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Data-Base Management for Computer-Aided Control Engineering

James H. Taylor
ORA Corporation, Ithaca, New York 14850-1313 USA

Abstract: There has been substantial progress made in the past decade in the develop-
ment of analysis and design software for computer-aided control engineering (CACE).
Engineering data-base management (EDBM) for support of CACE has not received much
attention until comparatively recently, however. As CACE environments become more
comprehensive and powerful, and as CACE comes to play an important role in concurrent
engineering practices, the need for keeping track of the models, simulations, analysis
results, control system designs, and validation study results over the control system
design life-cycle becomes more pressing and the lack of EDBM support becomes more of
an impediment to effective controls engineering.

A CACE environment with EDBM as an integral part has been defined and implemented
in a project conducted at GE Corporate R & D called MEAD. The data base is organized
in a hierarchical framework having the levels Project, Model, Attribute, and Element.
The level Project accommodates the control engineer’s natural tendency to group or or-
ganize results according to a “project” such as Flight Control, Power System, . . . or
perhaps more specifically F-16, F-18A, . Within a project, Models (plant models,
control system models, etc.) are the main focus. Each model has two attributes, a
Description and a Result_set. Fundamental properties plus component models (represen-
tations of a plant, compensator, sensor, etc.) comprise the elements of a Description; ele-
ments of a Result_set include any data generated with the model, such as a time-history,
frequency response, LQR/LTR design, etc., plus the information required to define the
result (parameters, algorithmic options, etc.).

The CACE DBM problem is complicated by the fact that system models usually evolve as
a project progresses. It is thus necessary to keep track of which results have been ob-
tained using various instances of a model. In our EDBM system, each model in the
hierarchy is maintained using a version control scheme so that results obtained with
each instance of the model can be unambiguously associated with that instance, thus
maintaining data-base integrity. Two other complications preclude the use of a simple
tree structure for the hierarchy outlined above:

1. Linearization of a nonlinear system produces both a Result and a Component that
can be treated as a model, analyzed and have a Result_set of its own; this relation
is maintained by use of a Reference.

2. Maintaining a component that may be used in a number of models (e.g., the sub-
system Plant may be used in the models Plant_Alone and NL_Fdbk_Syst)
without a proliferation of copies requires a second mechanism we call a Link.

All of these situations are managed in the CACE data-base schema presented below.




1. INTRODUCTION

Software environments for computer-aided control engineering (CACE) have been in a
stage of rapid development over the past decade. Primary emphasis has been placed on
the following aspects:

e improving or extending core CACE capabilities, i.e., nonlinear simulation,
identification, and linear analysis and design in the frequency and time domains;

e integrating core CACE functionality (e.g., nonlinear simulation with linear analysis
and design);

e improved interactive user interfaces;
e introduction of artificial intelligence support or expert aiding; and

e migration to engineering workstations and personal computers for hosting part or all
of a CACE environment.

Given these developments, it is surprising that support for engineering data-base manage-
ment has lagged so far behind. As CACE environments became more powerful in terms
of systems analysis and design capabilities and broader in terms of the variety of CACE
activity supported, the need for keeping track of the models, analysis results, control sys-
tem designs, and validation study results has become more important and obvious. In a
real industrial control system design project, the large number of files generated in the
complete design life-cycle and the relations among these files can be very difficult to
comprehend and manage by manual means. Engineers can successfully manage their
data bases, but the effort and discipline required to manually maintain and document the
files, listings, hard-copy plots, etc. that arise over the design cycle can be prodigious. It
is often the case that, after the passage of a few months, the engineer cannot say exactly
how a given result was obtained and thus cannot reproduce, document or defend it.

