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STABILITY REGIONS FOR THE
DAMPED MATHIEU EQUATION*

JAMES H. TAYLOR anp KUMPATI S. NARENDRA+Y

1. Introduction. The stability boundaries of the undamped Mathieu equa-
tion, X + (@ — 2qcos2f)x = 0, in the parameter space (a,g) are well known
(1], [2]. The addition of a small positive damping term, 2(x, effectively increases
the area of stability in a manner that is quite difficult to ascertain exactly using
classical techniques.

The first critical region in the undamped case occurs at @ = 1; the effect of
varying the coefficient of x at twice the natural frequency of the time-invariant
(¢ = 0) portion of the equation is to produce instability for any g # 0. As this
is not the case for { # 0, the first concern of this paper will be to determine the
stability boundary g(a,{) in the vicinity of a = 1 by the perturbation method.
This will serve two purposes: the exact boundary at @ = 1 will provide the basis
of comparison of the results obtained using Lyapunov’s direct method, and this
analysis will demonstrate the difficulty of establishing a large area of stability
by classical techniques.

In the main part of this paper, three stability theorems are presented and
applied to the damped Mathieu equation. Again the purpose of this analysis
is twofold : first to establish the stability of the solutions of the damped Mathieu
equation over a sector in the g, g-plane, and to provide a realistic basis for the
comparison of the efficacy of each theorem.

Finally it is the authors’ intent to demonstrate the power of these quite
useful and general methods for the stability analysis of linear time-varying systems
of the form defined in § 2. Furthermore it should be pointed out that it is not
difficult to generalize the theorems stated herein so that they can deal with the
class of nonlinear time-varying systems,

p(D)x + k(1) f[q(D)x] = 0,
where f(-) is a continuous first and third quadrant nonlinearity, i.e., wf(w) > 0

for w # 0, f(0) = 0 (see [3}-[6], [8)).

2. System representation. In the theorems that follow, a linear system with a
single time-varying parameter will be assumed to be described by the differential
equation

2.1) [p(D) + kit)g(D)]x = 0,
wherep(D) = D" 4 a, D"~ ' + --- + a,D + a,,q(D) = h,D" ' + -+ + h,D + h,,

and D" represents the operator d”/di™. The polynomials p and ¢ are assumed to
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have no factors in common, and all roots of p(D) = 0 have negative real parts.
It is assumed that 0 < k(t) < K for all t and that k(¢) is absolutely continuous.

A useful alternate representation separates the system into a time-invariant
plant, the input of which is related to its output through the time-varying gain
k(t):

Plolt
(2.2) 6(s) = L9 _ ZLo]
pls)  Zle(t)]
s is the Laplace transform variable.
In the notation of (2.1), the damped Mathieu equation is

e(t) = —k(t)a(t);

(2.3) X + 20% + [a — 2gcos 2t]x = 0,
or
(2.4) G(s) 1 k(t) = (a — ) — 2g cos 2t

TS 2As+ S

in the latter notation, where 0 < § < a — 2g to ensure that k(t) > O for all ¢
and that the roots of p(D) = 0 have negative real parts (G(s) is a stable transfer
function). It will be assumed that { is small ({ < 1) and that a = O(1) > (.

3. Stability theorems. The following theorems provide sufficient conditions
for the stability of systems governed by (2.1) or (2.2) in the notation of the latter
formulation.

THEOREM 1. (see [3], [4]). The system as defined in § 2 is asymptotically stable
if the Nyquist plot of G(jw) lies entirely to the right of a vertical line through the
point (—1/K, 0).

TueoreM 2 (see [5]). The system as defined in §2 is asymptotically stable if
a 1>0 exists such that [1/K + G(s)]-(s + A) is strictly positive real
(Re[1/K + G(jw)](jw + 4) > O for all real w) and if

dk k
T < _ =
(3.1 I s 2lk( 1‘ K) Jfor all t.

THEOREM 3 (see [8]). The system as defined in § 2 is asymptotically stable if
G(s — p) is a stable transfer function, a A > 0 exists such that [G(s — p) + 1/K]
-(s + A — p)is strictly positive real and

_ i k 1 dk
(3.2) g(t)=sgp{—2p,[—2/1(1——l_€) +Eﬁ]}
satisfies
(3.3a) J g)dt = —
or

T
(3.3b) J g(tydt < 0,

0




where (3.3a) is to be used if k(t) is aperiodic, and (3.3b) is to be used if k(t + T) = k(t)
forallt.

