relations is readily identified as failed.

Ta illustrate this approach, we consider a three-input/three-cutput plant, We
determine six 3-vectors, namely, F;i=1, 2, 3 using (5.8) and p:j=1, 2, 3
using (5.10). Suppose po=py=0and p;, pii=1, 2, 3 are all nonzero. One can
then declare y, (sensor 1) to be faulty using the above logic. Similarly, i
p,=p,=0and p., p,, b, and p, are all nonzero, then actuator 3 is |‘au1L1.r

We can also anlale certain multiple failures using the above six parity
relations. Suppose p,=0and p,, #., Py i=1, 2, 3 are all nonzero. Then the
sensors measuring y, and v, are both faulty. If all of the six parity relations are
violated, then at least three components have failed.

The above demonstrates the power of voting schemes for FDI, and also
serves to underscore the large number of parity variables that may be involved
{18, in this example}. This approach can often be simplified by the use of
transformations, as the following illustrates:

5.4.1.1 Vating Schemes Using Hermite Forms—UOne can use Hermite forms for
D and N plus certain input-output decoupling results to simplify the process of
fault isolation. As an illustration, we assume that the actuators are good and
demonstrate sensor failure isolation using Hermite forms: Given any Lc.f. (0,

N). one can alwayvs find a unimodular matrix &7 such that Ul is in upper-
triangular Hermite from {Vidyasagar, 1985; Kailath, 1980). Premultiplying (5.5)
by I {we consider 3 outputs for ease in presentation) vields

g0 0| . P,
"-i!t F{rz n X5 +UNuy = | P, =p,. (5.13)

dy dys dug ¥q pl'.ﬁ
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We can easily arrive at the following conclusions:

a.  Only sensor 3 is Taulty if P, =b, 2—-E] and p . #0;

b, Either sensor 2 or sensor .I or both is iﬂulty 1E foo=0 but p, w70 and
fy a#0; and

c. Sensor 113 certainly failed, and sensor 2 and/ar sensor 3 mav be failed if
all three components are not equal to zero.
_Actuator isolation can be done in a similar manner using the Hermite form of
N assuming that all the sensors are good, Both of these results are based on the
known properties of stable factorizations (Vidvasagar, 1985; Kailath, 1980}, and
are new with this development.

5.4.1.2 Voting Schemes With N in Diggonal Form—Suppose that all sensors are
good and that the number of outputs is greater than or equal to the number of
control inputs. We can then derive a diagonalized parity vector as follows: Re-
call from (2.11) (where, for simplicity, we let £=0) that

N=CisI-A+FC)'B, (5, 16]
where F is any constant nonsingular stabilizing matrix. Now, using the dual

results of Viswanadham (1976) and Wolovich (1974) on state feedback decou-
pling, one can always find J and & such that /& has the following form:

iy U 0
o [] j?zg []
IN 00 e 15.17)
If we define a transformed parity vector p,
p=J1D, = Nuyl, (5.18)

then, using (5.17), we can use the following logic for isolation: [f E,: U: j#k,
j=1, 2, =+, mand p,#0, then the kth actuator is faulty,

5.4.2 Fault iselation using Mailure directions  Another approach to FDI
involves using the failure models for sensors and actuators described in Sec. 4
and determining the effect of failures on the parity vector elementz. The basic
idea is that each failure will result in “activity”™ of the parity vector along certain
axes or in certain subspaces. This information can be used to isolate the fault
with fewer parity variables than reqguired using voting based on parity variable
magnitude alone; therefore, in many cases this approach is much simpler to
implement than a voting scheme. Note that the failure models in Sec. 4 and the
fatlure direction approach were followed by Beard (1971) and Jones (1973) in the
state-space setting.

b.4.2.1 Actuator FDI—We first consider ith actuator failures modeled by (4.1):
w=uy+alth; aliy=0; e=0, j+i. (5.1%9)

