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This paper deals with the problem of decoupling a class of linear time-varying multi-
variable systems, based on the defining property that the impulse response matrix of &
decoupled system is diagonal. Depending on the properties of the coefficient matrices
of the vector differential equation of the open-loop system, the system may be uni-
formly or totally decoupled. The necessary and sufficient conditions that permit a
system to be uniformly or totally decoupled by state variable feedback are given. The
main contribution of this paper is the precise definition of these two classes of decoup-
ling and a rigorous derivation of the necessary and sufficient conditions which show the
necessity of requiring that the system be of constant ordered rank with respect to
observability. A simple example illustrates the importance of having several defini-
tions of decoupling. Finally, the results are specialized to the case of time invariant
systems.

1. Introduction

The problem of decoupling time-invariant multivariable systems using
state variable feedback was solved partially by Rekasius (1965) and completely
by Falb and Wolovich (1967). Further refinements and improvements can be
found in the works of Gilbert (1969), Gilbert and Pivnichny (1969), Wonham
and Morse (1970) and Silverman and Payne (1970). The results of Falb and
Wolovich (1967) were extended to the case of time-varying systems by Porter
(1969) and Viswanadham and Venkatesh (1969).

The aims of this paper are to more rigorously define the decoupling problem
in terms of the impulse response matrix, and to derive necessary and sufficient
conditions that permit a system to be uniformly or totally decoupled by state
variable feedback. The definition of each class of decoupling is stated in
terms of the impulse response matrix which plays a central role in the subse-
quent derivations. Yet it should be stressed that the final results (theorems
2 and 3) are dependent only on the coefficients of the state vector differential
equation.

2. Basic definitions

The primary system representation considered is specified by the vector
differential equation
dz(t)
dt

= A@®)a(t) + B(tyu(t),
(1)

y(&) =C()a(t),
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where 2(¢), an n vector, is the state of the system at time ¢, u(f), an m vector, is
the control input and y(¢), an m vector, is the output. A(¢), B(t) and C(t) are
matrices of order compatible with vectors z(¢), w(f) and y(f), continuously
differentiable (2n — 1), » and 2n times respectively.

The impulse response matrix is defined by

cHyo, r)B(r), t=,
Wi, r)= { } (2)

0, t<T,

where ®(f, 7) is the transition matrix associated with A(¢). From (2) the
response at the output y; due to an impulse 8(r) at input u; is defined by

Wt m)y=c;(2)D(L, ‘r)bj(*r), tzT, (3)

where c,(t) is the ith row of C(t) and b,(7) is the jth column of B(r).
The objective is to decouple (1) by using the feedback law

u(t) = F(t)(t) + Gt (), (4)

where w(t), an m vector, is the reference input. Substitution of (4) into (1)
yields

L0 — L4 + BOFORO + Bo) St
dt (5)
y(t)=Ct)x(t).
Thus, if the matrices for the closed-loop system are denoted by
A2 A1)+ BE)F(),
(6)
Be 2 B(H)G(t),

the definitions (2) and (3) pertain to the closed-loop system by replacing
A(t), B(r), CO(t), ®(t, v) and W(t, 7) by A°(t), B(7), Ct), ®°(¢, ) and We(t, 7)
respectively ; in particular,

C)0°(, 7)B(r)G(r), t> 1,
Wc(t, 7') = } (7)

0, t<r.

Various types of decoupling may be defined in terms of the elements of the
closed-loop impulse response matrix We(t, 7).

Definition 1
The closed-loop system (5) is uniformly decoupled if

(i) Wy, r)=0"foralltand , 245 ;
(ii) W, (¢, 7)#0, for almost all {> 7 and for all 7.

Definition 2
The closed-loop system (5) is totally decoupled if

i) Wyot, r)=0for allt and 7, i#j;
(i) W,°@, ) is non-zero for almost all ¢ > v and for almost all .
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These definitions of decoupling are all consistent with the intuitive defini-
tion : ¢ A plant is decoupled if the i¢th input affects only the ¢th output ’. The
various conditions on W ,,°(#, 7) determine the manner in which w; affects y;(f) ;
the system coefficient matrices determine the class of decoupling that may be
achieved by state variable feedback. 1In the case of time-invariant systems all
these definitions coincide since the impulse response is a function of (¢ — 7).