Earlier generations of CACE packages provided little or no data-base management sup-
port. It was left to the engineer to decide how to organize data and track the relations
among them. Often organization was based on storage, e.g., data for a project may be
kept in a sub-directory or on a tape separate from data for other projects. Data files for
a project may be distinguished by assigning “meaningful” file names. Some packages
helped by “tagging” data elements of different types by using different extensions, such
as the “.m’ convention of MATLAB or the ‘.d’, ‘.t’ scheme of SIMNON. One early pack-
age (CLADP, [1]) generated filenames by appending characters to a user-supplied ‘Run
Name’. All such support was very rudimentary and left it entirely up to the user to
shoulder the real burdens associated with maintaining the integrity of the data base. The
first effort to track models and results and to integrate EDBM functionality with a CACE
environment appears to be in Bunz and Gutschow [2]. However, the ideas of the com-
plete hierarchy of projects, models, components, and results and of version control were
not discussed.

The specific issues of data-base management that seem to be the most pressing in CACE
are related to maintaining the integrity of the data base. Primarily, this involves being
sure that the model used to generate a result can be identified with certainty and used
again if necessary, being sure that the conditions used to generate each result are docu-
mented, and knowing how models were obtained if they were generated numerically,
e.g., by linearization. This is a much larger task than simply knowing what is in file
refinput_step2.dat in subdirectory [user.fit_ctrl.harrier]! In addition, there are support
functions such as on-line documentation that can add substantially to the value of the
EDBM.




These needs and considerations were factored into the design of the MEAD EDBM, which
was developed from first principles. These also motivated us to define and implement
the EDBM as an integral part of the CACE environment. Specifically, we felt that a sim-
ple “add-on” EDBM would not be able to make the required associations without user-
supplied information that would add unnecessary overhead and discourage the use of the
EDBM. Note that we made the pragmatic design decision not to be concerned with the
exact representation of each type of data element; instead, we used the data elements
created or used by the core CACE packages as a de facto standard and only worried
about content and format when required for purposes of inter-package compatibility.

Rigorous data-base management requirements for CACE were presented in Taylor [3] and
in Taylor, Nieh, and Mroz [4]. Data-base elements were catalogued and categorized, and
the relations among them were established. Then an organization for these elements was
devised. Two approaches for data-base access were considered: query language and
browsing; the latter was selected. An effective user interface for such a system is
described in [5]. In each case the CACE software user was the main consideration; this
involved determining how the data elements are created and used, how the user perceives
their relations, and features that are necessary for “doing the job right”. Some of the
features in the last area include: version control for models that change over the course
of a project, recording the conditions (parameter values, etc.) set up before a result is
generated, and properly maintaining model components that are used in more than one
model. The complete system is described below.

The remainder of this article is organized as follows: An overview of the entire MEAD
CACE environment is provided in Section 2, the magnitude of the CACE problem is
defined in more detail in Section 3, Section 4 provides a formal statement of the solu-
tion, and Section 5 describes the MEAD user interface as it pertains to EDBM operations.
Future EDBM refinements and extensions are discussed in Section 6, and summary and
conclusions are presented in Section 7.

2. MEAD CACE ENVIRONMENT OVERVIEW

The GE MEAD Controls Environment (Taylor and colleagues, [6,7,8]) has been designed
to address the support and environmental issues outlined above while taking maximum
advantage of existing software modules. This software is the successor to a mature
“production” environment prepared for the US Air Force, also called MEAD (USAF
MEAD; Taylor and McKeehen [9]). The basic elements of MEAD systems are:

e a multi-modal User Interface (Rimvall and colleagues [10]) that supports all basic
CACE activity within a point-and-click menu- and forms-driven environment (see
Figs. 7,8 later in this presentation) and also provides other access modes for the
more experienced user (command-driven modes and a macro facility),

e an EDBM (Taylor, Nieh and Mroz [4]) which organizes the user’s work into Pro-
jects which are populated with models, results, and other related data elements,

e an Expert System Shell, which is programmed to perform routine higher-level CACE
tasks that are beyond the capabilities of standard packages and require a level of
heuristic decision-making or iteration (Taylor [11]; this is only working in USAF
MEAD), and

e a data-driven Supervisor (Rimvall and Taylor [12]) that provides a shell for existing
CACE packages for linear and nonlinear simulation, analysis and design, and inter-
faces with the Data-Base Manager and Expert System.