Substituting (5, 19) inte (5.5), and noting that ﬁ_.r—ﬁf =1, we get



Frequency-domain failure detection and isolation 54

b, As)= —N'a;(h, (5.20)
where N' denotes the ith column of N. Suppose now that there are at least as
many sensors as actuators: Then we can choose F in (2.11) and / such that /N
is of the form (5.17). In this instance, (5.20) simplifies to

poAs)=—fan; p,.=0, jEL (5.21)

From this relation, we note that no matter whal tvpe of failure has occurred
(what a,(t) is), the effect of the ith actuator failure is always characterized by
activity along the ith axis in the GPS; thus, we refer to the first m axes (where m
is the number of actuators) in the coordinate frame of p(s) under (5.17) as the
actuator failwre divection sef in the parity space.

5.4.2.2 Sensor FIN—Suppose the ith sensor has failed as modeled in (4.2).
Following the same procedure as above, we obtain

p, ls)=D's;(h), (5.22)

where D' denotes the ith column of D. The domain of the activity of the parity
vector under the assumption that the ith sensor has failed depends on the
number of non-zero elements in 2. Unfortunately, it is not possible, in general,
to choose F and J such that /I is diagonal as in the case N. However, the parity
vector always lies in a plane or higher-dimensional subspace of the GPS; this
information can still be uzed for sensor FDI by projecting the panty veclor onlo
the appropriate subspaces as demonstrated in Sec. 6 in our application to the
GE-21 engine. In particular, we show that considering the steady-stafe parity
vector subspace leads to a simple and effective sensor FDI scheme.

6. Application to the GE-21 engine

We now apply the generalized parity space (GPS) approach developed in Sec.
5 to formulate two failure detection and isolation algorithms for the GE-21
engine. A single failure defection filter will be designed using the stable
factorization approach to generate the generalized parity vector, and defection
will be carried out by monitoring the magnitude of the parity vector. fsolation
will be based on parity vector direction in the GPS: In both algorithms, actuator
fault isolation will be accomplished by the steady-state GPV direction method;
sensor failure isolation will be carried out using the steady-state GPV direction
method for the bias error case and by the GPV subspace projection method when
the errors are time-varving. These approaches are based on the developments
provided in Sec, 5.4. 2.

The general description and stable factorization model of the GE-21 jet
engine were given in Sec. 3. In particular, we consider the three-input/three-
output jet engine model given in (3.1), (3.2}, and Table 3.2. The FDI scheme has
to detect and identify failures in 6 components: 3 actuators and 3 sensors. The
three sensors measure the variables N2 (LP rotor speed), N25 (HP rotor
speed), and P53 (compressor discharge pressure); the three actuator servo
outputs are W36 (fuel flow), STP48 (LP turbine stator position), and AR (outer
nozzle aread, As mentioned previously, the actuator servo loops and sensors are
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azsumed to be instantaneouws in this study.

f.1 Generalized parity relation for the GE-21 engine  In the develop-
ment that follows, we use the parity Eq. (5.5) with a slight extension, i.e.,

pls)= Jis)Dis)yis) — Nishuyls)], (6.1)

where J(s) is any stable, rational, proper matrix of transfer functions
{Jis) €4 () vet to be chozen. This matrix is intreduced simply to add anather
“degree of freedom” so that the parity vector form can be simplified. Recall that
¥(s) represents sensor outputs, and w,(s) denotes the outputs of the actuator
position and fuel flow servo-loop sensors. Also, (D' V) is the Lc.f. of the engine
without actuator and sensor dynamics (see Sec. 3) and is given by

1

'}_ . -] ;
N _—5+ULH+E' (3.4)

= 1 . i
D— f— [mi—-m*"ﬂf.] UJ- [J.-‘.I}

Dur aim is to determine f{5) and o such that generalized parity vector (GPV)
i) is small under nominal conditions and large when failures are present, fiis)
responds rapidly to failures, and so that each of the six failures should produce
characteristically different parity residuals, thus providing clear isolation.