It may be noted that uniform and total decoupling are not the only two
types that may exist in a time-varying system. Other types of decoupling,
which are more general than defined above, may exist. The following example
demonstrates one such type which does not fall within the ambit of uniform or
total decoupling. Consider the decoupled system, A(f)=diag {—a,, —a,},
B(t)=diag {f,(t), fa(t)}, C@t)=I,, where f,, f, are any pair of differentiable
functions such that f;f,=0, but there exist mutually exclusive intervals 7'
and T, such that f,(t)#0, T, and f,(t)#0, t€T,. Note that W(t, v)=0 for
all ¢t and =, i#£j and W @, 7y=exp [—a;(t—7)] fi(7), i=1,2. Obviously
Wk, 7)=0 for all ¢ > 7, 7€T, and Wyy(t, 7)=0 for all t> 7, 7eT';. Hence this
example will not fall in the domain covered by definitions 1 and 2. In analogy
to corresponding types of controllability and observability, systems of this sort
can be said to be completely decoupled.

In the following section the conditions under which W;°(t, r)=0 for all ¢
and 7 are derived in terms of the coefficient matrices 4°(t), Be(¢) and C(3).
Using these conditions the main theorem is proved.

3. Fundamental lemmas
Define the sequence of matrices {S,},

Sy(t) £ C(t)
S, (t
Saa() 28,0 40) + 220 ®)
and the (k+1) x n matrices R ;, ¢=1,2,...,m, k=0,1, ..., (n—1),
Ry, T2 08y, % 81,4 s s Sg, "l (9)

where S, ; denotes the ith row of 8. By the previous convention {S,°(¢)}
and R, ;°(t) denote the sequence and corresponding matrix for the closed-loop
system. The differentiability assumptions on 4(¢) and C(t) ensure the existence
of {8y}, k=0,1,2, ..., n

The class of systems treated in this analysis are said to be of constant
ordered rank with respect to observability.

Definition 3
A system of the form (1) is of constant ordered rank p; with respect to
observability if p; is a constant such that

p;=rank B, (t)=rank R, () forall{and:=1,2,..,m;

the matrix R,_; ; is said to be of constant ordered rank p;.
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Lemma 1

Let Re,_; () be of constant ordered rank p; for all &, Then W;°(, 7) is
identically zero for all ¢> + and for all r if and only if

8y, (T, (r)=0 forall 7, k=0,1,2, ..., (n—1). (10)

Proof

Suppose W ;°(¢, r)=0for all ¢ and =. Differentiating the indicated element
of (7) repeatedly (n—1) times with respect to ¢ and using (8),

8" pVijc(t, ‘T)

o 28, o(t)De(t, 7)b;o(r)=0 for all{ and T,

k=0, 17 2;"') (’I’L—‘].) (]']')

Since (11) holds at ¢=r, and ®°(r, 1) £1,, [the nth-order identity matrix], (10)
follows.

To prove the converse, suppose that S, ;°(7)b;%(r)=0 for all 7, k=0, 1, 2,
vy (m—=1). It Wye(¢, 7) is not identically zero for ¢> 7 and for all 7, then, as
shown in Weiss and Kalman (1965), it is separable into a sum of scalar products
of the form

Wil 1) = Y. Ou(thhalr), (12)

where p;<n. The assumption that the matrix R¢,_, ,() has a constant
ordered rank p, for all ¢ is equivalent to saying that the Wronskian L, formed
from the solutions 6, 8,, ..., 0, and their (p;— 1) derivatives with respect to ¢
is non-singular for all ¢ (Silverman and Meadows 1965).

Taking the partial derivative of (12) p, times with respect to ¢ yields

an’I’Uc(t, T): P 8qﬁk(t)
ot =1 o

(), q=0,1, ..., p; (13)

Eliminating ¢;(7), ¥y(7), ..., #,,(7) from (13) yields

P W (¢, = P, o(¢,
—a;zj,‘f_—) LY at’+1('r)+ o Fay () Wyclt, 7)=0, (14)
0P105,4
=0
and are everywhere differentiable (n+ 1 —p,) timest with respect to ¢&. Hence
the solution of (14) is unique (Kaplan 1962). Only if uniqueness is ensured can
it be stated that the necessary and sufficient condition for the solution of (14)

where o, (f), ..., % (t) are given by o, Ly, §=0,1,..,p;—1

T Lp(t) and hence Ly=(t) is continuously differentiable (n+2 —p,) times from the
differentiabiliby assumptions on Ae¢(r), Be(r) and C(r), and the elements of
Dy 2%
[‘% d—d;ﬂ:l are continuously differentiable (n—p;+1) times. Thus the ot)