The resulting software architecture is depicted in Fig. 1. The CACE tools (“core pack-
ages”) include the MATLAB™ package for linear analysis and design, and the
SIMNON™ package for nonlinear simulation, equilibrium determination, and linearization.
Other modules are also based on existing software: the user interface was built using the
GE Computer / Human Interface Development Environment (CHIDE; Lohr [13]) which
rests on the ROSE™ data-base manager; the MEAD EDBMS uses ROSE and the DEC™
Code Management System (DEC VAX/CMS™ [14]) for version control; and the expert
system uses the GE Delphi™ shell which rests on VAX™ Lisp. The supervisor and the
front-end of the DBM are coded in the Ada™ language. Note that this architecture and
philosophy represent an instantiation of the Reference Architecture paradigm common to
modern software package design methodology and particularized for CACE by Barker
and colleagues [15]. Architectural design considerations and relations among the MEAD
environment and other major CACE packages are described in further detail in [16].
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Figure 1. MEAD Architecture for CACE

In the course of developing, testing, and evaluating USAF and GE MEAD, we believe that
substantial progress was made in supporting the controls engineer in a number of areas
previously given little or no attention. In particular, the higher-level user interface, the
data-base management scheme, and expert-aiding were noteworthy new contributions.
The MEAD User Interface is much more “user-friendly” compared with those of the

™ MATLAB is a registered trademark of The MathWorks, South Natick, MA; SIMNON is a trademark of
Lund University, Lund, Sweden; DEC and VAX/CMS are trademarks of Digital Equipment Corp., Maynard,
MA: ROSE is a trademark of Martin Hardwick, RPI, Troy, NY; Delphi is a trademark of GE; and Ada is a
registered trademark of the U. S. Government, Ada Joint Program Office.




underlying packages which have rigid command-driven interfaces. The data-base
management capabilities solve important problems associated with version control of the
user’s models and tracking related files and information with rigor - in essence, every
element in the user’s MEAD data base is fully documented. The MEAD expert system
adds yet another area of support, which at this point has not been used to full advantage.

As is usually the case, we have also learned that much more can be done, and that cer-
tain things might better be done differently. The focus of the rest of this presentation
will be the MEAD EDBM concepts and implementations, and on those areas where it can
be modified, extended and improved. A more general discussion of future MEAD
enhancements may be found in [7, 8].

3. THE CACE EDBM PROBLEM MAGNITUDE

We indicated above that EDBM is important. The magnitude of the control engineer’s
DBM problem can best be appreciated by looking at CACE in a larger context than linear
analysis and design. In many cases, the user starts with a nonlinear model of the pro-
cess to be controlled, and progresses through the following range of CACE activity: non-
linear simulation (e.g., model validation and behavioral analysis), trim or equilibrium
determination (defining operating points), linearization, linearized system analysis and
design, nonlinear control system design, and control system validation using both linear
and nonlinear models of high fidelity [17,18]. Much of this activity is exploratory and
iterative in nature. Several systems have been developed that cover most or all of this
gamut - Cul-C + Model-C, MATLAB + SIMULAB, and MATRIXx + SystemBuild are
well-known commercial examples'. However, none of these managed the resulting data
base beyond implementing rudimentary file-naming conventions.

In many applications, control engineering activity develops a substantial data base. In
flight control, for example, a typical data base may contain one nonlinear airframe
model, 20 linearized models (corresponding to 20 points in the flight envelope), 20 linear
control system designs, one or several candidate nonlinear (“full-envelope™) control sys-
tems, and innumerable time-histories and analysis results (step responses, equilibria,
eigenvalues, frequency responses, root-locus data, singular values, . . . ).

The above data-base sketch may be multiplied many times over by two additional fac-
tors: First, in multi-disciplinary applications such as integrated flight and propulsion con-
trol, one can produce an enormous data base by combining 20 flight regimes with 9
engine operating conditions, for example. Second, it is not unusual for the primary non-
linear model of the controlled object to be modified several times over the complete
analysis and design cycle. We can thus ‘size’ the EDBM problem by assuming three
instances of each model and perhaps eight results per nonlinear or linear model on the
average, giving us the final product 3 (instances) x 8 (results) x ( 1 + 20 + 20 +2 + 1
+9 + 9 + 1) (total models) = 1492 files to manage (here we take the best-case assump-
tion that the 9 engine linearizations can be treated independently of the 20 airframe
models - otherwise they would enter multiplicatively, not additively).