Let T be an arbitrary 3= 3 nonsingular constant matrix and C., E, denote the
third rows of C and E (see (3.2)), and define

HasT [ el o
fi pdintie] | Es
| o 007, o[ =tal+4) 0
Es=T | 5% ] B=T | TZE

The expression for f was determined by considering the structure of the GE-21
state-space model (3.2) and attempting to achieve as much simplicity as
possible; the remaining definitions are made to simplify the formulation of the
GPV. Premultiplying (3.4) and (3.5) by J(s5) and using (6.2), we obtain

JN =(s+0)"'B,, (6.3)
JD=E +(s+a)7'B, (6.4)

Using (6.3) and (6.4) and the generalized parity Eq. (6.1}, we can derive the
GPY for various sensor and actuator failures:

4. Suppose a failure of type (4. 1) occurs in the ith actuator. Then the GPV
generated due to this failure is given by

1 IT,'[-S_:I
“igt+a’

p, (s)=—B (6.5)

where B,' denotes ith column of B, and a,(s) denotes the scalar Laplace
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transform of the error signal o, (¢). The form of (6.5) is a constant vector B,
times a scalar function of 5; therefore, it iz clear that #, (s} is confined to exhibit
activity along the direction defined by the vector B,' in the GPS. Thus, if the
monitoring system determines that the parity vector is large and nearly co-linear
with the vector #,’, then a failure in the ith actuator is declared.

b, Now we consider sensor failures of the tvpe modeled by (4.2), Equation
i(fi.4) shows that sensor faillures result in a parity vector of the form,

; B, y -
p, (s)= [E,, + ﬁ]s;fah (6.6)

where B, and £ denote the ith columns of B4 and £, respectively, and s;(s)
denotes the scalar Laplace transform of the sensor error signal s:0f). Equation
{6.6) shows that:

i. For failures in sensors 1 and 2, the parity vector p_ (s) lies in a plane. A
failure of the first sensor generates a GPV p_ (s} which is constrained to lie
in the plane defined by the vectors [ty #x, 017 and B, and a failure of the
second sensor generates p, » in the plane formed by [f:q b 017 and 8,5 I
the parity vector is observed (o lie primarily in one of these planes, then the
corresponding sensor failure 15 indicated,

ii. For a failure in sensor 3 of the type (4.2), the parity vector is given by

px._-ﬁﬂ=5.f( = ) (6.7}

5+

which is obtained by substituting (4.3), (6.3) and (6.4} into (6.1). From
(6.7), it is clear that the appearance of a parity vector of substantial
magnitude aligned with the vector B* is indicative of PS3 sensor failure.

It is not difficult to determine the plane of activity for the GPV under sensor 1
ar 2 faillure and isolate faults based on that infermation, as we will demonstrate in
Sec. 6.3.2. However, if the filure s of the bias tvpe, it 15 easier to use the
steady-state behavior of the GPV for fault isolation,

6.2 lsolation using the steady-state GPY  Suppose failures in the above
components are of the step or bias type. Since J{z), Nis)and D{s} are all stable
matrices, we can use the final value theorem to compute p*, the steady-state
parity vector. Failure identification can be accomplished based on the direction
in which the steady-state GPY exhibits activity:

a. Suppose a consktant Was of magmtude & develops on the ith actoator
sensar. Then taking the limit of [s b, 053] (6.5) as s —0 with ads)= b5, we get
b,

p .#:F['SJ: _BHI

W, F : (6.8}

b. If a constant bias of magnitude ¢; develops on ith sensor, then applying
the same procedure to (6.6) vields

B i €
'us.r' = -E'..l: o’

(6.9
where

E,-= [G"Enu =l E,-;:F.-
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From (6.8) and (6.9), it is clear that the steady-state GFVs p * and p > lie in
fixed directions for all six failures under consideration. The directions along
which the GPV appears are defined by the three columns of B, and the three
columns of the matrix B,. We choose the constant matrix T in (6.2) s0 these
directions are well separated and thus isolation is easy. For a choice of o=5 (for
fast response; this is roughly twice the magnitude of the eigenvalues of 4, i.e.,
AA1==2.74, —2.53) and