Ly
functions which are expressed as products of these elements must be continuously
differentiable (n+p;+1) times.
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to be identically zero for all ¢ = is that the set of initial conditions [see eqn.
(11)] must vanish :

TV 50t 7)

o |, = Sk (Mb(n) =0, k=01, .., py—1. (15)

Although p, may be less than n, the lemma is proved, since by (14) the
higher-order partial derivatives of W;;°(¢, 7) with respect to ¢ at t =1 must be
zero as well. Q.E.D.

For a decoupling procedure to be meaningful, it is also necessary to ensure
that the diagonal elements W ,°(t, 7) must be non-zero except at a finite
number of isolated points in ¢ for ¢ > = and for appropriate values of 7, i.e. for
almost all 7 for total decoupling, or for all 7 for uniform decoupling. For a
given 7, W,%(¢, 7) satisties the stated requirement if the following conditions
are met.

Lemma 2

Let R, ; ;¢ be of constant ordered rank p; for all . Then for W,;°¢, 7)
to be non-zero for almost all £ > 7 it is necessary and sufficient that at least one
of the elements of the sequence {S; ,°(7)b,%(r)}, k=0, 1, ..., n—1 be non-zero.
Proof

The necessity of this condition follows from lemma 1. In proving suffi-
ciency the notation is simplified by defining (¢) £ W,;°(¢, 7) for the value of 7
under consideration. By eqn. (14) B(¢) satisfies a linear homogeneous time-
varying differential equation of the form

dipi—1 dt

The condition of lemma 2 provides that at least one member of the set

[,B(t) @@ e /3] at b=

3 a, .-.’d—tpi—l

dri arit d
[Wm Fopyt) =0+ o tas(t) = +eq(t) ﬁ(t)] =0. (16)

is non-zero ; it must be shown that this guarantees that B(¢) is non-zero for
almost all £2 7.
The p,th-order differential eqn. (16) may be expressed in state vector form

with
2(t) 2 col. |:,8(t), gty - drp (t)] :

dt depel |’

by inspection

&(t) = M(t)z(t), (17)
where M () is in the phase variable canonical form,
0 Im—l .
Mt)4& 5 . (18)
—oyfi—oy ... —ay,

The properties of B(t) must be ascertained, so define as a scalar output
o(t)2hT2 42, thus h#2col. [1,0,...,0]. The pair (hT, M) is uniformly
observable (Silverman and Meadows 1965).
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Denote the transition matrix of the differential eqn. (17) by ®y,(t, 7) ; this
is a non-singular matrix for all {> 7. Then for the r specified in lemma 2,

2(t)=Oy(t, 7)2°, t=7, (19)

where z° is the initial condition given by lemma 2 to have at least one non-zero
element. Thus, since @, is non-singular, z°= ®,,~(t, 7)z(t) shows that at every
t> 7 2() must have at least one non-zero element. But the uniform observa-
bility of (AT, M) implies that it is possible to completely determine the vector
2(t) given only o =z,(t) £ B(t), hence B(t) cannot be zero on any finite subinterval
i.e. B(t) #0 almost everywhere. Q.E.D.

Note again that lemma 2 is established under the assumption that B, ; °
is of constant ordered rank, i.e. that Ly is non-singular. This assumption is
directly related to the form of the input-output relation of the decoupled sub-
system, as is discussed following the main theorem.

4, Main results
An obvious result based on lemmas 1 and 2 is

Theorem 1
Let R,_;, ;¢ be of constant ordered rank p; for all ¢ and for all 1=1,2,..,m.
Then the system (5) is totally (uniformly) decoupled if and only if
(1) Sy, :%(m)b;%(7)=0 for all 7, i, t,4=1,2,...,m, k=0,1,...,n—1;
(ii) For each i=1,2,...,m at least one of the elements in the sequence
{Sk, (70 %()}, k=0, 1, ..., n—1, is not zero for almost all = (for all 7).

Remark

It should be stressed that the main theorem is established under the assump-
tion that R,_; ;°(¢) has a constant ordered rank for all ¢. It will be shown in
the next section that a natural assumption on the open-loop system (i.e.
assuming that d; defined in lemma 3 are constants) guarantees this require-
ment.