As the above cases make clear, CACE project activity can generate hundreds of results
and model files, of which the user may wish to retain and manage a substantial percen-
tage. This may not be a “large” data base in terms of commercial DBM systems, but it

+ Ctrl-C + Model-C, MATLAB + SIMULAB, and MATRIXx + SystemBuild are trademarks of Systems
Control Technology Inc., Palo Alto, CA; The MathWorks, South Natick, MA; and Integrated Systems Inc.,
Santa Clara, CA, respectively.




is neither small nor simple, and is thus difficult for most users to manage effectively
without support. \

4. CACE DATA BASE DEFINITION

As mentioned previously, the CACE user’s data base is traditionally but informally organ-
ized in terms of Projects, Models, Components, and Results. The user often sets up a
workspace for each project (e.g., Project = GE_654), develops models (e.g., Model =
Turbine ) which are comprised of components (e.g., Component 1 = Stator, Component 2
= Rotor, Component 3 = Combustor, Component 4 = Fuel_injector, ...), and which are
used to generate various results (e.g., simulation time-histories, linearizations). This
scheme has been accommodated directly in the basic MEAD data-base tree structure, as
depicted in Fig. 2 [4]. This represents a refinement of the scheme outlined in [3], and
was developed from a careful analysis of the informal organization that is traditional in
the field plus knowledge of CACE work-patterns and data element interrelations.
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Figure 2. Hierarchical Data-Base Organization for CACE




All CACE activity within a project is carried out in the context of Models (plant models,
control system models, etc.). Each model has two attributes, a Description, i.e., a cata-
log of the fundamental characteristics of the model (linear or nonlinear, continuous- or
discrete-time or mixed, etc.) plus a list of the sub-systems or components that comprise
the model and a definition of the sub-system interconnections; and a Result_set, i.e., the
set of simulation, analysis, and design results obtained using the model. Elements of a
Description characterize the system in terms of component models, e.g., representations
of a plant, compensator, sensor, etc.; elements of a Result_set include any data item
associated with the model, such as a time-history, frequency response, root locus,
LQR/LTR controller design, etc., plus the information required to define the result (set-
up parameters, algorithmic options, etc.). Note that we have not defined the data struc-
tures at the element level; in light of recent activity directed at establishing standards in
CACE data structures [19-21] we decided, as an interim measure, to accept the data
structures and formatting produced by existing CACE packages and incorporate data ele-
ment “filters” to transform from one format to another where required.

The most difficult aspect of CACE DBM is maintaining the integrity of the data base in
situations where system models evolve over the term of the project [3]. It is almost
always true that plant models created early in a project have to be modified, either to
reflect additional information (e.g., experimental results), changes in the design of the
plant itself, or the discovery that the original model is not valid over the range of opera-
tion occurring in the validation and acceptance part of the design cycle. In addition,
control system models evolve as the design is perfected. The loss of integrity in the
sense of not knowing which analysis and design results were obtained with which
instance of the model is the most common fault encountered in documenting the control
system design cycle, and the outcome is irreproducible results, unsupportable design deci-
sions, and unproductive reiteration.

The solution to this problem is to be found in the software engineering discipline of ver-
sion control. In our system, each model in the hierarchy is maintained using a version
control scheme such as found in the DEC product VAX/CMS [14], so that system
models can evolve and results obtained with each instance of the model can be correctly
related with that instance. Specifically, each instance of the model is identified by a
name and class number: <model id> = <model name> + <class number>. The
Description of each model instance is maintained in relational (tabular) form in terms of
the Version for each Component model; this is illustrated in Fig. 3. Components are
maintained in the form of file names pointing to the actual data elements that are main-
tained in CMS libraries. Any version of a component can be obtained using a CMS
Fetch command; therefore, any model instance can be assembled for documentation or
further analysis. Note that CMS provides for very efficient storage of the component
versions in one file using a ‘difference’ scheme.