0.245 1.2556 -0.738
Tr= 0.914 0.744 2.180 |, (6.10)
—0.167 0.124 =3.357

the angles between the column vectors of B, and (of ,+ ) are calculated and
given in Table 6.1. From this table, it can be seen that the reference fatlure
directions exhibit good separation. 1 ~

To mechanize this algorithm, we set up the transfer functions /N and JD
according to (3.4), {3.5), (6.2), and (6.10) to generate the generalized parity
vector (6.1). This vector magnitude is monitored, and a failure is declared
whenever it becomes large compared with the nominal value. In addition, we
incorporate logic to determine when the GPV has achieved steady state, and
implement a projection algorithm to find the angle between each of the reference
directions (columns of B, and B,) and the GPV direction. Failure is then
associated with that sensor or actuator whose reference direction is closest to
the GPV.

Table 6.1. Analytic steady-state angles between GPYV and reflerence
directions (transformed system)

1st reference direction (angles in degrees)
Znd reference Actuator r SENSOT

direction WF36  STP48  AH N2 N2s P53
WEFag 1] (5] ] B2 53 28
STP48 75 0 78 L] 28 Ha
Al 53 78 0 a0 L 74
N2 B2 #a 30 ] 75 75
W25 55 24 a0 75 0 32
=3 28 a4 75 75 32 1

6.3 Simulation results In all of the studies presented in this section, we
induce failures in the nonlinear simulation model that correspond Lo sensor or
actuator faults as defined in Sec. 4 ((4.1), (4.2)). In all cases, the actual input
signals to the engine actuator loops were constant and the engine initial
conditions were chosen to correspond to steady state; therefare, if there is no
fault, the state variables and sensor outputs are also constant.

The errors introduced in the actuator or sensor signals were of two types:
& The “standard” fault was a bias error that ramped up to a steady-state value
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over a one-second interval. The steady-state value is determined by taking a
fixed percentage of the nominal (unfailed) value. In one case, a longer ramp
time (20 [sec.]) was chosen so that an actuator nonlinear effect could be
examined, These studies provided the basis for demonstrating the capabili-
ties af the FIM algorithm based on steady-state GPV direction.

# The second fault considered was the injection of a sinusoidal error signal
having a period (2 [sec.]) that is considerably longer than the time constants
of the engine (about 0_4 [sec. |). This allowed us to show that the steady-state
GPY method is able Lo isolate non-bias actualor faults, and that projecting the
GPY onto the appropriate subspace achieves good sensor FDL, at a modest
cost in terms of added complexity compared with the GPY steady-state
algorithm.

These error models were used lo generate measurement and input data to

test the FDI algorithm presented in Sec. 6.2,

6.3.1 Bias error results  Tables 6.2 and 6.3 dizplay the GPY magnitude and
steady-state angles between the GPV and the failure reference directions for

Table 6.2, Steady-state angles between GPV and reference directions (transfocmoed
system, —50% | ramp failure)

GPMVireference directions (angles n degrees)

Failure Actuator Sengor GPY
WE16 STP48 AR M2 N25  PS3 magnitude
NO FAILURE 34.5 56,5 £0.3 | 6.4 29.1 6.2 2.7E-05
WF36 0.4 5.4 52.3 | B1.7 550 287 1.3E-02
HTT48 74.5 5 77.1 | B&.3 27.6 H&58 1.4E-02
Al 89,2 T4 42.9 | 15.1 546 B30 6.3E-03
M2 g2.0 uib 3.5 | 0.1 747 T45 2.3E-02
M25 .6 276 0.5 | 4.7 0.0 325 4.0E-02
I'53 28.3 a0 75.0 | 746 F2.5 0.0 2.0E-02