No proofs will be given here, as it is not the intention of the authors to develop
new theory in this paper. The following comments are included only to provide
historical insight, and not as a rigorous basis for the theorems.

Theorem 1 was developed by Narendra and Goldwyn [3] using V(x) = x"Px
as a Lyapunov function candidate, where P is a constant positive definite matrix
(xTPx > 0,x # 0, denoted more simply as P > 0) and x is the n-dimensional state
vector describing the system behavior. It was shown that a P > 0 did exist such
that V (the time derivative of V(x) evaluated along the system trajectories,

V = (VV)Tx) was negative definite for any k(o,t)e (0, K) for all ¢ and ¢ if the
conditions of Theorem 1 were satisfied, thus establishing the stability of the
system by Lyapunov’s direct method. In this paper, k is assumed to be a function
of time only.

The well-known Popov result ([12] or.cf [9]) was first generalized to apply
to nonlinear time-varying situations by Cho and Narendra [5] using the passive
operator technique; a similar result was obtained by the authors [6] using
Lyapunov’s direct method. In this latter proof, the Lyapunov function candidate
was a generalization of the Lure-Postnikov form used by Popov, viz,,

V(x,t) = xTPx + 2k(t) f ’ f(w) dw,
0

where ¢ = g(D)x. In the special case that f(w) = w, this reduces to V(x, t) = x"Px
+ka?. Brockett and Forys [7] originally obtained this theorem in its linear form.
It is evident that in the use of this V(x, 1), dk/dr enters into ¥ and thus must be
constrained by (3.1). ’

Theorem 3 is a direct generalization of Theorem 2, where the theorem of
Lyapunov is supplanted by the special case of a theorem due to Corduneanu
(cf. [10], [11]), which replaces the requirement V < 0 with V < g(t)V, where
y = g(t)y must be a stable differential equation. This yields the integral constraint
(3.3a), (3.3b) of Theorem 3.

4. Perturbation analysis. In the undamped case, the solutions of the Mathieu
equation are unstable for any g # 0 if a = 1. The stability boundary in this
neighborhood is to be determined if { # O.

The damping { ({ < 1) will be used as the perturbation parameter in this
analysis. It will be seen that on the boundary, g§ = 0({), so define g = p{. Sub-
stitute x = xo + {x; + -++,a =1+ {a, + --- into the differential equation and
equate terms of equal powers of {:

(i) {%:%o + xo =0,

(i) ¢Y:%, + x; = [2pcos 2t — a{]xe — 2%,.

The solution of (i) (the generating solution) is

Xo = Bysint + Cycost;




substituting into (ii) and using standard trigonometric identities, we have
Xy +x; =[—(ay + p)By + 2Cq]sint + [—2By — (a; — p)Cy) cost
+p[Cy cos 3t + By sin 3¢].

The secular driving terms may be eliminated for some (B,, C,) other than the
trivial solution (0, 0) only if
—(a; + p) +2
e =ai -p*+4=0,
-2 —(ay — p)
thereby ensuring stability to the first approximation. Hence in the neighborhood
of a = 1, the stability boundary is defined by the parabola

4.1 @8)* = (a — 1 + (207

It is to be noted that the parabolas are asymptotic to the lines g = +|a — | which
are the stability boundaries for the undamped case to the first approximation. It
should be stressed that this boundary is only valid in the small region where
la — 11 =0(). Ata=1,q% = 2L ’

5. Application of the stability theorems.

Application of Theorem 1. 1t is necessary to find I'* = min,, I'(w?) = min,,
x {Re G(jw)} ; then by Theorem 1, the solutions of the damped Mathieu equation
are stable if k(t) < — 1/T"*. By inspection,

" é— w?
M) = 5= o?) + QL)

It can be seen that
dr_ 20[(d — w®)* — (20)*5)
do [0 — 0®) + (2w)*]?
which has zeros at w? = /8(,/6 — 2¢) and w2 = (/8 + 20). By inspecting

the sign of dI'/dw in the vicinity of w, and w,, it can be seen that w, corresponds
to a maximum, and w, to a minimum. Thus

-1
I* =Tw}) = ——F——,
VIR
and it is required that k(1) < 4(:[\/3 + {]. Define g} to be that value such that

max {k(t)} = (a — 8) + 2q% = 4([/5 + {;

Theorem 1 then guarantees stability for any

a<qt=2L/5+ 0+ 45— a).