Other problems associated with data-base integrity are addressed by the MEAD EDBM as
follows:

e Traceability between derivative models (e.g., linearizations and reduced-order linear
models) and their parents (the original nonlinear or high-order model) is maintained.
For example, if Lin_Turbine is a linearization of Turbine class=7 at the operating
point Power = 10 000 HP this information is stored in the data base as a Refer-
ence (which is a bi-directional pointer) and Condition_Spec (associated with the
result in Turbine class=7’s data base).




Description: NL Fdbk Syst
System_Type: Nonlinear
Time_Type: Mixed Cont-/Discr-Time
Component_set: Airframe, Ctrlr, Sensor
Connection_Def: NL_Fdbk_Conn
Component— | Airframe Culr Sensor Not
ote
Class: Version Version  Version
001 001 001 001 Yes
002 001 002 001 No
003 002 003 001 No
004 002 004 002 Yes
005 003 007 002 No

Figure 3. Model Description in a MEAD Data-Base

e Single-point storage of components is provided for sub-systems that may be used in
building any number of models. For example, Turbine is the “home” of the com-
ponent Rotor; model TurbCtrl uses this same component by Linking to the com-
ponent stored in Turbine. The idea of a data-base link is adopted from UNIX™,
here, we mean that the same CMS Library file location of the component Plant is
used in any Description of any model containing it. The Link mechanism ensures
that sub-system models can be maintained with integrity.

Both of these features are portrayed in the detailed CACE data-base schema in Fig. 4.

The importance of the Reference feature can be illustrated by considering the flight con-
trol systems design scenario outlined in Section 2: Assume that Plant in Fig. 4
represents a nonlinear model of an aircraft’s aerodynamic behavior. In order to achieve
a “full-envelope” control system design, the standard practice is to define several dozen
flight regimes for different altitudes and Mach numbers, linearize at each flight condition,
perform a linear analysis and design at each point, and combine the set of linear designs
via gain scheduling. In this scenario, there exist perhaps 20 linear models that are used
to generate substantial Result_sets of their own; if it is not possible to trace each linear
model back to its Parent Result (Result set entry for a particular instance of the non-
linear plant model and corresponding to a particular set of conditions such as operating
point), then documenting the design and even performing the gain scheduling part of the
design may be impossible. In the general case, the reference mechanism is the key to
relating linearized models and their associated results with their origin (<model id> and
operating regime) with integrity.

The Link concept is used to solve another integrity problem: model proliferation. It is
difficult enough to maintain and track one particular component model as it is refined
and edited; if several copies of the model exist and have to be maintained as separate
entities by manual means, then the problem is seriously compounded. Our EDBMS
solves this problem by maintaining only one copy of each sub-system model. Every

™ UNIX is a trademark of AT&T.
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Figure 4. MEAD Data-Base with Reference and Link

time it is modified, a new version is created, as mentioned above; each model’s
<model id> is tied to a specific version of each component. Note that each model using
a linked component may or may not have an instance corresponding to each sub-system
version, as illustrated in Fig. 5. While the component is associated with one model, the
fact that there can be sub-system model versions that are unique to any other model pro-
vides no loss of generality. The main care that must be taken in treating linked com-
ponents relates to purging model classes and deleting entire models; for example, if the
model “owning” a linked sub-system is deleted, that component must be transferred to
another “owner” model. The MEAD EDBMS performs these activities automatically.