Table 6.3. Steady-state anples between GPV and reference directions (lransormed
svstem, —10[%] ramp failure)

GPVireference directions (angles in degrees)

Failure Actuator Sensar GPY
Wr3s  STP48 A3 M2 N25 P53 magnitude

MO FAILURE H.5 G5 BO.3 | 694 21 6.2 2.TE-05

WEIG 0.4 ThT 2.1 | 81.5 554 29.1 2.7E-02
5TPR48 T 1.9 TT.0 | 9.2 20.2 604 2.7E-02
At 710 fil.8 6B | 33,8 422 437 LAE-02
M2 g2.0 HI.6 3.5 o 7Y 746 4. TE-02
MN25 5.6 276 BOG [ 74.7 00 325 T2

PS3 28,3 5.0 75.0 | 74.6 325 0.0 5. 8E-02
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errors of —5[%] and —10[%] of per unit value in each of the six components,
respectively. The failure actually takes 1 second to settle to the steady-state
value af =5[%] or —10[% ] so that transient effects of the fault can be abserved;
for example, see Fig, 6.1, First, we discuss the results presented in Table 6.3;
those in Table 6.2 can be interpreted similarly. Then we will consider Fig, 6.1 in
detail.

When there is no failure, the GPV magnitude is of the order of 107", For a
—10[%] hiaz in any of the components, the GPY mapgnitude increazes hy
approximately a factor of 10%, and —5[%] biases resulted in a minimum GPV
magnitude increase by a factor of 233, Failure detection is thus assured, even
for small errors.

Next, we examine the isolation capabilities of the steady-state
algorithm: Consider actuator 1 failure: for a —10[%] bias n WF36, the angle
between the parity vector and the column vector B,' is 0.8°, whereas the
vectors B, %, B, B,', 8.7, 8.7 are all well separated from the direction of the
parity vector. {The mimimum separation in these hive directions 15 29,17, ) Thus,
a steady-state GPV along B! is clearly indicative of actuator 1 failure, Similarly,
in the cazes where there is a = 10[% ] bias in STP48, N2, N25, or P53, such a
failure is definitively indicated by the parity vector residual being aligned with
8,5 8, B or B? respectively. Disregarding the remaining actuator {AB)
for a moment, we note that the maximum “diagonal” GPV/failure reference
direction angle is 1.9° while the minimum "off-diagonal” angle is 27.6%; this
indicates excellent isolation for the five faulls discussed so far.

Before dealing with the question of fault isolation for A8, we will present time
histories for the actuator 1 fawlt. The first panel of Fig, 6.1 shows the — 10[5%]
error building up in the WF36 (actuator or input 1) signal, and the panel below
shows the corresponding GPY magnitude increase, The upper right panel shows
that the angle between the GPY and the reference direction for actuator 1 very
rapidly drops to near zero, while the remaining five angles between the GPV and
other reference directions quickly settle to large values. Thus, we achieve both
clear and rapid isolation of the fault based on the steady-state GP'V direction.
(Observe that the six angle signals have arbitrary values before the fault takes
place, and thus they should be ignored until the GPY mapnitude excecods a
threshold value. )

Tables 6.2 and 6.3 show that lailures
in the A8 actuator servo sensor are
readily detected but not so clearly iso-
lated. To investigate this problem maore
fully, we simulated smaller bias errors

Table 6.4, GPV/ifailure reference
direction angles, bias
errors in Actuator 3 (A8)

A8 [%] bing]  p _Ias,E'H K l_[—l‘.éf? and —2%) and lﬂundl that the
= izolation becomes less amhbiguous as

=10 B3 the error decreases in magnitude. The

=4 ”: respective angle magnitudes hetween

:‘E 13,, the GPY and the A8 fbilure reference
direction are indicated in Table 6.4,

Clearly, as the error becomes smaller,

the FDM algorithm iz “converging'; we
thus attribute the poor behavior for —5[%] and - 10[%] bias errors to the highly
nonlinear nature of the GE-21 engine.
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Engine input signals Actuator failure angles
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Fig, 6.1, Failure detection time-histories (—10[%] Bias, Actuator 1),

