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Abstract

Extended Kalman filters and related estimation algorithms have been
developed for many guidance applications. In general, the filter
equations that result are linear in the context of their derivation
but often highly nonlinear in their mechanization. In determining
filter performance in such situations, linear covariance analysis is
not rigorously applicable, and accurate monte carlo analysis may
require unacceptably large expenditures of computer time. This paper
describes the first application of the Covariance Analysis DEscribing

function Technique -~ CADETTM

-- to such a problem, to obtain results

that are both accurate and inexpensive in terms of computer time.

1. INTRODUCTION AND PROBLEM STATEMENT

In this section, the simplified filter
design model, the corresponding filter
algorithm, and a guidance system simula-

tion are briefly outlined. This material
serves as the basis for the discussion of
filter evaluation techniques.

1.1 FILTER DESIGN MODEL

Pigure 1-1 defines the guidance problem
under consideration. The missile-target

intercept is assumed to be planar, and an
inertial cartesian coordinate frame is

established as shown. A digital guidance
system is designed to process discrete

noisy measurements of instantaneous line-
of-sight (LOS) angle, 6, and uncorrupted
measurements of missile acceleration, I
to provide estimates of missile-target lat-

eral separation,y, lateral separation rate,

¥, and target acceleration, ay . These esti-
mates serve as the basis of an optimal
control law(l) which generates a missile

. acceleration command, a,, of the form

a, = 01§~+c2§-+c3ﬁt-+c4am (1-1)
Other variables shown in Figure 1-1 are
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Figure 1-1 Missile-Target Planar
: Intercept Geometry

Yo and Vi the missile and target velocity
vectors with magnitudes Vo Vi and orien-

tatlions 92, ea respectively; 2, and‘gt,

the missile and target acceleration vectors
with magnitudes g, 2y and orientations
(92+p/2), (ea+n/2), respectively; and r,
the missile-target range.

The linearized filter design model is por-
trayed in Figure 1-2. The target accel-
eration is modeled as a low-pass filtered
zero-mean gaussian white noise process, w,
with qonstant spectral density'qo,

E [w(t) w(t)] = q 8(t-1) - (1-2)

and bandwidth W The kinematic relation,

based on assuming that v and v, are con-

m
stant, is

#*Supported by the Office of Naval Research, Contract No. N00014-73-C-0213.
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Figure 1-2 Missile-=Target Intercevnt Model
for the Derivation of the
Digital Guidance System

v ='vt6a
= vteawvmez = g

The small-angle approximations have been

cos ea«vme£ cos 62

™2 (1-3)

used, since it is assumed that the
intercept is nearly head-on. A second line-
arization occurs in the measurement model,
Zk = G(tk) + Vk
yt ) /r(ty) + v,

where the range r is considered to be a

iz

(1-4)

deterministic parameter. The noise sequence
Yy is zero mean, with three components hav-

ing range dependent variances,

2
E [Vij = <r(11)> ECRICRILET °3k
(1-5)
where 01» 0pq and 05 are constant and may
represent receiver noise and distant stand-
off jamming, target amplitude scintillation,

and angulaf scintillation, respectively.

The above comments provide the basis for the
filter design model
_:’gf =Ff_§f(t) +5fw(t) +g_fam(t),

4 01 0 0 0
Ef‘ ¥ 'Ffﬂ 0 0 i 'Efa o’gfc =1
8; 0 0 =0, 1 0

)
Zy =hyxe(ty) + vy

1.2 FPILTER ALGORITHM

The principles of optimal estimation(Z)
lead to the following algorithm to provide

estimates, b of Xp!

gf(t)f-f" <t<t

f,}if(t)+g a (t)) tk—l-—

k

Rp(t) =Re(t) +k (me-hy X)), t=t,  (1-7)

where Ef(tk) represents the estimate after
the measurement and update take place. The
gain vector 5k is generated according to
the following well-known Kalman filter

relations: At time ty = kt,
+ T iy
Py= 0P 40" +Q, ¢ 2 exp(F,r) (1-8)
Ik, =P h (0P b + o2 -1 1-9
Ky = Py (hy kBt o k) (1-9)
+ 2 ., T
Pk = Pk-—k (hkthk-+o k)Ek (1-10)
where ¢ 1s the transition matrix, and
p o (F Pt g FiGe-t)

QE q go e EgBy © dt (1-11)
The estimate update term of Eq. (1-7) is
expressed in terms of the elements of P as

(r(t, )z, ~y) P11
(7 hyx ) = S—zr 31 Pay
(pyqto)rogr=(ty )+o,r (L)) pa1

(1-12)