The lowest level of the hierarchy below Description is directly evident from Fig. 3. The
components of a model exist and are managed in CMS library files that contain code
appropriate to the modeling language(s) supported in the CACE software for simulation,
analysis, and design. Therefore, we have not provided examples of these data elements.
The elements under Results set are less traditional in their organization, as shown in the
result tabulation in Fig. 6. The result itself (whose name and type are indicated in
columns 1 and 2) is clear enough; it corresponds to a file containing time-history data,
eigenvalues, etc. The next item is the Condition_Spec entry in column 3 of the table.
This is required to track the one remaining factor that governs the integrity (reproducibil-
ity, etc.) of the CACE data base, i.e., the conditions under which the result was obtained.
This is especially important for nonlinear aspects of CACE, such as simulation, equili-
brium determination, linearization, etc. where the user may specify arbitrary initial con-
ditions, input amplitudes, and parameter values, and use various algorithms and
specifications (e.g., integration algorithms, tolerances and iteration limits). This informa-
tion is maintained in a separate file that the EDBMS tracks and associates with one or



more item in the Result set, as illustrated. Finally, the date the result was created and
the Yes/No flag indicating the presence of notes associated with each result (indicated in
last two columns) are also straightforward.
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Figure 5. CACE Models with a Linked Component

Result_set: model id = NL_Fdbk_Syst + Class03

Name Type Condition_Spec  Create_Date Note
Cruise 20k Mp6  Simulation CS001 26-Mar-1991 09:44  Yes
Cruise_20k_Mp7  Simulation CS002 27-Mar-1991 11:17  No
Cruise 20k Mp7  Trim CS002 27-Mar-1991 11:52 No
Cruise 20k Mp7  Linearization ~ CS002 27-Mar-1991 11:57  Yes
Cruise 20k Mp8  Simulation CS003 27-Mar-1991 13:17 No
Cruise 20k Mp8  Trim CS003 27-Mar-1991 13:29 No

Figure 6. Result_set in a MEAD Data-Base

5. CACE EDBM USER INTERFACE

The motivation and design of the EDBMS are primarily based on considerations of data-
base maintainability and integrity. It is important to note, however, that the acceptance
of the EDBM is strongly influenced by the mental and operational overhead associated
with its use. We have made every effort to minimize such overhead; for example, as
shown in Fig. 7 (a literal screen dump), saving a result in the data base is simply accom-
plished by clicking on ‘Save’ and supplying a suitable name in the form that appears for
this purpose. Furthermore, our experience has shown that a well-designed interface can
even enhance the effectiveness of the CACE environment, by making unnecessary detail
transparent to the user and by making certain operations more naturally “object-
oriented”, as outlined below.
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Figure 7. MEAD Simulation Form with ‘Save’

Several examples of “information hiding” are implied in Figs. 3 and 6, where it may be
observed that names are assumed to be supplied by the user wherever possible (e.g.,
NL Fdbk Syst, Cruise_20k_Mp6), while information such as file physwal location (disk,
subdlrectory, name) is not displayed or needed. The file names are in fact based on
file-naming conventions that create unique designations that encode project, model_id,
component_id, result_type etc. and thus (as is often true with user-supplied file names as
well!) difficult to remember - but only the EDBMS needs to keep track of this. Also, the
user only needs to know whether or not a note exists (Yes/No in the last column of
Figs. 3, 6); the EDBM can locate it for display if the user requests this action. An
example of an objected-oriented action that is enabled under the EDBM’s user interface is
the configuration of a model (described below).

As mentioned previously, the MEAD data base is accessed by a Browsing Facility. Fig-
ure 8 depicts an EDBM Browsing Screen (also a screen dump), which shows that ele-
ments of the user’s data base are accessed by point-and-click operations on a “selection
form”. This allows the user to display, annotate, purge and delete items very simply.
More specifically, the most powerful browser is supplied for models, as shown in this
example; the buttons across the bottom include: ‘ACTIONS’ (which brings up another
row of buttons listed below), ‘Descript’ (which drops down for browsing at the Com-
ponent level), ‘Results’ (which accesses results for a particular model instance), ‘Edit



Note’ (whereby the user can add or edit notes relating to the model), ‘Dele Note’ (to
delete same), ‘Dele Class’ (to purge a specific model class), ‘Dele Mod’ (delete all
instances of the model), and ‘Done’ (move back up to the Project level). The ACTION
button replaces these with: ‘BROWSE’ (toggle back), ‘Edit Model’, ‘Update Class’ (once
the user has edited one or more of the model’s components, create a new model class),
‘Config Model’ (load the model in the appropriate core package for immediate use),
‘Create Model’, and (again) ‘Done’.