The parameter ¢ is still unrestricted in the range (0,a — 2¢), so it may be
chosen to maximize g¥. By inspection, dg*/06 > 0 so take.d to be as large as




possible. This yields
(5.1) gt ={a - )" = L/,

which defines the stability boundary in the parameter space (a,q). At a = 1,
qf ~ {, which is just one half of the answer obtained using the perturbation
method.

Application of Theorem 2. For this analysis, it is instructive to interpret (3.1)
as a phase-plane restriction on k(t); see Fig. 1. It is evident that the phase-plane
plot of (@ — 8) — 2g cos 2t is an ellipse as shown, having as its major axis the
vertical line through the point (@ — 4, 0). Thus to obtain the maximum value of g
under the constraint (3.1), it is heuristically clear that one should choose

dt STABILITY REGION
BY (3-1)

K k(1)

k=(a-8)
Fig. 1

K = 2(a — ¢). This can be shown formally, but it is beyond the scope of this paper
to do so. Define 2* to be that value of A such that (G + 1/K)- (s + ) is marginally
positive real and g% to be that value of g such that k < 2A*k(1 — k/K); clearly
by Theorem 2, the system is stable for all g < q¥. With K = 2(a — §), and defining
(a — 8) = 204, we have

G+i _ s + 2Ls + (a + 2aq)
K| doq s* + 2Us + (a — 209)

where by inspection 1 < o < af(2g). Inspect h(w?) = numerator {Re [(G(jw)
+1/K)-(jo + A)]:

_ Augl

hw?) = w* — 202 [a -2 T } + [@® — (2ag)?].




It is well known that x> — 2Bx + C > O for all x = w? = 0if B2 = C, so

4agl
)“*

[(a —20%) — J = (a® — (29)))'

ensures that G(jw) - (jo + A*) is marginally positive real. Thus

2% — dagl
) T (a— 203 - (@® - Qag)H)'"”

so (3.1) yields the requirement that

f(x) = sin x < 2g*(

7 — cos?x = (a — 200 —(a® = a7 forall x =2¢

It is now necessary to determine f* = max,_ f(x):
y . x

df _ [(e® — 1) — sin” x] cos x
dx [a? — cos? x]? ’

which has six zeros: x; = /2, x,€(0,n/2) and x, € (n/2, n) such that sin x,
= sin x3 = («*> — 1)"/? and three more which need not be considered, as f(x) < 0
for those values. It is evident that

(i) x, is a maximum only ifa? — 1 > 1 ora < \/5

(ii) x, and x; are equal maximaife®? — [ < lorea < \/5
So

1
L 2
(5.2 * 2 — 12 l<a<y2
5.2) f*=
1
Wi

ﬁ§a.

o

- In order to avoid unnecessary complexity, it is useful to approximate

2
(@ — Qag)"? ~ a[l - 1(@) :l
2\ a

for which it is required that (2ag/a)®> < 1, which will be seen to be valid. This
yields

2q3¢
(a/2)(20q%/a)* — 2

First consider o > ﬁ ; we desire to maximize g% defined by (5.3) in this range;
substituting (5.2) into (5.3) and solving for g% yields

1o[{12 1\
<l [ 2]

By inspection g% decreases monotonically as « increases, so the maximum must

(5.3)

e




lie in the range 1 < o < ﬁ In this range,

1/2
as - C—i‘[(az — )2 4 ((az -1+ 1a2) }
o a

and

0q5 [2 — (1 + 1a)l(o® — Y2 + [2 — 02J((1 + la)s? — 1)!12

1
2 o (e — )((1 — 1/a)? — 1)172 ’
which is positive at # & 1+, negative at ¢ = ﬁ and zero at o defined by

2—(1+ a3 ?> (1 + Yayud — 1
o — 1 B a2 — 1 ’

the solution oy = (1 + a/(1 + a))? is in the range (1,\/5) for all positive a.
The corresponding maximum value of g% is

(54) qf = {(a(l + a))'/2.

Since for large a, g% = (a, it can be seen that the area of this stability region
is much larger than that obtained using the circle criterion; e.g., even at a = 1,
g = \/EC. Since g3 = O(af) for a = O(1), and « < /2, the assumption that
(2ag/a)® < 1 is valid.