4.1. Uniform decoupling by state variable feedback

The application of the above theorem is most clear when the system permits
uniform decoupling. Necessary and sufficient conditions to be satistied by
A(¢), B(t) and C(t) for uniform decoupling to be possible are derived from the
foregoing developments. By definition 1, a system is uniformly decoupled if
We(t, 7) is diagonal and W ,,°(t, 7)#0 for almost all > r and for all -. Hence
from eqn. (7) it is clear that G(r) must be non-singular for all . The following
lemma defines the indices d; and the auxiliary matrix D(t) essential for further
development. The indices are in general time dependent, but as explained
below it is seen to be necessary to assume that they are constants.

Lemma 3

Define dy, d,, ..., d,, to be constants such that

S; (7)B(r)=0, j<d; and 8, (7)B(r)#0 for all 7 (20)

7,

and the matrix D(7) by
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Dy(7)£84,, {(7)B(7). (21)
Then (i) the indices d;, the vector S, ,(r) for k<d; and the rank of the matrix
D(7) are invariant under state feedback, and (ii)

rank {R,, (r)}=rank {R;, °(r)}=(d;+1)

dy, i

for all + and for =1, 2, ..., m.

Proof

From the definition of the sequence {S,} [equn. (8)], it is given that
8o, 1%7)=8,, i(r). The proof then may be completed by induction : assume
that for some pe[l, d;] it is true that S¢,_,) (7)=84,_p, (7). Then for
(d;—p+1) by eqns. (6) and (8)

d
Sdi—])+1, ic(T) = [l—’l: Sdi-—p, 'i(T) + Sdi—p, t[A(T) + B(T)F(T)]

Since (d;—p)<d;, 94
which proves that

(r)B20 by (20); hence Sg,_,1,:%7)=8g,p, i(7),

i—D,

Sk, ic(’T)=Sk, ,,:(T), ]0=0, ]., iy (li' (22)

From Be°=BG, it follows that S, ,°B°=S8; ,BG, k<d; Since G(r) is non-
singular for all 7, the vector S ;(r)B(r) is a null vector if and only if
8y, :¢(1)B%(7) is zero, hence d;=min {k Sy, 1%(7)Be(7) #0}, which establishes
the invariance of this index. Flnally, (q-) £8,,, :°(T)B(7), so using (21)

D7) = Dy(7)G{(r). (23)

As G(r) is non-singular by assumption, the matrix D(7) is non-singular if and
only it D7) is non-singular.
To prove (2), suppose there exists a set of scalar functions 3,(v), =0, 1, 2,
., @; such that

Z Sj(T)S]-, {7)=0 forall . (24)

The proof is complete if it can be shown that necessarily 8;(r)=0 for all =,
§=0,1,...,d, Post-multiplying (24) by B(r) and using (20) and (21), one
gets 8(,( ) #{(7)=0 for all =. Since D,(r)#0 for all 7, §;(r)=0 for all -
Eliminating 8,,(7) from (24) and differentiating with respect to =, one gets

di—-1 d d
% {2 S, o) 8 585, i =0 (25)
Post-multiply (24) by A(7), add it to (25) and from (8) one gets
di—1 d di—1
i=0 (lT ji=0

Post-multiplying (26) with B(r) and using (20) and (21), one obtains §,,_;=0.
By repeating this procedure it can be established that §;()=0, j=0,1, ..., d;.
Q.E.D.
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In §5 it is useful to interpret the matrix D(r) in terms of the impulse
response matrix W(t, 7). IFrom lemma 1

oaW (¢,
Sup Bl | [l

D(r)= = (27)

0%m W’m(t’ T)
S a,, m(T)B(7) el N

where W,(¢, 7) is the ith row of W(t, 7).

Theorem 2 (uniform decoupling)
The system (1) may be uniformly decoupled if and only if the indices d; are
constant and D(r) (lemma 3) is non-singular for all . If
IX(T) édlag {)‘I(T) Am('r)}
is an arbitrary diagonal matrix that is non-singular for all = and

Sdl+1, 1(7')

H(7) S Sd2+1_, o) 1, (28)

SdnH—l, m(T)

then F(7)= — DY(r)H(r) and G(r)= D~Y(7)A(r) are particular matrices which
guarantee that the closed-loop system (5) is uniformly decoupled.