Name J l Classes Type Created Updated Notes Results
Olinplint | i ABCD 24-NOU—1986 24-NOU~1989 09:34 Y Y
Otinpple5S t ABCD 1-DEC- 1989 1~DEC- 1989 22:11 N Y
O!linppb4 1 ABCD 25-NOV-1989 25-NOU-1989 16:43 v Y
Onipint 1,2,3 SIHNON 21-NOU~1989 26-NOU-1989 18:26 Y v,Y,Y

B nippfbs 1 SIMNON 26-NOU-1988 27-NOU-1989 19:02 N '
ACTI1ONS ]Descript IResuHs lEdit Hote lDe!e Note IDele Class Iﬂele Hod lDone
[Context: linear tallinn nlppfbs 1 ]
BROUSE lEdit Hodel [Update Class IC;nfig Hodel lCreate Hodel I.bone I

Figure 8. MEAD Model Browsing Form

Every level in the data-base Browser is encompassed by the Note Facility, which permits
the user to store information/on-line documentation for any given project, model, com-
ponent, or result in the data base. Headers are automatically generated to uniquely iden-
tify the element to which a note refers, and time-stamps are included whenever a note is
added or modified.

6. DATA-BASE MANAGER IMPROVEMENTS AND EXTENSIONS

As powerful and effective as the MEAD EDBMS may be, the user (and developer) inevit-
ably wants more. The main deficiencies of the present version of the EDBMS are that it
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is somewhat limited in terms of data manipulation, it is not easy to search for data ele-
ments, and it is restricted to access by a single user. In addition, there are some aspects
of support that are only partially addressed. These shortcomings can be alleviated by:

e making the EDBMS more open and flexible - e.g., allow the user to rename, move,
compare, and search for specific data elements, and permit the interactive display of
notes;

e complementing the point-and-click interface by adding other access modes;

e extending the Notes Facility so the on-line documentation of the user’s design
activity can be better supported, including automatic document generation; and

e adding functionality to permit safe and flexible multi-user access.

6.1. Flexible Data Element Manipulation

Renaming and moving data elements are elementary functionalities that are easy to
implement. (This may sound trivial - but users typically do become dissatisfied with the
original name they gave an element or with where it was placed, and are then very frus-
trated if such a change cannot be done.) Any element can be renamed (as long as name
conflicts are avoided), and moves can be permitted with the following limits: Results
cannot be moved from one Model instance to another, Components cannot be moved to
a Model where they are not used (in other words, a Component may only be moved
from its “home” to another model that uses it via the Link mechanism mentioned
above). Models (together with associated components and results) can be moved arbi-
trarily among the user’s Projects.

Comparing data elements can be done in several senses. At the simplest level, one
would like to compare various time-histories obtained with a model or several models by
cross-plotting the results; this is trivial. For higher-level comparisons, it would be help-
ful to have an object-oriented system, so each element has a method associated with the
operation of comparison; for example:

e Component Compt 0l can be compared with Compt 02 to see how they differ
(these elements could be different versions of the same component or merely similar
components); this could be done on the data level (A,4 might have different values)
or attribute level (e.g., by comparing their Bode plots),

e Result 01 can be compared with Result_02 to see how they differ (again, either at
the data level by using an ASCII differs utility or at the attribute level by cross-
plotting the results or determining mean square error), and

e Result 01 can be compared with Result 02 to see how they differ in their
definition (e.g., Resultl might differ from Result2 because Resultl was obtained
with gain K,3 = 1.5 and Result2 corresponds to gain Koy = 2.33 - this can be
ascertained from the Condition_Spec).

6.2. Improved Data Base Access

Adding other modes of access to the point-and-click interface would do much to open up
the MEAD user’s data base. At present, the user has a limited “window” into the DB,
e.g., a Browsing Facility Screen may display all the models in a given project (Fig. 8),
or all the results for a given model class, and that is all. One way to facilitate finding
data elements by name would be to incorporate a way to portray the entire user’s data-
base tree in a graphical (scrollable) form that conforms to Fig. 5. Such a display would
allow one to determine which project contains Turbine much faster than by searching the
project screens in the DB Browser one after another until it is located.