Application of Theorem 3. As this theorem is still more complex than the
preceding, it will be assumed that K = oo for the sake of simplicity. Hence A must
satisfy

Re {G(jow — p)-(jo + A — p)} > 0 for all real w.

As before, define 2* to be that value of 1 such that G(s — p)-(s + A — p) is
marginally positive real; then g% as that value of g such that

fT *t)dt =0, where g*(r) = 2p; 2)*+i%
Og =\, g = sup 0, ! Xall

Then for any g < g3, Theorem 3 ensures the stability of the solutions of the
Mathieu equation.
By inspection, G(s — p) is stable if (i) p < £ and (ii) 5 > ¢{? and further

s + (A* —p)
s+ (20— 2p)s + (6 — 2Lp + p?)

Gls —p)-(s+2*—p)=

is of the form

s+ a
s>+ bs + ¢

where a, h and c are positive if 2 > p and p < {. This function is marginally




positive real if ¢ = b, so (iii) A* = 2{ — p. The requirements (i) and (iii) are satisfied
if
p= (1 - a)ca

(5.5) |
A= 1+ o), O<a=1.

" Thus

- _ iqsinZt
g(t) = sup {—2(1 — o, [—2(1 M 2qcos2t]}'

Since one may choose & ~ {* < a and it will be seen that g < g% = O(la) < a,
g(t) may be simplified by setting a — 6 — 2q cos 2t ~ a. Hence
r

g(t) = sup {—2(1 — o) —2(1 + o)t + iaqsin 2tJ}.

The form of g(t) is shown in Fig, 2.

X

() /I\ /’- t
x=IO \xa'n' /
——[-20-a)t}
/

— — — - — 7— —{~20+a)t}
\ /

A
\J/

g(t) [SOLID CURVE]

X

FIG. 2

It is evident that

T X1
(5.6) f g(tydt oc I E_[ {—2(1 + ) + 4—;1008 x} dx — 2(1 — a)l(m — xy),
0

0

where x,, 0 < x,; < n/2, is defined by

21 — a)C =21 + o)l — %cos X,

or

ala
COoSs Xl = —.
q




Thus

q 2 i/2
[ = —2n + 2al(n — 2x,) + 4((—) — (a()z) :
a
Since it is desired to choose o so as to render I as negative as possible, it is necessary
to inspect dI/de:

ol
da

ox 4?
R N

Substituting
0x, —{

o ((qfa)? — @D

yields 61/da = 2{(n — 2x;) = Ofor all x, € [0, /2], so clearly I is made as negative
as possible by setting oo = 0+. This yields I ~ 4q/a — 2={ which is negative for
all ¢ < g3,

.
q% = sad.

2
It would appear that for a < a, defined by (a(a + 1))/* = (n/a)a, or
ay = 0.681, Theorem 3 yields a smaller value of g* than Theorem 2. This occurs
because it was assumed that K = oo, which is extremely restrictive for a = 1 or less.
It can be seen, however, that as p — 0, the stability conditions of Theorem 3
become those of Theorem 2. Hence since Theorem 2 can be shown to be a special
+ case of Theorem 3, it is justifiable to state that g% cannot be less than g%, or

(ala + 1)'?,  a < ao,
(5.7) B=\n
iaC, a=ag.

The three stability boundaries are shown in Fig. 3.
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6. Conclusions. Each theorem presented provides sufficient conditions for
the stability of a linear time-varying system of the general form defined in §2. In
applying them to the damped Mathieu equation, which is of quite wide current
interest, it is felt that the following contributions have been made:

(i) Although the stability boundaries for { = 0 are well established, the
critical regions a = 1,4,9 - - - for { # 0 have been largely unexplored. (McLachlan
in [2] has determined a few such curves at @ = 1 and 4 by investigating the exponen-
tial growth of the solutions of ¥ + [a — 2qg cos 2t]x = 0, which of course is
equivalent to determining the stability of the { # 0 case).

(i) Three quite general theorems establishing the stability of linear time-
varying systems have been applied, and it has been demonstrated that as the
sophistication (and hence computational complexity) increases, the resulting
parameter constraints become less strict. This is evident in Fig. 3; thus this study
provides a rough measure of “merit” for these theorems.

(iii) It is clear that at @ = 1, the Corduneanu—Popov theorem gives a result
that is /4 of the necessary and sufficient stability conditions as found in § 4; this
is the best result obtained by using a general theorem of this type to date.
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