The isolation of failures in AB may not be precluded by the problem discussed
in the preceding paragraph. First, note that isolation for the other five
input/output variables is so good that (for the cases shown in Tables 6.2 and 6.3)
one may safely conclude that if the parity vector magnitude is large and the angle
does not lie very close to one of the other 5 reference directions, then AR {or
some other component for which the algorithm was not designed) has failed.
Alternativelv, if the fault is small or occurs over a long period of time (many
seconds), then it may be possible to take advantage of the fact that the parily
veclor/A8 failure reference direction angle is well behaved for small errors.
Figure 6.2 is included to illustrate this: observe that fault isolation is quite
definite for the first few seconds of the ramp failure.

Another simulation study was cartied out to provide at least a preliminary
aszessment of the rabustness of this FDI algorithm to linearization errors. As
mentioned previcusly, the algorithm was designed based on a linearized model
corresponding to operating point 9. As a test, we changed the nominal control
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Engine input signals Actuator failure angles
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~ GFV magnitude
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LU b

(k, 15.
Fig. 6.2, Slow failure detection time-histories (Actoator 3).
Tahle 6.5, Steady-state angles between GPV and reference divections (transformed

system, —5[%] ramp failure, operating point halfway between points B and
L)

GPVicelerence directions (angles in degrees)

Failure Actuator Sensor GPY
WFis  STP48  Ad N2 N25  PS3 magnitude

MO FAILURE 16.9 87.9 43.7 | 0.1 7.5 451 6.2E-05

WEF36 3.4 TLEB 50.7 LT BT 31 1.0E-02
STh48 Tih4 4.7 75.7 | B8 237 ®.6 1.4E-02
AR 45.4 5.5 7.2 | 3r.7 7h.0 B7.E i D
N2 Bl.8 BT.6 0.3 | 0.2 V4.8 T4.7 PG D
N25 54.7 7.5 8.5 | 4.7 0.1 326 3 EE-D2
P53 28.4 58,0 T4.9 | 74T 326 0. 2 RE-02
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Engine input signals Actuator fatlure angles
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Fig. 6.3. Failure detection Hme-histories {—10[%] Sine, Actuator 1),

inputs to obtain an operating point of the nonlinear model that is half-way
between operating points 8 and 9 and observed the performance of the scheme.
The results shown in Table 6.5 demonstrate that {azide from the AS problem
mentioned ahove) the FDI algorithm continues to provide excellent results.

6.3.2. Sine error results A second investigation was performed, to demon-
strate the significance of the assumption that the failures are of the bias type
(which iz central to the derivation of the steady-state GPV reference directions
for sensors 1 and 2 used in the preceding FDI scheme), and to show that the
more general algorithm which involves projecting the GPY into the appropriate
subspaces (Sec. 6.1) can handle non-bias type sensor faults. To accomplish this,
the errors were assumed to be 10[% | sinusoidal variations rather than biases,
and both steady-state GPV direction and GPV projections onto reference planes
were used for isolation,

The results for this test of the steady-state GPV direction algorithm are
shown in Figs. 6.3 through 6.5; in summary:



(! N, Viswanapisas, J. H. Tavior asn E. C. Luce

Sensor oulputs Actuator failure angles
. _
2 2
B, I
1 1
LI, i ¥
2 1 L
2 7 At
(.75F -
a 3 3
3 i
1 1 i 1 i J
0 2 Yy )
GPV mapgnitude Sensgor falure angles
3 i
0.05F B, 2
0,025 40,
1 1
ul i 1 - |_'|-I I i i
[ B 0, 2.