There are many cases where a command-mode interface would be still more effective.
For example, a simple query language could be used to find: all simulation result(s) for
all classes of model Turbine with a step input of amplitude WF = 2.33 much more
expeditiously than browsing. Perhaps a limited subset of SQL (Standard Query
Language) would be a good choice for this use.

6.3. Improved On-Line Documentation

The Note Facility can be made much more accessible if notes could be displayed or
modified from the current screen rather than from the Browser (Fig. 8). For example, if
a context-sensitive ‘Note’ button were always available, then the user could:

e click ‘Note’ immediately after configuring a model to annotate it,
e click ‘Note’ immediately after saving a result to document it, and

e click ‘Note’ immediately after “modelizing” a result (installing a result as a model
in the data base) to annotate the new model.

Further extensions could be implemented to create an auto-documenting environment.
For example, MEAD presently does not prompt for notes as the user works and produces
new data elements. In addition, the Notes Facility makes no attempt to relate individual
note files to an overall document for a project or model. If an auto-documenting
environment were implemented and AUTODOC were turned on, then a document frame-
work could be created from templates and every user action that results in saving a data
element could be recorded in that report and the user could be prompted for
comments /text blocks to narrate the course of the effort. Organizations that require
standard report formats and design approaches could thereby capture much of the
required documentation material on-line.

6.4. Multi-User Data Base Access

Multi-user access to a single MEAD data base is the most important and substantial
extension of the MEAD EDBMS. This would allow several engineers to work on the
same project without the duplication of data (models etc.) and the corollary problems of
maintenance and coordination. The main issues involved in developing multi-user data
bases relate to safety: How can users share models and still be confident that they know
precisely what they are using (version and class control provide some support here), and
how can users update models safely (e.g., modify and create new classes without using
stale versions of components); software engineering tools exist to solve this problem.

Preliminary thinking regarding opening the EDBMS to multi-user access was presented in
Taylor, Nieh and Mroz [4]. The layer Sub-project was proposed in addition to those
shown in Fig. 5, to accommodate a project leader (working at the project level) and
other controls engineers working in individual workspaces corresponding to each sub-
project. With this extended hierarchy, standard software development tools could be
used to allow the leader to maintain the integrity of the overall data base and to control
access to the various data elements. For example, DEC CMS (which the USAF MEAD
EDBMS uses for model version control) supports the following (DEC, [14]):

storing elements in a library, fetching elements for modification in the user’s
workspace, controlling concurrent changes to the same element, merging con-
current changes to an element, creating successive versions of an element, com-
paring two versions of a library element, relating library elements into groups,
defining classes corresponding to versions of a set of elements, tracking which
users are working on various elements from a library, and maintaining a historical
record of element and library transactions.




Other higher-level functions can be performed on CACE data elements to support multi-
user access rigorously. For example, the DEC Module Management System (DEC
VAX/MMS™ [22]) automates and simplifies building software systems based on source
code, object libraries, include files, compilers, and compilation and link options. This
would further discipline and rigorize the building of complicated models. The above
examples are based on VAX VMS tools; suitable support software is also available under
UNIX, e.g., the Configuration Management Facility (CMF™) provides similar functional-
ity to CMS + MMS.

7. SUMMARY AND CONCLUSIONS

The introductory discussion attempted to demonstrate that rigorous engineering data-base
management for computer-aided control engineering is both important and achievable. A
hierarchical organization of CACE data base elements was presented, and mechanisms for
maintaining data-base integrity were described. The importance of integrating the EDBM
with the rest of the CACE environment was also mentioned, and the architecture and
interface design that accomplish this were discussed. All of these concepts have been
implemented and proven to be effective in the two MEAD environments.

Several areas of refinement and extension were outlined in the preceding section, to
round out the concepts actually implemented in MEAD. It is hoped that these contribu-
tions will serve as the basis for more supportive CACE environments in the future.
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