Proof

Necessity. If the system (5) is uniformly decoupled by state variable
feedback (4), then by definition 1, We(t, 7) is diagonal and W(t, ) is non-zero
for almost all £> 7 and for all . This, by theorem 1, implies that D(r) is
diagonal ; from (23) D°(7)=D(7)G(r)=A(7). Also, since W °(t, 7) is non-
zero for almost all £ = and for all =, it follows from (7) that G(r) must always
be non-singular, as previously assumed. Hence D(7)=A(7)G7(7) must be non-
singular.

Sufficiency. In view of eqns. (6), (8), (21) and (28), plus the definition
F(t) 4 — D-Y(¢)H(t), one obtains

dSg, v
San, r) =2l g, (A + B F()

=84, 1, i7) = Dy(7) D7) H(r)

=0 forall . - (29)
Hence by (8) and (29), it follows that
Sak, 4(T)B(r)G(r)=0 for all + and for k> 1. (30)

From eqns. (29) and (30), plus the condition S, ;°B*=S, BG£0,k=1,2,
vor, (d;—1) [eqn. (20) and lemma 3], it follows that each member of the sequence
{8,°(r)B(r)} is diagonal, ie. 8,%r)B(r)=diag. {u; (7), i=1,2,...,m}, "
where p;, (7)=0, k#d; and A(7), k=d,.
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It has been seen earlier that L, must be non-singular, i.e. R, ; ;°should
have constant ordered rank. From (29) and part (ii) of lemma 3, it can be
easily verified that it has been guaranteed that rank R, ,°=rank R, ,, ,°=
rank R, ;=d;+1. Thus by theorem 1 and definition 1 the closed-loop system
is uniformly decoupled. Q.E.D.

The specific matrix F(t) defined in theorem 2 is only one of the possible
matrices that may be used to achieve a closed-loop system that is uniformly
decoupled. The input—output differential equation of the ith sub-system is
given by y,%*t'=Aw,;, t=1,2,...,m. Since d, is constant, the order of this
differential equation is invariant, which stems from the assumption made in
lemma 1 that L, is non-singular for all ¢. This is in conformity with the
observation that the non-singularity of L, assures that the coefficient of the
highest derivative of y; in the input-output differential equation is non-zero
for all ¢t (Weiss 1964).

By inspection, a more general input—output relation can be obtained by
choosing

F'(t)= — D7) H'(t), 1

di (31)
HLO 280000+ 2 mf 08, 0, |

where m;i(t) are arbitrary coefficients. Then the input—output relation of the
1th decoupled sub-system is given by

Y+ § miH By 9E) = Ay(t)wy (£). (32)

j=0

4.2, Total decoupling by stale variable feedback

As in § 4.1 it is again necessary to define the indices d, and the auxiliary
matrix D(r). One departure is that certain variables now need only exist
almost everywhere which for convenience is denoted by r¢{r},, where {7}, is
some set of countable distinct instants of measure zero.

Lemma 4

Define d,, d,, ..., d,, to be constants such that §; ;(v)B(r)=0 for all 7,
j<d; and Sg,, 4(7)B(7)#0 for almost all = (r¢{r};). Then the indices d;, the
vectors Sy, ,(7), k<d; and the rank of D(r) when G(7) is non-singular are
invariant under state variable feedback.

The proof of lemma 4 proceeds as that of part (i) of lemma 3. With indices
d; as defined in lemma 4 it is not guaranteed that R, ; has a constant rank
(d;+1) as in the case of lemma 3, so we must assume that B, , has a constant
rank (d;+ 1) for all ¢ so as to ensure the applicability of lemmas 1 and 2. As
before (§4.1) this assumption ensures that the closed-loop observability
maftrices B, ; ;% ¢=1, 2, ..., m are of constant ordered rank for all ¢.

Tt follows from (7) and the definition of total decoupling that G(r) should
at least be non-singular for almost all . Those instants of time {r}, when
@(r) may be singular need not coincide with {r},.
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Theorem 3 (total decoupling)
The system (1) with Rj, ;(t) of constant rank, i=1,2,...,m can be
totally decoupled if and only if D(7) (lemma 4) is non-singular for r¢{r},.
Note that these instants {7}; where D—(7) does not exist are not necessarily
only the instants {7},.

Proof

Necessity. If the system (6) is totally decoupled, Theorem 1 implies that
De(7)= D(7)G(7)=A(7)=diag. {A(7), i=1,2,...,m}, where A7) must be
non-zero for almost all 7. For A,(7) # 0 for almost all 7, it is only necessary that
D(7) be non-singular for almost all 7, since G(r) is at least non-singular for
almost all .