This relation often requires a “secondary
r, to be available to the fil-
ter, in addition to the primary measure-

measurement",

ments 6 and B
1,3 GUIDANCE SYSTEM SIMULATION

The filter sketched above is incorporated
in the higher-order system model depicted
in Figure 1-3.
or target tracking device has a second-order
linear representation, with LOS angle, mis-
sile body angle, Gm, and three seeker noise

sources, w,; to w as inputs, the latter

3)
representing measurement noise components
indicated in Eq. (1-5). The guidance

system is composed of the filter, defined

above, followed by the linear optimal

control law, Eq. (1-1) and an accelera-

tion command limiter, or ideal saturation

In general terms, the seeker
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Figure 1-3 Basic Simulation
Block Diagram

which maintains |ac| <2, The autopilot
and airframe model is a linear third-order

subsystem. The missile~-target kinematics
block is nonlinear, given by Eq. (1-3) with-
out the small angle approximation and

8 = tan'l(y/x). Finally, the target model
generates the target acceleration ampli-

Some of the

tude a, as in Figure 1-2,
important parameters quantifying this model
are given in Table 1; see (4) for details.

TABLE 1 SIMULATION SYSTEM MODEL PARAMETERS

Values
8 = -10, -50
{0y = 0.707 rad-£t

Seeker rms Noise Levels dgg = 0,707x10-8 rad/ft
03 = 0,707410"4 rad

Parameters
Seeker Poles

Acceleration Command Limit amax = 750 ft/sec?

Autopilot/Airframe Poles s = -3,16, ~7.56 & 13,.0J

v = 3000 ft/sec

issile, i
Missile, Target Velocities vy = 1000 ft/sec

. .
Target rms Acceleration Level

Oay = 150 ft/sec?

2. GUIDANCE FILTER PERFORMANCE EVALUATION

Given the above missile-target intercept
model, evaluating the performance of the
guidance filter in a "typical" engagement
is a primary concern. In addition to the
system parameters given in Table 1, an
ensemble of engagements must be specifled
in terms of initial condition statistiecs.

In the present study, the only variables
with non-zero initial conditions arc
x(0) =E[x(0)] = 24,000 ft

E[ez(o)] =0rad, E[ef(o)]= (0.01745 rad)2
(2-1)

The initial value of x, in combination with

the closing velocity given by vm+vt or

4000 ft/sec (Table 1) gives a nominal

engagement time® (time to intercept) of

6.0 sec.

Since the filter is suboptimal, its P matrix
may not reliably describe the estimation.

error. One way to evaluate filter perform-

“ance is monte carlo analysis: From a large

ensemble of simulations with suitable ran-
dom initial conditions and random inputs,
one can approximately determine the statis-
tics of the estimation error. The problem
is that many trials are required for an
assurance that the analysis is accurate;
this may take a prohibitive amount of com-
puter time. A second approach is to assume
that the impact of random effects on range
is negligible. The filter is then linear
time-varying, with gains deterministically
parameterized according to a '"nominal" r(t),
and covariance analysis(z) is used to obtain

the estimation error covariance. 1In the
present case, )
r(t) = r (t) = 4000(6.0-t) ft (2-2)

is substituted into the filter equations.
Although such an analysis can be performed
using a small fraction of the comptuer time
needed for an accurate monte carlo analysis ’
(typlcally, 10 percent or less), its vali-
dity is questionable.

A new technique for filter evaluation is to
quasi-linearize the nonlineaf algorithm, and
then use 'the Covariance Analysis DEscribing
Function Technique -- CADET(3), Since the
effectiveness of CADET in capturing random

*The presence of a random initial lead angle (Eq. (2-1)) and random target maneuvers gives
rise to a mean terminal time of 6.25 sec for the present scenario.




effects in nonlinear systems has been well
established,(1’3’4),
using CADET should often be both accurate

a filter evaluation

and efficient.

The above filter performance evaluation
techniques have been applied to the guid-
ance filter described in Section 1. ‘Due to
computer budget limitations, the monte carlo
study was only qualitative (20 trials), to
determine which of the covariance analysis
techniques is more accurate. To make the
comparison as exact as possible, the other
system nonlinearities (acceleration command
limiter and kinematic nonlinearities) were
guasi-linearized in both covariance analyses.

Figure 2-1 depicts the estimation error
variances given by the filter covariance

matrix, by CADET analysis of the approximate
linear time-varying guidance system model, by

a CADET analysis of the nonlinear guidance

model, and by the 20-trial monte carlo study

(encircled data points). In all cases, the
linear analysis shows a marked divergence
from the true estimation error variance (as
given by CADET for the nonlinear model and
verified by the monte carlo results) at the
end of the engagement. 'Also, the filter
covariance matrix seems to be unrealistic-
ally pessimistic in the first two cases,
Figure 2-1a and b; the monte carlo data

in Figure 2-1c is too scattered to assess
which is more accurate in that case.

3. CONCLUSION

Clearly, analyzing the nonlinear filter
algorithm via CADET leads to performance
evaluations that are in better agreement
with monte carlo results than either the
diagonal elements of the filter P matrix,
or the approximate covariance analysis
based on a linear filter model. It is
felt that this study is of quite general
significance, since the accurate and
efficient assessment of suboptimal non-
linear filter algorithms is of broad

interest.
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