Fig. 6.4, Failure detection time-histories (= 10[%] Sine, Sensor 1)

a. There is no problem detecting and isolating failures in the WF36 and STP48
actuators or in the PS3 zensor. There are only short-duration “blips™ in the
corresponding angle signal, which occur when the parity vector is small (at
zero-crossings of the GPV); this is illustrated in Fig. 6.3 for WF36. The fact that
the steady-state GPV direction could be used to isolate the P53 sensor fault is a
fortuitous result of the special form of p, 5 (6. 7).

h. N2 and N25 are the elements for which the steady-state GPV reference
directions are not meaningful (see 6.6)). As shown in Fig. 6.4, a sinusoidal fault
in sensor 1 results in a sensor angle that only momentarily dwells near U° at
points where the sensor output is most slowly changing (at the minimum and
maximum point on the sine wave, i.e., at {=1.2 and 2.2 seconds.

c. A# produces poor results (Fig. 6.5), as expected, due to the nonlinearity of
this actuator characteristic,

The ability to handle non-bias failures in the sensors can be regained by
giving up the simplicity of the steady-state FDI algorithm. What is needed (see
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Fig. 6.5. Failure detection time-histories {—10[%] Sine, Actuator 3).

Sec, 6.1) is an implementation of the more general algorithm that projects the
GPV into the appropriate subspace (plane) corresponding to each sensor failure.
To do this, we look for GPV activity in the planes defined by the vectors £, and
B/ (see (6.6)); if the GPV is large and the activity is predominantly in the eth
such plane, the ith sensor is declared to be failed. The results of applying this
algorithm to a sinusoidal sensor 1 fault are portrayved in Fig. 6.6. Note that
sensor plane angle 1 immediately goes to zero, while the rest of the angle signals
are large, thus re-establishing unambiguous fault isolation. The same result was
abained for sensor 2.

In summary, the above results of applying the GFS approach to the GE-21
engine are very encouraging. Failure identification in sensors and actuators was
conducted in a realistic nonlinear simulation environment, yielding generally
good results. The only limitation appears to be due to unavoidable nonlinear
effects in the engine response characteristics with respect to the A8 actuator.
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Fig. 6.6, Sensor failure detection time-histories—MNon-steady-state algorithm {(— 10[%]
Sine, Actuator 1).

7. Conclusions

In this paper, we have developed an elegant new formalism and several
specific methods for fault detection and isolation (FDI} using the stable
factorization framework. We have also discussed the use of various canomical
forms and decoupling techniques to facilitate failure 1solation. The most promis-
ing method, i.e., FDI based on the angle of the parity vector in the generalized
parity space, was tested quite extensively for a GE-21 jet enginge control
system. This FDI scheme was able to identify failures in five of the six
components very reliably and robustly when tested using the nonlinear simula-
tion model, The A8 actuator faults were not so successfully handled by this FIM
approach, because of the nonlinear effect of this input; despite this difficulty,
however, it may be possible to deal with such failures involving highly nonlinear
behavior, as our preliminary results show.

The results presented here could be extended in several ways: (i) the
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7. Conclusions

In this paper, we have developed an elegant new formalism and several
specific methods for fault detection and isolation (FDI} using the stable
factorization framework. We have also discussed the use of various canonical
forms and decoupling techniques to facilitate failure isolation. The most promis-
ing method, i.e., FDI based on the angle of the parity vector in the generalized
parity space, was tested quite extensively for a GE-21 jet engine control
system. This FDI scheme was able to identify failures in five of the six
components very reliably and robustly when tested using the nonlinear simula-
tion model. The AR actuator faults were not so successiully handled by this FDI
approach, because of the nonlinear effect of this input; despite this difficulty,
however, it may be possible to deal with such failures involving highly nonlinear
behavior, as our preliminary results show.

The results presented here could be extended in several ways: (1) the
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generation of robust parity checks for FDI in uncertain dynamic systems, and (ii)
extensions of the results to nonlinear and distributed parameter svstems. Both
af these extensions are possible, since theory is available for dealing with these
issues in this context (Vidyasagar, 1985), and would be valuable in order to
increase the power and applicability of this approach.
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