Sufficiency. Let D(r) be non-singular except for re{r};. Take
F(r)= —DYr)H(r), 7¢{r}s

G(r)=DHn)A(1),  1¢{r}s (33)

F(r)=G(7)=0, 76{7}3,

where H(7) is as defined in theorem 2. Following the same procedure as in the
proof of theorem 2, it can be shown that the assumption that rank B, ;=d;+1
guarantees that the system is totally decoupled. Q.E.D.

Note that it is necessary to set G(7) equal to the null matrix at the set of
instant {r},, since it may not be possible to decouple at these times, i.e. for
r€{7};, the sth input cannot be guaranteed not to affect the jth output, j#1
unless externally disconnected by the G matrix. The choice of F(7)=0,
re{r}, is arbitrary, however.

For the specific F(r) and G(r) considered above the input—output relation
of the decoupled system is given by the differential equations

Y, G (7) = A Twy(T), 1=1,2,...,m, 7T¢{1}s (34)
and the system is unforced at instants re{r},.

Example 1. Consider

F—[1+exp(—¢t)] -1 0 0 0
A@)y=]| [1+3exp(-t)] 0 —1|, B()= -1 1],
—3exp (—1) 0 0 exp(—t) i
fexp (—¢) O 0
Ct)y= ]
| 0 0 exp(—9%)

then d;=1, dy=0,

8y, 1(7)  B(r) exp(—7) —exp(—7)
D(r)= =

Sy, o(7)  B(r) exp (—21) 7exp(—7)
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and
| D(7)| =exp (—27)[r—exp (—7)]=0 at r=exp (—7)=0-566.

Now in this example d,, d, exist according to (20) and are constants,
7€[0, 0], yet |D(7)| is zero at +=0-566, so the system cannot be uniformly
decoupled. It can, however, be totally decoupled. The input—output rela-
tions of the decoupled subsystems with F(f) and G(¢) chosen as in (33) are in
the form given in (34) where {r};27=0-566.

5. Time-invariant systems

For systems having 4, B and C constant all the types of decoupling are
equivalent. For such systems (7) expressed in Laplace transform notation
gives the requirement that We(s)=C[sl — A — BF]7LB@ must be diagonal and
non-singular. From (20) and (21) d;2min. {j:¢,47B#0, j=0,1,...,n—1}
and D,;=c;4%B. The indices d; always exist if W,(s) is not a null vector. Tt
was shown (IFalb and Wolowich (1967) that the time-invariant version of (1)
can be decoupled by state variable feedback if and only if D is non-singular, in
accordance with the results of § 4.

When 4, B, C' are constant matrices, (27) may be interpreted in terms of
W(s): defining S£2diag. {s@+l, sdtl,  gimt1}

D= 1t SW(s) (34)

§—>w

(Gilbert 1969). A simple criterion for decoupling may be obtained from this

m

relation : from (34), it follows that |D|= 1t s2|W(s)|, where ¢&m+ ) d,,
§—> 0 i=1

so for | D|# 0 but finite the denominator order of |W(s)| should be more than
its numerator order by exactly ¢. Note that the d,’s can also be obtained
directly from W,(s): say

P, .
H’,i(S) — |: il(s) - p’un(s)]
Ti16) Gims)

and let n;=[degree (q;)—degree (p;)], j=1,2,...,m; then necessarily
d;+ 1= min (ny).
J

Theorem 4 (decoupling of time-invariant systems)

The time-invariant version of (1) can be decoupled by state variable
feedback if and only if B2 degree [denominator of |W(s)|]—degree [numerator

m

of |W(s)|] satisfies B= ) min (n).
=1
A multivariable system can be decoupled if and only if the open-loop

transfer function matrix is non-singular (Rekasius 1965) ; the necessary and
sufficient condition for decoupling by state variable feedback is more stringent.

6. Conclusions
The principal contribution of this paper is the identification of various types
of decoupling for linear time-varying systems, analogous to the concepts of
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controllability and observability. In essence the existence of the indices d;
and the nature of the determinant of D(f) determine whether the system can be
uniformly or totally decoupled using state variable feedback. These results
are specialized to the time-invariant case and interpreted directly in terms of the
open-loop transfer function matrix,
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